Structure Design and Composition Engineering of Carbon‐Based Nanomaterials for Lithium Energy Storage
Carbon‐based nanomaterials have significantly pushed the boundary of electrochemical performance of lithium‐based batteries (LBs) thanks to their excellent conductivity, high specific surface area, controllable morphology, and intrinsic stability. Complementary to these inherent properties, various...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon‐based nanomaterials have significantly pushed the boundary of electrochemical performance of lithium‐based batteries (LBs) thanks to their excellent conductivity, high specific surface area, controllable morphology, and intrinsic stability. Complementary to these inherent properties, various synthetic techniques have been adopted to prepare carbon‐based nanomaterials with diverse structures and different dimensionalities including 1D nanotubes and nanorods, 2D nanosheets and films, and 3D hierarchical architectures, which have been extensively applied as high‐performance electrode materials for energy storage and conversion. The present review aims to outline the structural design and composition engineering of carbon‐based nanomaterials as high‐performance electrodes of LBs including lithium‐ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries. This review mainly focuses on the boosting of electrochemical performance of LBs by rational dimensional design and porous tailoring of advanced carbon‐based nanomaterials. Particular attention is also paid to integrating active materials into the carbon‐based nanomaterials, and the structure–performance relationship is also systematically discussed. The developmental trends and critical challenges in related fields are summarized, which may inspire more ideas for the design of advanced carbon‐based nanostructures with superior properties.
Carbon‐based nanomaterials represent cutting‐edge materials in energy storage and conversion fields due to their superior properties. This review summarizes the dimensional design and composition engineering of carbon‐based materials for boosting lithium storage capability, and further discusses their structure–performance relationship. The development trends and critical challenges are also given for the design of advanced carbon‐based electrode materials. |
---|---|
AbstractList | Carbon‐based nanomaterials have significantly pushed the boundary of electrochemical performance of lithium‐based batteries (LBs) thanks to their excellent conductivity, high specific surface area, controllable morphology, and intrinsic stability. Complementary to these inherent properties, various synthetic techniques have been adopted to prepare carbon‐based nanomaterials with diverse structures and different dimensionalities including 1D nanotubes and nanorods, 2D nanosheets and films, and 3D hierarchical architectures, which have been extensively applied as high‐performance electrode materials for energy storage and conversion. The present review aims to outline the structural design and composition engineering of carbon‐based nanomaterials as high‐performance electrodes of LBs including lithium‐ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries. This review mainly focuses on the boosting of electrochemical performance of LBs by rational dimensional design and porous tailoring of advanced carbon‐based nanomaterials. Particular attention is also paid to integrating active materials into the carbon‐based nanomaterials, and the structure–performance relationship is also systematically discussed. The developmental trends and critical challenges in related fields are summarized, which may inspire more ideas for the design of advanced carbon‐based nanostructures with superior properties. Carbon‐based nanomaterials have significantly pushed the boundary of electrochemical performance of lithium‐based batteries (LBs) thanks to their excellent conductivity, high specific surface area, controllable morphology, and intrinsic stability. Complementary to these inherent properties, various synthetic techniques have been adopted to prepare carbon‐based nanomaterials with diverse structures and different dimensionalities including 1D nanotubes and nanorods, 2D nanosheets and films, and 3D hierarchical architectures, which have been extensively applied as high‐performance electrode materials for energy storage and conversion. The present review aims to outline the structural design and composition engineering of carbon‐based nanomaterials as high‐performance electrodes of LBs including lithium‐ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries. This review mainly focuses on the boosting of electrochemical performance of LBs by rational dimensional design and porous tailoring of advanced carbon‐based nanomaterials. Particular attention is also paid to integrating active materials into the carbon‐based nanomaterials, and the structure–performance relationship is also systematically discussed. The developmental trends and critical challenges in related fields are summarized, which may inspire more ideas for the design of advanced carbon‐based nanostructures with superior properties. Carbon‐based nanomaterials represent cutting‐edge materials in energy storage and conversion fields due to their superior properties. This review summarizes the dimensional design and composition engineering of carbon‐based materials for boosting lithium storage capability, and further discusses their structure–performance relationship. The development trends and critical challenges are also given for the design of advanced carbon‐based electrode materials. |
Author | Zhang, Haijiao Peng, Yan Wu, Minghong Qu, Liangti Geng, Hongya |
Author_xml | – sequence: 1 givenname: Hongya surname: Geng fullname: Geng, Hongya organization: Tsinghua University – sequence: 2 givenname: Yan surname: Peng fullname: Peng, Yan organization: Shanghai University – sequence: 3 givenname: Liangti surname: Qu fullname: Qu, Liangti email: lqu@mail.tsinghua.edu.cn organization: Tsinghua University – sequence: 4 givenname: Haijiao orcidid: 0000-0003-2958-2967 surname: Zhang fullname: Zhang, Haijiao email: hjzhang128@shu.edu.cn organization: Shanghai University – sequence: 5 givenname: Minghong surname: Wu fullname: Wu, Minghong email: mhwu@shu.edu.cn organization: Shanghai University |
BookMark | eNqFkM9KAzEQxoNUsNZePQc8tyabbHf3WGv9A7Uequdlmk3WlG5SkyzSm4_gM_okplQqCOLMYQbm-80H3ynqGGskQueUDCkhySVI0wwTQgvCYh-hLh1RPhjlnHQOO0tOUN_7FYnFC0oY66J6EVwrQuskvpZe1waDqfDENhvrddDW4KmptZHSaVNjq_AE3NKaz_ePK_CywnMwtoEQz7D2WFmHZzq86LaJnHT1Fi-CdVDLM3SsokL2v2cPPd9MnyZ3g9nj7f1kPBsIniRkwLOlIEUKkFdLURFSMQ4UEqVYwUkcNM0rpnjOqRIiqzgkkiuQI1Zkosq4Yj10sf-7cfa1lT6UK9s6Ey3LhGUpZzQjaVQN9yrhrPdOqnLjdANuW1JS7vIsd3mWhzwjwH8BQgfY5RMc6PXfWLHH3vRabv8xKcfT-cMP-wXnVI6- |
CitedBy_id | crossref_primary_10_1002_celc_202100946 crossref_primary_10_1002_adma_202305779 crossref_primary_10_1002_adsu_202300061 crossref_primary_10_1002_celc_202400206 crossref_primary_10_1016_j_cclet_2021_06_063 crossref_primary_10_1016_j_jcis_2020_10_100 crossref_primary_10_1016_S1872_5805_24_60838_3 crossref_primary_10_1039_D1NR07959J crossref_primary_10_1002_advs_202204875 crossref_primary_10_1002_cnma_202200043 crossref_primary_10_1016_j_ensm_2021_09_026 crossref_primary_10_1016_j_ijoes_2023_100046 crossref_primary_10_1021_acsami_4c03250 crossref_primary_10_1080_1536383X_2024_2306806 crossref_primary_10_1016_j_est_2024_114178 crossref_primary_10_1039_D3TB01910A crossref_primary_10_3762_bjnano_13_61 crossref_primary_10_1007_s40820_022_00924_3 crossref_primary_10_1016_j_est_2023_106678 crossref_primary_10_1016_j_seppur_2025_132082 crossref_primary_10_1021_acsaem_1c00807 crossref_primary_10_1007_s41918_020_00093_0 crossref_primary_10_1016_j_cej_2020_127428 crossref_primary_10_1016_j_jcis_2021_08_005 crossref_primary_10_1016_j_memsci_2024_122759 crossref_primary_10_1016_j_ensm_2021_03_001 crossref_primary_10_1002_adma_202003845 crossref_primary_10_1016_j_jechem_2022_05_043 crossref_primary_10_1016_j_nanoen_2021_106426 crossref_primary_10_1007_s40820_021_00721_4 crossref_primary_10_1016_j_cej_2022_137774 crossref_primary_10_1021_acsaem_1c03113 crossref_primary_10_1016_j_snb_2022_131518 crossref_primary_10_1002_adfm_202314822 crossref_primary_10_1021_acs_langmuir_3c03202 crossref_primary_10_1149_1945_7111_ad2db2 crossref_primary_10_2139_ssrn_4143057 crossref_primary_10_1007_s10800_022_01737_3 crossref_primary_10_1016_j_nanoso_2024_101216 crossref_primary_10_1016_j_tiv_2024_105898 crossref_primary_10_1002_aenm_202003037 crossref_primary_10_1002_adfm_202301109 crossref_primary_10_1002_smll_202007055 crossref_primary_10_1007_s12274_023_6045_8 crossref_primary_10_1002_slct_202400543 crossref_primary_10_1039_D2TA08459G crossref_primary_10_1016_j_electacta_2021_138591 crossref_primary_10_1016_j_nxmate_2024_100144 crossref_primary_10_1039_D3NA00903C crossref_primary_10_1016_j_ensm_2022_03_010 crossref_primary_10_1002_adom_202401193 crossref_primary_10_1007_s11814_024_00174_6 crossref_primary_10_1016_j_rechem_2023_100800 crossref_primary_10_1246_bcsj_20200265 crossref_primary_10_1002_adsu_202100223 crossref_primary_10_1007_s41918_023_00181_x crossref_primary_10_1002_cplu_202400198 crossref_primary_10_1016_j_jcis_2023_09_044 crossref_primary_10_1021_acs_energyfuels_2c00077 crossref_primary_10_1016_j_est_2023_107419 crossref_primary_10_1021_acsnano_1c05898 crossref_primary_10_1007_s42765_024_00468_8 crossref_primary_10_1002_smll_202100135 crossref_primary_10_1016_j_electacta_2021_139028 crossref_primary_10_3390_en14051353 crossref_primary_10_1016_j_est_2025_115902 crossref_primary_10_1016_j_snb_2021_130501 crossref_primary_10_1166_mex_2022_2316 crossref_primary_10_1039_D4TC04275A crossref_primary_10_1039_D0QM00598C crossref_primary_10_1016_j_ces_2021_117019 crossref_primary_10_1016_j_jcis_2022_07_163 crossref_primary_10_1007_s00339_022_05707_6 crossref_primary_10_1007_s00604_022_05372_9 crossref_primary_10_1016_j_mtcomm_2024_109591 crossref_primary_10_1016_j_colsurfa_2023_131559 crossref_primary_10_1007_s42452_024_05716_5 crossref_primary_10_1039_D3CC05722D crossref_primary_10_1039_D0TA04019C crossref_primary_10_1002_adfm_202418059 crossref_primary_10_1016_j_jpowsour_2024_234068 crossref_primary_10_1016_j_rser_2022_112585 crossref_primary_10_1016_j_jallcom_2022_164121 crossref_primary_10_1039_D2DT02816F crossref_primary_10_1088_1361_6528_abf194 crossref_primary_10_1007_s12598_024_03134_5 crossref_primary_10_1016_j_ensm_2021_06_015 crossref_primary_10_1007_s40820_020_00521_2 crossref_primary_10_1016_j_ceja_2024_100657 crossref_primary_10_1039_D3CC04305C crossref_primary_10_1002_adma_202100837 crossref_primary_10_1016_j_jmst_2021_05_048 crossref_primary_10_1002_smll_202007676 crossref_primary_10_1155_2022_8836835 crossref_primary_10_1002_admt_202201611 crossref_primary_10_1016_j_cej_2024_150702 crossref_primary_10_1016_j_apsusc_2023_159113 crossref_primary_10_1016_j_jallcom_2021_162336 crossref_primary_10_1007_s11696_024_03816_5 crossref_primary_10_1016_j_ensm_2023_103026 crossref_primary_10_1021_acsnano_4c09114 crossref_primary_10_1021_acsaem_4c01415 crossref_primary_10_1002_adsu_202400312 crossref_primary_10_1016_j_ensm_2022_03_020 crossref_primary_10_1016_j_carbon_2021_04_083 crossref_primary_10_1016_j_carbon_2020_09_081 crossref_primary_10_1007_s40820_021_00789_y crossref_primary_10_1002_aenm_202102972 crossref_primary_10_1016_j_cej_2025_161447 crossref_primary_10_1016_j_jpowsour_2021_229840 crossref_primary_10_1039_D4CP02923B crossref_primary_10_1016_j_colsurfa_2024_134833 crossref_primary_10_1016_j_jpowsour_2023_232965 crossref_primary_10_1021_acsnano_4c14656 crossref_primary_10_1007_s10853_022_07127_6 crossref_primary_10_1002_smsc_202100105 crossref_primary_10_1021_acsami_0c11282 crossref_primary_10_1140_epjp_s13360_021_02128_x crossref_primary_10_1007_s12274_023_5540_2 crossref_primary_10_1016_j_cej_2022_138394 crossref_primary_10_1016_j_jece_2024_112713 crossref_primary_10_1016_j_cjsc_2023_100092 crossref_primary_10_1016_j_jechem_2021_08_001 crossref_primary_10_1002_batt_202200196 crossref_primary_10_1002_adfm_202203117 crossref_primary_10_1016_j_est_2023_109881 crossref_primary_10_1016_j_pmatsci_2024_101401 crossref_primary_10_1002_smtd_202401580 crossref_primary_10_1016_j_surfin_2021_101121 crossref_primary_10_1002_smll_202007652 crossref_primary_10_1016_j_jmst_2021_06_036 crossref_primary_10_1021_acsanm_4c00264 crossref_primary_10_1080_14686996_2022_2050297 crossref_primary_10_1016_j_jksus_2021_101444 crossref_primary_10_1021_acsami_4c17564 crossref_primary_10_1142_S0217979222501533 crossref_primary_10_1016_j_ijbiomac_2024_131569 crossref_primary_10_1002_pat_5350 crossref_primary_10_1002_smtd_202101627 crossref_primary_10_1007_s12274_022_4859_4 crossref_primary_10_1021_acsnano_0c08056 crossref_primary_10_1002_adfm_202005581 crossref_primary_10_1039_D4CP01424C crossref_primary_10_1007_s11426_020_9942_9 crossref_primary_10_1039_D0NJ05699E crossref_primary_10_1021_acsaem_0c02730 crossref_primary_10_1016_j_jallcom_2023_170364 crossref_primary_10_1039_D1DT00210D crossref_primary_10_1002_smll_202301967 crossref_primary_10_1016_j_jallcom_2021_161459 crossref_primary_10_1002_celc_202300573 crossref_primary_10_1016_j_jpowsour_2021_230523 crossref_primary_10_1039_C9NR10652A crossref_primary_10_1002_adfm_202405392 |
Cites_doi | 10.1038/439281a 10.1038/nature13607 10.1038/nmat3001 10.1038/s41467-017-02479-z 10.1016/j.cej.2015.08.014 10.1039/C5CP00386E 10.1002/smll.201203252 10.1002/adma.201301870 10.1038/ncomms4410 10.1021/jacs.6b07355 10.1088/0957-4484/20/15/155705 10.1039/C7CC04584K 10.1002/anie.201609230 10.1016/j.carbon.2005.01.007 10.1002/anie.201306129 10.1126/science.1101398 10.1149/1.2128859 10.1126/science.aac7730 10.1016/j.carbon.2016.02.002 10.1039/c3ta13698a 10.1021/acsnano.5b07367 10.1021/ja01539a017 10.1126/science.1078727 10.1038/nnano.2017.27 10.1002/adma.201400951 10.1002/adma.201300774 10.1016/j.polymer.2017.01.009 10.1016/j.micromeso.2017.06.049 10.1021/jacs.7b05490 10.1016/j.nanoen.2015.07.029 10.1002/adma.201704907 10.1016/j.jechem.2018.07.008 10.1039/C7TA09757C 10.1002/aenm.201602014 10.1002/anie.201812062 10.1002/smll.201602984 10.1021/nn100740x 10.1021/nn500585g 10.1021/nl300799d 10.1002/anie.201409366 10.1038/ncomms8221 10.1038/nchem.1499 10.1039/C9CS00381A 10.1016/j.pecs.2019.100786 10.1002/adma.201601382 10.1021/acs.nanolett.6b02321 10.1038/srep29534 10.1002/anie.201410786 10.1016/j.nanoen.2017.03.018 10.1002/adma.201704162 10.1002/aenm.201501870 10.1021/ja412943h 10.1039/C7TA04771A 10.1016/j.nanoen.2015.01.033 10.1002/adma.201602800 10.1039/C5TA10001A 10.1021/nl5024029 10.1002/smll.201402072 10.1002/anie.201305006 10.1039/C5TA00681C 10.1039/C7TA05522F 10.1016/j.nanoen.2018.04.040 10.1021/jacs.7b01942 10.1002/smtd.201800035 10.1021/am507660y 10.1021/nn101187z 10.1016/j.joule.2018.02.001 10.1016/j.carbon.2018.11.032 10.1002/adma.201500945 10.1016/j.ensm.2018.05.019 10.1016/j.mattod.2015.06.009 10.1021/nn3052023 10.1038/nature13434 10.1021/acs.nanolett.7b00623 10.1039/C8CC10036E 10.1038/natrevmats.2016.13 10.1021/acs.nanolett.7b00906 10.1039/C9EE00308H 10.1002/smll.201702916 10.1002/adma.201700639 10.1002/advs.201700270 10.1002/chem.201301689 10.1126/sciadv.1500222 10.1016/j.nanoen.2017.06.030 10.1002/aenm.201602543 10.1021/am3027597 10.1039/C6CS00829A 10.1002/aenm.201700051 10.1002/adfm.201202412 10.1016/j.carbon.2019.02.081 10.1021/acsnano.8b08822 10.1002/adma.201800863 10.1039/C4NJ00701H 10.1021/nn500327p 10.1021/cr5006217 10.1021/acs.nanolett.8b03906 10.1002/smll.201902491 10.1002/adma.201401427 10.1039/c3ee41910j 10.1002/smtd.201800119 10.1016/j.nanoen.2016.05.017 10.1038/nmat4317 10.1126/science.1200770 10.1038/ncomms14627 10.1016/j.carbon.2017.07.017 10.1021/acsnano.7b01437 10.1039/C5TA05324B 10.1002/admi.201500491 10.1021/nl504425h 10.1002/aenm.201800935 10.1002/aenm.201200001 10.1002/anie.201701026 10.1021/nl300528p 10.1039/C4TA05804F 10.1021/nl500397y 10.1002/adma.201203151 10.1016/j.carbon.2009.03.053 10.1039/c2jm35125k 10.1039/C6TA06612G 10.1016/j.jpowsour.2015.05.048 10.1002/aenm.201700530 10.1038/nenergy.2016.113 10.1038/354056a0 10.1002/smtd.201900081 10.1080/00018738100101367 10.1021/cr030203g 10.1002/adma.201505391 10.1002/adma.201506112 10.1002/anie.201309836 10.1021/jz1005384 10.1038/nature12952 10.1002/adfm.201603088 10.1016/j.electacta.2016.01.019 10.1016/j.carbon.2015.11.048 10.1039/C7TA01187C 10.1002/chem.201701806 10.1002/aenm.201900477 10.1039/C9CC04877D 10.1002/adma.201401243 10.1002/anie.201505444 10.1021/nn501945f 10.1149/1.2759840 10.1007/s12274-017-1507-5 10.1038/nmat2460 10.1039/C6CS00929H 10.1021/am402368p 10.1002/aenm.201200320 10.1021/jacs.6b00757 10.1021/acscatal.5b00332 10.1016/j.nanoen.2019.104061 10.1038/ncomms15020 10.1038/s41467-018-03211-1 10.1021/jacs.5b09000 10.1016/j.carbon.2019.05.008 10.1039/C5CS00344J 10.1002/adma.201304319 10.1038/ncomms1583 10.1016/j.carbon.2017.03.048 10.1021/cm900395k 10.1002/adfm.201702562 10.1002/aenm.201401752 10.1002/aenm.201100001 10.1002/adma.201503816 10.1038/srep20445 10.1016/j.carbon.2017.08.062 10.1002/aenm.201602567 10.1016/j.carbon.2018.10.007 10.1002/adfm.201707592 10.1002/smll.201600364 10.1007/s12274-017-1686-0 10.1002/smll.201802204 10.1002/ange.201602142 10.1016/j.cej.2019.122249 10.1007/s12274-016-1271-y 10.1002/adma.201806620 10.1021/acsnano.5b00088 10.1002/adma.201603549 10.1039/C5EE00838G 10.1002/aenm.201301795 10.1021/acs.chemrev.5b00563 10.1021/acsnano.5b06675 10.1039/C5CC06562C 10.1016/j.nanoen.2015.09.001 10.1039/C8SM01626G 10.1038/ncomms14628 10.1039/c3ee41444b 10.1002/anie.201308354 10.1002/adfm.201702524 10.1126/sciadv.1701301 10.1002/smll.201501570 10.1002/ange.201409454 10.1038/nmat3191 10.1016/j.carbon.2017.01.059 10.1021/acs.nanolett.5b03903 10.1002/aenm.201500559 10.1021/cr400573b 10.1038/natrevmats.2017.23 10.1002/adfm.201001330 10.1016/j.eurpolymj.2008.07.033 10.1002/advs.201600243 10.1039/C5TA05334J 10.1021/acsnano.6b00723 10.1039/C8EE02617C 10.1002/anie.201400711 10.1021/acsami.5b04864 10.1126/science.1122152 10.1039/C7CS00139H 10.1002/aenm.201501835 10.1002/ppsc.201500073 10.1002/aenm.201600377 10.1021/nn506394r 10.1002/adma.201302877 10.1038/ncomms13065 10.1002/ange.201205354 10.1039/C8EE02067A 10.1126/science.1104962 10.1126/science.1094982 10.1038/nmat4170 10.1002/aenm.201501355 10.1016/j.carbon.2017.03.037 10.1021/nl2027684 10.1002/adma.201401191 10.1038/ncomms8393 10.1021/acsnano.7b08918 10.1039/C3TA12648J 10.1002/adma.201501059 10.1039/C4GC00761A 10.1038/nchem.2101 10.1002/adma.201504765 10.1039/C6RA04230A 10.1021/acs.chemmater.6b03751 10.1038/nature21051 10.1021/acs.chemmater.6b03420 10.1002/smll.201704410 10.1002/aenm.201900161 10.1002/ange.201507735 10.1039/c3ta11852e 10.1016/j.jpowsour.2015.04.029 10.1038/s41467-019-08767-0 10.1002/ppsc.201300231 10.1126/science.aam6014 10.1002/smll.201903418 10.1126/sciadv.1500849 10.1038/nmat1368 10.1002/adma.201301920 10.1038/nature16484 10.1038/ncomms10998 10.1016/j.nanoen.2019.104038 10.1126/science.aao2808 10.1016/j.carbon.2014.10.024 10.1021/nl503125u 10.1002/ange.201808835 10.1002/aenm.201802955 10.1016/S0032-3861(02)00151-9 10.1016/j.jelechem.2019.113242 10.1021/ja310849c 10.1038/nnano.2016.32 10.1007/s12274-018-2219-1 10.1039/C4EE02587C 10.1149/2.0151903jes 10.1039/b417081b 10.1016/j.jpowsour.2011.06.055 10.1002/anie.201901840 10.1016/j.carbon.2016.01.104 10.1002/ange.201504514 10.1016/j.apsusc.2012.12.150 10.1021/nn3057388 10.1038/ncomms10601 10.1039/c2ee23599d 10.1039/C4TA02839B 10.1021/acsnano.7b02198 10.1021/acsaem.8b01682 10.1002/aenm.201803477 10.1002/aenm.201502164 10.1021/jp512152f 10.1126/science.1246501 10.1016/j.carbon.2016.12.014 10.1002/aenm.201700260 10.1021/acs.accounts.7b00487 10.1002/adma.201103509 10.1038/nenergy.2015.29 10.1021/acsami.6b16155 10.1002/adma.201203448 10.1021/am406053s 10.1002/ange.201608410 10.1002/aenm.201701099 10.1002/adma.201602210 10.1002/adfm.201500863 10.1039/C9TA02030F 10.1002/adma.201603040 10.1039/C3MH00144J 10.1126/sciadv.1600021 10.1002/adfm.201604815 10.1038/nenergy.2017.118 10.1039/c3cp51758f 10.1021/acs.chemmater.6b05056 10.1021/acs.chemrev.8b00241 10.1039/c2nr11936f 10.1002/adma.201606823 10.1002/adfm.201902915 10.1021/acsami.5b10720 10.1002/smll.201502924 10.1038/nature25984 10.1002/aenm.201701203 10.1149/1.1837571 10.1002/aenm.201401412 10.1126/science.1211934 10.1021/cr500054y 10.1103/PhysRevLett.98.186808 10.1038/ncomms15607 10.1002/adma.201902664 10.1021/acs.nanolett.6b03108 10.1002/smtd.201800546 10.1002/smtd.201900338 10.1038/ncomms3798 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201903030 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201903030 AENM201903030 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Shanghai Municipal Education Commission funderid: 18SG035 – fundername: Shanghai Pujiang Program funderid: 17PJD015 – fundername: National Natural Science Foundation of China funderid: 51673026 – fundername: Shanghai Education Development Foundation |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4220-47bc095aa8dbcd00d34a1a2ff39402ff158d3f4841fcc7d4a2e4fae6397cd74f3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:15:04 EDT 2025 Tue Jul 01 01:43:33 EDT 2025 Thu Apr 24 22:50:22 EDT 2025 Wed Jan 22 16:34:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4220-47bc095aa8dbcd00d34a1a2ff39402ff158d3f4841fcc7d4a2e4fae6397cd74f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2958-2967 |
PQID | 2375431705 |
PQPubID | 886389 |
PageCount | 34 |
ParticipantIDs | proquest_journals_2375431705 crossref_primary_10_1002_aenm_201903030 crossref_citationtrail_10_1002_aenm_201903030 wiley_primary_10_1002_aenm_201903030_AENM201903030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 1991; 354 2013; 1 2019; 10 2019; 848 2019; 13 2019; 12 2019; 15 2014; 26 2019; 16 2013; 125 2013; 7 2011; 196 2012; 12 2013; 5 2012; 11 2013; 6 2014; 136 2018; 49 2019; 166 2013; 9 2018; 6 2018; 9 2018; 8 2018; 2 2018; 5 2010; 1 2015; 137 2015; 81 1997; 144 2013; 52 2014; 16 2014; 14 2019; 29 2018; 30 2012; 24 2012; 22 2010; 4 2019; 150 2019; 7 2019; 9 2018; 28 1979; 126 2019; 3 2011; 2 2011; 1 2019; 31 2015; 127 2019; 2 2015; 51 2019; 32 2015; 54 2016; 10 2016; 98 2017; 253 2007; 98 2004; 306 2016; 16 2004; 305 2004; 304 2017; 139 2016; 12 2016; 283 2016; 11 2016; 4 2015; 350 2016; 6 2017; 53 2018; 18 2016; 7 2016; 1 2016; 2 2016; 3 2015; 115 2018; 118 2007; 154 2019; 48 2017; 56 2014; 38 2005; 4 2015; 119 2008; 44 2018; 12 2016; 28 2018; 11 2017; 543 2016; 26 2016; 8 2018; 14 2014; 31 2017; 5 2017; 7 2009; 47 2017; 8 2017; 2 2013; 25 2017; 3 2017; 4 2015; 347 2019; 55 2013; 23 2017; 46 2019; 58 2015; 32 2016; 101 2011; 11 2011; 10 2017; 111 2017; 114 2017; 9 2017; 115 2017; 358 2017; 118 2014; 1 2013; 19 2018; 130 2015; 293 2014; 5 2013; 15 2014; 4 2014; 2 2019; 65 2017; 38 2002; 43 2015; 44 2017; 34 2011; 21 2016; 116 2011; 23 1958; 80 2013; 275 2017; 122 2014; 8 1981; 30 2016; 191 2017; 124 2014; 6 2005; 34 2014; 53 2015; 12 2015; 1 2014; 512 2011; 334 2015; 15 2015; 14 2006; 439 2015; 6 2015; 17 2015; 5 2004; 104 2009; 21 2015; 18 2009; 20 2015; 3 2019; 75 2017; 27 2015; 288 2002; 298 2015; 11 2017; 23 2016; 529 2005; 43 2019; 147 2016; 128 2017; 29 2015; 9 2019; 141 2015; 8 2015; 7 2014; 114 2014; 510 2011; 332 2019; 143 2006; 311 2015; 25 2012; 2 2015; 27 2014; 506 2017; 17 2017; 11 2017; 10 2018; 555 2017; 13 2017; 12 2019 2013; 135 2019; 378 2009; 8 2016; 138 2018; 51 2012; 4 e_1_2_7_3_1 e_1_2_7_311_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_297_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_248_1 e_1_2_7_225_1 e_1_2_7_263_1 e_1_2_7_319_1 e_1_2_7_240_1 e_1_2_7_322_1 e_1_2_7_285_1 e_1_2_7_307_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_237_1 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_275_1 e_1_2_7_252_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_296_1 e_1_2_7_318_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_310_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_249_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_166_1 e_1_2_7_241_1 e_1_2_7_264_1 e_1_2_7_117_1 e_1_2_7_284_1 e_1_2_7_306_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_321_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_238_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_253_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_295_1 e_1_2_7_9_1 e_1_2_7_317_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_265_1 e_1_2_7_242_1 e_1_2_7_118_1 e_1_2_7_283_1 e_1_2_7_305_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_320_1 e_1_2_7_54_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_239_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_254_1 e_1_2_7_231_1 e_1_2_7_294_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_316_1 e_1_2_7_122_1 e_1_2_7_279_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_243_1 e_1_2_7_266_1 e_1_2_7_168_1 Dai C. (e_1_2_7_116_1) 2019 e_1_2_7_119_1 e_1_2_7_282_1 e_1_2_7_91_1 e_1_2_7_304_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 Jiao Y. (e_1_2_7_75_1) 2016; 1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_255_1 e_1_2_7_157_1 e_1_2_7_270_1 e_1_2_7_108_1 e_1_2_7_293_1 e_1_2_7_7_1 e_1_2_7_315_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_278_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_267_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_244_1 e_1_2_7_221_1 e_1_2_7_281_1 e_1_2_7_303_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_289_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_256_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_271_1 e_1_2_7_292_1 e_1_2_7_314_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_277_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_245_1 e_1_2_7_268_1 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_260_1 e_1_2_7_280_1 e_1_2_7_302_1 e_1_2_7_325_1 e_1_2_7_113_1 e_1_2_7_288_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_234_1 e_1_2_7_257_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_272_1 e_1_2_7_291_1 e_1_2_7_5_1 e_1_2_7_313_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_276_1 e_1_2_7_299_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 e_1_2_7_269_1 e_1_2_7_186_1 e_1_2_7_246_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_261_1 e_1_2_7_324_1 e_1_2_7_301_1 e_1_2_7_114_1 e_1_2_7_287_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_258_1 e_1_2_7_198_1 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_309_1 e_1_2_7_273_1 e_1_2_7_250_1 e_1_2_7_290_1 e_1_2_7_6_1 e_1_2_7_312_1 e_1_2_7_126_1 e_1_2_7_298_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 Ye H. (e_1_2_7_171_1) 2018; 8 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_247_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_262_1 e_1_2_7_300_1 e_1_2_7_323_1 e_1_2_7_115_1 e_1_2_7_286_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_236_1 e_1_2_7_259_1 e_1_2_7_308_1 e_1_2_7_138_1 e_1_2_7_274_1 e_1_2_7_251_1 |
References_xml | – volume: 43 start-page: 3247 year: 2002 publication-title: Polymer – volume: 46 start-page: 5237 year: 2017 publication-title: Chem. Soc. Rev. – volume: 58 start-page: 3779 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 439 start-page: 281 year: 2006 publication-title: Nature – volume: 4 start-page: 1004 year: 2012 publication-title: Nat. Chem. – volume: 56 start-page: 6192 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 5140 year: 2017 publication-title: ACS Nano – volume: 555 start-page: 502 year: 2018 publication-title: Nature – volume: 191 start-page: 23 year: 2016 publication-title: Electrochim. Acta – volume: 10 start-page: 900 year: 2019 publication-title: Nat. Commun. – volume: 2 start-page: 1121 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 10 start-page: 2966 year: 2017 publication-title: Nano Res. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 14 start-page: 3145 year: 2014 publication-title: Nano Lett. – volume: 114 start-page: 5611 year: 2014 publication-title: Chem. Rev. – volume: 11 start-page: 19 year: 2012 publication-title: Nat. Mater. – volume: 11 start-page: 3500 year: 2018 publication-title: Energy Environ. Sci. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 1217 year: 2014 publication-title: Adv. Mater. – volume: 10 start-page: 4579 year: 2016 publication-title: ACS Nano – volume: 48 start-page: 5432 year: 2019 publication-title: Chem. Soc. Rev. – volume: 80 start-page: 1339 year: 1958 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 271 year: 2015 publication-title: Nat. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 6016 year: 2014 publication-title: Nano Lett. – volume: 311 start-page: 977 year: 2006 publication-title: Science – volume: 28 start-page: 3000 year: 2016 publication-title: Adv. Mater. – volume: 1 start-page: 326 year: 2014 publication-title: Mater. Horiz. – volume: 25 start-page: 4932 year: 2013 publication-title: Adv. Mater. – volume: 16 start-page: 228 year: 2019 publication-title: Energy Storage Mater. – volume: 139 start-page: 8212 year: 2017 publication-title: J. Am. Chem. Soc. – start-page: 1 year: 2019 publication-title: InfoMat. – volume: 12 start-page: 2568 year: 2012 publication-title: Nano Lett. – volume: 18 start-page: 480 year: 2015 publication-title: Mater. Today – volume: 47 start-page: 2049 year: 2009 publication-title: Carbon – volume: 34 start-page: 821 year: 2005 publication-title: Chem. Soc. Rev. – volume: 16 start-page: 3926 year: 2014 publication-title: Green Chem. – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 28 start-page: 1603 year: 2016 publication-title: Adv. Mater. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 23 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 31 start-page: 317 year: 2014 publication-title: Part. Part. Syst. Charact. – volume: 28 start-page: 6926 year: 2016 publication-title: Adv. Mater. – volume: 543 start-page: 234 year: 2017 publication-title: Nature – volume: 9 start-page: 7185 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 1546 year: 2016 publication-title: Nano Lett. – volume: 8 start-page: 1292 year: 2015 publication-title: Energy Environ. Sci. – volume: 46 start-page: 481 year: 2017 publication-title: Chem. Soc. Rev. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 4 start-page: 3187 year: 2010 publication-title: ACS Nano – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 28 start-page: 2587 year: 2016 publication-title: Adv. Mater. – volume: 12 start-page: 2446 year: 2012 publication-title: Nano Lett. – volume: 104 start-page: 4303 year: 2004 publication-title: Chem. Rev. – volume: 13 start-page: 5163 year: 2019 publication-title: ACS Nano – volume: 17 start-page: 224 year: 2015 publication-title: Nano Energy – volume: 298 start-page: 2361 year: 2002 publication-title: Science – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 28 start-page: 8006 year: 2016 publication-title: Chem. Mater. – volume: 21 start-page: 3136 year: 2009 publication-title: Chem. Mater. – volume: 28 start-page: 8413 year: 2016 publication-title: Adv. Mater. – volume: 24 start-page: 6502 year: 2012 publication-title: Adv. Mater. – volume: 4 start-page: 2798 year: 2013 publication-title: Nat. Commun. – volume: 5 start-page: 21 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 81 start-page: 782 year: 2015 publication-title: Carbon – volume: 378 year: 2019 publication-title: Chem. Eng. J. – volume: 52 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2017 publication-title: Small – volume: 510 start-page: 522 year: 2014 publication-title: Nature – volume: 332 start-page: 1537 year: 2011 publication-title: Science – volume: 1 year: 2016 publication-title: Nano Energy – volume: 114 start-page: 311 year: 2017 publication-title: Carbon – volume: 5 start-page: 3410 year: 2014 publication-title: Nat. Commun. – volume: 138 start-page: 3570 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 147 start-page: 441 year: 2019 publication-title: Carbon – volume: 12 start-page: 331 year: 2019 publication-title: Nano Res. – volume: 2 start-page: 571 year: 2011 publication-title: Nat. Commun. – volume: 43 start-page: 1378 year: 2005 publication-title: Carbon – volume: 305 start-page: 1447 year: 2004 publication-title: Science – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 10 start-page: 121 year: 2017 publication-title: Nano Res. – volume: 15 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 1345 year: 2015 publication-title: Small – volume: 11 start-page: 626 year: 2016 publication-title: Nat. Nanotechnol. – volume: 101 start-page: 245 year: 2016 publication-title: Carbon – volume: 21 start-page: 211 year: 2011 publication-title: Adv. Funct. Mater. – volume: 130 year: 2018 publication-title: Angew. Chem. – volume: 111 start-page: 36 year: 2017 publication-title: Polymer – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 6 start-page: 1091 year: 2014 publication-title: Nat. Chem. – volume: 17 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 53 start-page: 3957 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 938 year: 2019 publication-title: Energy Environ. Sci. – volume: 347 year: 2015 publication-title: Science – volume: 14 start-page: 763 year: 2015 publication-title: Nat. Mater. – volume: 126 start-page: 2047 year: 1979 publication-title: J. Electrochem. Soc. – volume: 288 start-page: 451 year: 2015 publication-title: J. Power Sources – volume: 18 start-page: 7949 year: 2018 publication-title: Nano Lett. – volume: 10 start-page: 1300 year: 2016 publication-title: ACS Nano – volume: 1 year: 2013 publication-title: J. Mater. Chem. A – volume: 38 start-page: 504 year: 2017 publication-title: Nano Energy – volume: 10 start-page: 1648 year: 2016 publication-title: ACS Nano – volume: 1 start-page: 486 year: 2011 publication-title: Adv. Energy Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 350 start-page: 530 year: 2015 publication-title: Science – volume: 118 start-page: 139 year: 2017 publication-title: Carbon – volume: 275 start-page: 244 year: 2013 publication-title: Appl. Surf. Sci. – volume: 12 start-page: 657 year: 2015 publication-title: Nano Energy – volume: 15 year: 2019 publication-title: Small – volume: 12 start-page: 602 year: 2016 publication-title: Small – volume: 16 start-page: 6511 year: 2016 publication-title: Nano Lett. – volume: 253 start-page: 169 year: 2017 publication-title: Microporous Mesoporous Mater. – volume: 12 start-page: 3155 year: 2016 publication-title: Small – volume: 128 year: 2016 publication-title: Angew. Chem. – volume: 3 year: 2019 publication-title: Small Methods – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 15 start-page: 4261 year: 2015 publication-title: Nano Lett. – volume: 26 start-page: 625 year: 2014 publication-title: Adv. Mater. – volume: 136 start-page: 4659 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 997 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 20 year: 2009 publication-title: Nanotechnology – volume: 12 start-page: 2422 year: 2019 publication-title: Energy Environ. Sci. – volume: 11 start-page: 769 year: 2018 publication-title: Nano Res. – volume: 53 start-page: 5262 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 9385 year: 2016 publication-title: Adv. Mater. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 38 start-page: 4549 year: 2014 publication-title: New J. Chem. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 506 start-page: 349 year: 2014 publication-title: Nature – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 5 start-page: 9537 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 2193 year: 2010 publication-title: J. Phys. Chem. Lett. – volume: 358 year: 2017 publication-title: Science – volume: 15 start-page: 243 year: 2019 publication-title: Soft Matter. – volume: 6 start-page: 1462 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 start-page: 4309 year: 2015 publication-title: ACS Catal. – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 764 year: 2018 publication-title: Joule – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 128 start-page: 7006 year: 2016 publication-title: Angew. Chem. – volume: 7 start-page: 2422 year: 2013 publication-title: ACS Nano – volume: 25 start-page: 188 year: 2013 publication-title: Adv. Mater. – volume: 32 start-page: 952 year: 2015 publication-title: Part. Part. Syst. Charact. – volume: 116 start-page: 140 year: 2016 publication-title: Chem. Rev. – volume: 75 year: 2019 publication-title: Prog. Energy Combust. Sci. – volume: 14 year: 2018 publication-title: Small – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 529 start-page: 377 year: 2016 publication-title: Nature – volume: 2 start-page: 520 year: 2014 publication-title: J. Mater. Chem. A – volume: 306 start-page: 1362 year: 2004 publication-title: Science – volume: 30 start-page: 139 year: 1981 publication-title: Adv. Phys. – volume: 53 start-page: 2152 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 118 start-page: 148 year: 2017 publication-title: Carbon – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 122 start-page: 635 year: 2017 publication-title: Carbon – volume: 135 start-page: 1524 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3570 year: 2013 publication-title: Energy Environ. Sci. – volume: 27 start-page: 3687 year: 2015 publication-title: Adv. Mater. – volume: 4 start-page: 2069 year: 2016 publication-title: J. Mater. Chem. A – volume: 54 start-page: 4299 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 358 start-page: 506 year: 2017 publication-title: Science – volume: 9 start-page: 836 year: 2018 publication-title: Nat. Commun. – volume: 25 start-page: 4436 year: 2015 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 3200 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 7725 year: 2016 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 7117 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 124 year: 2019 publication-title: J. Energy Chem. – volume: 23 start-page: 846 year: 2013 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 2839 year: 2013 publication-title: Energy Environ. Sci. – volume: 8 start-page: 3015 year: 2014 publication-title: ACS Nano – volume: 27 start-page: 7861 year: 2015 publication-title: Adv. Mater. – volume: 3 start-page: 9502 year: 2015 publication-title: J. Mater. Chem. A – volume: 46 start-page: 2873 year: 2017 publication-title: Chem. Soc. Rev. – volume: 44 start-page: 6749 year: 2015 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 3049 year: 2014 publication-title: ACS Nano – volume: 848 year: 2019 publication-title: J. Electroanal. Chem. – volume: 8 start-page: 2144 year: 2015 publication-title: Energy Environ. Sci. – volume: 98 start-page: 582 year: 2016 publication-title: Carbon – volume: 34 start-page: 437 year: 2017 publication-title: Nano Energy – volume: 4 start-page: 2083 year: 2012 publication-title: Nanoscale – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 4 start-page: 366 year: 2005 publication-title: Nat. Mater. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 7051 year: 2014 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 start-page: 2556 year: 2015 publication-title: ACS Nano – volume: 283 start-page: 789 year: 2016 publication-title: Chem. Eng. J. – volume: 124 start-page: 212 year: 2017 publication-title: Carbon – volume: 29 year: 2019 publication-title: Small – volume: 55 start-page: 2644 year: 2019 publication-title: Chem. Commun. – volume: 144 start-page: 1188 year: 1997 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 535 year: 2017 publication-title: Nat. Nanotechnol. – volume: 17 start-page: 43 year: 2015 publication-title: Nano Energy – volume: 29 start-page: 1665 year: 2017 publication-title: Chem. Mater. – volume: 26 start-page: 6100 year: 2014 publication-title: Adv. Mater. – volume: 9 start-page: 4026 year: 2015 publication-title: ACS Nano – volume: 65 year: 2019 publication-title: Nano Energy – volume: 28 start-page: 7125 year: 2016 publication-title: Chem. Mater. – volume: 2 start-page: 1056 year: 2012 publication-title: Adv. Energy Mater. – year: 2019 publication-title: Adv. Mater. – volume: 11 start-page: 4877 year: 2017 publication-title: ACS Nano – volume: 9 start-page: 145 year: 2018 publication-title: Nat. Commun. – volume: 25 start-page: 3249 year: 2013 publication-title: Adv. Mater. – volume: 7 start-page: 4029 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 5109 year: 2013 publication-title: Adv. Mater. – volume: 6 start-page: 7393 year: 2015 publication-title: Nat. Commun. – volume: 125 start-page: 410 year: 2013 publication-title: Angew. Chem. – volume: 54 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 3543 year: 2017 publication-title: Nano Lett. – volume: 141 start-page: 531 year: 2019 publication-title: Carbon – volume: 127 start-page: 542 year: 2015 publication-title: Angew. Chem. – volume: 23 start-page: 5436 year: 2011 publication-title: Adv. Mater. – volume: 2 start-page: 801 year: 2012 publication-title: Adv. Energy Mater. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 2 year: 2018 publication-title: Small Methods – volume: 196 start-page: 8651 year: 2011 publication-title: J. Power Sources – volume: 150 start-page: 76 year: 2019 publication-title: Carbon – volume: 49 start-page: 179 year: 2018 publication-title: Nano Energy – volume: 53 year: 2017 publication-title: Chem. Commun. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 17 start-page: 3681 year: 2017 publication-title: Nano Lett. – volume: 512 start-page: 61 year: 2014 publication-title: Nature – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 26 start-page: 446 year: 2016 publication-title: Nano Energy – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 53 start-page: 3926 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 5677 year: 2014 publication-title: Nano Lett. – volume: 115 start-page: 5159 year: 2015 publication-title: Chem. Rev. – volume: 118 start-page: 8936 year: 2018 publication-title: Chem. Rev. – volume: 293 start-page: 119 year: 2015 publication-title: J. Power Sources – volume: 9 start-page: 1237 year: 2013 publication-title: Small – volume: 10 start-page: 424 year: 2011 publication-title: Nat. Mater. – volume: 304 start-page: 276 year: 2004 publication-title: Science – volume: 4 start-page: 4324 year: 2010 publication-title: ACS Nano – volume: 26 start-page: 6186 year: 2014 publication-title: Adv. Mater. – volume: 115 start-page: 640 year: 2017 publication-title: Carbon – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 7221 year: 2015 publication-title: Nat. Commun. – volume: 19 year: 2013 publication-title: Chem. ‐ Eur. J. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 1256 year: 2011 publication-title: Science – volume: 127 year: 2015 publication-title: Angew. Chem. – volume: 58 start-page: 7238 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 273 year: 2018 publication-title: Acc. Chem. Res. – volume: 143 start-page: 869 year: 2019 publication-title: Carbon – volume: 354 start-page: 56 year: 1991 publication-title: Nature – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1947 year: 2015 publication-title: J. Mater. Chem. A – volume: 11 start-page: 5545 year: 2015 publication-title: Small – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 26 start-page: 5113 year: 2014 publication-title: Adv. Mater. – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 16 start-page: 5675 year: 2016 publication-title: Nano Lett. – volume: 6 start-page: 871 year: 2013 publication-title: Energy Environ. Sci. – volume: 12 start-page: 3126 year: 2018 publication-title: ACS Nano – volume: 119 start-page: 5848 year: 2015 publication-title: J. Phys. Chem. C – volume: 44 start-page: 3246 year: 2008 publication-title: Eur. Polym. J. – volume: 154 start-page: A910 year: 2007 publication-title: J. Electrochem. Soc. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 27 start-page: 3541 year: 2015 publication-title: Adv. Mater. – volume: 11 start-page: 4462 year: 2011 publication-title: Nano Lett. – volume: 7 start-page: 1437 year: 2013 publication-title: ACS Nano – volume: 26 start-page: 4521 year: 2014 publication-title: Adv. Mater. – volume: 101 start-page: 253 year: 2016 publication-title: Carbon – ident: e_1_2_7_34_1 doi: 10.1038/439281a – ident: e_1_2_7_33_1 doi: 10.1038/nature13607 – ident: e_1_2_7_164_1 doi: 10.1038/nmat3001 – ident: e_1_2_7_107_1 doi: 10.1038/s41467-017-02479-z – ident: e_1_2_7_182_1 doi: 10.1016/j.cej.2015.08.014 – ident: e_1_2_7_290_1 doi: 10.1039/C5CP00386E – ident: e_1_2_7_144_1 doi: 10.1002/smll.201203252 – ident: e_1_2_7_229_1 doi: 10.1002/adma.201301870 – ident: e_1_2_7_97_1 doi: 10.1038/ncomms4410 – ident: e_1_2_7_170_1 doi: 10.1021/jacs.6b07355 – ident: e_1_2_7_60_1 doi: 10.1088/0957-4484/20/15/155705 – ident: e_1_2_7_102_1 doi: 10.1039/C7CC04584K – ident: e_1_2_7_88_1 doi: 10.1002/anie.201609230 – ident: e_1_2_7_28_1 doi: 10.1016/j.carbon.2005.01.007 – ident: e_1_2_7_50_1 doi: 10.1002/anie.201306129 – ident: e_1_2_7_63_1 doi: 10.1126/science.1101398 – ident: e_1_2_7_210_1 doi: 10.1149/1.2128859 – ident: e_1_2_7_261_1 doi: 10.1126/science.aac7730 – ident: e_1_2_7_166_1 doi: 10.1016/j.carbon.2016.02.002 – ident: e_1_2_7_315_1 doi: 10.1039/c3ta13698a – ident: e_1_2_7_87_1 doi: 10.1021/acsnano.5b07367 – ident: e_1_2_7_103_1 doi: 10.1021/ja01539a017 – ident: e_1_2_7_40_1 doi: 10.1126/science.1078727 – ident: e_1_2_7_267_1 doi: 10.1038/nnano.2017.27 – ident: e_1_2_7_131_1 doi: 10.1002/adma.201400951 – ident: e_1_2_7_66_1 doi: 10.1002/adma.201300774 – ident: e_1_2_7_59_1 doi: 10.1016/j.polymer.2017.01.009 – ident: e_1_2_7_176_1 doi: 10.1016/j.micromeso.2017.06.049 – ident: e_1_2_7_161_1 doi: 10.1021/jacs.7b05490 – ident: e_1_2_7_158_1 doi: 10.1016/j.nanoen.2015.07.029 – ident: e_1_2_7_270_1 doi: 10.1002/adma.201704907 – ident: e_1_2_7_224_1 doi: 10.1016/j.jechem.2018.07.008 – ident: e_1_2_7_89_1 doi: 10.1039/C7TA09757C – ident: e_1_2_7_250_1 doi: 10.1002/aenm.201602014 – ident: e_1_2_7_247_1 doi: 10.1002/anie.201812062 – ident: e_1_2_7_298_1 doi: 10.1002/smll.201602984 – ident: e_1_2_7_124_1 doi: 10.1021/nn100740x – ident: e_1_2_7_13_1 doi: 10.1021/nn500585g – ident: e_1_2_7_27_1 doi: 10.1021/nl300799d – ident: e_1_2_7_62_1 doi: 10.1002/anie.201409366 – ident: e_1_2_7_197_1 doi: 10.1038/ncomms8221 – ident: e_1_2_7_273_1 doi: 10.1038/nchem.1499 – ident: e_1_2_7_212_1 doi: 10.1039/C9CS00381A – ident: e_1_2_7_92_1 doi: 10.1016/j.pecs.2019.100786 – ident: e_1_2_7_259_1 doi: 10.1002/adma.201601382 – ident: e_1_2_7_8_1 doi: 10.1021/acs.nanolett.6b02321 – ident: e_1_2_7_68_1 doi: 10.1038/srep29534 – ident: e_1_2_7_285_1 doi: 10.1002/anie.201410786 – ident: e_1_2_7_239_1 doi: 10.1016/j.nanoen.2017.03.018 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201704162 – ident: e_1_2_7_275_1 doi: 10.1002/aenm.201501870 – ident: e_1_2_7_122_1 doi: 10.1021/ja412943h – ident: e_1_2_7_184_1 doi: 10.1039/C7TA04771A – ident: e_1_2_7_6_1 doi: 10.1016/j.nanoen.2015.01.033 – ident: e_1_2_7_302_1 doi: 10.1002/adma.201602800 – ident: e_1_2_7_55_1 doi: 10.1039/C5TA10001A – ident: e_1_2_7_48_1 doi: 10.1021/nl5024029 – ident: e_1_2_7_138_1 doi: 10.1002/smll.201402072 – ident: e_1_2_7_199_1 doi: 10.1002/anie.201305006 – ident: e_1_2_7_233_1 doi: 10.1039/C5TA00681C – ident: e_1_2_7_198_1 doi: 10.1039/C7TA05522F – ident: e_1_2_7_152_1 doi: 10.1016/j.nanoen.2018.04.040 – ident: e_1_2_7_41_1 doi: 10.1021/jacs.7b01942 – ident: e_1_2_7_141_1 doi: 10.1002/smtd.201800035 – ident: e_1_2_7_254_1 doi: 10.1021/am507660y – ident: e_1_2_7_159_1 doi: 10.1021/nn101187z – ident: e_1_2_7_219_1 doi: 10.1016/j.joule.2018.02.001 – ident: e_1_2_7_21_1 doi: 10.1016/j.carbon.2018.11.032 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201500945 – ident: e_1_2_7_245_1 doi: 10.1016/j.ensm.2018.05.019 – start-page: 1 year: 2019 ident: e_1_2_7_116_1 publication-title: InfoMat. – ident: e_1_2_7_51_1 doi: 10.1016/j.mattod.2015.06.009 – ident: e_1_2_7_127_1 doi: 10.1021/nn3052023 – ident: e_1_2_7_38_1 doi: 10.1038/nature13434 – ident: e_1_2_7_71_1 doi: 10.1021/acs.nanolett.7b00623 – ident: e_1_2_7_15_1 doi: 10.1039/C8CC10036E – ident: e_1_2_7_125_1 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_7_128_1 doi: 10.1021/acs.nanolett.7b00906 – ident: e_1_2_7_148_1 doi: 10.1039/C9EE00308H – ident: e_1_2_7_99_1 doi: 10.1002/smll.201702916 – ident: e_1_2_7_100_1 doi: 10.1002/adma.201700639 – ident: e_1_2_7_236_1 doi: 10.1002/advs.201700270 – ident: e_1_2_7_253_1 doi: 10.1002/chem.201301689 – ident: e_1_2_7_98_1 doi: 10.1126/sciadv.1500222 – ident: e_1_2_7_135_1 doi: 10.1016/j.nanoen.2017.06.030 – ident: e_1_2_7_320_1 doi: 10.1002/aenm.201602543 – ident: e_1_2_7_76_1 doi: 10.1021/am3027597 – ident: e_1_2_7_154_1 doi: 10.1039/C6CS00829A – ident: e_1_2_7_109_1 doi: 10.1002/aenm.201700051 – ident: e_1_2_7_303_1 doi: 10.1002/adfm.201202412 – ident: e_1_2_7_136_1 doi: 10.1016/j.carbon.2019.02.081 – ident: e_1_2_7_105_1 doi: 10.1021/acsnano.8b08822 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201800863 – ident: e_1_2_7_310_1 doi: 10.1039/C4NJ00701H – ident: e_1_2_7_280_1 doi: 10.1021/nn500327p – ident: e_1_2_7_12_1 doi: 10.1021/cr5006217 – ident: e_1_2_7_238_1 doi: 10.1021/acs.nanolett.8b03906 – ident: e_1_2_7_249_1 doi: 10.1002/smll.201902491 – ident: e_1_2_7_228_1 doi: 10.1002/adma.201401427 – ident: e_1_2_7_284_1 doi: 10.1039/c3ee41910j – ident: e_1_2_7_130_1 doi: 10.1002/smtd.201800119 – ident: e_1_2_7_147_1 doi: 10.1016/j.nanoen.2016.05.017 – ident: e_1_2_7_189_1 doi: 10.1038/nmat4317 – ident: e_1_2_7_226_1 doi: 10.1126/science.1200770 – ident: e_1_2_7_235_1 doi: 10.1038/ncomms14627 – ident: e_1_2_7_300_1 doi: 10.1016/j.carbon.2017.07.017 – ident: e_1_2_7_321_1 doi: 10.1021/acsnano.7b01437 – ident: e_1_2_7_308_1 doi: 10.1039/C5TA05324B – ident: e_1_2_7_318_1 doi: 10.1002/admi.201500491 – ident: e_1_2_7_274_1 doi: 10.1021/nl504425h – ident: e_1_2_7_140_1 doi: 10.1002/aenm.201800935 – ident: e_1_2_7_264_1 doi: 10.1002/aenm.201200001 – ident: e_1_2_7_237_1 doi: 10.1002/anie.201701026 – ident: e_1_2_7_163_1 doi: 10.1021/nl300528p – ident: e_1_2_7_82_1 doi: 10.1039/C4TA05804F – ident: e_1_2_7_266_1 doi: 10.1021/nl500397y – ident: e_1_2_7_214_1 doi: 10.1002/adma.201203151 – ident: e_1_2_7_93_1 doi: 10.1016/j.carbon.2009.03.053 – ident: e_1_2_7_86_1 doi: 10.1039/c2jm35125k – ident: e_1_2_7_137_1 doi: 10.1039/C6TA06612G – ident: e_1_2_7_309_1 doi: 10.1016/j.jpowsour.2015.05.048 – ident: e_1_2_7_46_1 doi: 10.1002/aenm.201602543 – ident: e_1_2_7_221_1 doi: 10.1002/aenm.201700530 – volume: 1 start-page: 16130 year: 2016 ident: e_1_2_7_75_1 publication-title: Nano Energy – ident: e_1_2_7_215_1 doi: 10.1038/nenergy.2016.113 – ident: e_1_2_7_29_1 doi: 10.1038/354056a0 – ident: e_1_2_7_174_1 doi: 10.1002/smtd.201900081 – ident: e_1_2_7_83_1 doi: 10.1080/00018738100101367 – ident: e_1_2_7_85_1 doi: 10.1021/cr030203g – ident: e_1_2_7_94_1 doi: 10.1002/adma.201505391 – ident: e_1_2_7_133_1 doi: 10.1002/adma.201506112 – ident: e_1_2_7_177_1 doi: 10.1002/anie.201309836 – ident: e_1_2_7_263_1 doi: 10.1021/jz1005384 – ident: e_1_2_7_30_1 doi: 10.1038/nature12952 – ident: e_1_2_7_301_1 doi: 10.1002/adfm.201603088 – ident: e_1_2_7_156_1 doi: 10.1016/j.electacta.2016.01.019 – ident: e_1_2_7_242_1 doi: 10.1016/j.carbon.2015.11.048 – ident: e_1_2_7_56_1 doi: 10.1039/C7TA01187C – ident: e_1_2_7_190_1 doi: 10.1002/chem.201701806 – ident: e_1_2_7_231_1 doi: 10.1002/aenm.201900477 – ident: e_1_2_7_121_1 doi: 10.1039/C9CC04877D – ident: e_1_2_7_72_1 doi: 10.1002/adma.201401243 – ident: e_1_2_7_243_1 doi: 10.1002/anie.201505444 – ident: e_1_2_7_295_1 doi: 10.1021/nn501945f – ident: e_1_2_7_26_1 doi: 10.1149/1.2759840 – ident: e_1_2_7_262_1 doi: 10.1021/nl504425h – ident: e_1_2_7_185_1 doi: 10.1002/adma.201500945 – ident: e_1_2_7_201_1 doi: 10.1007/s12274-017-1507-5 – ident: e_1_2_7_234_1 doi: 10.1038/nmat2460 – ident: e_1_2_7_325_1 doi: 10.1039/C6CS00929H – ident: e_1_2_7_306_1 doi: 10.1021/am402368p – ident: e_1_2_7_216_1 doi: 10.1002/aenm.201200320 – ident: e_1_2_7_282_1 doi: 10.1021/jacs.6b00757 – ident: e_1_2_7_277_1 doi: 10.1021/acscatal.5b00332 – ident: e_1_2_7_91_1 doi: 10.1016/j.nanoen.2019.104061 – ident: e_1_2_7_175_1 doi: 10.1038/ncomms15020 – ident: e_1_2_7_104_1 doi: 10.1038/s41467-018-03211-1 – ident: e_1_2_7_106_1 doi: 10.1021/jacs.5b09000 – ident: e_1_2_7_248_1 doi: 10.1016/j.carbon.2019.05.008 – ident: e_1_2_7_193_1 doi: 10.1039/C5CS00344J – ident: e_1_2_7_61_1 doi: 10.1002/adma.201304319 – ident: e_1_2_7_52_1 doi: 10.1038/ncomms1583 – ident: e_1_2_7_81_1 doi: 10.1016/j.carbon.2017.03.048 – ident: e_1_2_7_225_1 doi: 10.1021/cm900395k – ident: e_1_2_7_10_1 doi: 10.1002/adfm.201702562 – ident: e_1_2_7_44_1 doi: 10.1002/aenm.201401752 – ident: e_1_2_7_37_1 doi: 10.1002/aenm.201100001 – ident: e_1_2_7_151_1 doi: 10.1002/adma.201503816 – ident: e_1_2_7_311_1 doi: 10.1038/srep20445 – ident: e_1_2_7_322_1 doi: 10.1016/j.carbon.2017.08.062 – ident: e_1_2_7_139_1 doi: 10.1002/aenm.201602567 – ident: e_1_2_7_168_1 doi: 10.1016/j.carbon.2018.10.007 – ident: e_1_2_7_169_1 doi: 10.1002/adfm.201707592 – ident: e_1_2_7_178_1 doi: 10.1002/smll.201600364 – ident: e_1_2_7_218_1 doi: 10.1007/s12274-017-1686-0 – ident: e_1_2_7_271_1 doi: 10.1002/smll.201802204 – ident: e_1_2_7_289_1 doi: 10.1002/ange.201602142 – ident: e_1_2_7_119_1 doi: 10.1016/j.cej.2019.122249 – ident: e_1_2_7_129_1 doi: 10.1007/s12274-016-1271-y – ident: e_1_2_7_211_1 doi: 10.1002/adma.201806620 – ident: e_1_2_7_80_1 doi: 10.1021/acsnano.5b00088 – ident: e_1_2_7_255_1 doi: 10.1002/adfm.201707592 – ident: e_1_2_7_42_1 doi: 10.1002/adma.201603549 – ident: e_1_2_7_265_1 doi: 10.1039/C5EE00838G – ident: e_1_2_7_324_1 doi: 10.1002/aenm.201301795 – ident: e_1_2_7_4_1 doi: 10.1021/acs.chemrev.5b00563 – ident: e_1_2_7_240_1 doi: 10.1021/acsnano.5b06675 – ident: e_1_2_7_278_1 doi: 10.1039/C5CC06562C – ident: e_1_2_7_241_1 doi: 10.1016/j.nanoen.2015.09.001 – ident: e_1_2_7_162_1 doi: 10.1039/C8SM01626G – ident: e_1_2_7_145_1 doi: 10.1038/ncomms14628 – ident: e_1_2_7_146_1 doi: 10.1039/c3ee41444b – ident: e_1_2_7_74_1 doi: 10.1002/anie.201308354 – ident: e_1_2_7_191_1 doi: 10.1002/adfm.201702524 – volume: 8 start-page: 1700530 year: 2018 ident: e_1_2_7_171_1 publication-title: Adv. Energy Mater. – ident: e_1_2_7_202_1 doi: 10.1126/sciadv.1701301 – ident: e_1_2_7_323_1 doi: 10.1002/smll.201501570 – ident: e_1_2_7_73_1 doi: 10.1002/ange.201409454 – ident: e_1_2_7_112_1 doi: 10.1038/nmat3191 – ident: e_1_2_7_54_1 doi: 10.1016/j.carbon.2017.01.059 – ident: e_1_2_7_172_1 doi: 10.1021/acs.nanolett.5b03903 – ident: e_1_2_7_227_1 doi: 10.1002/aenm.201500559 – ident: e_1_2_7_20_1 doi: 10.1021/cr400573b – ident: e_1_2_7_25_1 doi: 10.1038/natrevmats.2017.23 – ident: e_1_2_7_165_1 doi: 10.1002/adfm.201001330 – ident: e_1_2_7_200_1 doi: 10.1016/j.eurpolymj.2008.07.033 – ident: e_1_2_7_223_1 doi: 10.1002/advs.201600243 – ident: e_1_2_7_313_1 doi: 10.1039/C5TA05334J – ident: e_1_2_7_194_1 doi: 10.1021/acsnano.6b00723 – ident: e_1_2_7_204_1 doi: 10.1039/C8EE02617C – ident: e_1_2_7_283_1 doi: 10.1002/anie.201400711 – ident: e_1_2_7_23_1 doi: 10.1021/acsami.5b04864 – ident: e_1_2_7_79_1 doi: 10.1126/science.1122152 – ident: e_1_2_7_2_1 doi: 10.1039/C7CS00139H – ident: e_1_2_7_126_1 doi: 10.1002/aenm.201501835 – ident: e_1_2_7_296_1 doi: 10.1002/ppsc.201500073 – ident: e_1_2_7_187_1 doi: 10.1002/aenm.201600377 – ident: e_1_2_7_24_1 doi: 10.1021/nn506394r – ident: e_1_2_7_19_1 doi: 10.1002/adma.201302877 – ident: e_1_2_7_244_1 doi: 10.1038/ncomms13065 – ident: e_1_2_7_272_1 doi: 10.1002/ange.201205354 – ident: e_1_2_7_293_1 doi: 10.1039/C8EE02067A – ident: e_1_2_7_39_1 doi: 10.1126/science.1104962 – ident: e_1_2_7_64_1 doi: 10.1126/science.1094982 – ident: e_1_2_7_111_1 doi: 10.1038/nmat4170 – ident: e_1_2_7_118_1 doi: 10.1002/aenm.201501355 – ident: e_1_2_7_294_1 doi: 10.1016/j.carbon.2017.03.037 – ident: e_1_2_7_209_1 doi: 10.1021/nl2027684 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201401191 – ident: e_1_2_7_113_1 doi: 10.1038/ncomms8393 – ident: e_1_2_7_45_1 doi: 10.1021/acsnano.7b08918 – ident: e_1_2_7_186_1 doi: 10.1039/C3TA12648J – ident: e_1_2_7_305_1 doi: 10.1002/adma.201501059 – ident: e_1_2_7_319_1 doi: 10.1039/C4GC00761A – ident: e_1_2_7_287_1 doi: 10.1038/nchem.2101 – ident: e_1_2_7_95_1 doi: 10.1002/adma.201504765 – ident: e_1_2_7_257_1 doi: 10.1039/C6RA04230A – ident: e_1_2_7_281_1 doi: 10.1021/acs.chemmater.6b03751 – ident: e_1_2_7_36_1 doi: 10.1038/nature21051 – ident: e_1_2_7_132_1 doi: 10.1021/acs.chemmater.6b03420 – ident: e_1_2_7_222_1 doi: 10.1002/adma.201800863 – ident: e_1_2_7_120_1 doi: 10.1002/smll.201704410 – ident: e_1_2_7_1_1 doi: 10.1002/aenm.201900161 – ident: e_1_2_7_180_1 doi: 10.1002/ange.201507735 – ident: e_1_2_7_316_1 doi: 10.1039/c3ta11852e – ident: e_1_2_7_314_1 doi: 10.1016/j.jpowsour.2015.04.029 – ident: e_1_2_7_3_1 doi: 10.1038/s41467-019-08767-0 – ident: e_1_2_7_47_1 doi: 10.1002/ppsc.201300231 – ident: e_1_2_7_213_1 doi: 10.1126/science.aam6014 – ident: e_1_2_7_153_1 doi: 10.1002/smll.201903418 – ident: e_1_2_7_150_1 doi: 10.1016/j.carbon.2019.05.008 – ident: e_1_2_7_160_1 doi: 10.1126/sciadv.1500849 – ident: e_1_2_7_217_1 doi: 10.1038/nmat1368 – ident: e_1_2_7_134_1 doi: 10.1002/adma.201301920 – ident: e_1_2_7_291_1 doi: 10.1038/nature16484 – ident: e_1_2_7_117_1 doi: 10.1038/ncomms10998 – ident: e_1_2_7_188_1 doi: 10.1016/j.nanoen.2019.104038 – ident: e_1_2_7_5_1 doi: 10.1126/science.aao2808 – ident: e_1_2_7_58_1 doi: 10.1016/j.carbon.2014.10.024 – ident: e_1_2_7_115_1 doi: 10.1021/nl503125u – ident: e_1_2_7_90_1 doi: 10.1002/ange.201808835 – ident: e_1_2_7_17_1 doi: 10.1002/aenm.201802955 – ident: e_1_2_7_35_1 doi: 10.1016/S0032-3861(02)00151-9 – ident: e_1_2_7_181_1 doi: 10.1016/j.jelechem.2019.113242 – ident: e_1_2_7_108_1 doi: 10.1021/ja310849c – ident: e_1_2_7_114_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_7_9_1 doi: 10.1039/C7TA09757C – ident: e_1_2_7_149_1 doi: 10.1007/s12274-018-2219-1 – ident: e_1_2_7_288_1 doi: 10.1039/C4EE02587C – ident: e_1_2_7_195_1 doi: 10.1149/2.0151903jes – ident: e_1_2_7_167_1 doi: 10.1039/b417081b – ident: e_1_2_7_203_1 doi: 10.1016/j.jpowsour.2011.06.055 – ident: e_1_2_7_179_1 doi: 10.1002/anie.201901840 – ident: e_1_2_7_53_1 doi: 10.1016/j.carbon.2016.01.104 – ident: e_1_2_7_251_1 doi: 10.1002/ange.201504514 – ident: e_1_2_7_304_1 doi: 10.1016/j.apsusc.2012.12.150 – ident: e_1_2_7_307_1 doi: 10.1021/nn3057388 – ident: e_1_2_7_206_1 doi: 10.1038/ncomms10601 – ident: e_1_2_7_183_1 doi: 10.1039/c2ee23599d – ident: e_1_2_7_157_1 doi: 10.1039/C4TA02839B – ident: e_1_2_7_230_1 doi: 10.1021/acsnano.7b02198 – ident: e_1_2_7_173_1 doi: 10.1021/acsaem.8b01682 – ident: e_1_2_7_246_1 doi: 10.1002/aenm.201803477 – ident: e_1_2_7_260_1 doi: 10.1002/aenm.201502164 – ident: e_1_2_7_123_1 doi: 10.1021/jp512152f – ident: e_1_2_7_96_1 doi: 10.1126/science.1246501 – ident: e_1_2_7_286_1 doi: 10.1016/j.carbon.2016.12.014 – ident: e_1_2_7_232_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_7_207_1 doi: 10.1021/acs.accounts.7b00487 – ident: e_1_2_7_252_1 doi: 10.1002/adma.201103509 – ident: e_1_2_7_110_1 doi: 10.1038/nenergy.2015.29 – ident: e_1_2_7_43_1 doi: 10.1021/acsami.6b16155 – ident: e_1_2_7_70_1 doi: 10.1002/adma.201203448 – ident: e_1_2_7_317_1 doi: 10.1021/am406053s – ident: e_1_2_7_192_1 doi: 10.1002/ange.201608410 – ident: e_1_2_7_49_1 doi: 10.1002/aenm.201701099 – ident: e_1_2_7_220_1 doi: 10.1002/adma.201602210 – ident: e_1_2_7_268_1 doi: 10.1002/adfm.201500863 – ident: e_1_2_7_14_1 doi: 10.1039/C9TA02030F – ident: e_1_2_7_299_1 doi: 10.1002/adma.201603040 – ident: e_1_2_7_65_1 doi: 10.1039/C3MH00144J – ident: e_1_2_7_77_1 doi: 10.1126/sciadv.1600021 – ident: e_1_2_7_297_1 doi: 10.1002/adfm.201604815 – ident: e_1_2_7_205_1 doi: 10.1038/nenergy.2017.118 – ident: e_1_2_7_142_1 doi: 10.1039/c3cp51758f – ident: e_1_2_7_276_1 doi: 10.1021/acs.chemmater.6b05056 – ident: e_1_2_7_256_1 doi: 10.1021/acs.chemrev.8b00241 – ident: e_1_2_7_101_1 doi: 10.1039/c2nr11936f – ident: e_1_2_7_258_1 doi: 10.1002/adma.201606823 – ident: e_1_2_7_22_1 doi: 10.1002/adfm.201902915 – ident: e_1_2_7_57_1 doi: 10.1021/acsami.5b10720 – ident: e_1_2_7_279_1 doi: 10.1002/smll.201502924 – ident: e_1_2_7_292_1 doi: 10.1038/nature25984 – ident: e_1_2_7_155_1 doi: 10.1002/aenm.201701203 – ident: e_1_2_7_208_1 doi: 10.1149/1.1837571 – ident: e_1_2_7_312_1 doi: 10.1002/aenm.201401412 – ident: e_1_2_7_143_1 doi: 10.1126/science.1211934 – ident: e_1_2_7_16_1 doi: 10.1021/cr500054y – ident: e_1_2_7_31_1 doi: 10.1103/PhysRevLett.98.186808 – ident: e_1_2_7_269_1 doi: 10.1038/ncomms15607 – ident: e_1_2_7_69_1 doi: 10.1002/adma.201902664 – ident: e_1_2_7_67_1 doi: 10.1021/acs.nanolett.6b03108 – ident: e_1_2_7_78_1 doi: 10.1002/smtd.201800546 – ident: e_1_2_7_84_1 doi: 10.1002/smtd.201900338 – ident: e_1_2_7_196_1 doi: 10.1038/ncomms3798 |
SSID | ssj0000491033 |
Score | 2.6184714 |
SecondaryResourceType | review_article |
Snippet | Carbon‐based nanomaterials have significantly pushed the boundary of electrochemical performance of lithium‐based batteries (LBs) thanks to their excellent... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Carbon carbon‐based nanomaterials Composition Control stability Electrochemical analysis electrochemical performances Electrode materials Electrodes Energy storage Lithium Lithium batteries Lithium sulfur batteries Lithium-ion batteries lithium‐based batteries (LBs) Morphology Nanomaterials Nanorods Structural design structural designs Surface stability synthetic techniques |
Title | Structure Design and Composition Engineering of Carbon‐Based Nanomaterials for Lithium Energy Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201903030 https://www.proquest.com/docview/2375431705 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gKHiqfYUpAPSJwCTuJskuNCi1aoWwltK5VT5OeSChIEuwc48RMQP5Ffwjh2HEfl2Ut25YyzG8_nedgzY4Qe5xnjnOYkysuCRrRgs6ikxSzSBVUiNRpImUTh5clscUZfnWfnk8n3IGppu-FPxZdf5pVchavQBnw1WbL_wVn_UGiA78BfuAKH4fpPPF51xV_NFsBhF4jR7QSYGe4iscJqgzYR6yMHU6-Pb3gOGkwa-dqC2Wr_bxd1eFxv3tbb99C7ywtcgVvOxiFD8z5yQFkS39-H8ygrQxZts_7MBvlrW98MkHy9tSsDrFlv6kur2AtWX9SsDZcmwA_1sVlOmoLuj2aFW8BUYZut0eRFMAmhRgJt7HXVJVFvS8cy1Zh6AgAq0MVkUGr9Rr6nzP5Ma0sAH50s_f1raDcB1wNk5-78cHm88it34FPFJO0yN_r366uBkuTZ-EfG1s7gwoSOUGfJnN5Ee84FwXOLp1tooprb6EYAlTto7ZGFLbIwIAsHyMIBOW41tsj68fVbhyk8whQGTGGHKWwxhR2m7qKzl0enLxaRO5IjEjQBBtOcCzDKGSskF5IQmVIWs0TrtKQEPuKskKmmBY21ELmkLFFUM2V2j4XMqU7voZ2mbdR9hAXYTCX0F2khaVxKxuNME6rzjCsww9UURf3QVcLVqzfHpryrbKXtpDJDXfmhnqInnv6DrdTyW8qDnhOVm82fqsScBZ2a4lJTlHTc-ctTqhFa9q_S6QG6PkybA7QDrFUPwcbd8EcOdD8BfmGhIg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+Design+and+Composition+Engineering+of+Carbon%E2%80%90Based+Nanomaterials+for+Lithium+Energy+Storage&rft.jtitle=Advanced+energy+materials&rft.au=Geng%2C+Hongya&rft.au=Peng%2C+Yan&rft.au=Qu%2C+Liangti&rft.au=Zhang%2C+Haijiao&rft.date=2020-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201903030&rft.externalDBID=10.1002%252Faenm.201903030&rft.externalDocID=AENM201903030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |