Nanoparticles as Potential Antivirals in Agriculture
Viruses are estimated to be responsible for approximately 50% of the emerging plant diseases, which are difficult to control, and in some cases, there is no cure. It is essential to develop therapy practices to strengthen the management of these diseases caused by viruses in economically important c...
Saved in:
Published in | Agriculture (Basel) Vol. 10; no. 10; p. 444 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Viruses are estimated to be responsible for approximately 50% of the emerging plant diseases, which are difficult to control, and in some cases, there is no cure. It is essential to develop therapy practices to strengthen the management of these diseases caused by viruses in economically important crops. Metal nanoparticles (MeNPs) possess diverse physicochemical properties that allow for them to have a wide range of applications in industry, including nanomedicine and nano-agriculture. Currently, there are reports of favorable effects of the use of nanoparticles, such as antibacterial, antifungal, and antiviral effects, in animals and plants. The potential antiviral property of MeNPs makes them a powerful option for controlling these histological agents. It is crucial to determine the dosage of NPs, the application intervals, their effect as a biostimulant, and the clarification of the mechanisms of action, which are not fully understood. Therefore, this review focuses on discussing the ability of metal nanoparticles and metal oxides to control viruses that affect agriculture through an exhaustive analysis of the characteristics of the particles and their interaction processes for a possibly beneficial effect on plants. |
---|---|
AbstractList | Viruses are estimated to be responsible for approximately 50% of the emerging plant diseases, which are difficult to control, and in some cases, there is no cure. It is essential to develop therapy practices to strengthen the management of these diseases caused by viruses in economically important crops. Metal nanoparticles (MeNPs) possess diverse physicochemical properties that allow for them to have a wide range of applications in industry, including nanomedicine and nano-agriculture. Currently, there are reports of favorable effects of the use of nanoparticles, such as antibacterial, antifungal, and antiviral effects, in animals and plants. The potential antiviral property of MeNPs makes them a powerful option for controlling these histological agents. It is crucial to determine the dosage of NPs, the application intervals, their effect as a biostimulant, and the clarification of the mechanisms of action, which are not fully understood. Therefore, this review focuses on discussing the ability of metal nanoparticles and metal oxides to control viruses that affect agriculture through an exhaustive analysis of the characteristics of the particles and their interaction processes for a possibly beneficial effect on plants. |
Audience | Academic |
Author | Guevara-Gonzalez, Ramon Gerardo Macias-Bobadilla, Israel Rico-Garcia, Enrique Ocampo-Velazquez, Rosalia Virginia Avila-Juarez, Luciano Torres-Pacheco, Irineo Vargas-Hernandez, Marcela |
Author_xml | – sequence: 1 givenname: Marcela surname: Vargas-Hernandez fullname: Vargas-Hernandez, Marcela – sequence: 2 givenname: Israel surname: Macias-Bobadilla fullname: Macias-Bobadilla, Israel – sequence: 3 givenname: Ramon Gerardo surname: Guevara-Gonzalez fullname: Guevara-Gonzalez, Ramon Gerardo – sequence: 4 givenname: Enrique surname: Rico-Garcia fullname: Rico-Garcia, Enrique – sequence: 5 givenname: Rosalia Virginia surname: Ocampo-Velazquez fullname: Ocampo-Velazquez, Rosalia Virginia – sequence: 6 givenname: Luciano orcidid: 0000-0002-2572-959X surname: Avila-Juarez fullname: Avila-Juarez, Luciano – sequence: 7 givenname: Irineo surname: Torres-Pacheco fullname: Torres-Pacheco, Irineo |
BookMark | eNp9kUFLXDEQx4MoVK2foJcHXnrZNnmZl2SOi2grSOtBz2E2L1kiz5dtkhX89ma70haRzmWGmd__PwNzwg7nNHvGPgn-RUrkX2mdo9tOdZu94IJzADhgxz3XesFB94f_1B_YWSkPvAUKabg6ZvCD5rShXKObfOmodLep-rlGmrplS08x01S6OHfLv2s-sqPQuv7sNZ-y-6vLu4vvi5uf364vljcLB72oizCQAQwmGMTRCRQBPIZRuRVqo3oA4QMaHLRSTq96zqUY-8GMQKCFV1qesuu975jowW5yfKT8bBNF-7uR8tq-Xm49OSEIxTBwA4pWBh0M5AF1QN1Gzevz3muT06-tL9U-xuL8NNHs07bYXkklFEoNDT3fo2tqznEOqWZyO9wuFXA0wHvZKLmnXE6lZB_-HCi43T3GvvOYpsI3Khcr1ZjmtiNO_9W-AODOltk |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2023_108074 crossref_primary_10_1134_S0003683822020132 crossref_primary_10_1007_s42247_023_00564_2 crossref_primary_10_1016_j_scitotenv_2023_168318 crossref_primary_10_3390_agriculture12020204 crossref_primary_10_1515_gps_2022_0005 crossref_primary_10_1080_03235408_2024_2415888 crossref_primary_10_3390_horticulturae8100929 crossref_primary_10_3390_microorganisms11030629 crossref_primary_10_1016_j_matpr_2022_06_355 crossref_primary_10_1186_s11671_021_03612_0 crossref_primary_10_3390_agriculture13091856 crossref_primary_10_3390_agriculture12122101 crossref_primary_10_3390_agronomy15030620 crossref_primary_10_1016_j_pmpp_2024_102560 crossref_primary_10_3389_fmicb_2022_935193 crossref_primary_10_1007_s00253_021_11725_w crossref_primary_10_1016_j_enmm_2024_100998 crossref_primary_10_3389_fpls_2023_1253193 crossref_primary_10_3390_ma16062388 crossref_primary_10_1016_j_virol_2024_109998 crossref_primary_10_1007_s00344_023_11038_4 crossref_primary_10_1016_j_seh_2024_100065 crossref_primary_10_1007_s40089_022_00367_z crossref_primary_10_1039_D2RA00863G crossref_primary_10_3390_plants12071547 crossref_primary_10_1016_j_bcab_2023_102921 crossref_primary_10_1007_s10653_023_01561_4 crossref_primary_10_1186_s42483_024_00250_z crossref_primary_10_1515_chem_2023_0189 crossref_primary_10_3390_agriculture11020134 crossref_primary_10_60158_rma_v11i1_421 crossref_primary_10_1016_j_chemosphere_2022_136091 crossref_primary_10_1088_1758_5090_ad60f7 crossref_primary_10_3389_fviro_2023_1208853 crossref_primary_10_1007_s00203_023_03400_7 crossref_primary_10_1021_acsagscitech_1c00204 crossref_primary_10_1002_ps_7001 crossref_primary_10_1021_acsnano_0c10910 crossref_primary_10_3390_molecules28010139 crossref_primary_10_1007_s42161_023_01522_x crossref_primary_10_3389_fpls_2022_962112 crossref_primary_10_1186_s40538_023_00491_8 crossref_primary_10_1109_TNB_2021_3089773 crossref_primary_10_3390_plants11152049 crossref_primary_10_1007_s40415_023_00880_1 crossref_primary_10_1016_j_chemosphere_2022_133798 crossref_primary_10_1016_j_plantsci_2024_112358 crossref_primary_10_3390_biom11060832 crossref_primary_10_1016_j_pestbp_2023_105722 crossref_primary_10_1007_s41204_021_00103_6 crossref_primary_10_1021_acs_est_2c01393 crossref_primary_10_3390_plants14030428 crossref_primary_10_3390_f14010163 crossref_primary_10_1088_2043_6262_ac879a crossref_primary_10_1007_s11240_023_02612_5 |
Cites_doi | 10.3389/fphar.2018.01162 10.1007/s11270-019-4084-2 10.1016/j.pmpp.2018.09.002 10.1007/s13204-016-0540-0 10.1039/C9EN00850K 10.1186/1556-276X-8-93 10.1111/j.1751-1097.2010.00763.x 10.3390/nano8070500 10.1186/s12951-018-0408-4 10.5424/sjar/2013111-3201 10.3390/nano8060359 10.1111/pbi.13278 10.12688/f1000research.19694.1 10.3390/agronomy8090167 10.1038/srep37761 10.1016/B978-0-323-42864-4.00010-5 10.1371/journal.ppat.1003304 10.3390/v11070670 10.1039/C8EN00014J 10.3390/agronomy8120285 10.1007/s10658-017-1294-6 10.1073/pnas.1205431109 10.1016/j.envres.2017.03.015 10.1016/j.micres.2018.04.008 10.1016/j.impact.2017.06.004 10.1021/nn900940p 10.1021/acs.est.7b00473 10.3389/fpls.2017.00832 10.1071/FP18076 10.1021/es503792f 10.1080/21691401.2019.1640716 10.1016/B978-0-12-801246-8.00007-X 10.1016/j.jbiotec.2019.10.003 10.1128/JVI.01078-19 10.1088/2043-6254/aac42a 10.1007/s11051-009-9660-8 10.1016/j.micpath.2017.12.068 10.1038/s41598-018-22112-3 10.3390/ijms19124031 10.1038/srep11618 10.1186/s13007-018-0355-y 10.1002/ps.5185 10.1016/j.ijid.2018.04.4247 10.3390/nano10020292 10.3762/bjnano.7.108 10.1166/jnn.2014.8748 10.1021/acs.est.7b02265 10.3390/v12030263 10.3389/fchem.2017.00078 10.1016/bs.aivir.2016.02.004 10.22438/jeb/38/3/MS-209 10.1016/j.jviromet.2007.06.008 10.7324/JABB.2019.70414 10.4314/tjpr.v16i11.19 10.3389/fmicb.2015.00453 10.1039/c3mt00033h 10.1134/S1995078010050174 10.4103/0975-7406.72127 10.1080/09670874.2015.1070930 10.19184/jid.v18i1.1762 10.1002/mrm.25263 10.1007/s11368-017-1716-2 10.1007/978-3-319-76708-6 10.1016/B978-0-12-818654-1.00027-X 10.1049/iet-nbt.2014.0028 10.1007/s12892-015-0069-x 10.1186/s11671-017-1861-y 10.1016/j.indcrop.2019.111479 10.1007/s41204-016-0004-5 10.1098/rsos.191378 10.1371/journal.pone.0141050 10.1186/s12951-016-0225-6 10.2217/nnm-2018-0089 10.4038/sljid.v8i1.8167 10.1007/s00705-020-04561-2 10.3389/fcimb.2019.00095 10.3390/agronomy8090175 10.3390/ijms18010120 10.1021/bc900215b 10.2174/1389200217666161201111146 10.3389/fmicb.2017.01014 10.1146/annurev-phyto-082712-102346 10.1016/j.nantod.2013.07.006 10.1016/j.antiviral.2011.08.017 10.1039/C8SC01828F 10.1201/9781003052104 10.1038/ismej.2017.155 10.1016/S1672-2515(07)60110-9 10.3390/molecules16108894 10.1016/j.jhazmat.2020.122415 10.1016/j.scienta.2015.09.021 10.1002/jcb.20796 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.3390/agriculture10100444 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_eac11a91550846ab89c45ae497f97c11 A640984023 10_3390_agriculture10100444 |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO KQ8 M0K MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c421t-f5a849f8f899dc191f4e9fd6cb97862441ef9895766c7b20031d258d4a471e673 |
IEDL.DBID | DOA |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:31:01 EDT 2025 Fri Jul 11 07:34:06 EDT 2025 Tue Jun 17 21:27:32 EDT 2025 Tue Jul 01 02:12:31 EDT 2025 Thu Apr 24 22:51:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-f5a849f8f899dc191f4e9fd6cb97862441ef9895766c7b20031d258d4a471e673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2572-959X |
OpenAccessLink | https://doaj.org/article/eac11a91550846ab89c45ae497f97c11 |
PQID | 2636169374 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eac11a91550846ab89c45ae497f97c11 proquest_miscellaneous_2636169374 gale_infotracmisc_A640984023 crossref_primary_10_3390_agriculture10100444 crossref_citationtrail_10_3390_agriculture10100444 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_93 Dinh (ref_35) 2009; 3 Khandelwal (ref_51) 2014; 9 ref_13 Cai (ref_61) 2020; 393 ref_99 ref_97 Maisaro (ref_30) 2017; 18 ref_96 ref_95 Elsharkawy (ref_74) 2015; 61 Raigond (ref_90) 2017; 38 Kumar (ref_34) 2018; 73 Zhao (ref_31) 2020; 18 Mazurkova (ref_57) 2010; 5 Tan (ref_79) 2018; 9 Mori (ref_49) 2013; 8 Tripathi (ref_11) 2018; 7 Shapiro (ref_101) 2015; 73 Yih (ref_2) 2006; 97 Elsharkawy (ref_75) 2017; 1 Rastogi (ref_80) 2017; 5 ref_25 Levina (ref_55) 2016; 7 ref_23 ref_22 ref_20 Jones (ref_21) 2016; Volume 95 Panattoni (ref_94) 2013; 11 Chung (ref_87) 2019; 230 Wang (ref_44) 2017; 51 Fernando (ref_19) 2018; 8 Liu (ref_58) 2016; 6 ref_72 ref_71 ref_70 Marslin (ref_86) 2017; 8 Panattoni (ref_29) 2008; 146 Attia (ref_67) 2017; 6 Mody (ref_41) 2010; 2 ref_78 ref_77 ref_76 Shafie (ref_69) 2018; 7 ref_73 Szakacs (ref_36) 2018; 8 Shukla (ref_52) 2009; 20 Lysenko (ref_47) 2018; 9 Jain (ref_64) 2014; 44 ref_82 Singh (ref_28) 2015; 18 Cui (ref_56) 2010; 86 Galdiero (ref_48) 2011; 16 ref_89 Mishra (ref_59) 2011; 92 Alkubaisi (ref_63) 2017; 7 Zhong (ref_54) 2019; 47 Boutonnet (ref_32) 2009; 11 Priester (ref_100) 2012; 109 Xiang (ref_18) 2020; 165 ref_50 Elazzazy (ref_68) 2017; 16 Bragard (ref_24) 2013; 51 Bondok (ref_62) 2018; 08 ref_53 Ma (ref_84) 2015; 5 (ref_92) 2019; 139 Cobos (ref_107) 2019; 93 Maruthi (ref_26) 2019; 105 ref_60 Wang (ref_27) 2018; 14 Halevas (ref_10) 2018; 2 Bernardo (ref_14) 2018; 12 Singh (ref_38) 2018; 16 Huang (ref_106) 2016; 1 Krumpfer (ref_39) 2013; 8 Landa (ref_81) 2017; 51 Singh (ref_7) 2017; 4 Kharissova (ref_37) 2019; 6 Kolstoe (ref_45) 2019; 9 Stankic (ref_3) 2016; 14 Morais (ref_6) 2014; 14 Rajput (ref_33) 2018; 9 Ali (ref_85) 2018; 212–213 Hill (ref_16) 2014; 90 Hawthorne (ref_98) 2014; 48 Chen (ref_103) 2003; 1 Almasi (ref_17) 2018; 150 ref_104 Chauhan (ref_15) 2019; 7 ref_105 ref_108 Prasad (ref_12) 2017; 8 Ismaili (ref_88) 2019; 46 ref_46 ref_43 Novak (ref_83) 2017; 156 ref_42 ref_102 ref_1 Wang (ref_66) 2016; 49 ref_9 ref_8 ref_5 ref_4 (ref_91) 2015; 196 Baun (ref_40) 2017; 8 Elbeshehy (ref_65) 2015; 6 |
References_xml | – volume: 9 start-page: 1162 year: 2018 ident: ref_79 article-title: Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.01162 – volume: 230 start-page: 48 year: 2019 ident: ref_87 article-title: Effect of Copper Oxide Nanoparticles on the Physiology, Bioactive Molecules, and Transcriptional Changes in Brassica rapa ssp. rapa Seedlings publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-019-4084-2 – volume: 105 start-page: 77 year: 2019 ident: ref_26 article-title: A method for generating virus-free cassava plants to combat viral disease epidemics in Africa publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2018.09.002 – volume: 7 start-page: 31 year: 2017 ident: ref_63 article-title: Dispersed gold nanoparticles potentially ruin gold barley yellow dwarf virus and eliminate virus infectivity hazards publication-title: Appl. Nanosci. doi: 10.1007/s13204-016-0540-0 – ident: ref_9 doi: 10.1039/C9EN00850K – volume: 8 start-page: 93 year: 2013 ident: ref_49 article-title: Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-93 – ident: ref_1 – volume: 86 start-page: 1135 year: 2010 ident: ref_56 article-title: Photocatalytic Inactivation Efficiency of Anatase Nano-TiO2 Sol on the H9N2 Avian Influenza Virus publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2010.00763.x – ident: ref_105 doi: 10.3390/nano8070500 – volume: 16 start-page: 84 year: 2018 ident: ref_38 article-title: “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-018-0408-4 – volume: 11 start-page: 173 year: 2013 ident: ref_94 article-title: Review. Elimination of viruses in plants: Twenty years of progress publication-title: Span. J. Agric. Res. doi: 10.5424/sjar/2013111-3201 – ident: ref_77 – ident: ref_8 doi: 10.3390/nano8060359 – volume: 18 start-page: 328 year: 2020 ident: ref_31 article-title: Engineering plant virus resistance: From RNA silencing to genome editing strategies publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13278 – ident: ref_46 doi: 10.12688/f1000research.19694.1 – ident: ref_89 doi: 10.3390/agronomy8090167 – volume: 6 start-page: 37761 year: 2016 ident: ref_58 article-title: An In Silico study of TiO2 nanoparticles interaction with twenty standard amino acids in aqueous solution publication-title: Sci. Rep. doi: 10.1038/srep37761 – volume: 9 start-page: 175 year: 2014 ident: ref_51 article-title: Application of silver nanoparticles in viral inhibition: A new hope for antivirals publication-title: Dig. J. Nanomater. Biostruct. – ident: ref_5 doi: 10.1016/B978-0-323-42864-4.00010-5 – ident: ref_13 doi: 10.1371/journal.ppat.1003304 – ident: ref_25 doi: 10.3390/v11070670 – ident: ref_72 doi: 10.1039/C8EN00014J – ident: ref_93 doi: 10.3390/agronomy8120285 – volume: 150 start-page: 533 year: 2018 ident: ref_17 article-title: Colorimetric immunocapture loop mediated isothermal amplification assay for detection of Impatiens necrotic spot virus (INSV) by GineFinderTM dye publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-017-1294-6 – volume: 109 start-page: E2451 year: 2012 ident: ref_100 article-title: Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1205431109 – volume: 156 start-page: 10 year: 2017 ident: ref_83 article-title: Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles publication-title: Environ. Res. doi: 10.1016/j.envres.2017.03.015 – volume: 7 start-page: 1251 year: 2018 ident: ref_69 article-title: Silver nanoparticles activity against Tomato spotted wilt virus publication-title: Middle East J. Agric. Res. – volume: 212–213 start-page: 29 year: 2018 ident: ref_85 article-title: Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance publication-title: Microbiol. Res. doi: 10.1016/j.micres.2018.04.008 – volume: 8 start-page: 1 year: 2017 ident: ref_40 article-title: Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials publication-title: NanoImpact doi: 10.1016/j.impact.2017.06.004 – volume: 3 start-page: 3737 year: 2009 ident: ref_35 article-title: Shape-Controlled Synthesis of Highly Crystalline Titania Nanocrystals publication-title: ACS Nano. doi: 10.1021/nn900940p – volume: 4 start-page: 105 year: 2017 ident: ref_7 article-title: The role of nanotechnology in the treatment of viral infections publication-title: Ther. Adv. Infect. Dis. – volume: 51 start-page: 10137 year: 2017 ident: ref_44 article-title: Quantitative Analysis of Reactive Oxygen Species Photogenerated on Metal Oxide Nanoparticles and Their Bacteria Toxicity: The Role of Superoxide Radicals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00473 – volume: 8 start-page: 832 year: 2017 ident: ref_86 article-title: Nanoparticles Alter Secondary Metabolism in Plants via ROS Burst publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00832 – volume: 46 start-page: 360 year: 2019 ident: ref_88 article-title: Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments publication-title: Funct. Plant Biol. doi: 10.1071/FP18076 – volume: 48 start-page: 13102 year: 2014 ident: ref_98 article-title: Particle-Size Dependent Accumulation and Trophic Transfer of Cerium Oxide through a Terrestrial Food Chain publication-title: Environ. Sci. Technol. doi: 10.1021/es503792f – volume: 47 start-page: 3485 year: 2019 ident: ref_54 article-title: Functionalized selenium nanoparticles enhance the anti-EV71 activity of oseltamivir in human astrocytoma cell model publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2019.1640716 – ident: ref_73 – volume: 90 start-page: 355 year: 2014 ident: ref_16 article-title: Control of Virus Diseases in Soybeans publication-title: Adv. Virus Res. doi: 10.1016/B978-0-12-801246-8.00007-X – ident: ref_76 doi: 10.1016/j.jbiotec.2019.10.003 – volume: 93 start-page: e01078 year: 2019 ident: ref_107 article-title: Within-Host Multiplication and Speed of Colonization as Infection Traits Associated with Plant Virus Vertical Transmission publication-title: J. Virol. doi: 10.1128/JVI.01078-19 – volume: 9 start-page: 25021 year: 2018 ident: ref_47 article-title: Nanoparticles as antiviral agents against adenoviruses publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. doi: 10.1088/2043-6254/aac42a – volume: 49 start-page: 22 year: 2016 ident: ref_66 article-title: Preliminary experiments on nano-silver against tobacco mosaic virus and its mechanism publication-title: Tob. Sci. Technol. – volume: 11 start-page: 1823 year: 2009 ident: ref_32 article-title: A novel approach to metal and metal oxide nanoparticle synthesis: The oil-in-water microemulsion reaction method publication-title: J. Nanopart. Res. doi: 10.1007/s11051-009-9660-8 – ident: ref_20 doi: 10.1016/j.micpath.2017.12.068 – volume: 9 start-page: 76 year: 2018 ident: ref_33 article-title: Effects of Zinc-oxide Nanoparticles on Soil, Plants, Animals and Soil Organisms: A Review publication-title: Environ. Nanotechnol. Monit. Manag. – volume: 08 start-page: 100 year: 2018 ident: ref_62 article-title: Evaluation of Silver Nanoparticles as Antiviral Agent Against ToMV and PVY in Tomato Plants publication-title: Middle East J. Appl. Sci. – volume: 8 start-page: 3943 year: 2018 ident: ref_36 article-title: Green synthesis of gold nanoparticles by thermophilic filamentous fungi publication-title: Sci. Rep. doi: 10.1038/s41598-018-22112-3 – ident: ref_4 doi: 10.3390/ijms19124031 – volume: 2 start-page: 119 year: 2018 ident: ref_10 article-title: Copper Nanoparticles as Therapeutic Anticancer Agents publication-title: Nanomed. Nanotechnol. J. – volume: 5 start-page: 11618 year: 2015 ident: ref_84 article-title: Phytotoxic Mechanism of Nanoparticles: Destruction of Chloroplasts and Vascular Bundles and Alteration of Nutrient Absorption publication-title: Sci. Rep. doi: 10.1038/srep11618 – volume: 7 start-page: 196 year: 2018 ident: ref_11 article-title: Agro-nanotechnology: A Future Technology for Sustainable Agriculture publication-title: Int. J. Curr. Microbiol. Appl. Sci. – ident: ref_70 – volume: 14 start-page: 87 year: 2018 ident: ref_27 article-title: In vitro thermotherapy-based methods for plant virus eradication publication-title: Plant Methods doi: 10.1186/s13007-018-0355-y – ident: ref_71 doi: 10.1002/ps.5185 – volume: 73 start-page: 368 year: 2018 ident: ref_34 article-title: Virostatic potential of zinc oxide (ZnO) nanoparticles on capsid protein of cytoplasmic side of chikungunya virus publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2018.04.4247 – ident: ref_108 doi: 10.3390/nano10020292 – volume: 7 start-page: 1166 year: 2016 ident: ref_55 article-title: High antiviral effect of TiO2·PL-DNA nanocomposites targeted to conservative regions of (−)RNA and (+)RNA of influenza A virus in cell culture publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.7.108 – volume: 14 start-page: 1007 year: 2014 ident: ref_6 article-title: Biological Applications of Nanobiotechnology publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2014.8748 – volume: 51 start-page: 10814 year: 2017 ident: ref_81 article-title: Transcriptomic Response of Arabidopsis thaliana Exposed to CuO Nanoparticles, Bulk Material, and Ionic Copper publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02265 – ident: ref_23 doi: 10.3390/v12030263 – volume: 5 start-page: 78 year: 2017 ident: ref_80 article-title: Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review publication-title: Front. Chem. doi: 10.3389/fchem.2017.00078 – volume: Volume 95 start-page: 87 year: 2016 ident: ref_21 article-title: Future Scenarios for Plant Virus Pathogens as Climate Change Progresses publication-title: Advances in Virus Research doi: 10.1016/bs.aivir.2016.02.004 – volume: 38 start-page: 435 year: 2017 ident: ref_90 article-title: Effect of zinc nanoparticles on antioxidative system of potato plants publication-title: J. Environ. Biol. doi: 10.22438/jeb/38/3/MS-209 – volume: 146 start-page: 129 year: 2008 ident: ref_29 article-title: Grapevine vitivirus A eradication in Vitis vinifera explants by antiviral drugs and thermotherapy publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2007.06.008 – volume: 7 start-page: 89 year: 2019 ident: ref_15 article-title: A systematic review of conventional and advanced approaches for the control of plant viruses publication-title: J. Appl. Biol. Biotechnol. doi: 10.7324/JABB.2019.70414 – volume: 16 start-page: 2705 year: 2017 ident: ref_68 article-title: In vitro assessment of activity of graphene silver composite sheets against multidrug-resistant bacteria and Tomato Bushy Stunt Virus publication-title: Trop. J. Pharm. Res. doi: 10.4314/tjpr.v16i11.19 – volume: 6 start-page: 453 year: 2015 ident: ref_65 article-title: Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00453 – ident: ref_97 doi: 10.1039/c3mt00033h – volume: 5 start-page: 417 year: 2010 ident: ref_57 article-title: Interaction of titanium dioxide nanoparticles with influenza virus publication-title: Nanotechnol. Russ. doi: 10.1134/S1995078010050174 – ident: ref_104 – volume: 2 start-page: 282 year: 2010 ident: ref_41 article-title: Introduction to metallic nanoparticles publication-title: J. Pharm. Bioallied Sci. doi: 10.4103/0975-7406.72127 – volume: 61 start-page: 353 year: 2015 ident: ref_74 article-title: Induction of systemic resistance against Papaya ring spot virus (PRSV) and its vector Myzus persicae by Penicillium simplicissimum GP17-2 and silica (SiO2) nanopowder publication-title: Int. J. Pest Manag. doi: 10.1080/09670874.2015.1070930 – volume: 18 start-page: 31 year: 2017 ident: ref_30 article-title: The Effect of Concentration and Exposure Time Acyclovir for Elimination Sugarcane Mosaic Virus (SCMV) on The Apical Bud Culture of Sugarcane PS 881 publication-title: J. ILMU DASAR doi: 10.19184/jid.v18i1.1762 – volume: 73 start-page: 376 year: 2015 ident: ref_101 article-title: Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25263 – ident: ref_99 doi: 10.1007/s11368-017-1716-2 – ident: ref_78 doi: 10.1007/978-3-319-76708-6 – ident: ref_22 doi: 10.1016/B978-0-12-818654-1.00027-X – ident: ref_50 doi: 10.1049/iet-nbt.2014.0028 – volume: 18 start-page: 341 year: 2015 ident: ref_28 article-title: Effect of antiviral chemicals on in vitro regeneration response and production of PLRV-free plants of potato publication-title: J. Crop Sci. Biotechnol. doi: 10.1007/s12892-015-0069-x – ident: ref_96 doi: 10.1186/s11671-017-1861-y – volume: 6 start-page: 835 year: 2017 ident: ref_67 article-title: Inhibitory Effects of Salicylic Acid and Silver Nanoparticles on Potato Virus Y-Infected Potato Plants in Egypt publication-title: Middle East J. Agric. Res. – volume: 139 start-page: 111479 year: 2019 ident: ref_92 article-title: Controlled elicitation increases steviol glycosides (SGs) content and gene expression-associated to biosynthesis of SGs in Stevia rebaudiana B. cv. Morita II publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2019.111479 – volume: 1 start-page: 4 year: 2016 ident: ref_106 article-title: Plant-based green synthesis of metallic nanoparticles: Scientific curiosity or a realistic alternative to chemical synthesis? publication-title: Nanotechnol. Environ. Eng. doi: 10.1007/s41204-016-0004-5 – volume: 6 start-page: 191378 year: 2019 ident: ref_37 article-title: Greener synthesis of chemical compounds and materials publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.191378 – ident: ref_53 doi: 10.1371/journal.pone.0141050 – volume: 14 start-page: 73 year: 2016 ident: ref_3 article-title: Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-016-0225-6 – ident: ref_60 doi: 10.2217/nnm-2018-0089 – volume: 8 start-page: 2 year: 2018 ident: ref_19 article-title: Antimicrobial Nanoparticles: Applications and mechanisms of action publication-title: SRI Lankan J. Infect. Dis. doi: 10.4038/sljid.v8i1.8167 – volume: 165 start-page: 923 year: 2020 ident: ref_18 article-title: Genetic diversity of strawberry mild yellow edge virus from eastern Canada publication-title: Arch. Virol. doi: 10.1007/s00705-020-04561-2 – volume: 9 start-page: 95 year: 2019 ident: ref_45 article-title: Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2019.00095 – ident: ref_82 doi: 10.3390/agronomy8090175 – ident: ref_43 doi: 10.3390/ijms18010120 – volume: 20 start-page: 1497 year: 2009 ident: ref_52 article-title: Inhibition of Herpes Simplex Virus Type 1 Infection by Silver Nanoparticles Capped with Mercaptoethane Sulfonate publication-title: Bioconjug. Chem. doi: 10.1021/bc900215b – ident: ref_95 doi: 10.2174/1389200217666161201111146 – volume: 8 start-page: 1014 year: 2017 ident: ref_12 article-title: Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01014 – volume: 1 start-page: 1 year: 2017 ident: ref_75 article-title: Inhibition of Tomato Yellow Leaf Curl Virus by Zingiber offi cinale and Mentha longifolia Extracts and Silica Nanoparticles and Its Refl ection on Tomato Growth and Yield publication-title: Int. J. Antivir. Antiretrovir. – volume: 51 start-page: 177 year: 2013 ident: ref_24 article-title: Status and Prospects of Plant Viruses Control through Interference Vector Transmission publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-082712-102346 – volume: 8 start-page: 417 year: 2013 ident: ref_39 article-title: Make it nano-Keep it nano publication-title: Nano Today doi: 10.1016/j.nantod.2013.07.006 – volume: 92 start-page: 305 year: 2011 ident: ref_59 article-title: Virostatic potential of micro-nano filopodia-like ZnO structures against herpes simplex virus-1 publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2011.08.017 – ident: ref_42 doi: 10.1039/C8SC01828F – ident: ref_102 doi: 10.1201/9781003052104 – volume: 12 start-page: 173 year: 2018 ident: ref_14 article-title: Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale publication-title: ISME J. doi: 10.1038/ismej.2017.155 – volume: 1 start-page: 64 year: 2003 ident: ref_103 article-title: Mass production of nanoparticles by high gravity reactive precipitation technology with low cost publication-title: China Particuol. doi: 10.1016/S1672-2515(07)60110-9 – volume: 44 start-page: 21 year: 2014 ident: ref_64 article-title: Green Synthesis of Silver Nanoparticles and their Application in Plant Virus Inhibition publication-title: J. Mycol. Plant Pathol. – volume: 16 start-page: 8894 year: 2011 ident: ref_48 article-title: Silver nanoparticles as potential antiviral agents publication-title: Molecules doi: 10.3390/molecules16108894 – volume: 393 start-page: 122415 year: 2020 ident: ref_61 article-title: Foliar Exposure of Fe3O4 Nanoparticles on Nicotiana benthamiana: Evidence for Nanoparticles Uptake, Plant Growth Promoter and Defense Response Elicitor against Plant Virus publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122415 – volume: 196 start-page: 3 year: 2015 ident: ref_91 article-title: Plant biostimulants: Definition, concept, main categories and regulation publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2015.09.021 – volume: 97 start-page: 1184 year: 2006 ident: ref_2 article-title: Engineered nanoparticles as precise drug delivery systems publication-title: J. Cell. Biochem. doi: 10.1002/jcb.20796 |
SSID | ssj0000913806 |
Score | 2.3845 |
SecondaryResourceType | review_article |
Snippet | Viruses are estimated to be responsible for approximately 50% of the emerging plant diseases, which are difficult to control, and in some cases, there is no... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 444 |
SubjectTerms | Agriculture Antibacterial agents Antifungal agents Antiviral agents antiviral properties biostimulant diseases histology industry nanomedicine Nanoparticles nanotechnology plant virus therapeutics |
Title | Nanoparticles as Potential Antivirals in Agriculture |
URI | https://www.proquest.com/docview/2636169374 https://doaj.org/article/eac11a91550846ab89c45ae497f97c11 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EL3oQn1itJYJHQ7PJZrN7bKWlCJYiFnpbNvsQQVJp0__vTJLWCj4uXpNssnyzOzNfmP2GkFuR5jljWkLmxlnIUm9DkeJPHOGloHgWUuLZ4ccxH03ZwyydbbX6wpqwWh64Bq4LjoFSjSrmEYRKnQtpWKodk5mXmalP9ULM2yJTlQ-WNBERr2WGEuD1Xf2yaMQsHKzCSibtSyiqFPt_8stVsBkekcMmSwx69eyOyY4rTshB7_Plp4SBXwTC29S1BXoZTOYllv7guAJ7QixgZQWvRbA17IxMh4Pn-1HYtEAIDYtpGfpUCya98ECLrAFu5ZmT3nKTA_vjEJqpA0wlkAZushwLzaiNU2GZhqDjeJack91iXrgLEhjIRCwzkY2AciXUa-plYlKeMwufiliLxGs0lGn0wbFNxZsCnoAQqm8gbJG7zaD3Wh7j98f7CPPmUdS2ri6AxVWDmPrL4i3SRiMp3IEwQQP7wageB6IKZDVOWuRmbTyFt7CIrHDz1VLFPOGoPZOxy_-YxxXZj5F8V5V9bbJbLlbuGjKUMu-Qvf5gPHnqVIvyA81x43w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticles+as+Potential+Antivirals+in+Agriculture&rft.jtitle=Agriculture+%28Basel%29&rft.au=Vargas-Hernandez%2C+Marcela&rft.au=Macias-Bobadilla%2C+Israel&rft.au=Guevara-Gonz%C3%A1lez%2C+Ram%C3%B3n&rft.au=Rico+Garc%C3%ADa%2C+Enrique&rft.date=2020-10-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=10&rft.issue=10&rft_id=info:doi/10.3390%2Fagriculture10100444&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |