Nanoparticles as Potential Antivirals in Agriculture

Viruses are estimated to be responsible for approximately 50% of the emerging plant diseases, which are difficult to control, and in some cases, there is no cure. It is essential to develop therapy practices to strengthen the management of these diseases caused by viruses in economically important c...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 10; no. 10; p. 444
Main Authors Vargas-Hernandez, Marcela, Macias-Bobadilla, Israel, Guevara-Gonzalez, Ramon Gerardo, Rico-Garcia, Enrique, Ocampo-Velazquez, Rosalia Virginia, Avila-Juarez, Luciano, Torres-Pacheco, Irineo
Format Journal Article
LanguageEnglish
Published MDPI AG 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Viruses are estimated to be responsible for approximately 50% of the emerging plant diseases, which are difficult to control, and in some cases, there is no cure. It is essential to develop therapy practices to strengthen the management of these diseases caused by viruses in economically important crops. Metal nanoparticles (MeNPs) possess diverse physicochemical properties that allow for them to have a wide range of applications in industry, including nanomedicine and nano-agriculture. Currently, there are reports of favorable effects of the use of nanoparticles, such as antibacterial, antifungal, and antiviral effects, in animals and plants. The potential antiviral property of MeNPs makes them a powerful option for controlling these histological agents. It is crucial to determine the dosage of NPs, the application intervals, their effect as a biostimulant, and the clarification of the mechanisms of action, which are not fully understood. Therefore, this review focuses on discussing the ability of metal nanoparticles and metal oxides to control viruses that affect agriculture through an exhaustive analysis of the characteristics of the particles and their interaction processes for a possibly beneficial effect on plants.
AbstractList Viruses are estimated to be responsible for approximately 50% of the emerging plant diseases, which are difficult to control, and in some cases, there is no cure. It is essential to develop therapy practices to strengthen the management of these diseases caused by viruses in economically important crops. Metal nanoparticles (MeNPs) possess diverse physicochemical properties that allow for them to have a wide range of applications in industry, including nanomedicine and nano-agriculture. Currently, there are reports of favorable effects of the use of nanoparticles, such as antibacterial, antifungal, and antiviral effects, in animals and plants. The potential antiviral property of MeNPs makes them a powerful option for controlling these histological agents. It is crucial to determine the dosage of NPs, the application intervals, their effect as a biostimulant, and the clarification of the mechanisms of action, which are not fully understood. Therefore, this review focuses on discussing the ability of metal nanoparticles and metal oxides to control viruses that affect agriculture through an exhaustive analysis of the characteristics of the particles and their interaction processes for a possibly beneficial effect on plants.
Audience Academic
Author Guevara-Gonzalez, Ramon Gerardo
Macias-Bobadilla, Israel
Rico-Garcia, Enrique
Ocampo-Velazquez, Rosalia Virginia
Avila-Juarez, Luciano
Torres-Pacheco, Irineo
Vargas-Hernandez, Marcela
Author_xml – sequence: 1
  givenname: Marcela
  surname: Vargas-Hernandez
  fullname: Vargas-Hernandez, Marcela
– sequence: 2
  givenname: Israel
  surname: Macias-Bobadilla
  fullname: Macias-Bobadilla, Israel
– sequence: 3
  givenname: Ramon Gerardo
  surname: Guevara-Gonzalez
  fullname: Guevara-Gonzalez, Ramon Gerardo
– sequence: 4
  givenname: Enrique
  surname: Rico-Garcia
  fullname: Rico-Garcia, Enrique
– sequence: 5
  givenname: Rosalia Virginia
  surname: Ocampo-Velazquez
  fullname: Ocampo-Velazquez, Rosalia Virginia
– sequence: 6
  givenname: Luciano
  orcidid: 0000-0002-2572-959X
  surname: Avila-Juarez
  fullname: Avila-Juarez, Luciano
– sequence: 7
  givenname: Irineo
  surname: Torres-Pacheco
  fullname: Torres-Pacheco, Irineo
BookMark eNp9kUFLXDEQx4MoVK2foJcHXnrZNnmZl2SOi2grSOtBz2E2L1kiz5dtkhX89ma70haRzmWGmd__PwNzwg7nNHvGPgn-RUrkX2mdo9tOdZu94IJzADhgxz3XesFB94f_1B_YWSkPvAUKabg6ZvCD5rShXKObfOmodLep-rlGmrplS08x01S6OHfLv2s-sqPQuv7sNZ-y-6vLu4vvi5uf364vljcLB72oizCQAQwmGMTRCRQBPIZRuRVqo3oA4QMaHLRSTq96zqUY-8GMQKCFV1qesuu975jowW5yfKT8bBNF-7uR8tq-Xm49OSEIxTBwA4pWBh0M5AF1QN1Gzevz3muT06-tL9U-xuL8NNHs07bYXkklFEoNDT3fo2tqznEOqWZyO9wuFXA0wHvZKLmnXE6lZB_-HCi43T3GvvOYpsI3Khcr1ZjmtiNO_9W-AODOltk
CitedBy_id crossref_primary_10_1016_j_plaphy_2023_108074
crossref_primary_10_1134_S0003683822020132
crossref_primary_10_1007_s42247_023_00564_2
crossref_primary_10_1016_j_scitotenv_2023_168318
crossref_primary_10_3390_agriculture12020204
crossref_primary_10_1515_gps_2022_0005
crossref_primary_10_1080_03235408_2024_2415888
crossref_primary_10_3390_horticulturae8100929
crossref_primary_10_3390_microorganisms11030629
crossref_primary_10_1016_j_matpr_2022_06_355
crossref_primary_10_1186_s11671_021_03612_0
crossref_primary_10_3390_agriculture13091856
crossref_primary_10_3390_agriculture12122101
crossref_primary_10_3390_agronomy15030620
crossref_primary_10_1016_j_pmpp_2024_102560
crossref_primary_10_3389_fmicb_2022_935193
crossref_primary_10_1007_s00253_021_11725_w
crossref_primary_10_1016_j_enmm_2024_100998
crossref_primary_10_3389_fpls_2023_1253193
crossref_primary_10_3390_ma16062388
crossref_primary_10_1016_j_virol_2024_109998
crossref_primary_10_1007_s00344_023_11038_4
crossref_primary_10_1016_j_seh_2024_100065
crossref_primary_10_1007_s40089_022_00367_z
crossref_primary_10_1039_D2RA00863G
crossref_primary_10_3390_plants12071547
crossref_primary_10_1016_j_bcab_2023_102921
crossref_primary_10_1007_s10653_023_01561_4
crossref_primary_10_1186_s42483_024_00250_z
crossref_primary_10_1515_chem_2023_0189
crossref_primary_10_3390_agriculture11020134
crossref_primary_10_60158_rma_v11i1_421
crossref_primary_10_1016_j_chemosphere_2022_136091
crossref_primary_10_1088_1758_5090_ad60f7
crossref_primary_10_3389_fviro_2023_1208853
crossref_primary_10_1007_s00203_023_03400_7
crossref_primary_10_1021_acsagscitech_1c00204
crossref_primary_10_1002_ps_7001
crossref_primary_10_1021_acsnano_0c10910
crossref_primary_10_3390_molecules28010139
crossref_primary_10_1007_s42161_023_01522_x
crossref_primary_10_3389_fpls_2022_962112
crossref_primary_10_1186_s40538_023_00491_8
crossref_primary_10_1109_TNB_2021_3089773
crossref_primary_10_3390_plants11152049
crossref_primary_10_1007_s40415_023_00880_1
crossref_primary_10_1016_j_chemosphere_2022_133798
crossref_primary_10_1016_j_plantsci_2024_112358
crossref_primary_10_3390_biom11060832
crossref_primary_10_1016_j_pestbp_2023_105722
crossref_primary_10_1007_s41204_021_00103_6
crossref_primary_10_1021_acs_est_2c01393
crossref_primary_10_3390_plants14030428
crossref_primary_10_3390_f14010163
crossref_primary_10_1088_2043_6262_ac879a
crossref_primary_10_1007_s11240_023_02612_5
Cites_doi 10.3389/fphar.2018.01162
10.1007/s11270-019-4084-2
10.1016/j.pmpp.2018.09.002
10.1007/s13204-016-0540-0
10.1039/C9EN00850K
10.1186/1556-276X-8-93
10.1111/j.1751-1097.2010.00763.x
10.3390/nano8070500
10.1186/s12951-018-0408-4
10.5424/sjar/2013111-3201
10.3390/nano8060359
10.1111/pbi.13278
10.12688/f1000research.19694.1
10.3390/agronomy8090167
10.1038/srep37761
10.1016/B978-0-323-42864-4.00010-5
10.1371/journal.ppat.1003304
10.3390/v11070670
10.1039/C8EN00014J
10.3390/agronomy8120285
10.1007/s10658-017-1294-6
10.1073/pnas.1205431109
10.1016/j.envres.2017.03.015
10.1016/j.micres.2018.04.008
10.1016/j.impact.2017.06.004
10.1021/nn900940p
10.1021/acs.est.7b00473
10.3389/fpls.2017.00832
10.1071/FP18076
10.1021/es503792f
10.1080/21691401.2019.1640716
10.1016/B978-0-12-801246-8.00007-X
10.1016/j.jbiotec.2019.10.003
10.1128/JVI.01078-19
10.1088/2043-6254/aac42a
10.1007/s11051-009-9660-8
10.1016/j.micpath.2017.12.068
10.1038/s41598-018-22112-3
10.3390/ijms19124031
10.1038/srep11618
10.1186/s13007-018-0355-y
10.1002/ps.5185
10.1016/j.ijid.2018.04.4247
10.3390/nano10020292
10.3762/bjnano.7.108
10.1166/jnn.2014.8748
10.1021/acs.est.7b02265
10.3390/v12030263
10.3389/fchem.2017.00078
10.1016/bs.aivir.2016.02.004
10.22438/jeb/38/3/MS-209
10.1016/j.jviromet.2007.06.008
10.7324/JABB.2019.70414
10.4314/tjpr.v16i11.19
10.3389/fmicb.2015.00453
10.1039/c3mt00033h
10.1134/S1995078010050174
10.4103/0975-7406.72127
10.1080/09670874.2015.1070930
10.19184/jid.v18i1.1762
10.1002/mrm.25263
10.1007/s11368-017-1716-2
10.1007/978-3-319-76708-6
10.1016/B978-0-12-818654-1.00027-X
10.1049/iet-nbt.2014.0028
10.1007/s12892-015-0069-x
10.1186/s11671-017-1861-y
10.1016/j.indcrop.2019.111479
10.1007/s41204-016-0004-5
10.1098/rsos.191378
10.1371/journal.pone.0141050
10.1186/s12951-016-0225-6
10.2217/nnm-2018-0089
10.4038/sljid.v8i1.8167
10.1007/s00705-020-04561-2
10.3389/fcimb.2019.00095
10.3390/agronomy8090175
10.3390/ijms18010120
10.1021/bc900215b
10.2174/1389200217666161201111146
10.3389/fmicb.2017.01014
10.1146/annurev-phyto-082712-102346
10.1016/j.nantod.2013.07.006
10.1016/j.antiviral.2011.08.017
10.1039/C8SC01828F
10.1201/9781003052104
10.1038/ismej.2017.155
10.1016/S1672-2515(07)60110-9
10.3390/molecules16108894
10.1016/j.jhazmat.2020.122415
10.1016/j.scienta.2015.09.021
10.1002/jcb.20796
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/agriculture10100444
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_eac11a91550846ab89c45ae497f97c11
A640984023
10_3390_agriculture10100444
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
KQ8
M0K
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c421t-f5a849f8f899dc191f4e9fd6cb97862441ef9895766c7b20031d258d4a471e673
IEDL.DBID DOA
ISSN 2077-0472
IngestDate Wed Aug 27 01:31:01 EDT 2025
Fri Jul 11 07:34:06 EDT 2025
Tue Jun 17 21:27:32 EDT 2025
Tue Jul 01 02:12:31 EDT 2025
Thu Apr 24 22:51:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-f5a849f8f899dc191f4e9fd6cb97862441ef9895766c7b20031d258d4a471e673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2572-959X
OpenAccessLink https://doaj.org/article/eac11a91550846ab89c45ae497f97c11
PQID 2636169374
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_eac11a91550846ab89c45ae497f97c11
proquest_miscellaneous_2636169374
gale_infotracmisc_A640984023
crossref_primary_10_3390_agriculture10100444
crossref_citationtrail_10_3390_agriculture10100444
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Agriculture (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_93
Dinh (ref_35) 2009; 3
Khandelwal (ref_51) 2014; 9
ref_13
Cai (ref_61) 2020; 393
ref_99
ref_97
Maisaro (ref_30) 2017; 18
ref_96
ref_95
Elsharkawy (ref_74) 2015; 61
Raigond (ref_90) 2017; 38
Kumar (ref_34) 2018; 73
Zhao (ref_31) 2020; 18
Mazurkova (ref_57) 2010; 5
Tan (ref_79) 2018; 9
Mori (ref_49) 2013; 8
Tripathi (ref_11) 2018; 7
Shapiro (ref_101) 2015; 73
Yih (ref_2) 2006; 97
Elsharkawy (ref_75) 2017; 1
Rastogi (ref_80) 2017; 5
ref_25
Levina (ref_55) 2016; 7
ref_23
ref_22
ref_20
Jones (ref_21) 2016; Volume 95
Panattoni (ref_94) 2013; 11
Chung (ref_87) 2019; 230
Wang (ref_44) 2017; 51
Fernando (ref_19) 2018; 8
Liu (ref_58) 2016; 6
ref_72
ref_71
ref_70
Marslin (ref_86) 2017; 8
Panattoni (ref_29) 2008; 146
Attia (ref_67) 2017; 6
Mody (ref_41) 2010; 2
ref_78
ref_77
ref_76
Shafie (ref_69) 2018; 7
ref_73
Szakacs (ref_36) 2018; 8
Shukla (ref_52) 2009; 20
Lysenko (ref_47) 2018; 9
Jain (ref_64) 2014; 44
ref_82
Singh (ref_28) 2015; 18
Cui (ref_56) 2010; 86
Galdiero (ref_48) 2011; 16
ref_89
Mishra (ref_59) 2011; 92
Alkubaisi (ref_63) 2017; 7
Zhong (ref_54) 2019; 47
Boutonnet (ref_32) 2009; 11
Priester (ref_100) 2012; 109
Xiang (ref_18) 2020; 165
ref_50
Elazzazy (ref_68) 2017; 16
Bragard (ref_24) 2013; 51
Bondok (ref_62) 2018; 08
ref_53
Ma (ref_84) 2015; 5
(ref_92) 2019; 139
Cobos (ref_107) 2019; 93
Maruthi (ref_26) 2019; 105
ref_60
Wang (ref_27) 2018; 14
Halevas (ref_10) 2018; 2
Bernardo (ref_14) 2018; 12
Singh (ref_38) 2018; 16
Huang (ref_106) 2016; 1
Krumpfer (ref_39) 2013; 8
Landa (ref_81) 2017; 51
Singh (ref_7) 2017; 4
Kharissova (ref_37) 2019; 6
Kolstoe (ref_45) 2019; 9
Stankic (ref_3) 2016; 14
Morais (ref_6) 2014; 14
Rajput (ref_33) 2018; 9
Ali (ref_85) 2018; 212–213
Hill (ref_16) 2014; 90
Hawthorne (ref_98) 2014; 48
Chen (ref_103) 2003; 1
Almasi (ref_17) 2018; 150
ref_104
Chauhan (ref_15) 2019; 7
ref_105
ref_108
Prasad (ref_12) 2017; 8
Ismaili (ref_88) 2019; 46
ref_46
ref_43
Novak (ref_83) 2017; 156
ref_42
ref_102
ref_1
Wang (ref_66) 2016; 49
ref_9
ref_8
ref_5
ref_4
(ref_91) 2015; 196
Baun (ref_40) 2017; 8
Elbeshehy (ref_65) 2015; 6
References_xml – volume: 9
  start-page: 1162
  year: 2018
  ident: ref_79
  article-title: Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.01162
– volume: 230
  start-page: 48
  year: 2019
  ident: ref_87
  article-title: Effect of Copper Oxide Nanoparticles on the Physiology, Bioactive Molecules, and Transcriptional Changes in Brassica rapa ssp. rapa Seedlings
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-019-4084-2
– volume: 105
  start-page: 77
  year: 2019
  ident: ref_26
  article-title: A method for generating virus-free cassava plants to combat viral disease epidemics in Africa
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2018.09.002
– volume: 7
  start-page: 31
  year: 2017
  ident: ref_63
  article-title: Dispersed gold nanoparticles potentially ruin gold barley yellow dwarf virus and eliminate virus infectivity hazards
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-016-0540-0
– ident: ref_9
  doi: 10.1039/C9EN00850K
– volume: 8
  start-page: 93
  year: 2013
  ident: ref_49
  article-title: Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-93
– ident: ref_1
– volume: 86
  start-page: 1135
  year: 2010
  ident: ref_56
  article-title: Photocatalytic Inactivation Efficiency of Anatase Nano-TiO2 Sol on the H9N2 Avian Influenza Virus
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2010.00763.x
– ident: ref_105
  doi: 10.3390/nano8070500
– volume: 16
  start-page: 84
  year: 2018
  ident: ref_38
  article-title: “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-018-0408-4
– volume: 11
  start-page: 173
  year: 2013
  ident: ref_94
  article-title: Review. Elimination of viruses in plants: Twenty years of progress
  publication-title: Span. J. Agric. Res.
  doi: 10.5424/sjar/2013111-3201
– ident: ref_77
– ident: ref_8
  doi: 10.3390/nano8060359
– volume: 18
  start-page: 328
  year: 2020
  ident: ref_31
  article-title: Engineering plant virus resistance: From RNA silencing to genome editing strategies
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13278
– ident: ref_46
  doi: 10.12688/f1000research.19694.1
– ident: ref_89
  doi: 10.3390/agronomy8090167
– volume: 6
  start-page: 37761
  year: 2016
  ident: ref_58
  article-title: An In Silico study of TiO2 nanoparticles interaction with twenty standard amino acids in aqueous solution
  publication-title: Sci. Rep.
  doi: 10.1038/srep37761
– volume: 9
  start-page: 175
  year: 2014
  ident: ref_51
  article-title: Application of silver nanoparticles in viral inhibition: A new hope for antivirals
  publication-title: Dig. J. Nanomater. Biostruct.
– ident: ref_5
  doi: 10.1016/B978-0-323-42864-4.00010-5
– ident: ref_13
  doi: 10.1371/journal.ppat.1003304
– ident: ref_25
  doi: 10.3390/v11070670
– ident: ref_72
  doi: 10.1039/C8EN00014J
– ident: ref_93
  doi: 10.3390/agronomy8120285
– volume: 150
  start-page: 533
  year: 2018
  ident: ref_17
  article-title: Colorimetric immunocapture loop mediated isothermal amplification assay for detection of Impatiens necrotic spot virus (INSV) by GineFinderTM dye
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-017-1294-6
– volume: 109
  start-page: E2451
  year: 2012
  ident: ref_100
  article-title: Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1205431109
– volume: 156
  start-page: 10
  year: 2017
  ident: ref_83
  article-title: Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.03.015
– volume: 7
  start-page: 1251
  year: 2018
  ident: ref_69
  article-title: Silver nanoparticles activity against Tomato spotted wilt virus
  publication-title: Middle East J. Agric. Res.
– volume: 212–213
  start-page: 29
  year: 2018
  ident: ref_85
  article-title: Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2018.04.008
– volume: 8
  start-page: 1
  year: 2017
  ident: ref_40
  article-title: Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials
  publication-title: NanoImpact
  doi: 10.1016/j.impact.2017.06.004
– volume: 3
  start-page: 3737
  year: 2009
  ident: ref_35
  article-title: Shape-Controlled Synthesis of Highly Crystalline Titania Nanocrystals
  publication-title: ACS Nano.
  doi: 10.1021/nn900940p
– volume: 4
  start-page: 105
  year: 2017
  ident: ref_7
  article-title: The role of nanotechnology in the treatment of viral infections
  publication-title: Ther. Adv. Infect. Dis.
– volume: 51
  start-page: 10137
  year: 2017
  ident: ref_44
  article-title: Quantitative Analysis of Reactive Oxygen Species Photogenerated on Metal Oxide Nanoparticles and Their Bacteria Toxicity: The Role of Superoxide Radicals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00473
– volume: 8
  start-page: 832
  year: 2017
  ident: ref_86
  article-title: Nanoparticles Alter Secondary Metabolism in Plants via ROS Burst
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00832
– volume: 46
  start-page: 360
  year: 2019
  ident: ref_88
  article-title: Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP18076
– volume: 48
  start-page: 13102
  year: 2014
  ident: ref_98
  article-title: Particle-Size Dependent Accumulation and Trophic Transfer of Cerium Oxide through a Terrestrial Food Chain
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503792f
– volume: 47
  start-page: 3485
  year: 2019
  ident: ref_54
  article-title: Functionalized selenium nanoparticles enhance the anti-EV71 activity of oseltamivir in human astrocytoma cell model
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2019.1640716
– ident: ref_73
– volume: 90
  start-page: 355
  year: 2014
  ident: ref_16
  article-title: Control of Virus Diseases in Soybeans
  publication-title: Adv. Virus Res.
  doi: 10.1016/B978-0-12-801246-8.00007-X
– ident: ref_76
  doi: 10.1016/j.jbiotec.2019.10.003
– volume: 93
  start-page: e01078
  year: 2019
  ident: ref_107
  article-title: Within-Host Multiplication and Speed of Colonization as Infection Traits Associated with Plant Virus Vertical Transmission
  publication-title: J. Virol.
  doi: 10.1128/JVI.01078-19
– volume: 9
  start-page: 25021
  year: 2018
  ident: ref_47
  article-title: Nanoparticles as antiviral agents against adenoviruses
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
  doi: 10.1088/2043-6254/aac42a
– volume: 49
  start-page: 22
  year: 2016
  ident: ref_66
  article-title: Preliminary experiments on nano-silver against tobacco mosaic virus and its mechanism
  publication-title: Tob. Sci. Technol.
– volume: 11
  start-page: 1823
  year: 2009
  ident: ref_32
  article-title: A novel approach to metal and metal oxide nanoparticle synthesis: The oil-in-water microemulsion reaction method
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-009-9660-8
– ident: ref_20
  doi: 10.1016/j.micpath.2017.12.068
– volume: 9
  start-page: 76
  year: 2018
  ident: ref_33
  article-title: Effects of Zinc-oxide Nanoparticles on Soil, Plants, Animals and Soil Organisms: A Review
  publication-title: Environ. Nanotechnol. Monit. Manag.
– volume: 08
  start-page: 100
  year: 2018
  ident: ref_62
  article-title: Evaluation of Silver Nanoparticles as Antiviral Agent Against ToMV and PVY in Tomato Plants
  publication-title: Middle East J. Appl. Sci.
– volume: 8
  start-page: 3943
  year: 2018
  ident: ref_36
  article-title: Green synthesis of gold nanoparticles by thermophilic filamentous fungi
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22112-3
– ident: ref_4
  doi: 10.3390/ijms19124031
– volume: 2
  start-page: 119
  year: 2018
  ident: ref_10
  article-title: Copper Nanoparticles as Therapeutic Anticancer Agents
  publication-title: Nanomed. Nanotechnol. J.
– volume: 5
  start-page: 11618
  year: 2015
  ident: ref_84
  article-title: Phytotoxic Mechanism of Nanoparticles: Destruction of Chloroplasts and Vascular Bundles and Alteration of Nutrient Absorption
  publication-title: Sci. Rep.
  doi: 10.1038/srep11618
– volume: 7
  start-page: 196
  year: 2018
  ident: ref_11
  article-title: Agro-nanotechnology: A Future Technology for Sustainable Agriculture
  publication-title: Int. J. Curr. Microbiol. Appl. Sci.
– ident: ref_70
– volume: 14
  start-page: 87
  year: 2018
  ident: ref_27
  article-title: In vitro thermotherapy-based methods for plant virus eradication
  publication-title: Plant Methods
  doi: 10.1186/s13007-018-0355-y
– ident: ref_71
  doi: 10.1002/ps.5185
– volume: 73
  start-page: 368
  year: 2018
  ident: ref_34
  article-title: Virostatic potential of zinc oxide (ZnO) nanoparticles on capsid protein of cytoplasmic side of chikungunya virus
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2018.04.4247
– ident: ref_108
  doi: 10.3390/nano10020292
– volume: 7
  start-page: 1166
  year: 2016
  ident: ref_55
  article-title: High antiviral effect of TiO2·PL-DNA nanocomposites targeted to conservative regions of (−)RNA and (+)RNA of influenza A virus in cell culture
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.7.108
– volume: 14
  start-page: 1007
  year: 2014
  ident: ref_6
  article-title: Biological Applications of Nanobiotechnology
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2014.8748
– volume: 51
  start-page: 10814
  year: 2017
  ident: ref_81
  article-title: Transcriptomic Response of Arabidopsis thaliana Exposed to CuO Nanoparticles, Bulk Material, and Ionic Copper
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02265
– ident: ref_23
  doi: 10.3390/v12030263
– volume: 5
  start-page: 78
  year: 2017
  ident: ref_80
  article-title: Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2017.00078
– volume: Volume 95
  start-page: 87
  year: 2016
  ident: ref_21
  article-title: Future Scenarios for Plant Virus Pathogens as Climate Change Progresses
  publication-title: Advances in Virus Research
  doi: 10.1016/bs.aivir.2016.02.004
– volume: 38
  start-page: 435
  year: 2017
  ident: ref_90
  article-title: Effect of zinc nanoparticles on antioxidative system of potato plants
  publication-title: J. Environ. Biol.
  doi: 10.22438/jeb/38/3/MS-209
– volume: 146
  start-page: 129
  year: 2008
  ident: ref_29
  article-title: Grapevine vitivirus A eradication in Vitis vinifera explants by antiviral drugs and thermotherapy
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2007.06.008
– volume: 7
  start-page: 89
  year: 2019
  ident: ref_15
  article-title: A systematic review of conventional and advanced approaches for the control of plant viruses
  publication-title: J. Appl. Biol. Biotechnol.
  doi: 10.7324/JABB.2019.70414
– volume: 16
  start-page: 2705
  year: 2017
  ident: ref_68
  article-title: In vitro assessment of activity of graphene silver composite sheets against multidrug-resistant bacteria and Tomato Bushy Stunt Virus
  publication-title: Trop. J. Pharm. Res.
  doi: 10.4314/tjpr.v16i11.19
– volume: 6
  start-page: 453
  year: 2015
  ident: ref_65
  article-title: Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00453
– ident: ref_97
  doi: 10.1039/c3mt00033h
– volume: 5
  start-page: 417
  year: 2010
  ident: ref_57
  article-title: Interaction of titanium dioxide nanoparticles with influenza virus
  publication-title: Nanotechnol. Russ.
  doi: 10.1134/S1995078010050174
– ident: ref_104
– volume: 2
  start-page: 282
  year: 2010
  ident: ref_41
  article-title: Introduction to metallic nanoparticles
  publication-title: J. Pharm. Bioallied Sci.
  doi: 10.4103/0975-7406.72127
– volume: 61
  start-page: 353
  year: 2015
  ident: ref_74
  article-title: Induction of systemic resistance against Papaya ring spot virus (PRSV) and its vector Myzus persicae by Penicillium simplicissimum GP17-2 and silica (SiO2) nanopowder
  publication-title: Int. J. Pest Manag.
  doi: 10.1080/09670874.2015.1070930
– volume: 18
  start-page: 31
  year: 2017
  ident: ref_30
  article-title: The Effect of Concentration and Exposure Time Acyclovir for Elimination Sugarcane Mosaic Virus (SCMV) on The Apical Bud Culture of Sugarcane PS 881
  publication-title: J. ILMU DASAR
  doi: 10.19184/jid.v18i1.1762
– volume: 73
  start-page: 376
  year: 2015
  ident: ref_101
  article-title: Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25263
– ident: ref_99
  doi: 10.1007/s11368-017-1716-2
– ident: ref_78
  doi: 10.1007/978-3-319-76708-6
– ident: ref_22
  doi: 10.1016/B978-0-12-818654-1.00027-X
– ident: ref_50
  doi: 10.1049/iet-nbt.2014.0028
– volume: 18
  start-page: 341
  year: 2015
  ident: ref_28
  article-title: Effect of antiviral chemicals on in vitro regeneration response and production of PLRV-free plants of potato
  publication-title: J. Crop Sci. Biotechnol.
  doi: 10.1007/s12892-015-0069-x
– ident: ref_96
  doi: 10.1186/s11671-017-1861-y
– volume: 6
  start-page: 835
  year: 2017
  ident: ref_67
  article-title: Inhibitory Effects of Salicylic Acid and Silver Nanoparticles on Potato Virus Y-Infected Potato Plants in Egypt
  publication-title: Middle East J. Agric. Res.
– volume: 139
  start-page: 111479
  year: 2019
  ident: ref_92
  article-title: Controlled elicitation increases steviol glycosides (SGs) content and gene expression-associated to biosynthesis of SGs in Stevia rebaudiana B. cv. Morita II
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2019.111479
– volume: 1
  start-page: 4
  year: 2016
  ident: ref_106
  article-title: Plant-based green synthesis of metallic nanoparticles: Scientific curiosity or a realistic alternative to chemical synthesis?
  publication-title: Nanotechnol. Environ. Eng.
  doi: 10.1007/s41204-016-0004-5
– volume: 6
  start-page: 191378
  year: 2019
  ident: ref_37
  article-title: Greener synthesis of chemical compounds and materials
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.191378
– ident: ref_53
  doi: 10.1371/journal.pone.0141050
– volume: 14
  start-page: 73
  year: 2016
  ident: ref_3
  article-title: Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-016-0225-6
– ident: ref_60
  doi: 10.2217/nnm-2018-0089
– volume: 8
  start-page: 2
  year: 2018
  ident: ref_19
  article-title: Antimicrobial Nanoparticles: Applications and mechanisms of action
  publication-title: SRI Lankan J. Infect. Dis.
  doi: 10.4038/sljid.v8i1.8167
– volume: 165
  start-page: 923
  year: 2020
  ident: ref_18
  article-title: Genetic diversity of strawberry mild yellow edge virus from eastern Canada
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-020-04561-2
– volume: 9
  start-page: 95
  year: 2019
  ident: ref_45
  article-title: Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2019.00095
– ident: ref_82
  doi: 10.3390/agronomy8090175
– ident: ref_43
  doi: 10.3390/ijms18010120
– volume: 20
  start-page: 1497
  year: 2009
  ident: ref_52
  article-title: Inhibition of Herpes Simplex Virus Type 1 Infection by Silver Nanoparticles Capped with Mercaptoethane Sulfonate
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc900215b
– ident: ref_95
  doi: 10.2174/1389200217666161201111146
– volume: 8
  start-page: 1014
  year: 2017
  ident: ref_12
  article-title: Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01014
– volume: 1
  start-page: 1
  year: 2017
  ident: ref_75
  article-title: Inhibition of Tomato Yellow Leaf Curl Virus by Zingiber offi cinale and Mentha longifolia Extracts and Silica Nanoparticles and Its Refl ection on Tomato Growth and Yield
  publication-title: Int. J. Antivir. Antiretrovir.
– volume: 51
  start-page: 177
  year: 2013
  ident: ref_24
  article-title: Status and Prospects of Plant Viruses Control through Interference Vector Transmission
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-082712-102346
– volume: 8
  start-page: 417
  year: 2013
  ident: ref_39
  article-title: Make it nano-Keep it nano
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2013.07.006
– volume: 92
  start-page: 305
  year: 2011
  ident: ref_59
  article-title: Virostatic potential of micro-nano filopodia-like ZnO structures against herpes simplex virus-1
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2011.08.017
– ident: ref_42
  doi: 10.1039/C8SC01828F
– ident: ref_102
  doi: 10.1201/9781003052104
– volume: 12
  start-page: 173
  year: 2018
  ident: ref_14
  article-title: Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale
  publication-title: ISME J.
  doi: 10.1038/ismej.2017.155
– volume: 1
  start-page: 64
  year: 2003
  ident: ref_103
  article-title: Mass production of nanoparticles by high gravity reactive precipitation technology with low cost
  publication-title: China Particuol.
  doi: 10.1016/S1672-2515(07)60110-9
– volume: 44
  start-page: 21
  year: 2014
  ident: ref_64
  article-title: Green Synthesis of Silver Nanoparticles and their Application in Plant Virus Inhibition
  publication-title: J. Mycol. Plant Pathol.
– volume: 16
  start-page: 8894
  year: 2011
  ident: ref_48
  article-title: Silver nanoparticles as potential antiviral agents
  publication-title: Molecules
  doi: 10.3390/molecules16108894
– volume: 393
  start-page: 122415
  year: 2020
  ident: ref_61
  article-title: Foliar Exposure of Fe3O4 Nanoparticles on Nicotiana benthamiana: Evidence for Nanoparticles Uptake, Plant Growth Promoter and Defense Response Elicitor against Plant Virus
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122415
– volume: 196
  start-page: 3
  year: 2015
  ident: ref_91
  article-title: Plant biostimulants: Definition, concept, main categories and regulation
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2015.09.021
– volume: 97
  start-page: 1184
  year: 2006
  ident: ref_2
  article-title: Engineered nanoparticles as precise drug delivery systems
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.20796
SSID ssj0000913806
Score 2.3845
SecondaryResourceType review_article
Snippet Viruses are estimated to be responsible for approximately 50% of the emerging plant diseases, which are difficult to control, and in some cases, there is no...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 444
SubjectTerms Agriculture
Antibacterial agents
Antifungal agents
Antiviral agents
antiviral properties
biostimulant
diseases
histology
industry
nanomedicine
Nanoparticles
nanotechnology
plant virus
therapeutics
Title Nanoparticles as Potential Antivirals in Agriculture
URI https://www.proquest.com/docview/2636169374
https://doaj.org/article/eac11a91550846ab89c45ae497f97c11
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EL3oQn1itJYJHQ7PJZrN7bKWlCJYiFnpbNvsQQVJp0__vTJLWCj4uXpNssnyzOzNfmP2GkFuR5jljWkLmxlnIUm9DkeJPHOGloHgWUuLZ4ccxH03ZwyydbbX6wpqwWh64Bq4LjoFSjSrmEYRKnQtpWKodk5mXmalP9ULM2yJTlQ-WNBERr2WGEuD1Xf2yaMQsHKzCSibtSyiqFPt_8stVsBkekcMmSwx69eyOyY4rTshB7_Plp4SBXwTC29S1BXoZTOYllv7guAJ7QixgZQWvRbA17IxMh4Pn-1HYtEAIDYtpGfpUCya98ECLrAFu5ZmT3nKTA_vjEJqpA0wlkAZushwLzaiNU2GZhqDjeJack91iXrgLEhjIRCwzkY2AciXUa-plYlKeMwufiliLxGs0lGn0wbFNxZsCnoAQqm8gbJG7zaD3Wh7j98f7CPPmUdS2ri6AxVWDmPrL4i3SRiMp3IEwQQP7wageB6IKZDVOWuRmbTyFt7CIrHDz1VLFPOGoPZOxy_-YxxXZj5F8V5V9bbJbLlbuGjKUMu-Qvf5gPHnqVIvyA81x43w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticles+as+Potential+Antivirals+in+Agriculture&rft.jtitle=Agriculture+%28Basel%29&rft.au=Vargas-Hernandez%2C+Marcela&rft.au=Macias-Bobadilla%2C+Israel&rft.au=Guevara-Gonz%C3%A1lez%2C+Ram%C3%B3n&rft.au=Rico+Garc%C3%ADa%2C+Enrique&rft.date=2020-10-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=10&rft.issue=10&rft_id=info:doi/10.3390%2Fagriculture10100444&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon