Theoretical insights into chemical recycling of polyethylene terephthalate (PET)

•Mechanistic and kinetic studies of PET chemical recycling methods are discussed.•Various approaches towards a PET circular economy are discussed and compared.•Catalytic glycolysis with the synergistic mechanism is the most promising approach.•Novel techniques, e.g. microwave heating, heterogeneous...

Full description

Saved in:
Bibliographic Details
Published inPolymer degradation and stability Vol. 223; p. 110729
Main Authors Conroy, Stuart, Zhang, Xiaolei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text
ISSN0141-3910
1873-2321
DOI10.1016/j.polymdegradstab.2024.110729

Cover

Loading…
Abstract •Mechanistic and kinetic studies of PET chemical recycling methods are discussed.•Various approaches towards a PET circular economy are discussed and compared.•Catalytic glycolysis with the synergistic mechanism is the most promising approach.•Novel techniques, e.g. microwave heating, heterogeneous catalysts, should be studied. Polyethylene Terephthalate (PET) is one of the most commonly used plastics. Currently, PET waste has been mainly recycled through mechanical methods and alternative effective ways have emerged, such as chemical recycling including ammonolysis, aminolysis, hydrolysis, alcoholysis and glycolysis. However, a precise understanding of the reaction mechanisms and kinetics of these methods is lacking. This paper aims at providing a comprehensive review elucidating the mechanisms and the reaction kinetics of these methods, considering various catalysts, solvents and heating modes. The degradation performance of each method and its suitability towards a circular economy is discussed and compared. It is concluded that novel processes of PET glycolysis stand out as the most promising chemical recycling methods. The degradation process via glycolysis can be significantly enhanced by the increased interactions facilitated by the synergic effect reaction mechanism, and the improved kinetics provided by the advanced heating modes such as microwave-assisted techniques. Heterogeneous catalysts with large surface area were found to promote efficient PET degradation into its monomer, Bis(2-Hydroxyethyl) terephthalate (BHET); these catalysts also offer environmental and economic advantages owing to their ease of separation and reusability. This review provides a guidance for future research aimed at designing an effective PET chemical recycling process. It was identified that to advance PET glycolysis in the near future, research can focus on 1) the utilising novel heterogeneous catalysts and catalyst supports that induce synergic effect reaction mechanisms, and 2) advancing technologies such as microwave heating. Furthermore, the suitability of PET recycling technologies should be considered in the context of high BHET yield/selectivity, mild reaction conditions, short reaction times and reusability, and economical feasibility at an industrial scale.
AbstractList •Mechanistic and kinetic studies of PET chemical recycling methods are discussed.•Various approaches towards a PET circular economy are discussed and compared.•Catalytic glycolysis with the synergistic mechanism is the most promising approach.•Novel techniques, e.g. microwave heating, heterogeneous catalysts, should be studied. Polyethylene Terephthalate (PET) is one of the most commonly used plastics. Currently, PET waste has been mainly recycled through mechanical methods and alternative effective ways have emerged, such as chemical recycling including ammonolysis, aminolysis, hydrolysis, alcoholysis and glycolysis. However, a precise understanding of the reaction mechanisms and kinetics of these methods is lacking. This paper aims at providing a comprehensive review elucidating the mechanisms and the reaction kinetics of these methods, considering various catalysts, solvents and heating modes. The degradation performance of each method and its suitability towards a circular economy is discussed and compared. It is concluded that novel processes of PET glycolysis stand out as the most promising chemical recycling methods. The degradation process via glycolysis can be significantly enhanced by the increased interactions facilitated by the synergic effect reaction mechanism, and the improved kinetics provided by the advanced heating modes such as microwave-assisted techniques. Heterogeneous catalysts with large surface area were found to promote efficient PET degradation into its monomer, Bis(2-Hydroxyethyl) terephthalate (BHET); these catalysts also offer environmental and economic advantages owing to their ease of separation and reusability. This review provides a guidance for future research aimed at designing an effective PET chemical recycling process. It was identified that to advance PET glycolysis in the near future, research can focus on 1) the utilising novel heterogeneous catalysts and catalyst supports that induce synergic effect reaction mechanisms, and 2) advancing technologies such as microwave heating. Furthermore, the suitability of PET recycling technologies should be considered in the context of high BHET yield/selectivity, mild reaction conditions, short reaction times and reusability, and economical feasibility at an industrial scale.
Polyethylene Terephthalate (PET) is one of the most commonly used plastics. Currently, PET waste has been mainly recycled through mechanical methods and alternative effective ways have emerged, such as chemical recycling including ammonolysis, aminolysis, hydrolysis, alcoholysis and glycolysis. However, a precise understanding of the reaction mechanisms and kinetics of these methods is lacking. This paper aims at providing a comprehensive review elucidating the mechanisms and the reaction kinetics of these methods, considering various catalysts, solvents and heating modes. The degradation performance of each method and its suitability towards a circular economy is discussed and compared. It is concluded that novel processes of PET glycolysis stand out as the most promising chemical recycling methods. The degradation process via glycolysis can be significantly enhanced by the increased interactions facilitated by the synergic effect reaction mechanism, and the improved kinetics provided by the advanced heating modes such as microwave-assisted techniques. Heterogeneous catalysts with large surface area were found to promote efficient PET degradation into its monomer, Bis(2-Hydroxyethyl) terephthalate (BHET); these catalysts also offer environmental and economic advantages owing to their ease of separation and reusability. This review provides a guidance for future research aimed at designing an effective PET chemical recycling process. It was identified that to advance PET glycolysis in the near future, research can focus on 1) the utilising novel heterogeneous catalysts and catalyst supports that induce synergic effect reaction mechanisms, and 2) advancing technologies such as microwave heating. Furthermore, the suitability of PET recycling technologies should be considered in the context of high BHET yield/selectivity, mild reaction conditions, short reaction times and reusability, and economical feasibility at an industrial scale.
ArticleNumber 110729
Author Zhang, Xiaolei
Conroy, Stuart
Author_xml – sequence: 1
  givenname: Stuart
  surname: Conroy
  fullname: Conroy, Stuart
– sequence: 2
  givenname: Xiaolei
  orcidid: 0000-0001-9415-3136
  surname: Zhang
  fullname: Zhang, Xiaolei
  email: xiaolei.zhang@strath.ac.uk
BookMark eNqNkMFKAzEQhoMo2FbfYS9CPWzNbLK7zcGDFK1CwR7qOaTJbDcl3dQkCn17t9ZTT85lhuGfb-AbksvOd0jIHdAJUKgetpO9d4edwU1QJia1nhS04BMAWhfiggxgWrO8YAVckgEFDjkTQK_JMMYt7YuXMCDLVYs-YLJaucx20W7aFPsh-Uy3uPtdB9QH7Wy3yXyTHV9iag8OO8wSBty3qVVOJczGy-fV_Q25apSLePvXR-Tj5Xk1e80X7_O32dMi17yAlDdlbQxrDBNIq1pPjTacCTZdC1grPhW0KkoUBikyxRA01WUNlW5EYRrOhWIjMj5x98F_fmFMcmejRudUh_4rSgYlK0tOq7KPPp6iOvgYAzZyH-xOhYMEKo8m5VaemZRHk_Jksr-fnd1rm1SyvktBWfdvyvxEwd7Kt8Ugo7bYaTS2F5yk8fafpB_u76Bs
CitedBy_id crossref_primary_10_1016_j_scp_2024_101891
crossref_primary_10_1039_D4GC05070C
crossref_primary_10_3390_polym16192807
crossref_primary_10_1002_app_55672
crossref_primary_10_3390_molecules30010037
crossref_primary_10_1002_app_56564
crossref_primary_10_3390_cryst14060567
crossref_primary_10_32434_0321_4095_2024_156_5_91_95
crossref_primary_10_1002_advs_202403002
crossref_primary_10_1021_acs_iecr_4c02382
crossref_primary_10_18596_jotcsa_1462797
crossref_primary_10_1039_D4NJ03300K
crossref_primary_10_1016_j_polymdegradstab_2024_111163
crossref_primary_10_1016_j_seppur_2024_131347
crossref_primary_10_1021_acsapm_4c03337
crossref_primary_10_1093_femsyr_foaf006
crossref_primary_10_1039_D4CC05909C
crossref_primary_10_1016_j_cej_2024_157778
crossref_primary_10_1021_acsapm_4c03575
crossref_primary_10_1016_j_polymdegradstab_2025_111193
crossref_primary_10_3390_polym17070843
crossref_primary_10_1016_j_joei_2025_102043
crossref_primary_10_1039_D4RE00235K
crossref_primary_10_3390_polym16233441
Cites_doi 10.1351/PAC-CON-11-06-10
10.1002/anie.201915651
10.1016/j.ceramint.2018.05.047
10.1016/j.ces.2021.117109
10.1002/aic.14632
10.1039/C6PY01783E
10.1007/s10924-008-0106-7
10.1016/j.ces.2022.118329
10.1016/j.polymdegradstab.2009.11.026
10.1039/C3GC41834K
10.1039/D2CS00048B
10.1016/j.apcata.2022.118681
10.1021/acssuschemeng.8b05324
10.1002/app.38970
10.1007/s10973-020-10331-8
10.1021/acssuschemeng.2c01235
10.1016/j.wasman.2009.06.004
10.1016/j.resconrec.2011.04.009
10.1007/s10163-020-01106-2
10.1080/10601325.2019.1709498
10.1081/MA-200050346
10.1016/j.cej.2008.09.039
10.1080/00194506.2017.1310634
10.3389/fchem.2023.1234763
10.1016/j.jhazmat.2010.01.092
10.1039/D1GC00887K
10.1039/C6RA06298A
10.1039/D3GC01762A
10.1002/app.1645
10.1016/j.polymdegradstab.2022.110245
10.1007/s11356-021-14925-z
10.1002/pat.5023
10.1016/j.ijbiomac.2020.03.130
10.1002/adv.10029
10.1016/j.polymdegradstab.2005.11.005
10.1021/jacs.5b09502
10.1002/apmc.1995.052250110
10.1039/C7GC03396F
10.1021/ie000592u
10.1016/j.ecoenv.2019.110066
10.1021/acs.iecr.0c06073
10.1016/j.polymdegradstab.2021.109751
10.1016/j.polymdegradstab.2018.07.004
10.1021/sc5007522
10.1016/j.catcom.2010.02.011
10.1016/j.ejpe.2015.03.001
10.1021/jo400159y
10.3390/ma9040231
10.1016/j.polymdegradstab.2014.10.005
10.1039/C7RA13173A
10.1039/C9PY01920K
10.1021/acs.iecr.2c04419
10.1016/j.tetlet.2007.09.074
10.1155/2013/487676
10.1016/j.jhazmat.2022.130670
10.1021/ie503677w
10.1021/acs.iecr.8b03854
10.1002/app.1988.070360716
10.1016/j.resconrec.2010.06.014
10.1016/j.polymdegradstab.2021.109691
10.1002/pi.1147
10.1186/s40691-014-0001-x
10.1007/s12588-016-9134-7
10.1002/pol.20220137
10.1039/D1CP02038B
10.30684/etj.35.8A.7
10.1016/j.enconman.2016.02.037
10.1002/mame.200600341
10.1039/C6GC00534A
10.1039/C4GC02401J
10.5772/31642
10.1016/j.fuproc.2014.01.019
10.1126/sciadv.1700782
10.3390/ma13061461
10.1002/1439-2054(20011001)286:10<640::AID-MAME640>3.0.CO;2-1
10.1002/(SICI)1097-4628(19981205)70:10<1939::AID-APP8>3.0.CO;2-G
10.1016/j.wasman.2021.09.009
10.1039/D0GC00327A
10.1039/D0GC03536J
10.1039/D3SC01161E
10.1080/03602550601152945
10.1038/472425a
10.1016/j.ces.2020.115642
10.1016/j.polymdegradstab.2022.109905
10.1021/ie501995m
10.1016/j.jclepro.2019.04.019
10.1016/j.jenvman.2021.113267
10.1002/pol.20220727
10.1016/j.eurpolymj.2021.110441
10.1016/j.polymdegradstab.2021.109601
10.1016/S0032-3861(99)00405-X
10.1002/app.36878
10.1002/(SICI)1097-0126(199909)48:9<885::AID-PI216>3.0.CO;2-T
10.1016/j.polymdegradstab.2013.01.007
10.1002/app.37608
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.polymdegradstab.2024.110729
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2321
ExternalDocumentID 10_1016_j_polymdegradstab_2024_110729
S0141391024000739
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSK
SSM
SSZ
T5K
WH7
WUQ
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c421t-f57dd3fd39e067c8dcd43938b91ba4890625e9de0e3a3e1c0c5716cf92df449a3
IEDL.DBID .~1
ISSN 0141-3910
IngestDate Tue Aug 05 10:03:08 EDT 2025
Tue Jul 01 02:29:56 EDT 2025
Thu Apr 24 23:05:49 EDT 2025
Sat May 11 15:33:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Polyethylene terephthalate
Plastic recycling
Glycolysis
Plastic circular economy
Reaction kinetics
Chemical reaction mechanisms
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-f57dd3fd39e067c8dcd43938b91ba4890625e9de0e3a3e1c0c5716cf92df449a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9415-3136
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0141391024000739
PQID 3153554065
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153554065
crossref_primary_10_1016_j_polymdegradstab_2024_110729
crossref_citationtrail_10_1016_j_polymdegradstab_2024_110729
elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2024_110729
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Polymer degradation and stability
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Liu, Guo, Xiao, Shen, Xu (bib0115) 2018; 44
Mancini, Zanin (bib0084) 2007; 46
Naumann, Scholten, Wilson, Dove (bib0064) 2015; 137
Karayannidis, Achilias (bib0008) 2007; 292
Al-Sabagh, Yehia, Eshaq, Rabie, ElMetwally (bib0020) 2016; 25
Mittal, Soni, Dutt, Singh (bib0038) 2010; 178
Zhu, Fan, Hao, Jiang, Zhang, Zeng, Sun, Zhang (bib0069) 2022; 641
Wang, Yao, Geng, Zhou, Lu, Zhang (bib0070) 2015; 17
Kosmidis, Achilias, Karayannidis (bib0088) 2001; 286
Liu, Xu, Huang, Lu, Zhen, Zheng, Dong, Li, Wang, Ji (bib0053) 2023; 446
Chaudhary, Surekha, Kumar, Rajagopal, Roy (bib0032) 2013; 129
Pham, Cho (bib0057) 2021; 23
Theodorou, Skobridis, Tzakos, Ragoussis (bib0051) 2007; 48
Radadiya, Shahabuddin, Gaur (bib0106) 2023; 61
Gupta, Bhandari (bib0026) 2019
Yun, Wei, Sun, Li, Zhang, Zhang, Shen, Wang (bib0031) 2023; 25
Zhou, Lu, Wang, Zhu, Li (bib0054) 2012; 84
Lin, Yang, Meng, Si, Zhang, Zeng, Jiang (bib0078) 2023; 16
.
Al-Sabagh, Yehia, Eissa, Moustafa, Eshaq, Rabie, Elmetwally (bib0111) 2014; 53
Wang, Shen, Yu, Chen (bib0077) 2021; 194
(accessed May 20, 2021).
Shuangjun, Weihe, Haidong, Hao, Zhenwei, Chaonan (bib0060) 2020; 143
Zhang (bib0085) 2014; 742
Sinha, Patel, Patel (bib0011) 2010; 18
Lee, Liew (bib0013) 2020; 23
Imran, Kim, Al-Masry, Mahmood, Hassan, Haider, Ramay (bib0040) 2013; 98
Wang, Geng, Lu, Zhang (bib0055) 2015; 3
Chen, Chen, Cheng (bib0112) 1999; 48
Ghasemi, Neekzad, Ajdari, Kowsari, Ramakrishna (bib0025) 2021; 28
BP, BP's new technology to enable circularity for unrecyclable PET plastic waste, (2019).
Jehanno, Flores, Dove, Müller, Ruipérez, Sardon (bib0075) 2018; 20
W. DeWit, E. Towers, J.C. Guinchard, N. Ahmed, Plastics: the costs to society, the environment and the economy a report for Wwf By Wwf International 2021, 2021.
Guo, Lu, Li, Cao (bib0050) 2016; 6
Kim, Hwang, Bae, Yi, Kumazawa (bib0089) 2001; 81
Bhogle, Pandit (bib0081) 2018; 60
Du, Sun, Zeng, Wang, Wang, Chen (bib0056) 2020; 220
T. Pecorini, E.J. Moskala, D.M. Lange, R.W. Seymour, Process for the Preparation of Polyesters with High Recycle Content, WO2013025186A1, 2013.
Huang, Yan, Zhu, Cheng, Tang, Lu, Xin (bib0093) 2023; 208
Wang, Jin, Wang, Tang, Wang, Xiao, Su (bib0074) 2022; 10
Raheem, Noor, Hassan, Abd Hamid, Samsudin, Sabeen (bib0021) 2019; 225
Zheng, Wang, Zhang, Song, Jiao, Zhang (bib0095) 2022; 15
Shen, Worrell, Patel (bib0097) 2010; 55
Hu, Wang, Zhang, Qian, Xing, Wang (bib0039) 2020; 57
Ju, Zhou, Lu, Li, Yao, Cheng, Chen, Ge (bib0072) 2021; 23
Yoshioka, Motoki, Okuwaki (bib0079) 2001; 40
Geyer, Jambeck, Law (bib0006) 2017; 3
Al-Sabagh, Yehia, Harding, Eshaq, ElMetwally (bib0065) 2016; 18
Dulio, Po, Borrelli, Guarini, Santini (bib0012) 1995; 225
G.M. Mohamad Sadeghi, M. Sayaf, From PET waste to novel polyurethanes, in: material recycling - trends and perspectives, 2012: pp. 357–390.
Wang, Yan, Li, Zhang, Zhang (bib0061) 2010; 11
Alzuhairi, Khalil, Hadi (bib0113) 2017; 35
Fang, Liu, Xu, Zhou, Zhang, Ma, lu (bib0042) 2018; 156
Ju, Xiao, Lu, Liu, Yao, Zhang, Zhang (bib0073) 2018; 8
Wang, Gong, Shen, Yu, Chen (bib0114) 2021; 190
Pastore, Giacomantonio, Lupidi, Stella, Risoluti, Papa, Ballini, Sarasini, Tirillò, Marcantoni, Gabrielli (bib0107) 2023; 11
Liu, Yao, Zhou, Yao, Yan, Xu, Lu (bib0071) 2022; 10
Nguyen, Vu, Nguyen, Thuc, Bui, Perre (bib0096) 2020; 13
Al-Sabagh, Yehia, Eissa, Moustafa, Eshaq, Rabie, Elmetwally (bib0030) 2014; 110
Zhang, Xue, Wu, Zhang, Tan, Niu (bib0052) 2023; 14
Xin, Zhang, Huang, Huang, Jaffery, Yan, Zhou, Xu, Lu (bib0100) 2021; 296
FakhrHoseini, Dastanian (bib0017) 2013; 2013
Shojaei, Abtahi, Najafi (bib0022) 2020; 31
Tawfik, Eskander (bib0037) 2010; 95
Walkinshaw, Lindeque, Thompson, Tolhurst, Cole (bib0007) 2020; 190
Kamber, Tsujii, Keets, Waymouth (bib0005) 2010; 87
Bohre, Jadhao, Tripathi, Pant, Likozar, Saha (bib0024) 2023; 16
Liu, Fu, Lu, Zhou, Zhang (bib0063) 2019; 7
Liu, Yao, Yao, Zhou, Xin, Lu, Zhang (bib0062) 2020; 22
Welle (bib0101) 2011; 55
Park, Kim (bib0019) 2014; 1
Huck (bib0001) 2011; 472
Yao, Liu, Yan, Zhou, Xin, Lu, Zhang (bib0067) 2022; 248
Sharma, Moser (bib0018) 2014; 122
Das, Halgeri, Sahu, Parikh (bib0086) 2007; 14
Liu, Lu, Ju, Sun, Xin, Yao, Zhou, Zhang (bib0092) 2018; 57
de Dios Caputto, Navarro, Valentín, Marcos-Fernández (bib0023) 2022; 60
Popoola (bib0027) 1988; 36
(bib0099) 2018
Enivronmental Protection Agency (EPA), Advancing Sustainable Materials Management, 2020.
Engle, Yu (bib0043) 2013; 78
Chen, Wang, Shi, Zhang, Zhang, Li, Yang (bib0110) 2013; 127
Najafi-Shoa, Barikani, Ehsani, Ghaffari (bib0066) 2021; 192
Yang, Liu, Li, Song, Hu (bib0048) 2021; 135
Karayannidis, Chatziavgoustis, Achilias (bib0082) 2002; 21
Bin Jin, Jeong, Son, Park, Lee, Choi (bib0068) 2021; 26
Mishra, Goje (bib0090) 2003; 52
Fazekas, Lowy, Abdul Rahman, Lykkeberg, Zhou, Chambenahalli, Garden (bib0044) 2022; 51
Sammon, Yarwood, Everall (bib0029) 2000; 41
Jiang, Yan, Xin, Li, Guo, Zhou, Xu, Hu, Lu (bib0058) 2022; 199
Essaddam (bib0103) 2017
Kumar, Guria (bib0080) 2005; 42 A
Kao, Cheng, Wan (bib0109) 1998; 70
Ho (bib0016) 2015
Shukla, Harad (bib0034) 2006; 91
Bäckström, Odelius, Hakkarainen (bib0108) 2021; 151
Zheng, Wang, Song, Jiao, Wang (bib0094) 2022; 33
George, Kurian (bib0105) 2014; 53
Abedsoltan, Omodolor, Alba-Rubio, Coleman (bib0047) 2021
Tang, Meng, Cheng, Zhu, Yan, Zhang, Lu, Shi, Liu (bib0059) 2023
Jambeck, Geyer, Wilcox, Siegler, Perryman, Andrady, Narayan, Law (bib0004) 2015; 347
Palekar, Shah, Shukla (bib0035) 2012; 126
López-Fonseca, González-Velasco, Gutiérrez-Ortiz (bib0087) 2009; 146
Plastics Europe, Plastics - the facts 2021, 2021.
Vollmer, Jenks, Roelands, White, van Harmelen, de Wild, van der Laan, Meirer, Keurentjes, Weckhuysen (bib0098) 2020; 59
Winnacker, Rieger (bib0028) 2016; 7
Yan, Lian, Li, Meng, Zhang, Ge, Lu (bib0049) 2020; 154
Al-Salem, Lettieri, Baeyens (bib0014) 2009; 29
Sharuddin, Abnisa, Daud, Aroua (bib0015) 2016; 115
Sun, Wang, Yue (bib0116) 2016; 9
Barnard, Rubio Arias, Thielemans (bib0033) 2021; 23
Bartolome, Imran, Lee, Sangalang, Ahn, Kim (bib0041) 2014; 16
Li, Lu, Guo, Cao, Liu, Shi (bib0046) 2015; 61
Chen, Wang, Li, Yang (bib0083) 2012; 233–235
Yao, Lu, Ji, Tan, Zhang (bib0076) 2021; 60
Musale, Shukla (bib0036) 2016; 20
Delle Chiaie, McMahon, Williams, Price, Dove (bib0045) 2020; 11
Zheng, Liu, Wei, Sun, Zhao (bib0091) 2023; 267
Mishra (10.1016/j.polymdegradstab.2024.110729_bib0090) 2003; 52
Jambeck (10.1016/j.polymdegradstab.2024.110729_bib0004) 2015; 347
Essaddam (10.1016/j.polymdegradstab.2024.110729_bib0103) 2017
Shuangjun (10.1016/j.polymdegradstab.2024.110729_bib0060) 2020; 143
Wang (10.1016/j.polymdegradstab.2024.110729_bib0055) 2015; 3
Zheng (10.1016/j.polymdegradstab.2024.110729_bib0094) 2022; 33
Winnacker (10.1016/j.polymdegradstab.2024.110729_bib0028) 2016; 7
Lin (10.1016/j.polymdegradstab.2024.110729_bib0078) 2023; 16
Palekar (10.1016/j.polymdegradstab.2024.110729_bib0035) 2012; 126
Huck (10.1016/j.polymdegradstab.2024.110729_bib0001) 2011; 472
Kosmidis (10.1016/j.polymdegradstab.2024.110729_bib0088) 2001; 286
Xin (10.1016/j.polymdegradstab.2024.110729_bib0100) 2021; 296
Sharma (10.1016/j.polymdegradstab.2024.110729_bib0018) 2014; 122
Kim (10.1016/j.polymdegradstab.2024.110729_bib0089) 2001; 81
Abedsoltan (10.1016/j.polymdegradstab.2024.110729_bib0047) 2021
Wang (10.1016/j.polymdegradstab.2024.110729_bib0077) 2021; 194
Zheng (10.1016/j.polymdegradstab.2024.110729_bib0091) 2023; 267
Pham (10.1016/j.polymdegradstab.2024.110729_bib0057) 2021; 23
Kamber (10.1016/j.polymdegradstab.2024.110729_bib0005) 2010; 87
Raheem (10.1016/j.polymdegradstab.2024.110729_bib0021) 2019; 225
Al-Salem (10.1016/j.polymdegradstab.2024.110729_bib0014) 2009; 29
Sinha (10.1016/j.polymdegradstab.2024.110729_bib0011) 2010; 18
Kao (10.1016/j.polymdegradstab.2024.110729_bib0109) 1998; 70
Shukla (10.1016/j.polymdegradstab.2024.110729_bib0034) 2006; 91
Guo (10.1016/j.polymdegradstab.2024.110729_bib0050) 2016; 6
Zhang (10.1016/j.polymdegradstab.2024.110729_bib0115) 2018; 44
Al-Sabagh (10.1016/j.polymdegradstab.2024.110729_bib0030) 2014; 110
Ju (10.1016/j.polymdegradstab.2024.110729_bib0072) 2021; 23
Walkinshaw (10.1016/j.polymdegradstab.2024.110729_bib0007) 2020; 190
Liu (10.1016/j.polymdegradstab.2024.110729_bib0071) 2022; 10
Ho (10.1016/j.polymdegradstab.2024.110729_bib0016) 2015
Ghasemi (10.1016/j.polymdegradstab.2024.110729_bib0025) 2021; 28
Bartolome (10.1016/j.polymdegradstab.2024.110729_bib0041) 2014; 16
Bin Jin (10.1016/j.polymdegradstab.2024.110729_bib0068) 2021; 26
Du (10.1016/j.polymdegradstab.2024.110729_bib0056) 2020; 220
Wang (10.1016/j.polymdegradstab.2024.110729_bib0070) 2015; 17
FakhrHoseini (10.1016/j.polymdegradstab.2024.110729_bib0017) 2013; 2013
Bäckström (10.1016/j.polymdegradstab.2024.110729_bib0108) 2021; 151
Gupta (10.1016/j.polymdegradstab.2024.110729_bib0026) 2019
Jehanno (10.1016/j.polymdegradstab.2024.110729_bib0075) 2018; 20
Yang (10.1016/j.polymdegradstab.2024.110729_bib0048) 2021; 135
Liu (10.1016/j.polymdegradstab.2024.110729_bib0092) 2018; 57
Sun (10.1016/j.polymdegradstab.2024.110729_bib0116) 2016; 9
Wang (10.1016/j.polymdegradstab.2024.110729_bib0061) 2010; 11
10.1016/j.polymdegradstab.2024.110729_bib0009
Vollmer (10.1016/j.polymdegradstab.2024.110729_bib0098) 2020; 59
Yao (10.1016/j.polymdegradstab.2024.110729_bib0076) 2021; 60
Sammon (10.1016/j.polymdegradstab.2024.110729_bib0029) 2000; 41
Dulio (10.1016/j.polymdegradstab.2024.110729_bib0012) 1995; 225
Jiang (10.1016/j.polymdegradstab.2024.110729_bib0058) 2022; 199
Mancini (10.1016/j.polymdegradstab.2024.110729_bib0084) 2007; 46
Liu (10.1016/j.polymdegradstab.2024.110729_bib0053) 2023; 446
Yao (10.1016/j.polymdegradstab.2024.110729_bib0067) 2022; 248
Wang (10.1016/j.polymdegradstab.2024.110729_bib0114) 2021; 190
Barnard (10.1016/j.polymdegradstab.2024.110729_bib0033) 2021; 23
Imran (10.1016/j.polymdegradstab.2024.110729_bib0040) 2013; 98
Delle Chiaie (10.1016/j.polymdegradstab.2024.110729_bib0045) 2020; 11
Radadiya (10.1016/j.polymdegradstab.2024.110729_bib0106) 2023; 61
Pastore (10.1016/j.polymdegradstab.2024.110729_bib0107) 2023; 11
10.1016/j.polymdegradstab.2024.110729_bib0010
Park (10.1016/j.polymdegradstab.2024.110729_bib0019) 2014; 1
Ju (10.1016/j.polymdegradstab.2024.110729_bib0073) 2018; 8
de Dios Caputto (10.1016/j.polymdegradstab.2024.110729_bib0023) 2022; 60
Yun (10.1016/j.polymdegradstab.2024.110729_bib0031) 2023; 25
Chen (10.1016/j.polymdegradstab.2024.110729_bib0110) 2013; 127
Li (10.1016/j.polymdegradstab.2024.110729_bib0046) 2015; 61
Yoshioka (10.1016/j.polymdegradstab.2024.110729_bib0079) 2001; 40
(10.1016/j.polymdegradstab.2024.110729_bib0099) 2018
Lee (10.1016/j.polymdegradstab.2024.110729_bib0013) 2020; 23
George (10.1016/j.polymdegradstab.2024.110729_bib0105) 2014; 53
Najafi-Shoa (10.1016/j.polymdegradstab.2024.110729_bib0066) 2021; 192
Yan (10.1016/j.polymdegradstab.2024.110729_bib0049) 2020; 154
Geyer (10.1016/j.polymdegradstab.2024.110729_bib0006) 2017; 3
Zheng (10.1016/j.polymdegradstab.2024.110729_bib0095) 2022; 15
10.1016/j.polymdegradstab.2024.110729_bib0003
Al-Sabagh (10.1016/j.polymdegradstab.2024.110729_bib0065) 2016; 18
10.1016/j.polymdegradstab.2024.110729_bib0002
10.1016/j.polymdegradstab.2024.110729_bib0104
Theodorou (10.1016/j.polymdegradstab.2024.110729_bib0051) 2007; 48
Tang (10.1016/j.polymdegradstab.2024.110729_bib0059) 2023
Zhang (10.1016/j.polymdegradstab.2024.110729_bib0052) 2023; 14
Bhogle (10.1016/j.polymdegradstab.2024.110729_bib0081) 2018; 60
Chen (10.1016/j.polymdegradstab.2024.110729_bib0083) 2012; 233–235
Al-Sabagh (10.1016/j.polymdegradstab.2024.110729_bib0020) 2016; 25
López-Fonseca (10.1016/j.polymdegradstab.2024.110729_bib0087) 2009; 146
Bohre (10.1016/j.polymdegradstab.2024.110729_bib0024) 2023; 16
Popoola (10.1016/j.polymdegradstab.2024.110729_bib0027) 1988; 36
Musale (10.1016/j.polymdegradstab.2024.110729_bib0036) 2016; 20
Chaudhary (10.1016/j.polymdegradstab.2024.110729_bib0032) 2013; 129
Liu (10.1016/j.polymdegradstab.2024.110729_bib0062) 2020; 22
Liu (10.1016/j.polymdegradstab.2024.110729_bib0063) 2019; 7
Karayannidis (10.1016/j.polymdegradstab.2024.110729_bib0008) 2007; 292
Nguyen (10.1016/j.polymdegradstab.2024.110729_bib0096) 2020; 13
Fang (10.1016/j.polymdegradstab.2024.110729_bib0042) 2018; 156
Kumar (10.1016/j.polymdegradstab.2024.110729_bib0080) 2005; 42 A
Zhou (10.1016/j.polymdegradstab.2024.110729_bib0054) 2012; 84
Wang (10.1016/j.polymdegradstab.2024.110729_bib0074) 2022; 10
Al-Sabagh (10.1016/j.polymdegradstab.2024.110729_bib0111) 2014; 53
Mittal (10.1016/j.polymdegradstab.2024.110729_bib0038) 2010; 178
Das (10.1016/j.polymdegradstab.2024.110729_bib0086) 2007; 14
Zhu (10.1016/j.polymdegradstab.2024.110729_bib0069) 2022; 641
10.1016/j.polymdegradstab.2024.110729_bib0102
Fazekas (10.1016/j.polymdegradstab.2024.110729_bib0044) 2022; 51
Tawfik (10.1016/j.polymdegradstab.2024.110729_bib0037) 2010; 95
Shojaei (10.1016/j.polymdegradstab.2024.110729_bib0022) 2020; 31
Engle (10.1016/j.polymdegradstab.2024.110729_bib0043) 2013; 78
Sharuddin (10.1016/j.polymdegradstab.2024.110729_bib0015) 2016; 115
Alzuhairi (10.1016/j.polymdegradstab.2024.110729_bib0113) 2017; 35
Hu (10.1016/j.polymdegradstab.2024.110729_bib0039) 2020; 57
Shen (10.1016/j.polymdegradstab.2024.110729_bib0097) 2010; 55
Naumann (10.1016/j.polymdegradstab.2024.110729_bib0064) 2015; 137
Karayannidis (10.1016/j.polymdegradstab.2024.110729_bib0082) 2002; 21
Huang (10.1016/j.polymdegradstab.2024.110729_bib0093) 2023; 208
Welle (10.1016/j.polymdegradstab.2024.110729_bib0101) 2011; 55
Zhang (10.1016/j.polymdegradstab.2024.110729_bib0085) 2014; 742
Chen (10.1016/j.polymdegradstab.2024.110729_bib0112) 1999; 48
References_xml – volume: 84
  start-page: 789
  year: 2012
  end-page: 801
  ident: bib0054
  article-title: Effective catalysis of poly(ethylene terephthalate) (PET) degradation by metallic acetate ionic liquids
  publication-title: Pure and Applied Chemistry
– volume: 25
  start-page: 6901
  year: 2023
  end-page: 6913
  ident: bib0031
  article-title: Magnetic hollow micro-sized nanoaggregates for synergistically accelerating PET glycolysis
  publication-title: Green Chemistry
– volume: 42 A
  start-page: 237
  year: 2005
  end-page: 251
  ident: bib0080
  article-title: Alkaline hydrolysis of waste poly(ethylene terephthalate): a modified shrinking core model
  publication-title: J. Macromol. Sci. Pure Appl. Chem.
– year: 2017
  ident: bib0103
  article-title: Polyethylene Terephthalate Depolymerization
– volume: 14
  start-page: 6558
  year: 2023
  end-page: 6563
  ident: bib0052
  article-title: PET recycling under mild conditions via substituent-modulated intramolecular hydrolysis
  publication-title: Chem. Sci.
– volume: 48
  start-page: 885
  year: 1999
  end-page: 888
  ident: bib0112
  article-title: Kinetics of glycolysis of polyethylene terephthalate with zinc catalyst
  publication-title: Polym. Int.
– volume: 87
  start-page: 519
  year: 2010
  end-page: 521
  ident: bib0005
  article-title: The Depolymerization of Poly(ethylene terephthalate) (PET) Using N-Heterocyclic Carbenes from Ionic Liquids
  publication-title: Society.Society.
– volume: 28
  start-page: 43074
  year: 2021
  end-page: 43101
  ident: bib0025
  article-title: Mechanistic aspects of poly (ethylene terephthalate) recycling – toward enabling high quality sustainability decisions in waste management
  publication-title: Environ Sci Pollut Res
– volume: 40
  start-page: 75
  year: 2001
  end-page: 79
  ident: bib0079
  article-title: Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model
  publication-title: Ind. Eng. Chem. Res.
– reference: (accessed May 20, 2021).
– volume: 347
  start-page: 768
  year: 2015
  end-page: 771
  ident: bib0004
  article-title: Plastic waste inputs from land into the ocean
  publication-title: Science (1979)
– year: 2023
  ident: bib0059
  article-title: Mechanistic Insights of Cosolvent Efficient Enhancement of PET Methanol Alcohololysis
  publication-title: Ind. Eng. Chem. Res.
– volume: 6
  start-page: 43171
  year: 2016
  end-page: 43184
  ident: bib0050
  article-title: Tungsten-promoted titania as solid acid for catalytic hydrolysis of waste bottle PET in supercritical CO2
  publication-title: RSC. Adv.
– volume: 286
  start-page: 640
  year: 2001
  end-page: 647
  ident: bib0088
  article-title: Poly(ethylene terephthalate) Recycling and Recovery of Pure Terephthalic Acid. Kinetics of a Phase Transfer Catalyzed Alkaline Hydrolysis
  publication-title: Macromol. Mater. Eng.
– volume: 446
  year: 2023
  ident: bib0053
  article-title: Enhanced degradation of poly(ethylene terephthalate) by the addition of lactic acid /glycolic acid: composting degradation, seawater degradation behavior and comparison of degradation mechanism
  publication-title: J. Hazard. Mater.
– volume: 472
  start-page: 425
  year: 2011
  end-page: 426
  ident: bib0001
  article-title: Polymer networks take a bow
  publication-title: NatureNature
– volume: 3
  start-page: 25
  year: 2017
  end-page: 29
  ident: bib0006
  article-title: Production, use, and fate of all plastics ever made
  publication-title: Sci. Adv.
– volume: 190
  year: 2020
  ident: bib0007
  article-title: Microplastics and seafood: lower trophic organisms at highest risk of contamination
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 53
  start-page: 14185
  year: 2014
  end-page: 14198
  ident: bib0105
  article-title: Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) Waste
  publication-title: Ind. Eng. Chem. Res.
– volume: 60
  start-page: 3269
  year: 2022
  end-page: 3283
  ident: bib0023
  article-title: Chemical upcycling of poly(ethylene terephthalate) waste: moving to a circular model
  publication-title: Journal of Polymer Science
– volume: 16
  start-page: 279
  year: 2014
  end-page: 286
  ident: bib0041
  article-title: Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET
  publication-title: Green Chemistry
– volume: 23
  start-page: 3765
  year: 2021
  end-page: 3789
  ident: bib0033
  article-title: Chemolytic depolymerisation of PET: a review
  publication-title: Green Chemistry
– volume: 143
  start-page: 3489
  year: 2020
  end-page: 3497
  ident: bib0060
  article-title: Glycolysis of poly(ethylene terephthalate) waste catalyzed by mixed Lewis acidic ionic liquids
  publication-title: J. Therm. Anal. Calorim.
– volume: 15
  year: 2022
  ident: bib0095
  article-title: Molecular dynamics simulation and structure changes of polyester in water and non-aqueous solvents
  publication-title: Materials. (Basel)
– volume: 1
  start-page: 1
  year: 2014
  end-page: 17
  ident: bib0019
  article-title: Poly (ethylene terephthalate) recycling for high value added textiles
  publication-title: Fashion and Textiles
– volume: 48
  start-page: 8230
  year: 2007
  end-page: 8233
  ident: bib0051
  article-title: A simple method for the alkaline hydrolysis of esters
  publication-title: Tetrahedron. Lett.
– volume: 25
  start-page: 53
  year: 2016
  end-page: 64
  ident: bib0020
  article-title: Greener routes for recycling of polyethylene terephthalate
  publication-title: Egyptian Journal of Petroleum
– volume: 70
  start-page: 1939
  year: 1998
  end-page: 1945
  ident: bib0109
  article-title: Investigation of Alkaline Hydrolysis of Polyethylene Terephthalate by Differential Scanning Calorimetry and Thermogravimetric Analysis
  publication-title: J. Appl. Polym. Sci.
– volume: 129
  start-page: 2779
  year: 2013
  end-page: 2788
  ident: bib0032
  article-title: Microwave assisted glycolysis of poly(ethylene terepthalate) for preparation of polyester polyols
  publication-title: J. Appl. Polym. Sci.
– volume: 29
  start-page: 2625
  year: 2009
  end-page: 2643
  ident: bib0014
  article-title: Recycling and recovery routes of plastic solid waste (PSW): a review
  publication-title: Waste Manage
– volume: 194
  year: 2021
  ident: bib0077
  article-title: Metal ions immobilized on polymer ionic liquid as novel efficient and facile recycled catalyst for glycolysis of PET
  publication-title: Polym. Degrad. Stab.
– reference: W. DeWit, E. Towers, J.C. Guinchard, N. Ahmed, Plastics: the costs to society, the environment and the economy a report for Wwf By Wwf International 2021, 2021.
– volume: 10
  year: 2022
  ident: bib0071
  article-title: Recycling of full components of polyester/cotton blends catalyzed by betaine-based deep eutectic solvents
  publication-title: J. Environ. Chem. Eng.
– volume: 55
  start-page: 34
  year: 2010
  end-page: 52
  ident: bib0097
  article-title: Open-loop recycling: a LCA case study of PET bottle-to-fibre recycling
  publication-title: Resour. Conserv. Recycl.
– volume: 154
  start-page: 596
  year: 2020
  end-page: 605
  ident: bib0049
  article-title: Deeper insight into hydrolysis mechanisms of polyester/cotton blended fabrics for separation by explicit solvent models
  publication-title: Int. J. Biol. Macromol.
– volume: 14
  start-page: 173
  year: 2007
  end-page: 177
  ident: bib0086
  article-title: Alkaline hydrolysis of poly(ethylene terephthalate) in presence of a phase transfer catalyst
  publication-title: Indian J. Chem. Technol.
– volume: 52
  start-page: 337
  year: 2003
  end-page: 342
  ident: bib0090
  article-title: Kinetic and thermodynamic study of methanolysis of poly(ethylene terephthalate) waste powder
  publication-title: Polym. Int.
– volume: 55
  start-page: 865
  year: 2011
  end-page: 875
  ident: bib0101
  article-title: Twenty years of PET bottle to bottle recycling - An overview
  publication-title: Resour. Conserv. Recycl.
– volume: 26
  year: 2021
  ident: bib0068
  article-title: Synthesis of two-dimensional holey MnO2/graphene oxide nanosheets with high catalytic performance for the glycolysis of poly(ethylene terephthalate)
  publication-title: Mater. Today Commun.
– reference: G.M. Mohamad Sadeghi, M. Sayaf, From PET waste to novel polyurethanes, in: material recycling - trends and perspectives, 2012: pp. 357–390.
– reference: Plastics Europe, Plastics - the facts 2021, 2021.
– volume: 53
  start-page: 18443
  year: 2014
  end-page: 18451
  ident: bib0111
  article-title: Glycolysis of poly(ethylene terephthalate) catalyzed by the Lewis base ionic liquid [Bmim][OAc]
  publication-title: Ind. Eng. Chem. Res.
– volume: 51
  start-page: 8793
  year: 2022
  end-page: 8814
  ident: bib0044
  article-title: Main group metal polymerisation catalysts
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 8209
  year: 2018
  end-page: 8219
  ident: bib0073
  article-title: Theoretical studies on glycolysis of poly(ethylene terephthalate) in ionic liquids
  publication-title: RSC. Adv.
– year: 2019
  ident: bib0026
  article-title: Chemical Depolymerization of PET Bottles via Ammonolysis and Aminolysis
– volume: 122
  start-page: 79
  year: 2014
  end-page: 90
  ident: bib0018
  article-title: Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags
  publication-title: Fuel Processing Technology
– volume: 33
  year: 2022
  ident: bib0094
  article-title: Molecular dynamics simulation of effects of three accelerators on the microstructure of polyesters in non-aqueous solvents
  publication-title: Mater. Today Commun.
– volume: 61
  start-page: 200
  year: 2015
  end-page: 214
  ident: bib0046
  article-title: Reaction kinetics and mechanism of catalyzed hydrolysis of waste PET using solid acid catalyst in supercritical CO2
  publication-title: AIChE Journal
– volume: 199
  year: 2022
  ident: bib0058
  article-title: Poly(ionic liquid)s as efficient and recyclable catalysts for methanolysis of PET
  publication-title: Polym. Degrad. Stab.
– volume: 59
  start-page: 15402
  year: 2020
  end-page: 15423
  ident: bib0098
  article-title: Beyond Mechanical Recycling: giving New Life to Plastic Waste
  publication-title: Angew. Chemie. Int. Ed.
– volume: 7
  start-page: 3292
  year: 2019
  end-page: 3300
  ident: bib0063
  article-title: Lewis Acid-Base Synergistic Catalysis for Polyethylene Terephthalate Degradation by 1,3-Dimethylurea/Zn(OAc)2 Deep Eutectic Solvent
  publication-title: ACS. Sustain. Chem. Eng.
– volume: 16
  year: 2023
  ident: bib0078
  article-title: Oxygen Vacancy Promoted Generation of Monatomic Oxygen Anion over Ni2+-Doped MgO for Efficient Glycolysis of Waste PET**
  publication-title: ChemSusChem.ChemSusChem.
– volume: 296
  year: 2021
  ident: bib0100
  article-title: Progress in the catalytic glycolysis of polyethylene terephthalate
  publication-title: J. Environ. Manage
– volume: 110
  start-page: 364
  year: 2014
  end-page: 377
  ident: bib0030
  article-title: Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly(ethylene terephthalate)
  publication-title: Polym. Degrad. Stab.
– volume: 57
  start-page: 430
  year: 2020
  end-page: 438
  ident: bib0039
  article-title: Synthesis of poly(ethylene terephthalate) based on glycolysis of waste PET fiber
  publication-title: Journal of Macromolecular Science, Part A: Pure and Applied Chemistry
– volume: 16
  year: 2023
  ident: bib0024
  article-title: Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts
  publication-title: ChemSusChem.ChemSusChem.
– volume: 23
  start-page: 32
  year: 2020
  end-page: 43
  ident: bib0013
  article-title: Tertiary recycling of plastics waste: an analysis of feedstock, chemical and biological degradation methods
  publication-title: J. Mater. Cycles. Waste Manage
– volume: 641
  year: 2022
  ident: bib0069
  article-title: Molecular mechanism of waste polyethylene terephthalate recycling by the 1,5,7-triazabicyclo[4.4.0]decium acetate/zinc acetate deep eutectic solvent: the crucial role of 1,5,7-triazabicyclo[4.4.0]decium cation
  publication-title: Appl Catal A Gen
– volume: 126
  start-page: 1174
  year: 2012
  end-page: 1181
  ident: bib0035
  article-title: Ionic Liquid-Catalyzed Aminolysis of Poly(ethyleneterephthalate) Waste
  publication-title: J. Appl. Polym. Sci.
– volume: 192
  year: 2021
  ident: bib0066
  article-title: Cobalt-based ionic liquid grafted on graphene as a heterogeneous catalyst for poly (ethylene terephthalate) glycolysis
  publication-title: Polym. Degrad. Stab.
– volume: 36
  start-page: 1677
  year: 1988
  end-page: 1683
  ident: bib0027
  article-title: Polyester formation: aminolytic degradation and proposed mechanisms of the reaction
  publication-title: J. Appl. Polym. Sci.
– reference: Enivronmental Protection Agency (EPA), Advancing Sustainable Materials Management, 2020.
– volume: 35
  start-page: 831
  year: 2017
  end-page: 837
  ident: bib0113
  article-title: Nano ZnO Catalyst for Chemical Recycling of Polyethylene terephthalate (PET)
  publication-title: Eng. Technol. J.
– volume: 225
  start-page: 1052
  year: 2019
  end-page: 1064
  ident: bib0021
  article-title: Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review
  publication-title: J. Clean. Prod.
– volume: 18
  start-page: 3997
  year: 2016
  end-page: 4003
  ident: bib0065
  article-title: Fe3O4-boosted MWCNT as an efficient sustainable catalyst for PET glycolysis
  publication-title: Green Chemistry
– volume: 7
  start-page: 7039
  year: 2016
  end-page: 7046
  ident: bib0028
  article-title: Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications
  publication-title: Polym. Chem.
– volume: 178
  start-page: 390
  year: 2010
  end-page: 396
  ident: bib0038
  article-title: Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis
  publication-title: J. Hazard. Mater.
– reference: BP, BP's new technology to enable circularity for unrecyclable PET plastic waste, (2019).
– volume: 20
  start-page: 106
  year: 2016
  end-page: 120
  ident: bib0036
  article-title: Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste
  publication-title: International Journal of Plastics Technology
– volume: 57
  start-page: 16239
  year: 2018
  end-page: 16245
  ident: bib0092
  article-title: Ultrafast homogeneous glycolysis of waste polyethylene terephthalate via a dissolution-degradation strategy
  publication-title: Ind. Eng. Chem. Res.
– volume: 190
  year: 2021
  ident: bib0114
  article-title: Formation of Bis(hydroxyethyl) terephthalate from waste plastic using ionic liquid as catalyst
  publication-title: Polym. Degrad. Stab.
– volume: 46
  start-page: 135
  year: 2007
  end-page: 144
  ident: bib0084
  article-title: Post consumer pet depolymerization by acid hydrolysis
  publication-title: Polym. Plast. Technol. Eng.
– volume: 23
  start-page: 511
  year: 2021
  ident: bib0057
  article-title: Low-energy catalytic methanolysis of poly(ethyleneterephthalate)
  publication-title: Green Chemistry
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 5
  ident: bib0017
  article-title: Predicting Pyrolysis Products of PE, PP, and PET Using NRTL Activity Coefficient Model
  publication-title: J. Chem.
– volume: 742
  start-page: 1
  year: 2014
  end-page: 5
  ident: bib0085
  article-title: Kinetics of hydrolysis of poly(ethylene terephthalate) wastes catalyzed by dual functional phase transfer catalyst: a mechanism of chain-end scission
  publication-title: Eur. J. Pharmacol.
– volume: 156
  start-page: 22
  year: 2018
  end-page: 31
  ident: bib0042
  article-title: High-efficiency glycolysis of poly(ethylene terephthalate) by sandwich-structure polyoxometalate catalyst with two active sites
  publication-title: Polym. Degrad. Stab.
– volume: 44
  start-page: 14377
  year: 2018
  end-page: 14385
  ident: bib0115
  article-title: Comparison of microwave and conventional heating methods for oxidative stabilization of polyacrylonitrile fibers at different holding time and heating rate
  publication-title: Ceram. Int.
– volume: 9
  year: 2016
  ident: bib0116
  article-title: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies
  publication-title: Materials. (Basel)
– volume: 61
  start-page: 1241
  year: 2023
  end-page: 1251
  ident: bib0106
  article-title: A facile approach toward the synthesis of terephthalic acid via aminolytic depolymerization of PET waste and studies on the kinetics of depolymerization
  publication-title: J. Polym. Sci.
– volume: 10
  start-page: 7965
  year: 2022
  end-page: 7973
  ident: bib0074
  article-title: Cyanamide as a Highly Efficient Organocatalyst for the Glycolysis Recycling of PET
  publication-title: ACS. Sustain. Chem. Eng.
– volume: 41
  start-page: 2521
  year: 2000
  end-page: 2534
  ident: bib0029
  article-title: A FTIR-ATR study of liquid diffusion processes in PET films: comparison of water with simple alcohols
  publication-title: Polymer. (Guildf)
– volume: 115
  start-page: 308
  year: 2016
  end-page: 326
  ident: bib0015
  article-title: A review on pyrolysis of plastic wastes
  publication-title: Energy Convers. Manage
– volume: 11
  start-page: 1450
  year: 2020
  end-page: 1453
  ident: bib0045
  article-title: Dual-catalytic depolymerization of polyethylene terephthalate (PET)
  publication-title: Polym. Chem.
– volume: 23
  start-page: 18659
  year: 2021
  end-page: 18668
  ident: bib0072
  article-title: Mechanistic insight into the roles of anions and cations in the degradation of poly(ethylene terephthalate) catalyzed by ionic liquids
  publication-title: Physical Chemistry Chemical Physics
– volume: 127
  start-page: 2809
  year: 2013
  end-page: 2815
  ident: bib0110
  article-title: Kinetics of glycolysis of poly(ethylene terephthalate) under microwave irradiation
  publication-title: J. Appl. Polym. Sci.
– year: 2018
  ident: bib0099
  article-title: Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC On Waste
– volume: 31
  start-page: 2912
  year: 2020
  end-page: 2938
  ident: bib0022
  article-title: Chemical recycling of PET: a stepping-stone toward sustainability
  publication-title: Polym. Adv. Technol.
– volume: 95
  start-page: 187
  year: 2010
  end-page: 194
  ident: bib0037
  article-title: Chemical recycling of poly(ethylene terephthalate) waste using ethanolamine. Sorting of the end products
  publication-title: Polym. Degrad. Stab.
– volume: 220
  year: 2020
  ident: bib0056
  article-title: ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate
  publication-title: Chem. Eng. Sci.
– volume: 98
  start-page: 904
  year: 2013
  end-page: 915
  ident: bib0040
  article-title: Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis
  publication-title: Polym. Degrad. Stab.
– volume: 292
  start-page: 128
  year: 2007
  end-page: 146
  ident: bib0008
  article-title: Chemical recycling of poly(ethylene terephthalate)
  publication-title: Macromol. Mater. Eng.
– volume: 18
  start-page: 8
  year: 2010
  end-page: 25
  ident: bib0011
  article-title: Pet waste management by chemical recycling: a review
  publication-title: J. Polym. Environ.
– volume: 208
  year: 2023
  ident: bib0093
  article-title: Depolymerization of polyethylene terephthalate with glycol under comparatively mild conditions
  publication-title: Polym. Degrad. Stab.
– volume: 248
  year: 2022
  ident: bib0067
  article-title: Colorless BHET obtained from PET by modified mesoporous catalyst ZnO/SBA-15
  publication-title: Chem. Eng. Sci.
– volume: 22
  start-page: 3122
  year: 2020
  end-page: 3131
  ident: bib0062
  article-title: Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids
  publication-title: Green Chemistry
– volume: 60
  start-page: 122
  year: 2018
  end-page: 140
  ident: bib0081
  article-title: Ultrasound-assisted alkaline hydrolysis of waste poly(Ethylene Terephthalate) in aqueous and non-aqueous media at low temperature
  publication-title: Indian Chem Eng
– start-page: 222
  year: 2021
  ident: bib0047
  article-title: Poly (4-styrenesulfonic acid): a recoverable and reusable catalyst for acid hydrolysis of polyethylene terephthalate
  publication-title: Polymer. (Guildf)
– volume: 21
  start-page: 250
  year: 2002
  end-page: 259
  ident: bib0082
  article-title: Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis
  publication-title: Adv Polym Technol
– volume: 78
  start-page: 8927
  year: 2013
  end-page: 8955
  ident: bib0043
  article-title: Developing Ligands for Palladium(II)-Catalyzed C–H Functionalization: intimate Dialogue between Ligand and Substrate
  publication-title: Journal of Organic Chemistry
– volume: 17
  start-page: 2473
  year: 2015
  end-page: 2479
  ident: bib0070
  article-title: Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate)(PET)
  publication-title: Green Chemistry
– volume: 233–235
  start-page: 627
  year: 2012
  end-page: 631
  ident: bib0083
  article-title: Kinetics of Glycolysis of Poly (Ethylene Terephthalate) by Shrinking-core Model
  publication-title: Adv. Mat. Res.
– volume: 81
  start-page: 2102
  year: 2001
  end-page: 2108
  ident: bib0089
  article-title: Depolymerization of Polyethyleneterephthalate in Supercritical Methanol
  publication-title: J. Appl. Polym. Sci.
– volume: 20
  start-page: 1205
  year: 2018
  end-page: 1212
  ident: bib0075
  article-title: Organocatalysed depolymerisation of PET in a fully sustainable cycle using thermally stable protic ionic salt
  publication-title: Green Chemistry
– volume: 3
  start-page: 340
  year: 2015
  end-page: 348
  ident: bib0055
  article-title: First-row transition metal-containing ionic liquids as highly active catalysts for the glycolysis of poly(ethylene terephthalate) (PET)
  publication-title: ACS. Sustain. Chem. Eng.
– reference: .
– volume: 225
  start-page: 109
  year: 1995
  end-page: 122
  ident: bib0012
  article-title: Characterization of low-molecular-weight oligomers in recycled poly(ethylene terephthalate)
  publication-title: Die Angewandte Makromolekulare Chemie
– volume: 13
  start-page: 1461
  year: 2020
  end-page: 1476
  ident: bib0096
  article-title: Synergistic influences ofstearic acid coating and recycled PET microfibers on the enhanced properties of com- posite materials
  publication-title: Materials. (Basel)
– volume: 137
  start-page: 14439
  year: 2015
  end-page: 14445
  ident: bib0064
  article-title: Dual Catalysis for Selective Ring-Opening Polymerization of Lactones: evolution toward Simplicity
  publication-title: J. Am. Chem. Soc.
– volume: 91
  start-page: 1850
  year: 2006
  end-page: 1854
  ident: bib0034
  article-title: Aminolysis of polyethylene terephthalate waste
  publication-title: Polym. Degrad. Stab.
– volume: 60
  start-page: 4180
  year: 2021
  end-page: 4188
  ident: bib0076
  article-title: Multiple hydrogen bonds promote the nonmetallic degradation process of polyethylene terephthalate with an amino acid ionic liquid catalyst
  publication-title: Ind. Eng. Chem. Res.
– volume: 267
  year: 2023
  ident: bib0091
  article-title: Molecular-level swelling behaviors of poly (ethylene terephthalate) glycolysis using ionic liquids as catalyst
  publication-title: Chem. Eng. Sci.
– volume: 11
  start-page: 763
  year: 2010
  end-page: 767
  ident: bib0061
  article-title: Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly(ethylene terephthalate)
  publication-title: Catal. Commun.
– volume: 135
  start-page: 267
  year: 2021
  end-page: 274
  ident: bib0048
  article-title: Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid
  publication-title: Waste Management
– volume: 151
  year: 2021
  ident: bib0108
  article-title: Ultrafast microwave assisted recycling of PET to a family of functional precursors and materials
  publication-title: Eur. Polym. J.
– volume: 11
  start-page: 1
  year: 2023
  end-page: 11
  ident: bib0107
  article-title: Novel terephthalamide diol monomers synthesis from PET waste to Poly(Urethane acrylates)
  publication-title: Front. Chem.
– year: 2015
  ident: bib0016
  article-title: Waste Plastics into Fuel Oil?
  publication-title: Science in Society
– volume: 146
  start-page: 287
  year: 2009
  end-page: 294
  ident: bib0087
  article-title: A shrinking core model for the alkaline hydrolysis of PET assisted by tributylhexadecylphosphonium bromide
  publication-title: Chem. Eng. J.
– reference: T. Pecorini, E.J. Moskala, D.M. Lange, R.W. Seymour, Process for the Preparation of Polyesters with High Recycle Content, WO2013025186A1, 2013.
– volume: 84
  start-page: 789
  year: 2012
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0054
  article-title: Effective catalysis of poly(ethylene terephthalate) (PET) degradation by metallic acetate ionic liquids
  publication-title: Pure and Applied Chemistry
  doi: 10.1351/PAC-CON-11-06-10
– volume: 59
  start-page: 15402
  year: 2020
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0098
  article-title: Beyond Mechanical Recycling: giving New Life to Plastic Waste
  publication-title: Angew. Chemie. Int. Ed.
  doi: 10.1002/anie.201915651
– volume: 44
  start-page: 14377
  year: 2018
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0115
  article-title: Comparison of microwave and conventional heating methods for oxidative stabilization of polyacrylonitrile fibers at different holding time and heating rate
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.05.047
– volume: 248
  year: 2022
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0067
  article-title: Colorless BHET obtained from PET by modified mesoporous catalyst ZnO/SBA-15
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.117109
– volume: 61
  start-page: 200
  year: 2015
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0046
  article-title: Reaction kinetics and mechanism of catalyzed hydrolysis of waste PET using solid acid catalyst in supercritical CO2
  publication-title: AIChE Journal
  doi: 10.1002/aic.14632
– volume: 7
  start-page: 7039
  year: 2016
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0028
  article-title: Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY01783E
– volume: 18
  start-page: 8
  year: 2010
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0011
  article-title: Pet waste management by chemical recycling: a review
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-008-0106-7
– volume: 267
  year: 2023
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0091
  article-title: Molecular-level swelling behaviors of poly (ethylene terephthalate) glycolysis using ionic liquids as catalyst
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.118329
– volume: 95
  start-page: 187
  year: 2010
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0037
  article-title: Chemical recycling of poly(ethylene terephthalate) waste using ethanolamine. Sorting of the end products
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2009.11.026
– volume: 16
  start-page: 279
  year: 2014
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0041
  article-title: Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET
  publication-title: Green Chemistry
  doi: 10.1039/C3GC41834K
– year: 2017
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0103
– volume: 33
  year: 2022
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0094
  article-title: Molecular dynamics simulation of effects of three accelerators on the microstructure of polyesters in non-aqueous solvents
  publication-title: Mater. Today Commun.
– volume: 51
  start-page: 8793
  year: 2022
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0044
  article-title: Main group metal polymerisation catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00048B
– volume: 641
  year: 2022
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0069
  article-title: Molecular mechanism of waste polyethylene terephthalate recycling by the 1,5,7-triazabicyclo[4.4.0]decium acetate/zinc acetate deep eutectic solvent: the crucial role of 1,5,7-triazabicyclo[4.4.0]decium cation
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2022.118681
– volume: 7
  start-page: 3292
  year: 2019
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0063
  article-title: Lewis Acid-Base Synergistic Catalysis for Polyethylene Terephthalate Degradation by 1,3-Dimethylurea/Zn(OAc)2 Deep Eutectic Solvent
  publication-title: ACS. Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05324
– volume: 129
  start-page: 2779
  year: 2013
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0032
  article-title: Microwave assisted glycolysis of poly(ethylene terepthalate) for preparation of polyester polyols
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.38970
– volume: 143
  start-page: 3489
  year: 2020
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0060
  article-title: Glycolysis of poly(ethylene terephthalate) waste catalyzed by mixed Lewis acidic ionic liquids
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-10331-8
– volume: 10
  start-page: 7965
  year: 2022
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0074
  article-title: Cyanamide as a Highly Efficient Organocatalyst for the Glycolysis Recycling of PET
  publication-title: ACS. Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.2c01235
– ident: 10.1016/j.polymdegradstab.2024.110729_bib0104
– volume: 16
  year: 2023
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0024
  article-title: Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts
  publication-title: ChemSusChem.ChemSusChem.
– volume: 233–235
  start-page: 627
  year: 2012
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0083
  article-title: Kinetics of Glycolysis of Poly (Ethylene Terephthalate) by Shrinking-core Model
  publication-title: Adv. Mat. Res.
– volume: 29
  start-page: 2625
  year: 2009
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0014
  article-title: Recycling and recovery routes of plastic solid waste (PSW): a review
  publication-title: Waste Manage
  doi: 10.1016/j.wasman.2009.06.004
– volume: 347
  start-page: 768
  year: 2015
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0004
  article-title: Plastic waste inputs from land into the ocean
  publication-title: Science (1979)
– volume: 55
  start-page: 865
  year: 2011
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0101
  article-title: Twenty years of PET bottle to bottle recycling - An overview
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2011.04.009
– volume: 742
  start-page: 1
  year: 2014
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0085
  article-title: Kinetics of hydrolysis of poly(ethylene terephthalate) wastes catalyzed by dual functional phase transfer catalyst: a mechanism of chain-end scission
  publication-title: Eur. J. Pharmacol.
– volume: 23
  start-page: 32
  year: 2020
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0013
  article-title: Tertiary recycling of plastics waste: an analysis of feedstock, chemical and biological degradation methods
  publication-title: J. Mater. Cycles. Waste Manage
  doi: 10.1007/s10163-020-01106-2
– volume: 57
  start-page: 430
  year: 2020
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0039
  article-title: Synthesis of poly(ethylene terephthalate) based on glycolysis of waste PET fiber
  publication-title: Journal of Macromolecular Science, Part A: Pure and Applied Chemistry
  doi: 10.1080/10601325.2019.1709498
– volume: 42 A
  start-page: 237
  year: 2005
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0080
  article-title: Alkaline hydrolysis of waste poly(ethylene terephthalate): a modified shrinking core model
  publication-title: J. Macromol. Sci. Pure Appl. Chem.
  doi: 10.1081/MA-200050346
– volume: 146
  start-page: 287
  year: 2009
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0087
  article-title: A shrinking core model for the alkaline hydrolysis of PET assisted by tributylhexadecylphosphonium bromide
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.09.039
– volume: 60
  start-page: 122
  year: 2018
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0081
  article-title: Ultrasound-assisted alkaline hydrolysis of waste poly(Ethylene Terephthalate) in aqueous and non-aqueous media at low temperature
  publication-title: Indian Chem Eng
  doi: 10.1080/00194506.2017.1310634
– volume: 11
  start-page: 1
  year: 2023
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0107
  article-title: Novel terephthalamide diol monomers synthesis from PET waste to Poly(Urethane acrylates)
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2023.1234763
– volume: 178
  start-page: 390
  year: 2010
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0038
  article-title: Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.01.092
– volume: 23
  start-page: 3765
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0033
  article-title: Chemolytic depolymerisation of PET: a review
  publication-title: Green Chemistry
  doi: 10.1039/D1GC00887K
– volume: 6
  start-page: 43171
  year: 2016
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0050
  article-title: Tungsten-promoted titania as solid acid for catalytic hydrolysis of waste bottle PET in supercritical CO2
  publication-title: RSC. Adv.
  doi: 10.1039/C6RA06298A
– volume: 25
  start-page: 6901
  year: 2023
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0031
  article-title: Magnetic hollow micro-sized nanoaggregates for synergistically accelerating PET glycolysis
  publication-title: Green Chemistry
  doi: 10.1039/D3GC01762A
– volume: 81
  start-page: 2102
  year: 2001
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0089
  article-title: Depolymerization of Polyethyleneterephthalate in Supercritical Methanol
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1645
– volume: 208
  year: 2023
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0093
  article-title: Depolymerization of polyethylene terephthalate with glycol under comparatively mild conditions
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2022.110245
– volume: 28
  start-page: 43074
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0025
  article-title: Mechanistic aspects of poly (ethylene terephthalate) recycling – toward enabling high quality sustainability decisions in waste management
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-14925-z
– volume: 31
  start-page: 2912
  year: 2020
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0022
  article-title: Chemical recycling of PET: a stepping-stone toward sustainability
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5023
– volume: 154
  start-page: 596
  year: 2020
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0049
  article-title: Deeper insight into hydrolysis mechanisms of polyester/cotton blended fabrics for separation by explicit solvent models
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.03.130
– volume: 21
  start-page: 250
  year: 2002
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0082
  article-title: Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis
  publication-title: Adv Polym Technol
  doi: 10.1002/adv.10029
– volume: 91
  start-page: 1850
  year: 2006
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0034
  article-title: Aminolysis of polyethylene terephthalate waste
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2005.11.005
– start-page: 222
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0047
  article-title: Poly (4-styrenesulfonic acid): a recoverable and reusable catalyst for acid hydrolysis of polyethylene terephthalate
  publication-title: Polymer. (Guildf)
– volume: 137
  start-page: 14439
  year: 2015
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0064
  article-title: Dual Catalysis for Selective Ring-Opening Polymerization of Lactones: evolution toward Simplicity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09502
– volume: 225
  start-page: 109
  year: 1995
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0012
  article-title: Characterization of low-molecular-weight oligomers in recycled poly(ethylene terephthalate)
  publication-title: Die Angewandte Makromolekulare Chemie
  doi: 10.1002/apmc.1995.052250110
– volume: 20
  start-page: 1205
  year: 2018
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0075
  article-title: Organocatalysed depolymerisation of PET in a fully sustainable cycle using thermally stable protic ionic salt
  publication-title: Green Chemistry
  doi: 10.1039/C7GC03396F
– volume: 40
  start-page: 75
  year: 2001
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0079
  article-title: Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie000592u
– volume: 190
  year: 2020
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0007
  article-title: Microplastics and seafood: lower trophic organisms at highest risk of contamination
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.110066
– volume: 60
  start-page: 4180
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0076
  article-title: Multiple hydrogen bonds promote the nonmetallic degradation process of polyethylene terephthalate with an amino acid ionic liquid catalyst
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c06073
– volume: 15
  year: 2022
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0095
  article-title: Molecular dynamics simulation and structure changes of polyester in water and non-aqueous solvents
  publication-title: Materials. (Basel)
– volume: 194
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0077
  article-title: Metal ions immobilized on polymer ionic liquid as novel efficient and facile recycled catalyst for glycolysis of PET
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2021.109751
– ident: 10.1016/j.polymdegradstab.2024.110729_bib0102
– volume: 156
  start-page: 22
  year: 2018
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0042
  article-title: High-efficiency glycolysis of poly(ethylene terephthalate) by sandwich-structure polyoxometalate catalyst with two active sites
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2018.07.004
– volume: 3
  start-page: 340
  year: 2015
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0055
  article-title: First-row transition metal-containing ionic liquids as highly active catalysts for the glycolysis of poly(ethylene terephthalate) (PET)
  publication-title: ACS. Sustain. Chem. Eng.
  doi: 10.1021/sc5007522
– ident: 10.1016/j.polymdegradstab.2024.110729_bib0003
– volume: 11
  start-page: 763
  year: 2010
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0061
  article-title: Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly(ethylene terephthalate)
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2010.02.011
– volume: 25
  start-page: 53
  year: 2016
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0020
  article-title: Greener routes for recycling of polyethylene terephthalate
  publication-title: Egyptian Journal of Petroleum
  doi: 10.1016/j.ejpe.2015.03.001
– volume: 78
  start-page: 8927
  year: 2013
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0043
  article-title: Developing Ligands for Palladium(II)-Catalyzed C–H Functionalization: intimate Dialogue between Ligand and Substrate
  publication-title: Journal of Organic Chemistry
  doi: 10.1021/jo400159y
– volume: 9
  year: 2016
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0116
  article-title: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies
  publication-title: Materials. (Basel)
  doi: 10.3390/ma9040231
– volume: 110
  start-page: 364
  year: 2014
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0030
  article-title: Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly(ethylene terephthalate)
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2014.10.005
– volume: 10
  year: 2022
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0071
  article-title: Recycling of full components of polyester/cotton blends catalyzed by betaine-based deep eutectic solvents
  publication-title: J. Environ. Chem. Eng.
– volume: 8
  start-page: 8209
  year: 2018
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0073
  article-title: Theoretical studies on glycolysis of poly(ethylene terephthalate) in ionic liquids
  publication-title: RSC. Adv.
  doi: 10.1039/C7RA13173A
– volume: 11
  start-page: 1450
  year: 2020
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0045
  article-title: Dual-catalytic depolymerization of polyethylene terephthalate (PET)
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY01920K
– year: 2023
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0059
  article-title: Mechanistic Insights of Cosolvent Efficient Enhancement of PET Methanol Alcohololysis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c04419
– volume: 48
  start-page: 8230
  year: 2007
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0051
  article-title: A simple method for the alkaline hydrolysis of esters
  publication-title: Tetrahedron. Lett.
  doi: 10.1016/j.tetlet.2007.09.074
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0017
  article-title: Predicting Pyrolysis Products of PE, PP, and PET Using NRTL Activity Coefficient Model
  publication-title: J. Chem.
  doi: 10.1155/2013/487676
– volume: 446
  year: 2023
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0053
  article-title: Enhanced degradation of poly(ethylene terephthalate) by the addition of lactic acid /glycolic acid: composting degradation, seawater degradation behavior and comparison of degradation mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.130670
– volume: 53
  start-page: 18443
  year: 2014
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0111
  article-title: Glycolysis of poly(ethylene terephthalate) catalyzed by the Lewis base ionic liquid [Bmim][OAc]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie503677w
– volume: 57
  start-page: 16239
  year: 2018
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0092
  article-title: Ultrafast homogeneous glycolysis of waste polyethylene terephthalate via a dissolution-degradation strategy
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b03854
– volume: 36
  start-page: 1677
  year: 1988
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0027
  article-title: Polyester formation: aminolytic degradation and proposed mechanisms of the reaction
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1988.070360716
– volume: 26
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0068
  article-title: Synthesis of two-dimensional holey MnO2/graphene oxide nanosheets with high catalytic performance for the glycolysis of poly(ethylene terephthalate)
  publication-title: Mater. Today Commun.
– volume: 55
  start-page: 34
  year: 2010
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0097
  article-title: Open-loop recycling: a LCA case study of PET bottle-to-fibre recycling
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2010.06.014
– volume: 192
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0066
  article-title: Cobalt-based ionic liquid grafted on graphene as a heterogeneous catalyst for poly (ethylene terephthalate) glycolysis
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2021.109691
– volume: 16
  year: 2023
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0078
  article-title: Oxygen Vacancy Promoted Generation of Monatomic Oxygen Anion over Ni2+-Doped MgO for Efficient Glycolysis of Waste PET**
  publication-title: ChemSusChem.ChemSusChem.
– volume: 52
  start-page: 337
  year: 2003
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0090
  article-title: Kinetic and thermodynamic study of methanolysis of poly(ethylene terephthalate) waste powder
  publication-title: Polym. Int.
  doi: 10.1002/pi.1147
– volume: 1
  start-page: 1
  year: 2014
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0019
  article-title: Poly (ethylene terephthalate) recycling for high value added textiles
  publication-title: Fashion and Textiles
  doi: 10.1186/s40691-014-0001-x
– volume: 20
  start-page: 106
  year: 2016
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0036
  article-title: Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste
  publication-title: International Journal of Plastics Technology
  doi: 10.1007/s12588-016-9134-7
– volume: 14
  start-page: 173
  year: 2007
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0086
  article-title: Alkaline hydrolysis of poly(ethylene terephthalate) in presence of a phase transfer catalyst
  publication-title: Indian J. Chem. Technol.
– volume: 60
  start-page: 3269
  year: 2022
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0023
  article-title: Chemical upcycling of poly(ethylene terephthalate) waste: moving to a circular model
  publication-title: Journal of Polymer Science
  doi: 10.1002/pol.20220137
– year: 2019
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0026
– volume: 87
  start-page: 519
  year: 2010
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0005
  article-title: The Depolymerization of Poly(ethylene terephthalate) (PET) Using N-Heterocyclic Carbenes from Ionic Liquids
  publication-title: Society.Society.
– volume: 23
  start-page: 18659
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0072
  article-title: Mechanistic insight into the roles of anions and cations in the degradation of poly(ethylene terephthalate) catalyzed by ionic liquids
  publication-title: Physical Chemistry Chemical Physics
  doi: 10.1039/D1CP02038B
– volume: 35
  start-page: 831
  year: 2017
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0113
  article-title: Nano ZnO Catalyst for Chemical Recycling of Polyethylene terephthalate (PET)
  publication-title: Eng. Technol. J.
  doi: 10.30684/etj.35.8A.7
– volume: 115
  start-page: 308
  year: 2016
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0015
  article-title: A review on pyrolysis of plastic wastes
  publication-title: Energy Convers. Manage
  doi: 10.1016/j.enconman.2016.02.037
– volume: 292
  start-page: 128
  year: 2007
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0008
  article-title: Chemical recycling of poly(ethylene terephthalate)
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.200600341
– volume: 18
  start-page: 3997
  year: 2016
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0065
  article-title: Fe3O4-boosted MWCNT as an efficient sustainable catalyst for PET glycolysis
  publication-title: Green Chemistry
  doi: 10.1039/C6GC00534A
– volume: 17
  start-page: 2473
  year: 2015
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0070
  article-title: Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate)(PET)
  publication-title: Green Chemistry
  doi: 10.1039/C4GC02401J
– ident: 10.1016/j.polymdegradstab.2024.110729_bib0009
  doi: 10.5772/31642
– volume: 122
  start-page: 79
  year: 2014
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0018
  article-title: Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags
  publication-title: Fuel Processing Technology
  doi: 10.1016/j.fuproc.2014.01.019
– volume: 3
  start-page: 25
  year: 2017
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0006
  article-title: Production, use, and fate of all plastics ever made
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700782
– volume: 13
  start-page: 1461
  year: 2020
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0096
  article-title: Synergistic influences ofstearic acid coating and recycled PET microfibers on the enhanced properties of com- posite materials
  publication-title: Materials. (Basel)
  doi: 10.3390/ma13061461
– volume: 286
  start-page: 640
  year: 2001
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0088
  article-title: Poly(ethylene terephthalate) Recycling and Recovery of Pure Terephthalic Acid. Kinetics of a Phase Transfer Catalyzed Alkaline Hydrolysis
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/1439-2054(20011001)286:10<640::AID-MAME640>3.0.CO;2-1
– volume: 70
  start-page: 1939
  year: 1998
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0109
  article-title: Investigation of Alkaline Hydrolysis of Polyethylene Terephthalate by Differential Scanning Calorimetry and Thermogravimetric Analysis
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19981205)70:10<1939::AID-APP8>3.0.CO;2-G
– ident: 10.1016/j.polymdegradstab.2024.110729_bib0002
– volume: 135
  start-page: 267
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0048
  article-title: Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid
  publication-title: Waste Management
  doi: 10.1016/j.wasman.2021.09.009
– volume: 22
  start-page: 3122
  year: 2020
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0062
  article-title: Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids
  publication-title: Green Chemistry
  doi: 10.1039/D0GC00327A
– volume: 23
  start-page: 511
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0057
  article-title: Low-energy catalytic methanolysis of poly(ethyleneterephthalate)
  publication-title: Green Chemistry
  doi: 10.1039/D0GC03536J
– volume: 14
  start-page: 6558
  year: 2023
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0052
  article-title: PET recycling under mild conditions via substituent-modulated intramolecular hydrolysis
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC01161E
– volume: 46
  start-page: 135
  year: 2007
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0084
  article-title: Post consumer pet depolymerization by acid hydrolysis
  publication-title: Polym. Plast. Technol. Eng.
  doi: 10.1080/03602550601152945
– volume: 472
  start-page: 425
  year: 2011
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0001
  article-title: Polymer networks take a bow
  publication-title: NatureNature
  doi: 10.1038/472425a
– volume: 220
  year: 2020
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0056
  article-title: ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115642
– volume: 199
  year: 2022
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0058
  article-title: Poly(ionic liquid)s as efficient and recyclable catalysts for methanolysis of PET
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2022.109905
– volume: 53
  start-page: 14185
  year: 2014
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0105
  article-title: Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) Waste
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie501995m
– volume: 225
  start-page: 1052
  year: 2019
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0021
  article-title: Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.019
– year: 2018
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0099
– volume: 296
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0100
  article-title: Progress in the catalytic glycolysis of polyethylene terephthalate
  publication-title: J. Environ. Manage
  doi: 10.1016/j.jenvman.2021.113267
– volume: 61
  start-page: 1241
  year: 2023
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0106
  article-title: A facile approach toward the synthesis of terephthalic acid via aminolytic depolymerization of PET waste and studies on the kinetics of depolymerization
  publication-title: J. Polym. Sci.
  doi: 10.1002/pol.20220727
– volume: 151
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0108
  article-title: Ultrafast microwave assisted recycling of PET to a family of functional precursors and materials
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2021.110441
– ident: 10.1016/j.polymdegradstab.2024.110729_bib0010
– volume: 190
  year: 2021
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0114
  article-title: Formation of Bis(hydroxyethyl) terephthalate from waste plastic using ionic liquid as catalyst
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2021.109601
– year: 2015
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0016
  article-title: Waste Plastics into Fuel Oil?
  publication-title: Science in Society
– volume: 41
  start-page: 2521
  year: 2000
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0029
  article-title: A FTIR-ATR study of liquid diffusion processes in PET films: comparison of water with simple alcohols
  publication-title: Polymer. (Guildf)
  doi: 10.1016/S0032-3861(99)00405-X
– volume: 126
  start-page: 1174
  year: 2012
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0035
  article-title: Ionic Liquid-Catalyzed Aminolysis of Poly(ethyleneterephthalate) Waste
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.36878
– volume: 48
  start-page: 885
  year: 1999
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0112
  article-title: Kinetics of glycolysis of polyethylene terephthalate with zinc catalyst
  publication-title: Polym. Int.
  doi: 10.1002/(SICI)1097-0126(199909)48:9<885::AID-PI216>3.0.CO;2-T
– volume: 98
  start-page: 904
  year: 2013
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0040
  article-title: Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2013.01.007
– volume: 127
  start-page: 2809
  year: 2013
  ident: 10.1016/j.polymdegradstab.2024.110729_bib0110
  article-title: Kinetics of glycolysis of poly(ethylene terephthalate) under microwave irradiation
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.37608
SSID ssj0000451
Score 2.5757952
SecondaryResourceType review_article
Snippet •Mechanistic and kinetic studies of PET chemical recycling methods are discussed.•Various approaches towards a PET circular economy are discussed and...
Polyethylene Terephthalate (PET) is one of the most commonly used plastics. Currently, PET waste has been mainly recycled through mechanical methods and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110729
SubjectTerms alcoholysis
aminolysis
catalysts
Chemical reaction mechanisms
circular economy
degradation
Glycolysis
hydrolysis
microwave treatment
Plastic circular economy
Plastic recycling
Polyethylene terephthalate
polyethylene terephthalates
Reaction kinetics
reaction mechanisms
surface area
synergism
wastes
Title Theoretical insights into chemical recycling of polyethylene terephthalate (PET)
URI https://dx.doi.org/10.1016/j.polymdegradstab.2024.110729
https://www.proquest.com/docview/3153554065
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4hkKAcENBWhJe2EpXKwU3s3TWxxIEoIgpFRRyCxG213gcEBTsizoELv50ZP0iLekDqzbZ27fXMaudb7TffAByFLjSxtBK3JZ00EJH2QeqECaTp8tRHUusyQ-73VTy8Eb9u5e0S9JtcGKJV1mt_taaXq3X9pF1bsz0dj9tES0L4EpJIV3neRBns4oRofT9fFjQP0k-paIxhQK1X4fuC4zXNJ8-PllQZ7IwyFCJ8GRHjK8T5zzj1bsUuw9BgEzZq_Mh61RC3YMll27DWb8q2bcP6HwqDn-F6tEhUZONsRlvxGV4UOTO1VADD_3-mBMk7lntGY3XoPAxGjqHN3fS-uNcTRKTsx_X56PgL3AzOR_1hUBdRCIyIwiLw8sRa7i1PHAYm07XGIgbh3TQJUy26JFMsXWJdx3HN0XEdI3ELZXwSWS9EovlXWM7yzO0A03QGGPu443kojHRaSGxEJcUincrEtOC0MZkytcI4FbqYqIZK9qDeWVyRxVVl8RbEb92nldTGRzueNf5Rf80dhWHho6_41vhVob_o0ERnLp_PFMeQgJALkdru_39mDz7RXUWY3Ifl4mnuDhDUFOlhOWsPYaV3cTm8egVzFftE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RIPE4oEJb8ehjkUCiByuxd9fEUg-giChpQsQhSNxW632UoGBHxBz498zEdtMiDkjcLNtrr75ZzXyrnfkG4Ch0oYmllbgtaaWBiLQPUidMIE2bpz6SWi8q5C5Hce9a_L6RNyvQqWthKK2y8v2lT1946-pOs0KzOZtMmpSWhPQlJJGuxXnTB1gldSrRgNXz_qA3WjpkIcu2hCIMaMAaHC_TvGb59OnekjCDnVORQoTfo9z4knS-GqpeOO1FJOp-hK2KQrLzcpbbsOKyHVjv1J3bdmDzH5HBT3A1XtYqskk2p934HC-KnJlKLYAhBE9UI_mH5Z7RXB3aD-ORYwi7m90Wt3qKpJSdXF2Mf36G6-7FuNMLqj4KgRFRWARenlrLveWJw9hk2tZYpCG8nSZhqkWblIqlS6xrOa452q5lJO6ijE8i64VINP8CjSzP3C4wTceAsY9bnofCSKeFxJeoq1ikU5mYPfhVQ6ZMJTJOvS6mqs4mu1MvEFeEuCoR34P47_BZqbbx1oFntX3Uf8tHYWR46ycOa7sqtBedm-jM5Y9zxTEqIOtCsrb__t_8gPXe-HKohv3R4AA26EmZP_kVGsXDo_uGHKdIv1dr-BkCN_31
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+insights+into+chemical+recycling+of+polyethylene+terephthalate+%28PET%29&rft.jtitle=Polymer+degradation+and+stability&rft.au=Conroy%2C+Stuart&rft.au=Zhang%2C+Xiaolei&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0141-3910&rft.eissn=1873-2321&rft.volume=223&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2024.110729&rft.externalDocID=S0141391024000739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon