Structure Design and Composition Engineering of Carbon‐Based Nanomaterials for Lithium Energy Storage

Carbon‐based nanomaterials have significantly pushed the boundary of electrochemical performance of lithium‐based batteries (LBs) thanks to their excellent conductivity, high specific surface area, controllable morphology, and intrinsic stability. Complementary to these inherent properties, various...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 10
Main Authors Geng, Hongya, Peng, Yan, Qu, Liangti, Zhang, Haijiao, Wu, Minghong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon‐based nanomaterials have significantly pushed the boundary of electrochemical performance of lithium‐based batteries (LBs) thanks to their excellent conductivity, high specific surface area, controllable morphology, and intrinsic stability. Complementary to these inherent properties, various synthetic techniques have been adopted to prepare carbon‐based nanomaterials with diverse structures and different dimensionalities including 1D nanotubes and nanorods, 2D nanosheets and films, and 3D hierarchical architectures, which have been extensively applied as high‐performance electrode materials for energy storage and conversion. The present review aims to outline the structural design and composition engineering of carbon‐based nanomaterials as high‐performance electrodes of LBs including lithium‐ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries. This review mainly focuses on the boosting of electrochemical performance of LBs by rational dimensional design and porous tailoring of advanced carbon‐based nanomaterials. Particular attention is also paid to integrating active materials into the carbon‐based nanomaterials, and the structure–performance relationship is also systematically discussed. The developmental trends and critical challenges in related fields are summarized, which may inspire more ideas for the design of advanced carbon‐based nanostructures with superior properties. Carbon‐based nanomaterials represent cutting‐edge materials in energy storage and conversion fields due to their superior properties. This review summarizes the dimensional design and composition engineering of carbon‐based materials for boosting lithium storage capability, and further discusses their structure–performance relationship. The development trends and critical challenges are also given for the design of advanced carbon‐based electrode materials.
AbstractList Carbon‐based nanomaterials have significantly pushed the boundary of electrochemical performance of lithium‐based batteries (LBs) thanks to their excellent conductivity, high specific surface area, controllable morphology, and intrinsic stability. Complementary to these inherent properties, various synthetic techniques have been adopted to prepare carbon‐based nanomaterials with diverse structures and different dimensionalities including 1D nanotubes and nanorods, 2D nanosheets and films, and 3D hierarchical architectures, which have been extensively applied as high‐performance electrode materials for energy storage and conversion. The present review aims to outline the structural design and composition engineering of carbon‐based nanomaterials as high‐performance electrodes of LBs including lithium‐ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries. This review mainly focuses on the boosting of electrochemical performance of LBs by rational dimensional design and porous tailoring of advanced carbon‐based nanomaterials. Particular attention is also paid to integrating active materials into the carbon‐based nanomaterials, and the structure–performance relationship is also systematically discussed. The developmental trends and critical challenges in related fields are summarized, which may inspire more ideas for the design of advanced carbon‐based nanostructures with superior properties.
Carbon‐based nanomaterials have significantly pushed the boundary of electrochemical performance of lithium‐based batteries (LBs) thanks to their excellent conductivity, high specific surface area, controllable morphology, and intrinsic stability. Complementary to these inherent properties, various synthetic techniques have been adopted to prepare carbon‐based nanomaterials with diverse structures and different dimensionalities including 1D nanotubes and nanorods, 2D nanosheets and films, and 3D hierarchical architectures, which have been extensively applied as high‐performance electrode materials for energy storage and conversion. The present review aims to outline the structural design and composition engineering of carbon‐based nanomaterials as high‐performance electrodes of LBs including lithium‐ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries. This review mainly focuses on the boosting of electrochemical performance of LBs by rational dimensional design and porous tailoring of advanced carbon‐based nanomaterials. Particular attention is also paid to integrating active materials into the carbon‐based nanomaterials, and the structure–performance relationship is also systematically discussed. The developmental trends and critical challenges in related fields are summarized, which may inspire more ideas for the design of advanced carbon‐based nanostructures with superior properties. Carbon‐based nanomaterials represent cutting‐edge materials in energy storage and conversion fields due to their superior properties. This review summarizes the dimensional design and composition engineering of carbon‐based materials for boosting lithium storage capability, and further discusses their structure–performance relationship. The development trends and critical challenges are also given for the design of advanced carbon‐based electrode materials.
Author Zhang, Haijiao
Peng, Yan
Wu, Minghong
Qu, Liangti
Geng, Hongya
Author_xml – sequence: 1
  givenname: Hongya
  surname: Geng
  fullname: Geng, Hongya
  organization: Tsinghua University
– sequence: 2
  givenname: Yan
  surname: Peng
  fullname: Peng, Yan
  organization: Shanghai University
– sequence: 3
  givenname: Liangti
  surname: Qu
  fullname: Qu, Liangti
  email: lqu@mail.tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 4
  givenname: Haijiao
  orcidid: 0000-0003-2958-2967
  surname: Zhang
  fullname: Zhang, Haijiao
  email: hjzhang128@shu.edu.cn
  organization: Shanghai University
– sequence: 5
  givenname: Minghong
  surname: Wu
  fullname: Wu, Minghong
  email: mhwu@shu.edu.cn
  organization: Shanghai University
BookMark eNqFkM9KAzEQxoNUsNZePQc8tyabbHf3WGv9A7Uequdlmk3WlG5SkyzSm4_gM_okplQqCOLMYQbm-80H3ynqGGskQueUDCkhySVI0wwTQgvCYh-hLh1RPhjlnHQOO0tOUN_7FYnFC0oY66J6EVwrQuskvpZe1waDqfDENhvrddDW4KmptZHSaVNjq_AE3NKaz_ePK_CywnMwtoEQz7D2WFmHZzq86LaJnHT1Fi-CdVDLM3SsokL2v2cPPd9MnyZ3g9nj7f1kPBsIniRkwLOlIEUKkFdLURFSMQ4UEqVYwUkcNM0rpnjOqRIiqzgkkiuQI1Zkosq4Yj10sf-7cfa1lT6UK9s6Ey3LhGUpZzQjaVQN9yrhrPdOqnLjdANuW1JS7vIsd3mWhzwjwH8BQgfY5RMc6PXfWLHH3vRabv8xKcfT-cMP-wXnVI6-
CitedBy_id crossref_primary_10_1002_celc_202100946
crossref_primary_10_1002_adma_202305779
crossref_primary_10_1002_adsu_202300061
crossref_primary_10_1002_celc_202400206
crossref_primary_10_1016_j_cclet_2021_06_063
crossref_primary_10_1016_j_jcis_2020_10_100
crossref_primary_10_1016_S1872_5805_24_60838_3
crossref_primary_10_1039_D1NR07959J
crossref_primary_10_1002_advs_202204875
crossref_primary_10_1002_cnma_202200043
crossref_primary_10_1016_j_ensm_2021_09_026
crossref_primary_10_1016_j_ijoes_2023_100046
crossref_primary_10_1021_acsami_4c03250
crossref_primary_10_1080_1536383X_2024_2306806
crossref_primary_10_1016_j_est_2024_114178
crossref_primary_10_1039_D3TB01910A
crossref_primary_10_3762_bjnano_13_61
crossref_primary_10_1007_s40820_022_00924_3
crossref_primary_10_1016_j_est_2023_106678
crossref_primary_10_1016_j_seppur_2025_132082
crossref_primary_10_1021_acsaem_1c00807
crossref_primary_10_1007_s41918_020_00093_0
crossref_primary_10_1016_j_cej_2020_127428
crossref_primary_10_1016_j_jcis_2021_08_005
crossref_primary_10_1016_j_memsci_2024_122759
crossref_primary_10_1016_j_ensm_2021_03_001
crossref_primary_10_1002_adma_202003845
crossref_primary_10_1016_j_jechem_2022_05_043
crossref_primary_10_1016_j_nanoen_2021_106426
crossref_primary_10_1007_s40820_021_00721_4
crossref_primary_10_1016_j_cej_2022_137774
crossref_primary_10_1021_acsaem_1c03113
crossref_primary_10_1016_j_snb_2022_131518
crossref_primary_10_1002_adfm_202314822
crossref_primary_10_1021_acs_langmuir_3c03202
crossref_primary_10_1149_1945_7111_ad2db2
crossref_primary_10_2139_ssrn_4143057
crossref_primary_10_1007_s10800_022_01737_3
crossref_primary_10_1016_j_nanoso_2024_101216
crossref_primary_10_1016_j_tiv_2024_105898
crossref_primary_10_1002_aenm_202003037
crossref_primary_10_1002_adfm_202301109
crossref_primary_10_1002_smll_202007055
crossref_primary_10_1007_s12274_023_6045_8
crossref_primary_10_1002_slct_202400543
crossref_primary_10_1039_D2TA08459G
crossref_primary_10_1016_j_electacta_2021_138591
crossref_primary_10_1016_j_nxmate_2024_100144
crossref_primary_10_1039_D3NA00903C
crossref_primary_10_1016_j_ensm_2022_03_010
crossref_primary_10_1002_adom_202401193
crossref_primary_10_1007_s11814_024_00174_6
crossref_primary_10_1016_j_rechem_2023_100800
crossref_primary_10_1246_bcsj_20200265
crossref_primary_10_1002_adsu_202100223
crossref_primary_10_1007_s41918_023_00181_x
crossref_primary_10_1002_cplu_202400198
crossref_primary_10_1016_j_jcis_2023_09_044
crossref_primary_10_1021_acs_energyfuels_2c00077
crossref_primary_10_1016_j_est_2023_107419
crossref_primary_10_1021_acsnano_1c05898
crossref_primary_10_1007_s42765_024_00468_8
crossref_primary_10_1002_smll_202100135
crossref_primary_10_1016_j_electacta_2021_139028
crossref_primary_10_3390_en14051353
crossref_primary_10_1016_j_est_2025_115902
crossref_primary_10_1016_j_snb_2021_130501
crossref_primary_10_1166_mex_2022_2316
crossref_primary_10_1039_D4TC04275A
crossref_primary_10_1039_D0QM00598C
crossref_primary_10_1016_j_ces_2021_117019
crossref_primary_10_1016_j_jcis_2022_07_163
crossref_primary_10_1007_s00339_022_05707_6
crossref_primary_10_1007_s00604_022_05372_9
crossref_primary_10_1016_j_mtcomm_2024_109591
crossref_primary_10_1016_j_colsurfa_2023_131559
crossref_primary_10_1007_s42452_024_05716_5
crossref_primary_10_1039_D3CC05722D
crossref_primary_10_1039_D0TA04019C
crossref_primary_10_1002_adfm_202418059
crossref_primary_10_1016_j_jpowsour_2024_234068
crossref_primary_10_1016_j_rser_2022_112585
crossref_primary_10_1016_j_jallcom_2022_164121
crossref_primary_10_1039_D2DT02816F
crossref_primary_10_1088_1361_6528_abf194
crossref_primary_10_1007_s12598_024_03134_5
crossref_primary_10_1016_j_ensm_2021_06_015
crossref_primary_10_1007_s40820_020_00521_2
crossref_primary_10_1016_j_ceja_2024_100657
crossref_primary_10_1039_D3CC04305C
crossref_primary_10_1002_adma_202100837
crossref_primary_10_1016_j_jmst_2021_05_048
crossref_primary_10_1002_smll_202007676
crossref_primary_10_1155_2022_8836835
crossref_primary_10_1002_admt_202201611
crossref_primary_10_1016_j_cej_2024_150702
crossref_primary_10_1016_j_apsusc_2023_159113
crossref_primary_10_1016_j_jallcom_2021_162336
crossref_primary_10_1007_s11696_024_03816_5
crossref_primary_10_1016_j_ensm_2023_103026
crossref_primary_10_1021_acsnano_4c09114
crossref_primary_10_1021_acsaem_4c01415
crossref_primary_10_1002_adsu_202400312
crossref_primary_10_1016_j_ensm_2022_03_020
crossref_primary_10_1016_j_carbon_2021_04_083
crossref_primary_10_1016_j_carbon_2020_09_081
crossref_primary_10_1007_s40820_021_00789_y
crossref_primary_10_1002_aenm_202102972
crossref_primary_10_1016_j_cej_2025_161447
crossref_primary_10_1016_j_jpowsour_2021_229840
crossref_primary_10_1039_D4CP02923B
crossref_primary_10_1016_j_colsurfa_2024_134833
crossref_primary_10_1016_j_jpowsour_2023_232965
crossref_primary_10_1021_acsnano_4c14656
crossref_primary_10_1007_s10853_022_07127_6
crossref_primary_10_1002_smsc_202100105
crossref_primary_10_1021_acsami_0c11282
crossref_primary_10_1140_epjp_s13360_021_02128_x
crossref_primary_10_1007_s12274_023_5540_2
crossref_primary_10_1016_j_cej_2022_138394
crossref_primary_10_1016_j_jece_2024_112713
crossref_primary_10_1016_j_cjsc_2023_100092
crossref_primary_10_1016_j_jechem_2021_08_001
crossref_primary_10_1002_batt_202200196
crossref_primary_10_1002_adfm_202203117
crossref_primary_10_1016_j_est_2023_109881
crossref_primary_10_1016_j_pmatsci_2024_101401
crossref_primary_10_1002_smtd_202401580
crossref_primary_10_1016_j_surfin_2021_101121
crossref_primary_10_1002_smll_202007652
crossref_primary_10_1016_j_jmst_2021_06_036
crossref_primary_10_1021_acsanm_4c00264
crossref_primary_10_1080_14686996_2022_2050297
crossref_primary_10_1016_j_jksus_2021_101444
crossref_primary_10_1021_acsami_4c17564
crossref_primary_10_1142_S0217979222501533
crossref_primary_10_1016_j_ijbiomac_2024_131569
crossref_primary_10_1002_pat_5350
crossref_primary_10_1002_smtd_202101627
crossref_primary_10_1007_s12274_022_4859_4
crossref_primary_10_1021_acsnano_0c08056
crossref_primary_10_1002_adfm_202005581
crossref_primary_10_1039_D4CP01424C
crossref_primary_10_1007_s11426_020_9942_9
crossref_primary_10_1039_D0NJ05699E
crossref_primary_10_1021_acsaem_0c02730
crossref_primary_10_1016_j_jallcom_2023_170364
crossref_primary_10_1039_D1DT00210D
crossref_primary_10_1002_smll_202301967
crossref_primary_10_1016_j_jallcom_2021_161459
crossref_primary_10_1002_celc_202300573
crossref_primary_10_1016_j_jpowsour_2021_230523
crossref_primary_10_1039_C9NR10652A
crossref_primary_10_1002_adfm_202405392
Cites_doi 10.1038/439281a
10.1038/nature13607
10.1038/nmat3001
10.1038/s41467-017-02479-z
10.1016/j.cej.2015.08.014
10.1039/C5CP00386E
10.1002/smll.201203252
10.1002/adma.201301870
10.1038/ncomms4410
10.1021/jacs.6b07355
10.1088/0957-4484/20/15/155705
10.1039/C7CC04584K
10.1002/anie.201609230
10.1016/j.carbon.2005.01.007
10.1002/anie.201306129
10.1126/science.1101398
10.1149/1.2128859
10.1126/science.aac7730
10.1016/j.carbon.2016.02.002
10.1039/c3ta13698a
10.1021/acsnano.5b07367
10.1021/ja01539a017
10.1126/science.1078727
10.1038/nnano.2017.27
10.1002/adma.201400951
10.1002/adma.201300774
10.1016/j.polymer.2017.01.009
10.1016/j.micromeso.2017.06.049
10.1021/jacs.7b05490
10.1016/j.nanoen.2015.07.029
10.1002/adma.201704907
10.1016/j.jechem.2018.07.008
10.1039/C7TA09757C
10.1002/aenm.201602014
10.1002/anie.201812062
10.1002/smll.201602984
10.1021/nn100740x
10.1021/nn500585g
10.1021/nl300799d
10.1002/anie.201409366
10.1038/ncomms8221
10.1038/nchem.1499
10.1039/C9CS00381A
10.1016/j.pecs.2019.100786
10.1002/adma.201601382
10.1021/acs.nanolett.6b02321
10.1038/srep29534
10.1002/anie.201410786
10.1016/j.nanoen.2017.03.018
10.1002/adma.201704162
10.1002/aenm.201501870
10.1021/ja412943h
10.1039/C7TA04771A
10.1016/j.nanoen.2015.01.033
10.1002/adma.201602800
10.1039/C5TA10001A
10.1021/nl5024029
10.1002/smll.201402072
10.1002/anie.201305006
10.1039/C5TA00681C
10.1039/C7TA05522F
10.1016/j.nanoen.2018.04.040
10.1021/jacs.7b01942
10.1002/smtd.201800035
10.1021/am507660y
10.1021/nn101187z
10.1016/j.joule.2018.02.001
10.1016/j.carbon.2018.11.032
10.1002/adma.201500945
10.1016/j.ensm.2018.05.019
10.1016/j.mattod.2015.06.009
10.1021/nn3052023
10.1038/nature13434
10.1021/acs.nanolett.7b00623
10.1039/C8CC10036E
10.1038/natrevmats.2016.13
10.1021/acs.nanolett.7b00906
10.1039/C9EE00308H
10.1002/smll.201702916
10.1002/adma.201700639
10.1002/advs.201700270
10.1002/chem.201301689
10.1126/sciadv.1500222
10.1016/j.nanoen.2017.06.030
10.1002/aenm.201602543
10.1021/am3027597
10.1039/C6CS00829A
10.1002/aenm.201700051
10.1002/adfm.201202412
10.1016/j.carbon.2019.02.081
10.1021/acsnano.8b08822
10.1002/adma.201800863
10.1039/C4NJ00701H
10.1021/nn500327p
10.1021/cr5006217
10.1021/acs.nanolett.8b03906
10.1002/smll.201902491
10.1002/adma.201401427
10.1039/c3ee41910j
10.1002/smtd.201800119
10.1016/j.nanoen.2016.05.017
10.1038/nmat4317
10.1126/science.1200770
10.1038/ncomms14627
10.1016/j.carbon.2017.07.017
10.1021/acsnano.7b01437
10.1039/C5TA05324B
10.1002/admi.201500491
10.1021/nl504425h
10.1002/aenm.201800935
10.1002/aenm.201200001
10.1002/anie.201701026
10.1021/nl300528p
10.1039/C4TA05804F
10.1021/nl500397y
10.1002/adma.201203151
10.1016/j.carbon.2009.03.053
10.1039/c2jm35125k
10.1039/C6TA06612G
10.1016/j.jpowsour.2015.05.048
10.1002/aenm.201700530
10.1038/nenergy.2016.113
10.1038/354056a0
10.1002/smtd.201900081
10.1080/00018738100101367
10.1021/cr030203g
10.1002/adma.201505391
10.1002/adma.201506112
10.1002/anie.201309836
10.1021/jz1005384
10.1038/nature12952
10.1002/adfm.201603088
10.1016/j.electacta.2016.01.019
10.1016/j.carbon.2015.11.048
10.1039/C7TA01187C
10.1002/chem.201701806
10.1002/aenm.201900477
10.1039/C9CC04877D
10.1002/adma.201401243
10.1002/anie.201505444
10.1021/nn501945f
10.1149/1.2759840
10.1007/s12274-017-1507-5
10.1038/nmat2460
10.1039/C6CS00929H
10.1021/am402368p
10.1002/aenm.201200320
10.1021/jacs.6b00757
10.1021/acscatal.5b00332
10.1016/j.nanoen.2019.104061
10.1038/ncomms15020
10.1038/s41467-018-03211-1
10.1021/jacs.5b09000
10.1016/j.carbon.2019.05.008
10.1039/C5CS00344J
10.1002/adma.201304319
10.1038/ncomms1583
10.1016/j.carbon.2017.03.048
10.1021/cm900395k
10.1002/adfm.201702562
10.1002/aenm.201401752
10.1002/aenm.201100001
10.1002/adma.201503816
10.1038/srep20445
10.1016/j.carbon.2017.08.062
10.1002/aenm.201602567
10.1016/j.carbon.2018.10.007
10.1002/adfm.201707592
10.1002/smll.201600364
10.1007/s12274-017-1686-0
10.1002/smll.201802204
10.1002/ange.201602142
10.1016/j.cej.2019.122249
10.1007/s12274-016-1271-y
10.1002/adma.201806620
10.1021/acsnano.5b00088
10.1002/adma.201603549
10.1039/C5EE00838G
10.1002/aenm.201301795
10.1021/acs.chemrev.5b00563
10.1021/acsnano.5b06675
10.1039/C5CC06562C
10.1016/j.nanoen.2015.09.001
10.1039/C8SM01626G
10.1038/ncomms14628
10.1039/c3ee41444b
10.1002/anie.201308354
10.1002/adfm.201702524
10.1126/sciadv.1701301
10.1002/smll.201501570
10.1002/ange.201409454
10.1038/nmat3191
10.1016/j.carbon.2017.01.059
10.1021/acs.nanolett.5b03903
10.1002/aenm.201500559
10.1021/cr400573b
10.1038/natrevmats.2017.23
10.1002/adfm.201001330
10.1016/j.eurpolymj.2008.07.033
10.1002/advs.201600243
10.1039/C5TA05334J
10.1021/acsnano.6b00723
10.1039/C8EE02617C
10.1002/anie.201400711
10.1021/acsami.5b04864
10.1126/science.1122152
10.1039/C7CS00139H
10.1002/aenm.201501835
10.1002/ppsc.201500073
10.1002/aenm.201600377
10.1021/nn506394r
10.1002/adma.201302877
10.1038/ncomms13065
10.1002/ange.201205354
10.1039/C8EE02067A
10.1126/science.1104962
10.1126/science.1094982
10.1038/nmat4170
10.1002/aenm.201501355
10.1016/j.carbon.2017.03.037
10.1021/nl2027684
10.1002/adma.201401191
10.1038/ncomms8393
10.1021/acsnano.7b08918
10.1039/C3TA12648J
10.1002/adma.201501059
10.1039/C4GC00761A
10.1038/nchem.2101
10.1002/adma.201504765
10.1039/C6RA04230A
10.1021/acs.chemmater.6b03751
10.1038/nature21051
10.1021/acs.chemmater.6b03420
10.1002/smll.201704410
10.1002/aenm.201900161
10.1002/ange.201507735
10.1039/c3ta11852e
10.1016/j.jpowsour.2015.04.029
10.1038/s41467-019-08767-0
10.1002/ppsc.201300231
10.1126/science.aam6014
10.1002/smll.201903418
10.1126/sciadv.1500849
10.1038/nmat1368
10.1002/adma.201301920
10.1038/nature16484
10.1038/ncomms10998
10.1016/j.nanoen.2019.104038
10.1126/science.aao2808
10.1016/j.carbon.2014.10.024
10.1021/nl503125u
10.1002/ange.201808835
10.1002/aenm.201802955
10.1016/S0032-3861(02)00151-9
10.1016/j.jelechem.2019.113242
10.1021/ja310849c
10.1038/nnano.2016.32
10.1007/s12274-018-2219-1
10.1039/C4EE02587C
10.1149/2.0151903jes
10.1039/b417081b
10.1016/j.jpowsour.2011.06.055
10.1002/anie.201901840
10.1016/j.carbon.2016.01.104
10.1002/ange.201504514
10.1016/j.apsusc.2012.12.150
10.1021/nn3057388
10.1038/ncomms10601
10.1039/c2ee23599d
10.1039/C4TA02839B
10.1021/acsnano.7b02198
10.1021/acsaem.8b01682
10.1002/aenm.201803477
10.1002/aenm.201502164
10.1021/jp512152f
10.1126/science.1246501
10.1016/j.carbon.2016.12.014
10.1002/aenm.201700260
10.1021/acs.accounts.7b00487
10.1002/adma.201103509
10.1038/nenergy.2015.29
10.1021/acsami.6b16155
10.1002/adma.201203448
10.1021/am406053s
10.1002/ange.201608410
10.1002/aenm.201701099
10.1002/adma.201602210
10.1002/adfm.201500863
10.1039/C9TA02030F
10.1002/adma.201603040
10.1039/C3MH00144J
10.1126/sciadv.1600021
10.1002/adfm.201604815
10.1038/nenergy.2017.118
10.1039/c3cp51758f
10.1021/acs.chemmater.6b05056
10.1021/acs.chemrev.8b00241
10.1039/c2nr11936f
10.1002/adma.201606823
10.1002/adfm.201902915
10.1021/acsami.5b10720
10.1002/smll.201502924
10.1038/nature25984
10.1002/aenm.201701203
10.1149/1.1837571
10.1002/aenm.201401412
10.1126/science.1211934
10.1021/cr500054y
10.1103/PhysRevLett.98.186808
10.1038/ncomms15607
10.1002/adma.201902664
10.1021/acs.nanolett.6b03108
10.1002/smtd.201800546
10.1002/smtd.201900338
10.1038/ncomms3798
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201903030
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201903030
AENM201903030
Genre reviewArticle
GrantInformation_xml – fundername: Shanghai Municipal Education Commission
  funderid: 18SG035
– fundername: Shanghai Pujiang Program
  funderid: 17PJD015
– fundername: National Natural Science Foundation of China
  funderid: 51673026
– fundername: Shanghai Education Development Foundation
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4220-47bc095aa8dbcd00d34a1a2ff39402ff158d3f4841fcc7d4a2e4fae6397cd74f3
ISSN 1614-6832
IngestDate Fri Jul 25 12:15:04 EDT 2025
Tue Jul 01 01:43:33 EDT 2025
Thu Apr 24 22:50:22 EDT 2025
Wed Jan 22 16:34:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4220-47bc095aa8dbcd00d34a1a2ff39402ff158d3f4841fcc7d4a2e4fae6397cd74f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2958-2967
PQID 2375431705
PQPubID 886389
PageCount 34
ParticipantIDs proquest_journals_2375431705
crossref_primary_10_1002_aenm_201903030
crossref_citationtrail_10_1002_aenm_201903030
wiley_primary_10_1002_aenm_201903030_AENM201903030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
1991; 354
2013; 1
2019; 10
2019; 848
2019; 13
2019; 12
2019; 15
2014; 26
2019; 16
2013; 125
2013; 7
2011; 196
2012; 12
2013; 5
2012; 11
2013; 6
2014; 136
2018; 49
2019; 166
2013; 9
2018; 6
2018; 9
2018; 8
2018; 2
2018; 5
2010; 1
2015; 137
2015; 81
1997; 144
2013; 52
2014; 16
2014; 14
2019; 29
2018; 30
2012; 24
2012; 22
2010; 4
2019; 150
2019; 7
2019; 9
2018; 28
1979; 126
2019; 3
2011; 2
2011; 1
2019; 31
2015; 127
2019; 2
2015; 51
2019; 32
2015; 54
2016; 10
2016; 98
2017; 253
2007; 98
2004; 306
2016; 16
2004; 305
2004; 304
2017; 139
2016; 12
2016; 283
2016; 11
2016; 4
2015; 350
2016; 6
2017; 53
2018; 18
2016; 7
2016; 1
2016; 2
2016; 3
2015; 115
2018; 118
2007; 154
2019; 48
2017; 56
2014; 38
2005; 4
2015; 119
2008; 44
2018; 12
2016; 28
2018; 11
2017; 543
2016; 26
2016; 8
2018; 14
2014; 31
2017; 5
2017; 7
2009; 47
2017; 8
2017; 2
2013; 25
2017; 3
2017; 4
2015; 347
2019; 55
2013; 23
2017; 46
2019; 58
2015; 32
2016; 101
2011; 11
2011; 10
2017; 111
2017; 114
2017; 9
2017; 115
2017; 358
2017; 118
2014; 1
2013; 19
2018; 130
2015; 293
2014; 5
2013; 15
2014; 4
2014; 2
2019; 65
2017; 38
2002; 43
2015; 44
2017; 34
2011; 21
2016; 116
2011; 23
1958; 80
2013; 275
2017; 122
2014; 8
1981; 30
2016; 191
2017; 124
2014; 6
2005; 34
2014; 53
2015; 12
2015; 1
2014; 512
2011; 334
2015; 15
2015; 14
2006; 439
2015; 6
2015; 17
2015; 5
2004; 104
2009; 21
2015; 18
2009; 20
2015; 3
2019; 75
2017; 27
2015; 288
2002; 298
2015; 11
2017; 23
2016; 529
2005; 43
2019; 147
2016; 128
2017; 29
2015; 9
2019; 141
2015; 8
2015; 7
2014; 114
2014; 510
2011; 332
2019; 143
2006; 311
2015; 25
2012; 2
2015; 27
2014; 506
2017; 17
2017; 11
2017; 10
2018; 555
2017; 13
2017; 12
2019
2013; 135
2019; 378
2009; 8
2016; 138
2018; 51
2012; 4
e_1_2_7_3_1
e_1_2_7_311_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_297_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_248_1
e_1_2_7_225_1
e_1_2_7_263_1
e_1_2_7_319_1
e_1_2_7_240_1
e_1_2_7_322_1
e_1_2_7_285_1
e_1_2_7_307_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_237_1
e_1_2_7_177_1
e_1_2_7_214_1
e_1_2_7_275_1
e_1_2_7_252_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_296_1
e_1_2_7_318_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_310_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_249_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_226_1
e_1_2_7_166_1
e_1_2_7_241_1
e_1_2_7_264_1
e_1_2_7_117_1
e_1_2_7_284_1
e_1_2_7_306_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_321_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_238_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_230_1
e_1_2_7_253_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_295_1
e_1_2_7_9_1
e_1_2_7_317_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_227_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_265_1
e_1_2_7_242_1
e_1_2_7_118_1
e_1_2_7_283_1
e_1_2_7_305_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_320_1
e_1_2_7_54_1
e_1_2_7_216_1
e_1_2_7_194_1
e_1_2_7_239_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_254_1
e_1_2_7_231_1
e_1_2_7_294_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_316_1
e_1_2_7_122_1
e_1_2_7_279_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_228_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_220_1
e_1_2_7_243_1
e_1_2_7_266_1
e_1_2_7_168_1
Dai C. (e_1_2_7_116_1) 2019
e_1_2_7_119_1
e_1_2_7_282_1
e_1_2_7_91_1
e_1_2_7_304_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
Jiao Y. (e_1_2_7_75_1) 2016; 1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_232_1
e_1_2_7_255_1
e_1_2_7_157_1
e_1_2_7_270_1
e_1_2_7_108_1
e_1_2_7_293_1
e_1_2_7_7_1
e_1_2_7_315_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_278_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_229_1
e_1_2_7_49_1
e_1_2_7_267_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_244_1
e_1_2_7_221_1
e_1_2_7_281_1
e_1_2_7_303_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_289_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_218_1
e_1_2_7_256_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_233_1
e_1_2_7_210_1
e_1_2_7_271_1
e_1_2_7_292_1
e_1_2_7_314_1
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_277_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_245_1
e_1_2_7_268_1
e_1_2_7_147_1
e_1_2_7_222_1
e_1_2_7_260_1
e_1_2_7_280_1
e_1_2_7_302_1
e_1_2_7_325_1
e_1_2_7_113_1
e_1_2_7_288_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_219_1
e_1_2_7_197_1
e_1_2_7_234_1
e_1_2_7_257_1
e_1_2_7_136_1
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_272_1
e_1_2_7_291_1
e_1_2_7_5_1
e_1_2_7_313_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_276_1
e_1_2_7_299_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_223_1
e_1_2_7_269_1
e_1_2_7_186_1
e_1_2_7_246_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_261_1
e_1_2_7_324_1
e_1_2_7_301_1
e_1_2_7_114_1
e_1_2_7_287_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_258_1
e_1_2_7_198_1
e_1_2_7_235_1
e_1_2_7_137_1
e_1_2_7_309_1
e_1_2_7_273_1
e_1_2_7_250_1
e_1_2_7_290_1
e_1_2_7_6_1
e_1_2_7_312_1
e_1_2_7_126_1
e_1_2_7_298_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_1
Ye H. (e_1_2_7_171_1) 2018; 8
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_224_1
e_1_2_7_247_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_262_1
e_1_2_7_300_1
e_1_2_7_323_1
e_1_2_7_115_1
e_1_2_7_286_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
e_1_2_7_236_1
e_1_2_7_259_1
e_1_2_7_308_1
e_1_2_7_138_1
e_1_2_7_274_1
e_1_2_7_251_1
References_xml – volume: 43
  start-page: 3247
  year: 2002
  publication-title: Polymer
– volume: 46
  start-page: 5237
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 58
  start-page: 3779
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 439
  start-page: 281
  year: 2006
  publication-title: Nature
– volume: 4
  start-page: 1004
  year: 2012
  publication-title: Nat. Chem.
– volume: 56
  start-page: 6192
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 5140
  year: 2017
  publication-title: ACS Nano
– volume: 555
  start-page: 502
  year: 2018
  publication-title: Nature
– volume: 191
  start-page: 23
  year: 2016
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 900
  year: 2019
  publication-title: Nat. Commun.
– volume: 2
  start-page: 1121
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 10
  start-page: 2966
  year: 2017
  publication-title: Nano Res.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 14
  start-page: 3145
  year: 2014
  publication-title: Nano Lett.
– volume: 114
  start-page: 5611
  year: 2014
  publication-title: Chem. Rev.
– volume: 11
  start-page: 19
  year: 2012
  publication-title: Nat. Mater.
– volume: 11
  start-page: 3500
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 1217
  year: 2014
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4579
  year: 2016
  publication-title: ACS Nano
– volume: 48
  start-page: 5432
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 80
  start-page: 1339
  year: 1958
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 271
  year: 2015
  publication-title: Nat. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 6016
  year: 2014
  publication-title: Nano Lett.
– volume: 311
  start-page: 977
  year: 2006
  publication-title: Science
– volume: 28
  start-page: 3000
  year: 2016
  publication-title: Adv. Mater.
– volume: 1
  start-page: 326
  year: 2014
  publication-title: Mater. Horiz.
– volume: 25
  start-page: 4932
  year: 2013
  publication-title: Adv. Mater.
– volume: 16
  start-page: 228
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 139
  start-page: 8212
  year: 2017
  publication-title: J. Am. Chem. Soc.
– start-page: 1
  year: 2019
  publication-title: InfoMat.
– volume: 12
  start-page: 2568
  year: 2012
  publication-title: Nano Lett.
– volume: 18
  start-page: 480
  year: 2015
  publication-title: Mater. Today
– volume: 47
  start-page: 2049
  year: 2009
  publication-title: Carbon
– volume: 34
  start-page: 821
  year: 2005
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 3926
  year: 2014
  publication-title: Green Chem.
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 28
  start-page: 1603
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 23
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 317
  year: 2014
  publication-title: Part. Part. Syst. Charact.
– volume: 28
  start-page: 6926
  year: 2016
  publication-title: Adv. Mater.
– volume: 543
  start-page: 234
  year: 2017
  publication-title: Nature
– volume: 9
  start-page: 7185
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 1546
  year: 2016
  publication-title: Nano Lett.
– volume: 8
  start-page: 1292
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 481
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 4
  start-page: 3187
  year: 2010
  publication-title: ACS Nano
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 28
  start-page: 2587
  year: 2016
  publication-title: Adv. Mater.
– volume: 12
  start-page: 2446
  year: 2012
  publication-title: Nano Lett.
– volume: 104
  start-page: 4303
  year: 2004
  publication-title: Chem. Rev.
– volume: 13
  start-page: 5163
  year: 2019
  publication-title: ACS Nano
– volume: 17
  start-page: 224
  year: 2015
  publication-title: Nano Energy
– volume: 298
  start-page: 2361
  year: 2002
  publication-title: Science
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 8006
  year: 2016
  publication-title: Chem. Mater.
– volume: 21
  start-page: 3136
  year: 2009
  publication-title: Chem. Mater.
– volume: 28
  start-page: 8413
  year: 2016
  publication-title: Adv. Mater.
– volume: 24
  start-page: 6502
  year: 2012
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2798
  year: 2013
  publication-title: Nat. Commun.
– volume: 5
  start-page: 21
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 81
  start-page: 782
  year: 2015
  publication-title: Carbon
– volume: 378
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 52
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 510
  start-page: 522
  year: 2014
  publication-title: Nature
– volume: 332
  start-page: 1537
  year: 2011
  publication-title: Science
– volume: 1
  year: 2016
  publication-title: Nano Energy
– volume: 114
  start-page: 311
  year: 2017
  publication-title: Carbon
– volume: 5
  start-page: 3410
  year: 2014
  publication-title: Nat. Commun.
– volume: 138
  start-page: 3570
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 147
  start-page: 441
  year: 2019
  publication-title: Carbon
– volume: 12
  start-page: 331
  year: 2019
  publication-title: Nano Res.
– volume: 2
  start-page: 571
  year: 2011
  publication-title: Nat. Commun.
– volume: 43
  start-page: 1378
  year: 2005
  publication-title: Carbon
– volume: 305
  start-page: 1447
  year: 2004
  publication-title: Science
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 10
  start-page: 121
  year: 2017
  publication-title: Nano Res.
– volume: 15
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 1345
  year: 2015
  publication-title: Small
– volume: 11
  start-page: 626
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 101
  start-page: 245
  year: 2016
  publication-title: Carbon
– volume: 21
  start-page: 211
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 130
  year: 2018
  publication-title: Angew. Chem.
– volume: 111
  start-page: 36
  year: 2017
  publication-title: Polymer
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 6
  start-page: 1091
  year: 2014
  publication-title: Nat. Chem.
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 3957
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 938
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 347
  year: 2015
  publication-title: Science
– volume: 14
  start-page: 763
  year: 2015
  publication-title: Nat. Mater.
– volume: 126
  start-page: 2047
  year: 1979
  publication-title: J. Electrochem. Soc.
– volume: 288
  start-page: 451
  year: 2015
  publication-title: J. Power Sources
– volume: 18
  start-page: 7949
  year: 2018
  publication-title: Nano Lett.
– volume: 10
  start-page: 1300
  year: 2016
  publication-title: ACS Nano
– volume: 1
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 38
  start-page: 504
  year: 2017
  publication-title: Nano Energy
– volume: 10
  start-page: 1648
  year: 2016
  publication-title: ACS Nano
– volume: 1
  start-page: 486
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 350
  start-page: 530
  year: 2015
  publication-title: Science
– volume: 118
  start-page: 139
  year: 2017
  publication-title: Carbon
– volume: 275
  start-page: 244
  year: 2013
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 657
  year: 2015
  publication-title: Nano Energy
– volume: 15
  year: 2019
  publication-title: Small
– volume: 12
  start-page: 602
  year: 2016
  publication-title: Small
– volume: 16
  start-page: 6511
  year: 2016
  publication-title: Nano Lett.
– volume: 253
  start-page: 169
  year: 2017
  publication-title: Microporous Mesoporous Mater.
– volume: 12
  start-page: 3155
  year: 2016
  publication-title: Small
– volume: 128
  year: 2016
  publication-title: Angew. Chem.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 4261
  year: 2015
  publication-title: Nano Lett.
– volume: 26
  start-page: 625
  year: 2014
  publication-title: Adv. Mater.
– volume: 136
  start-page: 4659
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 997
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 20
  year: 2009
  publication-title: Nanotechnology
– volume: 12
  start-page: 2422
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 769
  year: 2018
  publication-title: Nano Res.
– volume: 53
  start-page: 5262
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 9385
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 38
  start-page: 4549
  year: 2014
  publication-title: New J. Chem.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 506
  start-page: 349
  year: 2014
  publication-title: Nature
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 5
  start-page: 9537
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 2193
  year: 2010
  publication-title: J. Phys. Chem. Lett.
– volume: 358
  year: 2017
  publication-title: Science
– volume: 15
  start-page: 243
  year: 2019
  publication-title: Soft Matter.
– volume: 6
  start-page: 1462
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 4309
  year: 2015
  publication-title: ACS Catal.
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 764
  year: 2018
  publication-title: Joule
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 128
  start-page: 7006
  year: 2016
  publication-title: Angew. Chem.
– volume: 7
  start-page: 2422
  year: 2013
  publication-title: ACS Nano
– volume: 25
  start-page: 188
  year: 2013
  publication-title: Adv. Mater.
– volume: 32
  start-page: 952
  year: 2015
  publication-title: Part. Part. Syst. Charact.
– volume: 116
  start-page: 140
  year: 2016
  publication-title: Chem. Rev.
– volume: 75
  year: 2019
  publication-title: Prog. Energy Combust. Sci.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 529
  start-page: 377
  year: 2016
  publication-title: Nature
– volume: 2
  start-page: 520
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 306
  start-page: 1362
  year: 2004
  publication-title: Science
– volume: 30
  start-page: 139
  year: 1981
  publication-title: Adv. Phys.
– volume: 53
  start-page: 2152
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 118
  start-page: 148
  year: 2017
  publication-title: Carbon
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 122
  start-page: 635
  year: 2017
  publication-title: Carbon
– volume: 135
  start-page: 1524
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3570
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 3687
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2069
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 4299
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 358
  start-page: 506
  year: 2017
  publication-title: Science
– volume: 9
  start-page: 836
  year: 2018
  publication-title: Nat. Commun.
– volume: 25
  start-page: 4436
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 3200
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 7725
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 7117
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 124
  year: 2019
  publication-title: J. Energy Chem.
– volume: 23
  start-page: 846
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 2839
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 3015
  year: 2014
  publication-title: ACS Nano
– volume: 27
  start-page: 7861
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  start-page: 9502
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 2873
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 6749
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 3049
  year: 2014
  publication-title: ACS Nano
– volume: 848
  year: 2019
  publication-title: J. Electroanal. Chem.
– volume: 8
  start-page: 2144
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 98
  start-page: 582
  year: 2016
  publication-title: Carbon
– volume: 34
  start-page: 437
  year: 2017
  publication-title: Nano Energy
– volume: 4
  start-page: 2083
  year: 2012
  publication-title: Nanoscale
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 4
  start-page: 366
  year: 2005
  publication-title: Nat. Mater.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 7051
  year: 2014
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2556
  year: 2015
  publication-title: ACS Nano
– volume: 283
  start-page: 789
  year: 2016
  publication-title: Chem. Eng. J.
– volume: 124
  start-page: 212
  year: 2017
  publication-title: Carbon
– volume: 29
  year: 2019
  publication-title: Small
– volume: 55
  start-page: 2644
  year: 2019
  publication-title: Chem. Commun.
– volume: 144
  start-page: 1188
  year: 1997
  publication-title: J. Electrochem. Soc.
– volume: 12
  start-page: 535
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 17
  start-page: 43
  year: 2015
  publication-title: Nano Energy
– volume: 29
  start-page: 1665
  year: 2017
  publication-title: Chem. Mater.
– volume: 26
  start-page: 6100
  year: 2014
  publication-title: Adv. Mater.
– volume: 9
  start-page: 4026
  year: 2015
  publication-title: ACS Nano
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 28
  start-page: 7125
  year: 2016
  publication-title: Chem. Mater.
– volume: 2
  start-page: 1056
  year: 2012
  publication-title: Adv. Energy Mater.
– year: 2019
  publication-title: Adv. Mater.
– volume: 11
  start-page: 4877
  year: 2017
  publication-title: ACS Nano
– volume: 9
  start-page: 145
  year: 2018
  publication-title: Nat. Commun.
– volume: 25
  start-page: 3249
  year: 2013
  publication-title: Adv. Mater.
– volume: 7
  start-page: 4029
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 5109
  year: 2013
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7393
  year: 2015
  publication-title: Nat. Commun.
– volume: 125
  start-page: 410
  year: 2013
  publication-title: Angew. Chem.
– volume: 54
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  start-page: 3543
  year: 2017
  publication-title: Nano Lett.
– volume: 141
  start-page: 531
  year: 2019
  publication-title: Carbon
– volume: 127
  start-page: 542
  year: 2015
  publication-title: Angew. Chem.
– volume: 23
  start-page: 5436
  year: 2011
  publication-title: Adv. Mater.
– volume: 2
  start-page: 801
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 196
  start-page: 8651
  year: 2011
  publication-title: J. Power Sources
– volume: 150
  start-page: 76
  year: 2019
  publication-title: Carbon
– volume: 49
  start-page: 179
  year: 2018
  publication-title: Nano Energy
– volume: 53
  year: 2017
  publication-title: Chem. Commun.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 3681
  year: 2017
  publication-title: Nano Lett.
– volume: 512
  start-page: 61
  year: 2014
  publication-title: Nature
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 26
  start-page: 446
  year: 2016
  publication-title: Nano Energy
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 3926
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 5677
  year: 2014
  publication-title: Nano Lett.
– volume: 115
  start-page: 5159
  year: 2015
  publication-title: Chem. Rev.
– volume: 118
  start-page: 8936
  year: 2018
  publication-title: Chem. Rev.
– volume: 293
  start-page: 119
  year: 2015
  publication-title: J. Power Sources
– volume: 9
  start-page: 1237
  year: 2013
  publication-title: Small
– volume: 10
  start-page: 424
  year: 2011
  publication-title: Nat. Mater.
– volume: 304
  start-page: 276
  year: 2004
  publication-title: Science
– volume: 4
  start-page: 4324
  year: 2010
  publication-title: ACS Nano
– volume: 26
  start-page: 6186
  year: 2014
  publication-title: Adv. Mater.
– volume: 115
  start-page: 640
  year: 2017
  publication-title: Carbon
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 7221
  year: 2015
  publication-title: Nat. Commun.
– volume: 19
  year: 2013
  publication-title: Chem. ‐ Eur. J.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 1256
  year: 2011
  publication-title: Science
– volume: 127
  year: 2015
  publication-title: Angew. Chem.
– volume: 58
  start-page: 7238
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 273
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 143
  start-page: 869
  year: 2019
  publication-title: Carbon
– volume: 354
  start-page: 56
  year: 1991
  publication-title: Nature
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1947
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 5545
  year: 2015
  publication-title: Small
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 26
  start-page: 5113
  year: 2014
  publication-title: Adv. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 16
  start-page: 5675
  year: 2016
  publication-title: Nano Lett.
– volume: 6
  start-page: 871
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 3126
  year: 2018
  publication-title: ACS Nano
– volume: 119
  start-page: 5848
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 44
  start-page: 3246
  year: 2008
  publication-title: Eur. Polym. J.
– volume: 154
  start-page: A910
  year: 2007
  publication-title: J. Electrochem. Soc.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 27
  start-page: 3541
  year: 2015
  publication-title: Adv. Mater.
– volume: 11
  start-page: 4462
  year: 2011
  publication-title: Nano Lett.
– volume: 7
  start-page: 1437
  year: 2013
  publication-title: ACS Nano
– volume: 26
  start-page: 4521
  year: 2014
  publication-title: Adv. Mater.
– volume: 101
  start-page: 253
  year: 2016
  publication-title: Carbon
– ident: e_1_2_7_34_1
  doi: 10.1038/439281a
– ident: e_1_2_7_33_1
  doi: 10.1038/nature13607
– ident: e_1_2_7_164_1
  doi: 10.1038/nmat3001
– ident: e_1_2_7_107_1
  doi: 10.1038/s41467-017-02479-z
– ident: e_1_2_7_182_1
  doi: 10.1016/j.cej.2015.08.014
– ident: e_1_2_7_290_1
  doi: 10.1039/C5CP00386E
– ident: e_1_2_7_144_1
  doi: 10.1002/smll.201203252
– ident: e_1_2_7_229_1
  doi: 10.1002/adma.201301870
– ident: e_1_2_7_97_1
  doi: 10.1038/ncomms4410
– ident: e_1_2_7_170_1
  doi: 10.1021/jacs.6b07355
– ident: e_1_2_7_60_1
  doi: 10.1088/0957-4484/20/15/155705
– ident: e_1_2_7_102_1
  doi: 10.1039/C7CC04584K
– ident: e_1_2_7_88_1
  doi: 10.1002/anie.201609230
– ident: e_1_2_7_28_1
  doi: 10.1016/j.carbon.2005.01.007
– ident: e_1_2_7_50_1
  doi: 10.1002/anie.201306129
– ident: e_1_2_7_63_1
  doi: 10.1126/science.1101398
– ident: e_1_2_7_210_1
  doi: 10.1149/1.2128859
– ident: e_1_2_7_261_1
  doi: 10.1126/science.aac7730
– ident: e_1_2_7_166_1
  doi: 10.1016/j.carbon.2016.02.002
– ident: e_1_2_7_315_1
  doi: 10.1039/c3ta13698a
– ident: e_1_2_7_87_1
  doi: 10.1021/acsnano.5b07367
– ident: e_1_2_7_103_1
  doi: 10.1021/ja01539a017
– ident: e_1_2_7_40_1
  doi: 10.1126/science.1078727
– ident: e_1_2_7_267_1
  doi: 10.1038/nnano.2017.27
– ident: e_1_2_7_131_1
  doi: 10.1002/adma.201400951
– ident: e_1_2_7_66_1
  doi: 10.1002/adma.201300774
– ident: e_1_2_7_59_1
  doi: 10.1016/j.polymer.2017.01.009
– ident: e_1_2_7_176_1
  doi: 10.1016/j.micromeso.2017.06.049
– ident: e_1_2_7_161_1
  doi: 10.1021/jacs.7b05490
– ident: e_1_2_7_158_1
  doi: 10.1016/j.nanoen.2015.07.029
– ident: e_1_2_7_270_1
  doi: 10.1002/adma.201704907
– ident: e_1_2_7_224_1
  doi: 10.1016/j.jechem.2018.07.008
– ident: e_1_2_7_89_1
  doi: 10.1039/C7TA09757C
– ident: e_1_2_7_250_1
  doi: 10.1002/aenm.201602014
– ident: e_1_2_7_247_1
  doi: 10.1002/anie.201812062
– ident: e_1_2_7_298_1
  doi: 10.1002/smll.201602984
– ident: e_1_2_7_124_1
  doi: 10.1021/nn100740x
– ident: e_1_2_7_13_1
  doi: 10.1021/nn500585g
– ident: e_1_2_7_27_1
  doi: 10.1021/nl300799d
– ident: e_1_2_7_62_1
  doi: 10.1002/anie.201409366
– ident: e_1_2_7_197_1
  doi: 10.1038/ncomms8221
– ident: e_1_2_7_273_1
  doi: 10.1038/nchem.1499
– ident: e_1_2_7_212_1
  doi: 10.1039/C9CS00381A
– ident: e_1_2_7_92_1
  doi: 10.1016/j.pecs.2019.100786
– ident: e_1_2_7_259_1
  doi: 10.1002/adma.201601382
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.nanolett.6b02321
– ident: e_1_2_7_68_1
  doi: 10.1038/srep29534
– ident: e_1_2_7_285_1
  doi: 10.1002/anie.201410786
– ident: e_1_2_7_239_1
  doi: 10.1016/j.nanoen.2017.03.018
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201704162
– ident: e_1_2_7_275_1
  doi: 10.1002/aenm.201501870
– ident: e_1_2_7_122_1
  doi: 10.1021/ja412943h
– ident: e_1_2_7_184_1
  doi: 10.1039/C7TA04771A
– ident: e_1_2_7_6_1
  doi: 10.1016/j.nanoen.2015.01.033
– ident: e_1_2_7_302_1
  doi: 10.1002/adma.201602800
– ident: e_1_2_7_55_1
  doi: 10.1039/C5TA10001A
– ident: e_1_2_7_48_1
  doi: 10.1021/nl5024029
– ident: e_1_2_7_138_1
  doi: 10.1002/smll.201402072
– ident: e_1_2_7_199_1
  doi: 10.1002/anie.201305006
– ident: e_1_2_7_233_1
  doi: 10.1039/C5TA00681C
– ident: e_1_2_7_198_1
  doi: 10.1039/C7TA05522F
– ident: e_1_2_7_152_1
  doi: 10.1016/j.nanoen.2018.04.040
– ident: e_1_2_7_41_1
  doi: 10.1021/jacs.7b01942
– ident: e_1_2_7_141_1
  doi: 10.1002/smtd.201800035
– ident: e_1_2_7_254_1
  doi: 10.1021/am507660y
– ident: e_1_2_7_159_1
  doi: 10.1021/nn101187z
– ident: e_1_2_7_219_1
  doi: 10.1016/j.joule.2018.02.001
– ident: e_1_2_7_21_1
  doi: 10.1016/j.carbon.2018.11.032
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201500945
– ident: e_1_2_7_245_1
  doi: 10.1016/j.ensm.2018.05.019
– start-page: 1
  year: 2019
  ident: e_1_2_7_116_1
  publication-title: InfoMat.
– ident: e_1_2_7_51_1
  doi: 10.1016/j.mattod.2015.06.009
– ident: e_1_2_7_127_1
  doi: 10.1021/nn3052023
– ident: e_1_2_7_38_1
  doi: 10.1038/nature13434
– ident: e_1_2_7_71_1
  doi: 10.1021/acs.nanolett.7b00623
– ident: e_1_2_7_15_1
  doi: 10.1039/C8CC10036E
– ident: e_1_2_7_125_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_7_128_1
  doi: 10.1021/acs.nanolett.7b00906
– ident: e_1_2_7_148_1
  doi: 10.1039/C9EE00308H
– ident: e_1_2_7_99_1
  doi: 10.1002/smll.201702916
– ident: e_1_2_7_100_1
  doi: 10.1002/adma.201700639
– ident: e_1_2_7_236_1
  doi: 10.1002/advs.201700270
– ident: e_1_2_7_253_1
  doi: 10.1002/chem.201301689
– ident: e_1_2_7_98_1
  doi: 10.1126/sciadv.1500222
– ident: e_1_2_7_135_1
  doi: 10.1016/j.nanoen.2017.06.030
– ident: e_1_2_7_320_1
  doi: 10.1002/aenm.201602543
– ident: e_1_2_7_76_1
  doi: 10.1021/am3027597
– ident: e_1_2_7_154_1
  doi: 10.1039/C6CS00829A
– ident: e_1_2_7_109_1
  doi: 10.1002/aenm.201700051
– ident: e_1_2_7_303_1
  doi: 10.1002/adfm.201202412
– ident: e_1_2_7_136_1
  doi: 10.1016/j.carbon.2019.02.081
– ident: e_1_2_7_105_1
  doi: 10.1021/acsnano.8b08822
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201800863
– ident: e_1_2_7_310_1
  doi: 10.1039/C4NJ00701H
– ident: e_1_2_7_280_1
  doi: 10.1021/nn500327p
– ident: e_1_2_7_12_1
  doi: 10.1021/cr5006217
– ident: e_1_2_7_238_1
  doi: 10.1021/acs.nanolett.8b03906
– ident: e_1_2_7_249_1
  doi: 10.1002/smll.201902491
– ident: e_1_2_7_228_1
  doi: 10.1002/adma.201401427
– ident: e_1_2_7_284_1
  doi: 10.1039/c3ee41910j
– ident: e_1_2_7_130_1
  doi: 10.1002/smtd.201800119
– ident: e_1_2_7_147_1
  doi: 10.1016/j.nanoen.2016.05.017
– ident: e_1_2_7_189_1
  doi: 10.1038/nmat4317
– ident: e_1_2_7_226_1
  doi: 10.1126/science.1200770
– ident: e_1_2_7_235_1
  doi: 10.1038/ncomms14627
– ident: e_1_2_7_300_1
  doi: 10.1016/j.carbon.2017.07.017
– ident: e_1_2_7_321_1
  doi: 10.1021/acsnano.7b01437
– ident: e_1_2_7_308_1
  doi: 10.1039/C5TA05324B
– ident: e_1_2_7_318_1
  doi: 10.1002/admi.201500491
– ident: e_1_2_7_274_1
  doi: 10.1021/nl504425h
– ident: e_1_2_7_140_1
  doi: 10.1002/aenm.201800935
– ident: e_1_2_7_264_1
  doi: 10.1002/aenm.201200001
– ident: e_1_2_7_237_1
  doi: 10.1002/anie.201701026
– ident: e_1_2_7_163_1
  doi: 10.1021/nl300528p
– ident: e_1_2_7_82_1
  doi: 10.1039/C4TA05804F
– ident: e_1_2_7_266_1
  doi: 10.1021/nl500397y
– ident: e_1_2_7_214_1
  doi: 10.1002/adma.201203151
– ident: e_1_2_7_93_1
  doi: 10.1016/j.carbon.2009.03.053
– ident: e_1_2_7_86_1
  doi: 10.1039/c2jm35125k
– ident: e_1_2_7_137_1
  doi: 10.1039/C6TA06612G
– ident: e_1_2_7_309_1
  doi: 10.1016/j.jpowsour.2015.05.048
– ident: e_1_2_7_46_1
  doi: 10.1002/aenm.201602543
– ident: e_1_2_7_221_1
  doi: 10.1002/aenm.201700530
– volume: 1
  start-page: 16130
  year: 2016
  ident: e_1_2_7_75_1
  publication-title: Nano Energy
– ident: e_1_2_7_215_1
  doi: 10.1038/nenergy.2016.113
– ident: e_1_2_7_29_1
  doi: 10.1038/354056a0
– ident: e_1_2_7_174_1
  doi: 10.1002/smtd.201900081
– ident: e_1_2_7_83_1
  doi: 10.1080/00018738100101367
– ident: e_1_2_7_85_1
  doi: 10.1021/cr030203g
– ident: e_1_2_7_94_1
  doi: 10.1002/adma.201505391
– ident: e_1_2_7_133_1
  doi: 10.1002/adma.201506112
– ident: e_1_2_7_177_1
  doi: 10.1002/anie.201309836
– ident: e_1_2_7_263_1
  doi: 10.1021/jz1005384
– ident: e_1_2_7_30_1
  doi: 10.1038/nature12952
– ident: e_1_2_7_301_1
  doi: 10.1002/adfm.201603088
– ident: e_1_2_7_156_1
  doi: 10.1016/j.electacta.2016.01.019
– ident: e_1_2_7_242_1
  doi: 10.1016/j.carbon.2015.11.048
– ident: e_1_2_7_56_1
  doi: 10.1039/C7TA01187C
– ident: e_1_2_7_190_1
  doi: 10.1002/chem.201701806
– ident: e_1_2_7_231_1
  doi: 10.1002/aenm.201900477
– ident: e_1_2_7_121_1
  doi: 10.1039/C9CC04877D
– ident: e_1_2_7_72_1
  doi: 10.1002/adma.201401243
– ident: e_1_2_7_243_1
  doi: 10.1002/anie.201505444
– ident: e_1_2_7_295_1
  doi: 10.1021/nn501945f
– ident: e_1_2_7_26_1
  doi: 10.1149/1.2759840
– ident: e_1_2_7_262_1
  doi: 10.1021/nl504425h
– ident: e_1_2_7_185_1
  doi: 10.1002/adma.201500945
– ident: e_1_2_7_201_1
  doi: 10.1007/s12274-017-1507-5
– ident: e_1_2_7_234_1
  doi: 10.1038/nmat2460
– ident: e_1_2_7_325_1
  doi: 10.1039/C6CS00929H
– ident: e_1_2_7_306_1
  doi: 10.1021/am402368p
– ident: e_1_2_7_216_1
  doi: 10.1002/aenm.201200320
– ident: e_1_2_7_282_1
  doi: 10.1021/jacs.6b00757
– ident: e_1_2_7_277_1
  doi: 10.1021/acscatal.5b00332
– ident: e_1_2_7_91_1
  doi: 10.1016/j.nanoen.2019.104061
– ident: e_1_2_7_175_1
  doi: 10.1038/ncomms15020
– ident: e_1_2_7_104_1
  doi: 10.1038/s41467-018-03211-1
– ident: e_1_2_7_106_1
  doi: 10.1021/jacs.5b09000
– ident: e_1_2_7_248_1
  doi: 10.1016/j.carbon.2019.05.008
– ident: e_1_2_7_193_1
  doi: 10.1039/C5CS00344J
– ident: e_1_2_7_61_1
  doi: 10.1002/adma.201304319
– ident: e_1_2_7_52_1
  doi: 10.1038/ncomms1583
– ident: e_1_2_7_81_1
  doi: 10.1016/j.carbon.2017.03.048
– ident: e_1_2_7_225_1
  doi: 10.1021/cm900395k
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.201702562
– ident: e_1_2_7_44_1
  doi: 10.1002/aenm.201401752
– ident: e_1_2_7_37_1
  doi: 10.1002/aenm.201100001
– ident: e_1_2_7_151_1
  doi: 10.1002/adma.201503816
– ident: e_1_2_7_311_1
  doi: 10.1038/srep20445
– ident: e_1_2_7_322_1
  doi: 10.1016/j.carbon.2017.08.062
– ident: e_1_2_7_139_1
  doi: 10.1002/aenm.201602567
– ident: e_1_2_7_168_1
  doi: 10.1016/j.carbon.2018.10.007
– ident: e_1_2_7_169_1
  doi: 10.1002/adfm.201707592
– ident: e_1_2_7_178_1
  doi: 10.1002/smll.201600364
– ident: e_1_2_7_218_1
  doi: 10.1007/s12274-017-1686-0
– ident: e_1_2_7_271_1
  doi: 10.1002/smll.201802204
– ident: e_1_2_7_289_1
  doi: 10.1002/ange.201602142
– ident: e_1_2_7_119_1
  doi: 10.1016/j.cej.2019.122249
– ident: e_1_2_7_129_1
  doi: 10.1007/s12274-016-1271-y
– ident: e_1_2_7_211_1
  doi: 10.1002/adma.201806620
– ident: e_1_2_7_80_1
  doi: 10.1021/acsnano.5b00088
– ident: e_1_2_7_255_1
  doi: 10.1002/adfm.201707592
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201603549
– ident: e_1_2_7_265_1
  doi: 10.1039/C5EE00838G
– ident: e_1_2_7_324_1
  doi: 10.1002/aenm.201301795
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_7_240_1
  doi: 10.1021/acsnano.5b06675
– ident: e_1_2_7_278_1
  doi: 10.1039/C5CC06562C
– ident: e_1_2_7_241_1
  doi: 10.1016/j.nanoen.2015.09.001
– ident: e_1_2_7_162_1
  doi: 10.1039/C8SM01626G
– ident: e_1_2_7_145_1
  doi: 10.1038/ncomms14628
– ident: e_1_2_7_146_1
  doi: 10.1039/c3ee41444b
– ident: e_1_2_7_74_1
  doi: 10.1002/anie.201308354
– ident: e_1_2_7_191_1
  doi: 10.1002/adfm.201702524
– volume: 8
  start-page: 1700530
  year: 2018
  ident: e_1_2_7_171_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_202_1
  doi: 10.1126/sciadv.1701301
– ident: e_1_2_7_323_1
  doi: 10.1002/smll.201501570
– ident: e_1_2_7_73_1
  doi: 10.1002/ange.201409454
– ident: e_1_2_7_112_1
  doi: 10.1038/nmat3191
– ident: e_1_2_7_54_1
  doi: 10.1016/j.carbon.2017.01.059
– ident: e_1_2_7_172_1
  doi: 10.1021/acs.nanolett.5b03903
– ident: e_1_2_7_227_1
  doi: 10.1002/aenm.201500559
– ident: e_1_2_7_20_1
  doi: 10.1021/cr400573b
– ident: e_1_2_7_25_1
  doi: 10.1038/natrevmats.2017.23
– ident: e_1_2_7_165_1
  doi: 10.1002/adfm.201001330
– ident: e_1_2_7_200_1
  doi: 10.1016/j.eurpolymj.2008.07.033
– ident: e_1_2_7_223_1
  doi: 10.1002/advs.201600243
– ident: e_1_2_7_313_1
  doi: 10.1039/C5TA05334J
– ident: e_1_2_7_194_1
  doi: 10.1021/acsnano.6b00723
– ident: e_1_2_7_204_1
  doi: 10.1039/C8EE02617C
– ident: e_1_2_7_283_1
  doi: 10.1002/anie.201400711
– ident: e_1_2_7_23_1
  doi: 10.1021/acsami.5b04864
– ident: e_1_2_7_79_1
  doi: 10.1126/science.1122152
– ident: e_1_2_7_2_1
  doi: 10.1039/C7CS00139H
– ident: e_1_2_7_126_1
  doi: 10.1002/aenm.201501835
– ident: e_1_2_7_296_1
  doi: 10.1002/ppsc.201500073
– ident: e_1_2_7_187_1
  doi: 10.1002/aenm.201600377
– ident: e_1_2_7_24_1
  doi: 10.1021/nn506394r
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201302877
– ident: e_1_2_7_244_1
  doi: 10.1038/ncomms13065
– ident: e_1_2_7_272_1
  doi: 10.1002/ange.201205354
– ident: e_1_2_7_293_1
  doi: 10.1039/C8EE02067A
– ident: e_1_2_7_39_1
  doi: 10.1126/science.1104962
– ident: e_1_2_7_64_1
  doi: 10.1126/science.1094982
– ident: e_1_2_7_111_1
  doi: 10.1038/nmat4170
– ident: e_1_2_7_118_1
  doi: 10.1002/aenm.201501355
– ident: e_1_2_7_294_1
  doi: 10.1016/j.carbon.2017.03.037
– ident: e_1_2_7_209_1
  doi: 10.1021/nl2027684
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201401191
– ident: e_1_2_7_113_1
  doi: 10.1038/ncomms8393
– ident: e_1_2_7_45_1
  doi: 10.1021/acsnano.7b08918
– ident: e_1_2_7_186_1
  doi: 10.1039/C3TA12648J
– ident: e_1_2_7_305_1
  doi: 10.1002/adma.201501059
– ident: e_1_2_7_319_1
  doi: 10.1039/C4GC00761A
– ident: e_1_2_7_287_1
  doi: 10.1038/nchem.2101
– ident: e_1_2_7_95_1
  doi: 10.1002/adma.201504765
– ident: e_1_2_7_257_1
  doi: 10.1039/C6RA04230A
– ident: e_1_2_7_281_1
  doi: 10.1021/acs.chemmater.6b03751
– ident: e_1_2_7_36_1
  doi: 10.1038/nature21051
– ident: e_1_2_7_132_1
  doi: 10.1021/acs.chemmater.6b03420
– ident: e_1_2_7_222_1
  doi: 10.1002/adma.201800863
– ident: e_1_2_7_120_1
  doi: 10.1002/smll.201704410
– ident: e_1_2_7_1_1
  doi: 10.1002/aenm.201900161
– ident: e_1_2_7_180_1
  doi: 10.1002/ange.201507735
– ident: e_1_2_7_316_1
  doi: 10.1039/c3ta11852e
– ident: e_1_2_7_314_1
  doi: 10.1016/j.jpowsour.2015.04.029
– ident: e_1_2_7_3_1
  doi: 10.1038/s41467-019-08767-0
– ident: e_1_2_7_47_1
  doi: 10.1002/ppsc.201300231
– ident: e_1_2_7_213_1
  doi: 10.1126/science.aam6014
– ident: e_1_2_7_153_1
  doi: 10.1002/smll.201903418
– ident: e_1_2_7_150_1
  doi: 10.1016/j.carbon.2019.05.008
– ident: e_1_2_7_160_1
  doi: 10.1126/sciadv.1500849
– ident: e_1_2_7_217_1
  doi: 10.1038/nmat1368
– ident: e_1_2_7_134_1
  doi: 10.1002/adma.201301920
– ident: e_1_2_7_291_1
  doi: 10.1038/nature16484
– ident: e_1_2_7_117_1
  doi: 10.1038/ncomms10998
– ident: e_1_2_7_188_1
  doi: 10.1016/j.nanoen.2019.104038
– ident: e_1_2_7_5_1
  doi: 10.1126/science.aao2808
– ident: e_1_2_7_58_1
  doi: 10.1016/j.carbon.2014.10.024
– ident: e_1_2_7_115_1
  doi: 10.1021/nl503125u
– ident: e_1_2_7_90_1
  doi: 10.1002/ange.201808835
– ident: e_1_2_7_17_1
  doi: 10.1002/aenm.201802955
– ident: e_1_2_7_35_1
  doi: 10.1016/S0032-3861(02)00151-9
– ident: e_1_2_7_181_1
  doi: 10.1016/j.jelechem.2019.113242
– ident: e_1_2_7_108_1
  doi: 10.1021/ja310849c
– ident: e_1_2_7_114_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_7_9_1
  doi: 10.1039/C7TA09757C
– ident: e_1_2_7_149_1
  doi: 10.1007/s12274-018-2219-1
– ident: e_1_2_7_288_1
  doi: 10.1039/C4EE02587C
– ident: e_1_2_7_195_1
  doi: 10.1149/2.0151903jes
– ident: e_1_2_7_167_1
  doi: 10.1039/b417081b
– ident: e_1_2_7_203_1
  doi: 10.1016/j.jpowsour.2011.06.055
– ident: e_1_2_7_179_1
  doi: 10.1002/anie.201901840
– ident: e_1_2_7_53_1
  doi: 10.1016/j.carbon.2016.01.104
– ident: e_1_2_7_251_1
  doi: 10.1002/ange.201504514
– ident: e_1_2_7_304_1
  doi: 10.1016/j.apsusc.2012.12.150
– ident: e_1_2_7_307_1
  doi: 10.1021/nn3057388
– ident: e_1_2_7_206_1
  doi: 10.1038/ncomms10601
– ident: e_1_2_7_183_1
  doi: 10.1039/c2ee23599d
– ident: e_1_2_7_157_1
  doi: 10.1039/C4TA02839B
– ident: e_1_2_7_230_1
  doi: 10.1021/acsnano.7b02198
– ident: e_1_2_7_173_1
  doi: 10.1021/acsaem.8b01682
– ident: e_1_2_7_246_1
  doi: 10.1002/aenm.201803477
– ident: e_1_2_7_260_1
  doi: 10.1002/aenm.201502164
– ident: e_1_2_7_123_1
  doi: 10.1021/jp512152f
– ident: e_1_2_7_96_1
  doi: 10.1126/science.1246501
– ident: e_1_2_7_286_1
  doi: 10.1016/j.carbon.2016.12.014
– ident: e_1_2_7_232_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_7_207_1
  doi: 10.1021/acs.accounts.7b00487
– ident: e_1_2_7_252_1
  doi: 10.1002/adma.201103509
– ident: e_1_2_7_110_1
  doi: 10.1038/nenergy.2015.29
– ident: e_1_2_7_43_1
  doi: 10.1021/acsami.6b16155
– ident: e_1_2_7_70_1
  doi: 10.1002/adma.201203448
– ident: e_1_2_7_317_1
  doi: 10.1021/am406053s
– ident: e_1_2_7_192_1
  doi: 10.1002/ange.201608410
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.201701099
– ident: e_1_2_7_220_1
  doi: 10.1002/adma.201602210
– ident: e_1_2_7_268_1
  doi: 10.1002/adfm.201500863
– ident: e_1_2_7_14_1
  doi: 10.1039/C9TA02030F
– ident: e_1_2_7_299_1
  doi: 10.1002/adma.201603040
– ident: e_1_2_7_65_1
  doi: 10.1039/C3MH00144J
– ident: e_1_2_7_77_1
  doi: 10.1126/sciadv.1600021
– ident: e_1_2_7_297_1
  doi: 10.1002/adfm.201604815
– ident: e_1_2_7_205_1
  doi: 10.1038/nenergy.2017.118
– ident: e_1_2_7_142_1
  doi: 10.1039/c3cp51758f
– ident: e_1_2_7_276_1
  doi: 10.1021/acs.chemmater.6b05056
– ident: e_1_2_7_256_1
  doi: 10.1021/acs.chemrev.8b00241
– ident: e_1_2_7_101_1
  doi: 10.1039/c2nr11936f
– ident: e_1_2_7_258_1
  doi: 10.1002/adma.201606823
– ident: e_1_2_7_22_1
  doi: 10.1002/adfm.201902915
– ident: e_1_2_7_57_1
  doi: 10.1021/acsami.5b10720
– ident: e_1_2_7_279_1
  doi: 10.1002/smll.201502924
– ident: e_1_2_7_292_1
  doi: 10.1038/nature25984
– ident: e_1_2_7_155_1
  doi: 10.1002/aenm.201701203
– ident: e_1_2_7_208_1
  doi: 10.1149/1.1837571
– ident: e_1_2_7_312_1
  doi: 10.1002/aenm.201401412
– ident: e_1_2_7_143_1
  doi: 10.1126/science.1211934
– ident: e_1_2_7_16_1
  doi: 10.1021/cr500054y
– ident: e_1_2_7_31_1
  doi: 10.1103/PhysRevLett.98.186808
– ident: e_1_2_7_269_1
  doi: 10.1038/ncomms15607
– ident: e_1_2_7_69_1
  doi: 10.1002/adma.201902664
– ident: e_1_2_7_67_1
  doi: 10.1021/acs.nanolett.6b03108
– ident: e_1_2_7_78_1
  doi: 10.1002/smtd.201800546
– ident: e_1_2_7_84_1
  doi: 10.1002/smtd.201900338
– ident: e_1_2_7_196_1
  doi: 10.1038/ncomms3798
SSID ssj0000491033
Score 2.6184714
SecondaryResourceType review_article
Snippet Carbon‐based nanomaterials have significantly pushed the boundary of electrochemical performance of lithium‐based batteries (LBs) thanks to their excellent...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carbon
carbon‐based nanomaterials
Composition
Control stability
Electrochemical analysis
electrochemical performances
Electrode materials
Electrodes
Energy storage
Lithium
Lithium batteries
Lithium sulfur batteries
Lithium-ion batteries
lithium‐based batteries (LBs)
Morphology
Nanomaterials
Nanorods
Structural design
structural designs
Surface stability
synthetic techniques
Title Structure Design and Composition Engineering of Carbon‐Based Nanomaterials for Lithium Energy Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201903030
https://www.proquest.com/docview/2375431705
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gKHiqfYUpAPSJwCTuJskuNCi1aoWwltK5VT5OeSChIEuwc48RMQP5Ffwjh2HEfl2Ut25YyzG8_nedgzY4Qe5xnjnOYkysuCRrRgs6ikxSzSBVUiNRpImUTh5clscUZfnWfnk8n3IGppu-FPxZdf5pVchavQBnw1WbL_wVn_UGiA78BfuAKH4fpPPF51xV_NFsBhF4jR7QSYGe4iscJqgzYR6yMHU6-Pb3gOGkwa-dqC2Wr_bxd1eFxv3tbb99C7ywtcgVvOxiFD8z5yQFkS39-H8ygrQxZts_7MBvlrW98MkHy9tSsDrFlv6kur2AtWX9SsDZcmwA_1sVlOmoLuj2aFW8BUYZut0eRFMAmhRgJt7HXVJVFvS8cy1Zh6AgAq0MVkUGr9Rr6nzP5Ma0sAH50s_f1raDcB1wNk5-78cHm88it34FPFJO0yN_r366uBkuTZ-EfG1s7gwoSOUGfJnN5Ee84FwXOLp1tooprb6EYAlTto7ZGFLbIwIAsHyMIBOW41tsj68fVbhyk8whQGTGGHKWwxhR2m7qKzl0enLxaRO5IjEjQBBtOcCzDKGSskF5IQmVIWs0TrtKQEPuKskKmmBY21ELmkLFFUM2V2j4XMqU7voZ2mbdR9hAXYTCX0F2khaVxKxuNME6rzjCsww9UURf3QVcLVqzfHpryrbKXtpDJDXfmhnqInnv6DrdTyW8qDnhOVm82fqsScBZ2a4lJTlHTc-ctTqhFa9q_S6QG6PkybA7QDrFUPwcbd8EcOdD8BfmGhIg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+Design+and+Composition+Engineering+of+Carbon%E2%80%90Based+Nanomaterials+for+Lithium+Energy+Storage&rft.jtitle=Advanced+energy+materials&rft.au=Geng%2C+Hongya&rft.au=Peng%2C+Yan&rft.au=Qu%2C+Liangti&rft.au=Zhang%2C+Haijiao&rft.date=2020-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201903030&rft.externalDBID=10.1002%252Faenm.201903030&rft.externalDocID=AENM201903030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon