Theoretical insights into chemical recycling of polyethylene terephthalate (PET)
•Mechanistic and kinetic studies of PET chemical recycling methods are discussed.•Various approaches towards a PET circular economy are discussed and compared.•Catalytic glycolysis with the synergistic mechanism is the most promising approach.•Novel techniques, e.g. microwave heating, heterogeneous...
Saved in:
Published in | Polymer degradation and stability Vol. 223; p. 110729 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0141-3910 1873-2321 |
DOI | 10.1016/j.polymdegradstab.2024.110729 |
Cover
Loading…
Abstract | •Mechanistic and kinetic studies of PET chemical recycling methods are discussed.•Various approaches towards a PET circular economy are discussed and compared.•Catalytic glycolysis with the synergistic mechanism is the most promising approach.•Novel techniques, e.g. microwave heating, heterogeneous catalysts, should be studied.
Polyethylene Terephthalate (PET) is one of the most commonly used plastics. Currently, PET waste has been mainly recycled through mechanical methods and alternative effective ways have emerged, such as chemical recycling including ammonolysis, aminolysis, hydrolysis, alcoholysis and glycolysis. However, a precise understanding of the reaction mechanisms and kinetics of these methods is lacking. This paper aims at providing a comprehensive review elucidating the mechanisms and the reaction kinetics of these methods, considering various catalysts, solvents and heating modes. The degradation performance of each method and its suitability towards a circular economy is discussed and compared. It is concluded that novel processes of PET glycolysis stand out as the most promising chemical recycling methods. The degradation process via glycolysis can be significantly enhanced by the increased interactions facilitated by the synergic effect reaction mechanism, and the improved kinetics provided by the advanced heating modes such as microwave-assisted techniques. Heterogeneous catalysts with large surface area were found to promote efficient PET degradation into its monomer, Bis(2-Hydroxyethyl) terephthalate (BHET); these catalysts also offer environmental and economic advantages owing to their ease of separation and reusability. This review provides a guidance for future research aimed at designing an effective PET chemical recycling process. It was identified that to advance PET glycolysis in the near future, research can focus on 1) the utilising novel heterogeneous catalysts and catalyst supports that induce synergic effect reaction mechanisms, and 2) advancing technologies such as microwave heating. Furthermore, the suitability of PET recycling technologies should be considered in the context of high BHET yield/selectivity, mild reaction conditions, short reaction times and reusability, and economical feasibility at an industrial scale. |
---|---|
AbstractList | •Mechanistic and kinetic studies of PET chemical recycling methods are discussed.•Various approaches towards a PET circular economy are discussed and compared.•Catalytic glycolysis with the synergistic mechanism is the most promising approach.•Novel techniques, e.g. microwave heating, heterogeneous catalysts, should be studied.
Polyethylene Terephthalate (PET) is one of the most commonly used plastics. Currently, PET waste has been mainly recycled through mechanical methods and alternative effective ways have emerged, such as chemical recycling including ammonolysis, aminolysis, hydrolysis, alcoholysis and glycolysis. However, a precise understanding of the reaction mechanisms and kinetics of these methods is lacking. This paper aims at providing a comprehensive review elucidating the mechanisms and the reaction kinetics of these methods, considering various catalysts, solvents and heating modes. The degradation performance of each method and its suitability towards a circular economy is discussed and compared. It is concluded that novel processes of PET glycolysis stand out as the most promising chemical recycling methods. The degradation process via glycolysis can be significantly enhanced by the increased interactions facilitated by the synergic effect reaction mechanism, and the improved kinetics provided by the advanced heating modes such as microwave-assisted techniques. Heterogeneous catalysts with large surface area were found to promote efficient PET degradation into its monomer, Bis(2-Hydroxyethyl) terephthalate (BHET); these catalysts also offer environmental and economic advantages owing to their ease of separation and reusability. This review provides a guidance for future research aimed at designing an effective PET chemical recycling process. It was identified that to advance PET glycolysis in the near future, research can focus on 1) the utilising novel heterogeneous catalysts and catalyst supports that induce synergic effect reaction mechanisms, and 2) advancing technologies such as microwave heating. Furthermore, the suitability of PET recycling technologies should be considered in the context of high BHET yield/selectivity, mild reaction conditions, short reaction times and reusability, and economical feasibility at an industrial scale. Polyethylene Terephthalate (PET) is one of the most commonly used plastics. Currently, PET waste has been mainly recycled through mechanical methods and alternative effective ways have emerged, such as chemical recycling including ammonolysis, aminolysis, hydrolysis, alcoholysis and glycolysis. However, a precise understanding of the reaction mechanisms and kinetics of these methods is lacking. This paper aims at providing a comprehensive review elucidating the mechanisms and the reaction kinetics of these methods, considering various catalysts, solvents and heating modes. The degradation performance of each method and its suitability towards a circular economy is discussed and compared. It is concluded that novel processes of PET glycolysis stand out as the most promising chemical recycling methods. The degradation process via glycolysis can be significantly enhanced by the increased interactions facilitated by the synergic effect reaction mechanism, and the improved kinetics provided by the advanced heating modes such as microwave-assisted techniques. Heterogeneous catalysts with large surface area were found to promote efficient PET degradation into its monomer, Bis(2-Hydroxyethyl) terephthalate (BHET); these catalysts also offer environmental and economic advantages owing to their ease of separation and reusability. This review provides a guidance for future research aimed at designing an effective PET chemical recycling process. It was identified that to advance PET glycolysis in the near future, research can focus on 1) the utilising novel heterogeneous catalysts and catalyst supports that induce synergic effect reaction mechanisms, and 2) advancing technologies such as microwave heating. Furthermore, the suitability of PET recycling technologies should be considered in the context of high BHET yield/selectivity, mild reaction conditions, short reaction times and reusability, and economical feasibility at an industrial scale. |
ArticleNumber | 110729 |
Author | Zhang, Xiaolei Conroy, Stuart |
Author_xml | – sequence: 1 givenname: Stuart surname: Conroy fullname: Conroy, Stuart – sequence: 2 givenname: Xiaolei orcidid: 0000-0001-9415-3136 surname: Zhang fullname: Zhang, Xiaolei email: xiaolei.zhang@strath.ac.uk |
BookMark | eNqNkMFKAzEQhoMo2FbfYS9CPWzNbLK7zcGDFK1CwR7qOaTJbDcl3dQkCn17t9ZTT85lhuGfb-AbksvOd0jIHdAJUKgetpO9d4edwU1QJia1nhS04BMAWhfiggxgWrO8YAVckgEFDjkTQK_JMMYt7YuXMCDLVYs-YLJaucx20W7aFPsh-Uy3uPtdB9QH7Wy3yXyTHV9iag8OO8wSBty3qVVOJczGy-fV_Q25apSLePvXR-Tj5Xk1e80X7_O32dMi17yAlDdlbQxrDBNIq1pPjTacCTZdC1grPhW0KkoUBikyxRA01WUNlW5EYRrOhWIjMj5x98F_fmFMcmejRudUh_4rSgYlK0tOq7KPPp6iOvgYAzZyH-xOhYMEKo8m5VaemZRHk_Jksr-fnd1rm1SyvktBWfdvyvxEwd7Kt8Ugo7bYaTS2F5yk8fafpB_u76Bs |
CitedBy_id | crossref_primary_10_1016_j_scp_2024_101891 crossref_primary_10_1039_D4GC05070C crossref_primary_10_3390_polym16192807 crossref_primary_10_1002_app_55672 crossref_primary_10_3390_molecules30010037 crossref_primary_10_1002_app_56564 crossref_primary_10_3390_cryst14060567 crossref_primary_10_32434_0321_4095_2024_156_5_91_95 crossref_primary_10_1002_advs_202403002 crossref_primary_10_1021_acs_iecr_4c02382 crossref_primary_10_18596_jotcsa_1462797 crossref_primary_10_1039_D4NJ03300K crossref_primary_10_1016_j_polymdegradstab_2024_111163 crossref_primary_10_1016_j_seppur_2024_131347 crossref_primary_10_1021_acsapm_4c03337 crossref_primary_10_1093_femsyr_foaf006 crossref_primary_10_1039_D4CC05909C crossref_primary_10_1016_j_cej_2024_157778 crossref_primary_10_1021_acsapm_4c03575 crossref_primary_10_1016_j_polymdegradstab_2025_111193 crossref_primary_10_3390_polym17070843 crossref_primary_10_1016_j_joei_2025_102043 crossref_primary_10_1039_D4RE00235K crossref_primary_10_3390_polym16233441 |
Cites_doi | 10.1351/PAC-CON-11-06-10 10.1002/anie.201915651 10.1016/j.ceramint.2018.05.047 10.1016/j.ces.2021.117109 10.1002/aic.14632 10.1039/C6PY01783E 10.1007/s10924-008-0106-7 10.1016/j.ces.2022.118329 10.1016/j.polymdegradstab.2009.11.026 10.1039/C3GC41834K 10.1039/D2CS00048B 10.1016/j.apcata.2022.118681 10.1021/acssuschemeng.8b05324 10.1002/app.38970 10.1007/s10973-020-10331-8 10.1021/acssuschemeng.2c01235 10.1016/j.wasman.2009.06.004 10.1016/j.resconrec.2011.04.009 10.1007/s10163-020-01106-2 10.1080/10601325.2019.1709498 10.1081/MA-200050346 10.1016/j.cej.2008.09.039 10.1080/00194506.2017.1310634 10.3389/fchem.2023.1234763 10.1016/j.jhazmat.2010.01.092 10.1039/D1GC00887K 10.1039/C6RA06298A 10.1039/D3GC01762A 10.1002/app.1645 10.1016/j.polymdegradstab.2022.110245 10.1007/s11356-021-14925-z 10.1002/pat.5023 10.1016/j.ijbiomac.2020.03.130 10.1002/adv.10029 10.1016/j.polymdegradstab.2005.11.005 10.1021/jacs.5b09502 10.1002/apmc.1995.052250110 10.1039/C7GC03396F 10.1021/ie000592u 10.1016/j.ecoenv.2019.110066 10.1021/acs.iecr.0c06073 10.1016/j.polymdegradstab.2021.109751 10.1016/j.polymdegradstab.2018.07.004 10.1021/sc5007522 10.1016/j.catcom.2010.02.011 10.1016/j.ejpe.2015.03.001 10.1021/jo400159y 10.3390/ma9040231 10.1016/j.polymdegradstab.2014.10.005 10.1039/C7RA13173A 10.1039/C9PY01920K 10.1021/acs.iecr.2c04419 10.1016/j.tetlet.2007.09.074 10.1155/2013/487676 10.1016/j.jhazmat.2022.130670 10.1021/ie503677w 10.1021/acs.iecr.8b03854 10.1002/app.1988.070360716 10.1016/j.resconrec.2010.06.014 10.1016/j.polymdegradstab.2021.109691 10.1002/pi.1147 10.1186/s40691-014-0001-x 10.1007/s12588-016-9134-7 10.1002/pol.20220137 10.1039/D1CP02038B 10.30684/etj.35.8A.7 10.1016/j.enconman.2016.02.037 10.1002/mame.200600341 10.1039/C6GC00534A 10.1039/C4GC02401J 10.5772/31642 10.1016/j.fuproc.2014.01.019 10.1126/sciadv.1700782 10.3390/ma13061461 10.1002/1439-2054(20011001)286:10<640::AID-MAME640>3.0.CO;2-1 10.1002/(SICI)1097-4628(19981205)70:10<1939::AID-APP8>3.0.CO;2-G 10.1016/j.wasman.2021.09.009 10.1039/D0GC00327A 10.1039/D0GC03536J 10.1039/D3SC01161E 10.1080/03602550601152945 10.1038/472425a 10.1016/j.ces.2020.115642 10.1016/j.polymdegradstab.2022.109905 10.1021/ie501995m 10.1016/j.jclepro.2019.04.019 10.1016/j.jenvman.2021.113267 10.1002/pol.20220727 10.1016/j.eurpolymj.2021.110441 10.1016/j.polymdegradstab.2021.109601 10.1016/S0032-3861(99)00405-X 10.1002/app.36878 10.1002/(SICI)1097-0126(199909)48:9<885::AID-PI216>3.0.CO;2-T 10.1016/j.polymdegradstab.2013.01.007 10.1002/app.37608 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.polymdegradstab.2024.110729 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2321 |
ExternalDocumentID | 10_1016_j_polymdegradstab_2024_110729 S0141391024000739 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSK SSM SSZ T5K WH7 WUQ XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c421t-f57dd3fd39e067c8dcd43938b91ba4890625e9de0e3a3e1c0c5716cf92df449a3 |
IEDL.DBID | .~1 |
ISSN | 0141-3910 |
IngestDate | Tue Aug 05 10:03:08 EDT 2025 Tue Jul 01 02:29:56 EDT 2025 Thu Apr 24 23:05:49 EDT 2025 Sat May 11 15:33:05 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polyethylene terephthalate Plastic recycling Glycolysis Plastic circular economy Reaction kinetics Chemical reaction mechanisms |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-f57dd3fd39e067c8dcd43938b91ba4890625e9de0e3a3e1c0c5716cf92df449a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9415-3136 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0141391024000739 |
PQID | 3153554065 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153554065 crossref_primary_10_1016_j_polymdegradstab_2024_110729 crossref_citationtrail_10_1016_j_polymdegradstab_2024_110729 elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2024_110729 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | Polymer degradation and stability |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Liu, Guo, Xiao, Shen, Xu (bib0115) 2018; 44 Mancini, Zanin (bib0084) 2007; 46 Naumann, Scholten, Wilson, Dove (bib0064) 2015; 137 Karayannidis, Achilias (bib0008) 2007; 292 Al-Sabagh, Yehia, Eshaq, Rabie, ElMetwally (bib0020) 2016; 25 Mittal, Soni, Dutt, Singh (bib0038) 2010; 178 Zhu, Fan, Hao, Jiang, Zhang, Zeng, Sun, Zhang (bib0069) 2022; 641 Wang, Yao, Geng, Zhou, Lu, Zhang (bib0070) 2015; 17 Kosmidis, Achilias, Karayannidis (bib0088) 2001; 286 Liu, Xu, Huang, Lu, Zhen, Zheng, Dong, Li, Wang, Ji (bib0053) 2023; 446 Chaudhary, Surekha, Kumar, Rajagopal, Roy (bib0032) 2013; 129 Pham, Cho (bib0057) 2021; 23 Theodorou, Skobridis, Tzakos, Ragoussis (bib0051) 2007; 48 Radadiya, Shahabuddin, Gaur (bib0106) 2023; 61 Gupta, Bhandari (bib0026) 2019 Yun, Wei, Sun, Li, Zhang, Zhang, Shen, Wang (bib0031) 2023; 25 Zhou, Lu, Wang, Zhu, Li (bib0054) 2012; 84 Lin, Yang, Meng, Si, Zhang, Zeng, Jiang (bib0078) 2023; 16 . Al-Sabagh, Yehia, Eissa, Moustafa, Eshaq, Rabie, Elmetwally (bib0111) 2014; 53 Wang, Shen, Yu, Chen (bib0077) 2021; 194 (accessed May 20, 2021). Shuangjun, Weihe, Haidong, Hao, Zhenwei, Chaonan (bib0060) 2020; 143 Zhang (bib0085) 2014; 742 Sinha, Patel, Patel (bib0011) 2010; 18 Lee, Liew (bib0013) 2020; 23 Imran, Kim, Al-Masry, Mahmood, Hassan, Haider, Ramay (bib0040) 2013; 98 Wang, Geng, Lu, Zhang (bib0055) 2015; 3 Chen, Chen, Cheng (bib0112) 1999; 48 Ghasemi, Neekzad, Ajdari, Kowsari, Ramakrishna (bib0025) 2021; 28 BP, BP's new technology to enable circularity for unrecyclable PET plastic waste, (2019). Jehanno, Flores, Dove, Müller, Ruipérez, Sardon (bib0075) 2018; 20 W. DeWit, E. Towers, J.C. Guinchard, N. Ahmed, Plastics: the costs to society, the environment and the economy a report for Wwf By Wwf International 2021, 2021. Guo, Lu, Li, Cao (bib0050) 2016; 6 Kim, Hwang, Bae, Yi, Kumazawa (bib0089) 2001; 81 Bhogle, Pandit (bib0081) 2018; 60 Du, Sun, Zeng, Wang, Wang, Chen (bib0056) 2020; 220 T. Pecorini, E.J. Moskala, D.M. Lange, R.W. Seymour, Process for the Preparation of Polyesters with High Recycle Content, WO2013025186A1, 2013. Huang, Yan, Zhu, Cheng, Tang, Lu, Xin (bib0093) 2023; 208 Wang, Jin, Wang, Tang, Wang, Xiao, Su (bib0074) 2022; 10 Raheem, Noor, Hassan, Abd Hamid, Samsudin, Sabeen (bib0021) 2019; 225 Zheng, Wang, Zhang, Song, Jiao, Zhang (bib0095) 2022; 15 Shen, Worrell, Patel (bib0097) 2010; 55 Hu, Wang, Zhang, Qian, Xing, Wang (bib0039) 2020; 57 Ju, Zhou, Lu, Li, Yao, Cheng, Chen, Ge (bib0072) 2021; 23 Yoshioka, Motoki, Okuwaki (bib0079) 2001; 40 Geyer, Jambeck, Law (bib0006) 2017; 3 Al-Sabagh, Yehia, Harding, Eshaq, ElMetwally (bib0065) 2016; 18 Dulio, Po, Borrelli, Guarini, Santini (bib0012) 1995; 225 G.M. Mohamad Sadeghi, M. Sayaf, From PET waste to novel polyurethanes, in: material recycling - trends and perspectives, 2012: pp. 357–390. Wang, Yan, Li, Zhang, Zhang (bib0061) 2010; 11 Alzuhairi, Khalil, Hadi (bib0113) 2017; 35 Fang, Liu, Xu, Zhou, Zhang, Ma, lu (bib0042) 2018; 156 Ju, Xiao, Lu, Liu, Yao, Zhang, Zhang (bib0073) 2018; 8 Wang, Gong, Shen, Yu, Chen (bib0114) 2021; 190 Pastore, Giacomantonio, Lupidi, Stella, Risoluti, Papa, Ballini, Sarasini, Tirillò, Marcantoni, Gabrielli (bib0107) 2023; 11 Liu, Yao, Zhou, Yao, Yan, Xu, Lu (bib0071) 2022; 10 Nguyen, Vu, Nguyen, Thuc, Bui, Perre (bib0096) 2020; 13 Al-Sabagh, Yehia, Eissa, Moustafa, Eshaq, Rabie, Elmetwally (bib0030) 2014; 110 Zhang, Xue, Wu, Zhang, Tan, Niu (bib0052) 2023; 14 Xin, Zhang, Huang, Huang, Jaffery, Yan, Zhou, Xu, Lu (bib0100) 2021; 296 FakhrHoseini, Dastanian (bib0017) 2013; 2013 Shojaei, Abtahi, Najafi (bib0022) 2020; 31 Tawfik, Eskander (bib0037) 2010; 95 Walkinshaw, Lindeque, Thompson, Tolhurst, Cole (bib0007) 2020; 190 Kamber, Tsujii, Keets, Waymouth (bib0005) 2010; 87 Bohre, Jadhao, Tripathi, Pant, Likozar, Saha (bib0024) 2023; 16 Liu, Fu, Lu, Zhou, Zhang (bib0063) 2019; 7 Liu, Yao, Yao, Zhou, Xin, Lu, Zhang (bib0062) 2020; 22 Welle (bib0101) 2011; 55 Park, Kim (bib0019) 2014; 1 Huck (bib0001) 2011; 472 Yao, Liu, Yan, Zhou, Xin, Lu, Zhang (bib0067) 2022; 248 Sharma, Moser (bib0018) 2014; 122 Das, Halgeri, Sahu, Parikh (bib0086) 2007; 14 Liu, Lu, Ju, Sun, Xin, Yao, Zhou, Zhang (bib0092) 2018; 57 de Dios Caputto, Navarro, Valentín, Marcos-Fernández (bib0023) 2022; 60 Popoola (bib0027) 1988; 36 (bib0099) 2018 Enivronmental Protection Agency (EPA), Advancing Sustainable Materials Management, 2020. Engle, Yu (bib0043) 2013; 78 Chen, Wang, Shi, Zhang, Zhang, Li, Yang (bib0110) 2013; 127 Najafi-Shoa, Barikani, Ehsani, Ghaffari (bib0066) 2021; 192 Yang, Liu, Li, Song, Hu (bib0048) 2021; 135 Karayannidis, Chatziavgoustis, Achilias (bib0082) 2002; 21 Bin Jin, Jeong, Son, Park, Lee, Choi (bib0068) 2021; 26 Mishra, Goje (bib0090) 2003; 52 Fazekas, Lowy, Abdul Rahman, Lykkeberg, Zhou, Chambenahalli, Garden (bib0044) 2022; 51 Sammon, Yarwood, Everall (bib0029) 2000; 41 Jiang, Yan, Xin, Li, Guo, Zhou, Xu, Hu, Lu (bib0058) 2022; 199 Essaddam (bib0103) 2017 Kumar, Guria (bib0080) 2005; 42 A Kao, Cheng, Wan (bib0109) 1998; 70 Ho (bib0016) 2015 Shukla, Harad (bib0034) 2006; 91 Bäckström, Odelius, Hakkarainen (bib0108) 2021; 151 Zheng, Wang, Song, Jiao, Wang (bib0094) 2022; 33 George, Kurian (bib0105) 2014; 53 Abedsoltan, Omodolor, Alba-Rubio, Coleman (bib0047) 2021 Tang, Meng, Cheng, Zhu, Yan, Zhang, Lu, Shi, Liu (bib0059) 2023 Jambeck, Geyer, Wilcox, Siegler, Perryman, Andrady, Narayan, Law (bib0004) 2015; 347 Palekar, Shah, Shukla (bib0035) 2012; 126 López-Fonseca, González-Velasco, Gutiérrez-Ortiz (bib0087) 2009; 146 Plastics Europe, Plastics - the facts 2021, 2021. Vollmer, Jenks, Roelands, White, van Harmelen, de Wild, van der Laan, Meirer, Keurentjes, Weckhuysen (bib0098) 2020; 59 Winnacker, Rieger (bib0028) 2016; 7 Yan, Lian, Li, Meng, Zhang, Ge, Lu (bib0049) 2020; 154 Al-Salem, Lettieri, Baeyens (bib0014) 2009; 29 Sharuddin, Abnisa, Daud, Aroua (bib0015) 2016; 115 Sun, Wang, Yue (bib0116) 2016; 9 Barnard, Rubio Arias, Thielemans (bib0033) 2021; 23 Bartolome, Imran, Lee, Sangalang, Ahn, Kim (bib0041) 2014; 16 Li, Lu, Guo, Cao, Liu, Shi (bib0046) 2015; 61 Chen, Wang, Li, Yang (bib0083) 2012; 233–235 Yao, Lu, Ji, Tan, Zhang (bib0076) 2021; 60 Musale, Shukla (bib0036) 2016; 20 Delle Chiaie, McMahon, Williams, Price, Dove (bib0045) 2020; 11 Zheng, Liu, Wei, Sun, Zhao (bib0091) 2023; 267 Mishra (10.1016/j.polymdegradstab.2024.110729_bib0090) 2003; 52 Jambeck (10.1016/j.polymdegradstab.2024.110729_bib0004) 2015; 347 Essaddam (10.1016/j.polymdegradstab.2024.110729_bib0103) 2017 Shuangjun (10.1016/j.polymdegradstab.2024.110729_bib0060) 2020; 143 Wang (10.1016/j.polymdegradstab.2024.110729_bib0055) 2015; 3 Zheng (10.1016/j.polymdegradstab.2024.110729_bib0094) 2022; 33 Winnacker (10.1016/j.polymdegradstab.2024.110729_bib0028) 2016; 7 Lin (10.1016/j.polymdegradstab.2024.110729_bib0078) 2023; 16 Palekar (10.1016/j.polymdegradstab.2024.110729_bib0035) 2012; 126 Huck (10.1016/j.polymdegradstab.2024.110729_bib0001) 2011; 472 Kosmidis (10.1016/j.polymdegradstab.2024.110729_bib0088) 2001; 286 Xin (10.1016/j.polymdegradstab.2024.110729_bib0100) 2021; 296 Sharma (10.1016/j.polymdegradstab.2024.110729_bib0018) 2014; 122 Kim (10.1016/j.polymdegradstab.2024.110729_bib0089) 2001; 81 Abedsoltan (10.1016/j.polymdegradstab.2024.110729_bib0047) 2021 Wang (10.1016/j.polymdegradstab.2024.110729_bib0077) 2021; 194 Zheng (10.1016/j.polymdegradstab.2024.110729_bib0091) 2023; 267 Pham (10.1016/j.polymdegradstab.2024.110729_bib0057) 2021; 23 Kamber (10.1016/j.polymdegradstab.2024.110729_bib0005) 2010; 87 Raheem (10.1016/j.polymdegradstab.2024.110729_bib0021) 2019; 225 Al-Salem (10.1016/j.polymdegradstab.2024.110729_bib0014) 2009; 29 Sinha (10.1016/j.polymdegradstab.2024.110729_bib0011) 2010; 18 Kao (10.1016/j.polymdegradstab.2024.110729_bib0109) 1998; 70 Shukla (10.1016/j.polymdegradstab.2024.110729_bib0034) 2006; 91 Guo (10.1016/j.polymdegradstab.2024.110729_bib0050) 2016; 6 Zhang (10.1016/j.polymdegradstab.2024.110729_bib0115) 2018; 44 Al-Sabagh (10.1016/j.polymdegradstab.2024.110729_bib0030) 2014; 110 Ju (10.1016/j.polymdegradstab.2024.110729_bib0072) 2021; 23 Walkinshaw (10.1016/j.polymdegradstab.2024.110729_bib0007) 2020; 190 Liu (10.1016/j.polymdegradstab.2024.110729_bib0071) 2022; 10 Ho (10.1016/j.polymdegradstab.2024.110729_bib0016) 2015 Ghasemi (10.1016/j.polymdegradstab.2024.110729_bib0025) 2021; 28 Bartolome (10.1016/j.polymdegradstab.2024.110729_bib0041) 2014; 16 Bin Jin (10.1016/j.polymdegradstab.2024.110729_bib0068) 2021; 26 Du (10.1016/j.polymdegradstab.2024.110729_bib0056) 2020; 220 Wang (10.1016/j.polymdegradstab.2024.110729_bib0070) 2015; 17 FakhrHoseini (10.1016/j.polymdegradstab.2024.110729_bib0017) 2013; 2013 Bäckström (10.1016/j.polymdegradstab.2024.110729_bib0108) 2021; 151 Gupta (10.1016/j.polymdegradstab.2024.110729_bib0026) 2019 Jehanno (10.1016/j.polymdegradstab.2024.110729_bib0075) 2018; 20 Yang (10.1016/j.polymdegradstab.2024.110729_bib0048) 2021; 135 Liu (10.1016/j.polymdegradstab.2024.110729_bib0092) 2018; 57 Sun (10.1016/j.polymdegradstab.2024.110729_bib0116) 2016; 9 Wang (10.1016/j.polymdegradstab.2024.110729_bib0061) 2010; 11 10.1016/j.polymdegradstab.2024.110729_bib0009 Vollmer (10.1016/j.polymdegradstab.2024.110729_bib0098) 2020; 59 Yao (10.1016/j.polymdegradstab.2024.110729_bib0076) 2021; 60 Sammon (10.1016/j.polymdegradstab.2024.110729_bib0029) 2000; 41 Dulio (10.1016/j.polymdegradstab.2024.110729_bib0012) 1995; 225 Jiang (10.1016/j.polymdegradstab.2024.110729_bib0058) 2022; 199 Mancini (10.1016/j.polymdegradstab.2024.110729_bib0084) 2007; 46 Liu (10.1016/j.polymdegradstab.2024.110729_bib0053) 2023; 446 Yao (10.1016/j.polymdegradstab.2024.110729_bib0067) 2022; 248 Wang (10.1016/j.polymdegradstab.2024.110729_bib0114) 2021; 190 Barnard (10.1016/j.polymdegradstab.2024.110729_bib0033) 2021; 23 Imran (10.1016/j.polymdegradstab.2024.110729_bib0040) 2013; 98 Delle Chiaie (10.1016/j.polymdegradstab.2024.110729_bib0045) 2020; 11 Radadiya (10.1016/j.polymdegradstab.2024.110729_bib0106) 2023; 61 Pastore (10.1016/j.polymdegradstab.2024.110729_bib0107) 2023; 11 10.1016/j.polymdegradstab.2024.110729_bib0010 Park (10.1016/j.polymdegradstab.2024.110729_bib0019) 2014; 1 Ju (10.1016/j.polymdegradstab.2024.110729_bib0073) 2018; 8 de Dios Caputto (10.1016/j.polymdegradstab.2024.110729_bib0023) 2022; 60 Yun (10.1016/j.polymdegradstab.2024.110729_bib0031) 2023; 25 Chen (10.1016/j.polymdegradstab.2024.110729_bib0110) 2013; 127 Li (10.1016/j.polymdegradstab.2024.110729_bib0046) 2015; 61 Yoshioka (10.1016/j.polymdegradstab.2024.110729_bib0079) 2001; 40 (10.1016/j.polymdegradstab.2024.110729_bib0099) 2018 Lee (10.1016/j.polymdegradstab.2024.110729_bib0013) 2020; 23 George (10.1016/j.polymdegradstab.2024.110729_bib0105) 2014; 53 Najafi-Shoa (10.1016/j.polymdegradstab.2024.110729_bib0066) 2021; 192 Yan (10.1016/j.polymdegradstab.2024.110729_bib0049) 2020; 154 Geyer (10.1016/j.polymdegradstab.2024.110729_bib0006) 2017; 3 Zheng (10.1016/j.polymdegradstab.2024.110729_bib0095) 2022; 15 10.1016/j.polymdegradstab.2024.110729_bib0003 Al-Sabagh (10.1016/j.polymdegradstab.2024.110729_bib0065) 2016; 18 10.1016/j.polymdegradstab.2024.110729_bib0002 10.1016/j.polymdegradstab.2024.110729_bib0104 Theodorou (10.1016/j.polymdegradstab.2024.110729_bib0051) 2007; 48 Tang (10.1016/j.polymdegradstab.2024.110729_bib0059) 2023 Zhang (10.1016/j.polymdegradstab.2024.110729_bib0052) 2023; 14 Bhogle (10.1016/j.polymdegradstab.2024.110729_bib0081) 2018; 60 Chen (10.1016/j.polymdegradstab.2024.110729_bib0083) 2012; 233–235 Al-Sabagh (10.1016/j.polymdegradstab.2024.110729_bib0020) 2016; 25 López-Fonseca (10.1016/j.polymdegradstab.2024.110729_bib0087) 2009; 146 Bohre (10.1016/j.polymdegradstab.2024.110729_bib0024) 2023; 16 Popoola (10.1016/j.polymdegradstab.2024.110729_bib0027) 1988; 36 Musale (10.1016/j.polymdegradstab.2024.110729_bib0036) 2016; 20 Chaudhary (10.1016/j.polymdegradstab.2024.110729_bib0032) 2013; 129 Liu (10.1016/j.polymdegradstab.2024.110729_bib0062) 2020; 22 Liu (10.1016/j.polymdegradstab.2024.110729_bib0063) 2019; 7 Karayannidis (10.1016/j.polymdegradstab.2024.110729_bib0008) 2007; 292 Nguyen (10.1016/j.polymdegradstab.2024.110729_bib0096) 2020; 13 Fang (10.1016/j.polymdegradstab.2024.110729_bib0042) 2018; 156 Kumar (10.1016/j.polymdegradstab.2024.110729_bib0080) 2005; 42 A Zhou (10.1016/j.polymdegradstab.2024.110729_bib0054) 2012; 84 Wang (10.1016/j.polymdegradstab.2024.110729_bib0074) 2022; 10 Al-Sabagh (10.1016/j.polymdegradstab.2024.110729_bib0111) 2014; 53 Mittal (10.1016/j.polymdegradstab.2024.110729_bib0038) 2010; 178 Das (10.1016/j.polymdegradstab.2024.110729_bib0086) 2007; 14 Zhu (10.1016/j.polymdegradstab.2024.110729_bib0069) 2022; 641 10.1016/j.polymdegradstab.2024.110729_bib0102 Fazekas (10.1016/j.polymdegradstab.2024.110729_bib0044) 2022; 51 Tawfik (10.1016/j.polymdegradstab.2024.110729_bib0037) 2010; 95 Shojaei (10.1016/j.polymdegradstab.2024.110729_bib0022) 2020; 31 Engle (10.1016/j.polymdegradstab.2024.110729_bib0043) 2013; 78 Sharuddin (10.1016/j.polymdegradstab.2024.110729_bib0015) 2016; 115 Alzuhairi (10.1016/j.polymdegradstab.2024.110729_bib0113) 2017; 35 Hu (10.1016/j.polymdegradstab.2024.110729_bib0039) 2020; 57 Shen (10.1016/j.polymdegradstab.2024.110729_bib0097) 2010; 55 Naumann (10.1016/j.polymdegradstab.2024.110729_bib0064) 2015; 137 Karayannidis (10.1016/j.polymdegradstab.2024.110729_bib0082) 2002; 21 Huang (10.1016/j.polymdegradstab.2024.110729_bib0093) 2023; 208 Welle (10.1016/j.polymdegradstab.2024.110729_bib0101) 2011; 55 Zhang (10.1016/j.polymdegradstab.2024.110729_bib0085) 2014; 742 Chen (10.1016/j.polymdegradstab.2024.110729_bib0112) 1999; 48 |
References_xml | – volume: 84 start-page: 789 year: 2012 end-page: 801 ident: bib0054 article-title: Effective catalysis of poly(ethylene terephthalate) (PET) degradation by metallic acetate ionic liquids publication-title: Pure and Applied Chemistry – volume: 25 start-page: 6901 year: 2023 end-page: 6913 ident: bib0031 article-title: Magnetic hollow micro-sized nanoaggregates for synergistically accelerating PET glycolysis publication-title: Green Chemistry – volume: 42 A start-page: 237 year: 2005 end-page: 251 ident: bib0080 article-title: Alkaline hydrolysis of waste poly(ethylene terephthalate): a modified shrinking core model publication-title: J. Macromol. Sci. Pure Appl. Chem. – year: 2017 ident: bib0103 article-title: Polyethylene Terephthalate Depolymerization – volume: 14 start-page: 6558 year: 2023 end-page: 6563 ident: bib0052 article-title: PET recycling under mild conditions via substituent-modulated intramolecular hydrolysis publication-title: Chem. Sci. – volume: 48 start-page: 885 year: 1999 end-page: 888 ident: bib0112 article-title: Kinetics of glycolysis of polyethylene terephthalate with zinc catalyst publication-title: Polym. Int. – volume: 87 start-page: 519 year: 2010 end-page: 521 ident: bib0005 article-title: The Depolymerization of Poly(ethylene terephthalate) (PET) Using N-Heterocyclic Carbenes from Ionic Liquids publication-title: Society.Society. – volume: 28 start-page: 43074 year: 2021 end-page: 43101 ident: bib0025 article-title: Mechanistic aspects of poly (ethylene terephthalate) recycling – toward enabling high quality sustainability decisions in waste management publication-title: Environ Sci Pollut Res – volume: 40 start-page: 75 year: 2001 end-page: 79 ident: bib0079 article-title: Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model publication-title: Ind. Eng. Chem. Res. – reference: (accessed May 20, 2021). – volume: 347 start-page: 768 year: 2015 end-page: 771 ident: bib0004 article-title: Plastic waste inputs from land into the ocean publication-title: Science (1979) – year: 2023 ident: bib0059 article-title: Mechanistic Insights of Cosolvent Efficient Enhancement of PET Methanol Alcohololysis publication-title: Ind. Eng. Chem. Res. – volume: 6 start-page: 43171 year: 2016 end-page: 43184 ident: bib0050 article-title: Tungsten-promoted titania as solid acid for catalytic hydrolysis of waste bottle PET in supercritical CO2 publication-title: RSC. Adv. – volume: 286 start-page: 640 year: 2001 end-page: 647 ident: bib0088 article-title: Poly(ethylene terephthalate) Recycling and Recovery of Pure Terephthalic Acid. Kinetics of a Phase Transfer Catalyzed Alkaline Hydrolysis publication-title: Macromol. Mater. Eng. – volume: 446 year: 2023 ident: bib0053 article-title: Enhanced degradation of poly(ethylene terephthalate) by the addition of lactic acid /glycolic acid: composting degradation, seawater degradation behavior and comparison of degradation mechanism publication-title: J. Hazard. Mater. – volume: 472 start-page: 425 year: 2011 end-page: 426 ident: bib0001 article-title: Polymer networks take a bow publication-title: NatureNature – volume: 3 start-page: 25 year: 2017 end-page: 29 ident: bib0006 article-title: Production, use, and fate of all plastics ever made publication-title: Sci. Adv. – volume: 190 year: 2020 ident: bib0007 article-title: Microplastics and seafood: lower trophic organisms at highest risk of contamination publication-title: Ecotoxicol. Environ. Saf. – volume: 53 start-page: 14185 year: 2014 end-page: 14198 ident: bib0105 article-title: Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) Waste publication-title: Ind. Eng. Chem. Res. – volume: 60 start-page: 3269 year: 2022 end-page: 3283 ident: bib0023 article-title: Chemical upcycling of poly(ethylene terephthalate) waste: moving to a circular model publication-title: Journal of Polymer Science – volume: 16 start-page: 279 year: 2014 end-page: 286 ident: bib0041 article-title: Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET publication-title: Green Chemistry – volume: 23 start-page: 3765 year: 2021 end-page: 3789 ident: bib0033 article-title: Chemolytic depolymerisation of PET: a review publication-title: Green Chemistry – volume: 143 start-page: 3489 year: 2020 end-page: 3497 ident: bib0060 article-title: Glycolysis of poly(ethylene terephthalate) waste catalyzed by mixed Lewis acidic ionic liquids publication-title: J. Therm. Anal. Calorim. – volume: 15 year: 2022 ident: bib0095 article-title: Molecular dynamics simulation and structure changes of polyester in water and non-aqueous solvents publication-title: Materials. (Basel) – volume: 1 start-page: 1 year: 2014 end-page: 17 ident: bib0019 article-title: Poly (ethylene terephthalate) recycling for high value added textiles publication-title: Fashion and Textiles – volume: 48 start-page: 8230 year: 2007 end-page: 8233 ident: bib0051 article-title: A simple method for the alkaline hydrolysis of esters publication-title: Tetrahedron. Lett. – volume: 25 start-page: 53 year: 2016 end-page: 64 ident: bib0020 article-title: Greener routes for recycling of polyethylene terephthalate publication-title: Egyptian Journal of Petroleum – volume: 70 start-page: 1939 year: 1998 end-page: 1945 ident: bib0109 article-title: Investigation of Alkaline Hydrolysis of Polyethylene Terephthalate by Differential Scanning Calorimetry and Thermogravimetric Analysis publication-title: J. Appl. Polym. Sci. – volume: 129 start-page: 2779 year: 2013 end-page: 2788 ident: bib0032 article-title: Microwave assisted glycolysis of poly(ethylene terepthalate) for preparation of polyester polyols publication-title: J. Appl. Polym. Sci. – volume: 29 start-page: 2625 year: 2009 end-page: 2643 ident: bib0014 article-title: Recycling and recovery routes of plastic solid waste (PSW): a review publication-title: Waste Manage – volume: 194 year: 2021 ident: bib0077 article-title: Metal ions immobilized on polymer ionic liquid as novel efficient and facile recycled catalyst for glycolysis of PET publication-title: Polym. Degrad. Stab. – reference: W. DeWit, E. Towers, J.C. Guinchard, N. Ahmed, Plastics: the costs to society, the environment and the economy a report for Wwf By Wwf International 2021, 2021. – volume: 10 year: 2022 ident: bib0071 article-title: Recycling of full components of polyester/cotton blends catalyzed by betaine-based deep eutectic solvents publication-title: J. Environ. Chem. Eng. – volume: 55 start-page: 34 year: 2010 end-page: 52 ident: bib0097 article-title: Open-loop recycling: a LCA case study of PET bottle-to-fibre recycling publication-title: Resour. Conserv. Recycl. – volume: 154 start-page: 596 year: 2020 end-page: 605 ident: bib0049 article-title: Deeper insight into hydrolysis mechanisms of polyester/cotton blended fabrics for separation by explicit solvent models publication-title: Int. J. Biol. Macromol. – volume: 14 start-page: 173 year: 2007 end-page: 177 ident: bib0086 article-title: Alkaline hydrolysis of poly(ethylene terephthalate) in presence of a phase transfer catalyst publication-title: Indian J. Chem. Technol. – volume: 52 start-page: 337 year: 2003 end-page: 342 ident: bib0090 article-title: Kinetic and thermodynamic study of methanolysis of poly(ethylene terephthalate) waste powder publication-title: Polym. Int. – volume: 55 start-page: 865 year: 2011 end-page: 875 ident: bib0101 article-title: Twenty years of PET bottle to bottle recycling - An overview publication-title: Resour. Conserv. Recycl. – volume: 26 year: 2021 ident: bib0068 article-title: Synthesis of two-dimensional holey MnO2/graphene oxide nanosheets with high catalytic performance for the glycolysis of poly(ethylene terephthalate) publication-title: Mater. Today Commun. – reference: G.M. Mohamad Sadeghi, M. Sayaf, From PET waste to novel polyurethanes, in: material recycling - trends and perspectives, 2012: pp. 357–390. – reference: Plastics Europe, Plastics - the facts 2021, 2021. – volume: 53 start-page: 18443 year: 2014 end-page: 18451 ident: bib0111 article-title: Glycolysis of poly(ethylene terephthalate) catalyzed by the Lewis base ionic liquid [Bmim][OAc] publication-title: Ind. Eng. Chem. Res. – volume: 51 start-page: 8793 year: 2022 end-page: 8814 ident: bib0044 article-title: Main group metal polymerisation catalysts publication-title: Chem. Soc. Rev. – volume: 8 start-page: 8209 year: 2018 end-page: 8219 ident: bib0073 article-title: Theoretical studies on glycolysis of poly(ethylene terephthalate) in ionic liquids publication-title: RSC. Adv. – year: 2019 ident: bib0026 article-title: Chemical Depolymerization of PET Bottles via Ammonolysis and Aminolysis – volume: 122 start-page: 79 year: 2014 end-page: 90 ident: bib0018 article-title: Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags publication-title: Fuel Processing Technology – volume: 33 year: 2022 ident: bib0094 article-title: Molecular dynamics simulation of effects of three accelerators on the microstructure of polyesters in non-aqueous solvents publication-title: Mater. Today Commun. – volume: 61 start-page: 200 year: 2015 end-page: 214 ident: bib0046 article-title: Reaction kinetics and mechanism of catalyzed hydrolysis of waste PET using solid acid catalyst in supercritical CO2 publication-title: AIChE Journal – volume: 199 year: 2022 ident: bib0058 article-title: Poly(ionic liquid)s as efficient and recyclable catalysts for methanolysis of PET publication-title: Polym. Degrad. Stab. – volume: 59 start-page: 15402 year: 2020 end-page: 15423 ident: bib0098 article-title: Beyond Mechanical Recycling: giving New Life to Plastic Waste publication-title: Angew. Chemie. Int. Ed. – volume: 7 start-page: 3292 year: 2019 end-page: 3300 ident: bib0063 article-title: Lewis Acid-Base Synergistic Catalysis for Polyethylene Terephthalate Degradation by 1,3-Dimethylurea/Zn(OAc)2 Deep Eutectic Solvent publication-title: ACS. Sustain. Chem. Eng. – volume: 16 year: 2023 ident: bib0078 article-title: Oxygen Vacancy Promoted Generation of Monatomic Oxygen Anion over Ni2+-Doped MgO for Efficient Glycolysis of Waste PET** publication-title: ChemSusChem.ChemSusChem. – volume: 296 year: 2021 ident: bib0100 article-title: Progress in the catalytic glycolysis of polyethylene terephthalate publication-title: J. Environ. Manage – volume: 110 start-page: 364 year: 2014 end-page: 377 ident: bib0030 article-title: Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly(ethylene terephthalate) publication-title: Polym. Degrad. Stab. – volume: 57 start-page: 430 year: 2020 end-page: 438 ident: bib0039 article-title: Synthesis of poly(ethylene terephthalate) based on glycolysis of waste PET fiber publication-title: Journal of Macromolecular Science, Part A: Pure and Applied Chemistry – volume: 16 year: 2023 ident: bib0024 article-title: Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts publication-title: ChemSusChem.ChemSusChem. – volume: 23 start-page: 32 year: 2020 end-page: 43 ident: bib0013 article-title: Tertiary recycling of plastics waste: an analysis of feedstock, chemical and biological degradation methods publication-title: J. Mater. Cycles. Waste Manage – volume: 641 year: 2022 ident: bib0069 article-title: Molecular mechanism of waste polyethylene terephthalate recycling by the 1,5,7-triazabicyclo[4.4.0]decium acetate/zinc acetate deep eutectic solvent: the crucial role of 1,5,7-triazabicyclo[4.4.0]decium cation publication-title: Appl Catal A Gen – volume: 126 start-page: 1174 year: 2012 end-page: 1181 ident: bib0035 article-title: Ionic Liquid-Catalyzed Aminolysis of Poly(ethyleneterephthalate) Waste publication-title: J. Appl. Polym. Sci. – volume: 192 year: 2021 ident: bib0066 article-title: Cobalt-based ionic liquid grafted on graphene as a heterogeneous catalyst for poly (ethylene terephthalate) glycolysis publication-title: Polym. Degrad. Stab. – volume: 36 start-page: 1677 year: 1988 end-page: 1683 ident: bib0027 article-title: Polyester formation: aminolytic degradation and proposed mechanisms of the reaction publication-title: J. Appl. Polym. Sci. – reference: Enivronmental Protection Agency (EPA), Advancing Sustainable Materials Management, 2020. – volume: 35 start-page: 831 year: 2017 end-page: 837 ident: bib0113 article-title: Nano ZnO Catalyst for Chemical Recycling of Polyethylene terephthalate (PET) publication-title: Eng. Technol. J. – volume: 225 start-page: 1052 year: 2019 end-page: 1064 ident: bib0021 article-title: Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review publication-title: J. Clean. Prod. – volume: 18 start-page: 3997 year: 2016 end-page: 4003 ident: bib0065 article-title: Fe3O4-boosted MWCNT as an efficient sustainable catalyst for PET glycolysis publication-title: Green Chemistry – volume: 7 start-page: 7039 year: 2016 end-page: 7046 ident: bib0028 article-title: Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications publication-title: Polym. Chem. – volume: 178 start-page: 390 year: 2010 end-page: 396 ident: bib0038 article-title: Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis publication-title: J. Hazard. Mater. – reference: BP, BP's new technology to enable circularity for unrecyclable PET plastic waste, (2019). – volume: 20 start-page: 106 year: 2016 end-page: 120 ident: bib0036 article-title: Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste publication-title: International Journal of Plastics Technology – volume: 57 start-page: 16239 year: 2018 end-page: 16245 ident: bib0092 article-title: Ultrafast homogeneous glycolysis of waste polyethylene terephthalate via a dissolution-degradation strategy publication-title: Ind. Eng. Chem. Res. – volume: 190 year: 2021 ident: bib0114 article-title: Formation of Bis(hydroxyethyl) terephthalate from waste plastic using ionic liquid as catalyst publication-title: Polym. Degrad. Stab. – volume: 46 start-page: 135 year: 2007 end-page: 144 ident: bib0084 article-title: Post consumer pet depolymerization by acid hydrolysis publication-title: Polym. Plast. Technol. Eng. – volume: 23 start-page: 511 year: 2021 ident: bib0057 article-title: Low-energy catalytic methanolysis of poly(ethyleneterephthalate) publication-title: Green Chemistry – volume: 2013 start-page: 1 year: 2013 end-page: 5 ident: bib0017 article-title: Predicting Pyrolysis Products of PE, PP, and PET Using NRTL Activity Coefficient Model publication-title: J. Chem. – volume: 742 start-page: 1 year: 2014 end-page: 5 ident: bib0085 article-title: Kinetics of hydrolysis of poly(ethylene terephthalate) wastes catalyzed by dual functional phase transfer catalyst: a mechanism of chain-end scission publication-title: Eur. J. Pharmacol. – volume: 156 start-page: 22 year: 2018 end-page: 31 ident: bib0042 article-title: High-efficiency glycolysis of poly(ethylene terephthalate) by sandwich-structure polyoxometalate catalyst with two active sites publication-title: Polym. Degrad. Stab. – volume: 44 start-page: 14377 year: 2018 end-page: 14385 ident: bib0115 article-title: Comparison of microwave and conventional heating methods for oxidative stabilization of polyacrylonitrile fibers at different holding time and heating rate publication-title: Ceram. Int. – volume: 9 year: 2016 ident: bib0116 article-title: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies publication-title: Materials. (Basel) – volume: 61 start-page: 1241 year: 2023 end-page: 1251 ident: bib0106 article-title: A facile approach toward the synthesis of terephthalic acid via aminolytic depolymerization of PET waste and studies on the kinetics of depolymerization publication-title: J. Polym. Sci. – volume: 10 start-page: 7965 year: 2022 end-page: 7973 ident: bib0074 article-title: Cyanamide as a Highly Efficient Organocatalyst for the Glycolysis Recycling of PET publication-title: ACS. Sustain. Chem. Eng. – volume: 41 start-page: 2521 year: 2000 end-page: 2534 ident: bib0029 article-title: A FTIR-ATR study of liquid diffusion processes in PET films: comparison of water with simple alcohols publication-title: Polymer. (Guildf) – volume: 115 start-page: 308 year: 2016 end-page: 326 ident: bib0015 article-title: A review on pyrolysis of plastic wastes publication-title: Energy Convers. Manage – volume: 11 start-page: 1450 year: 2020 end-page: 1453 ident: bib0045 article-title: Dual-catalytic depolymerization of polyethylene terephthalate (PET) publication-title: Polym. Chem. – volume: 23 start-page: 18659 year: 2021 end-page: 18668 ident: bib0072 article-title: Mechanistic insight into the roles of anions and cations in the degradation of poly(ethylene terephthalate) catalyzed by ionic liquids publication-title: Physical Chemistry Chemical Physics – volume: 127 start-page: 2809 year: 2013 end-page: 2815 ident: bib0110 article-title: Kinetics of glycolysis of poly(ethylene terephthalate) under microwave irradiation publication-title: J. Appl. Polym. Sci. – year: 2018 ident: bib0099 article-title: Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC On Waste – volume: 31 start-page: 2912 year: 2020 end-page: 2938 ident: bib0022 article-title: Chemical recycling of PET: a stepping-stone toward sustainability publication-title: Polym. Adv. Technol. – volume: 95 start-page: 187 year: 2010 end-page: 194 ident: bib0037 article-title: Chemical recycling of poly(ethylene terephthalate) waste using ethanolamine. Sorting of the end products publication-title: Polym. Degrad. Stab. – volume: 220 year: 2020 ident: bib0056 article-title: ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate publication-title: Chem. Eng. Sci. – volume: 98 start-page: 904 year: 2013 end-page: 915 ident: bib0040 article-title: Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis publication-title: Polym. Degrad. Stab. – volume: 292 start-page: 128 year: 2007 end-page: 146 ident: bib0008 article-title: Chemical recycling of poly(ethylene terephthalate) publication-title: Macromol. Mater. Eng. – volume: 18 start-page: 8 year: 2010 end-page: 25 ident: bib0011 article-title: Pet waste management by chemical recycling: a review publication-title: J. Polym. Environ. – volume: 208 year: 2023 ident: bib0093 article-title: Depolymerization of polyethylene terephthalate with glycol under comparatively mild conditions publication-title: Polym. Degrad. Stab. – volume: 248 year: 2022 ident: bib0067 article-title: Colorless BHET obtained from PET by modified mesoporous catalyst ZnO/SBA-15 publication-title: Chem. Eng. Sci. – volume: 22 start-page: 3122 year: 2020 end-page: 3131 ident: bib0062 article-title: Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids publication-title: Green Chemistry – volume: 60 start-page: 122 year: 2018 end-page: 140 ident: bib0081 article-title: Ultrasound-assisted alkaline hydrolysis of waste poly(Ethylene Terephthalate) in aqueous and non-aqueous media at low temperature publication-title: Indian Chem Eng – start-page: 222 year: 2021 ident: bib0047 article-title: Poly (4-styrenesulfonic acid): a recoverable and reusable catalyst for acid hydrolysis of polyethylene terephthalate publication-title: Polymer. (Guildf) – volume: 21 start-page: 250 year: 2002 end-page: 259 ident: bib0082 article-title: Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis publication-title: Adv Polym Technol – volume: 78 start-page: 8927 year: 2013 end-page: 8955 ident: bib0043 article-title: Developing Ligands for Palladium(II)-Catalyzed C–H Functionalization: intimate Dialogue between Ligand and Substrate publication-title: Journal of Organic Chemistry – volume: 17 start-page: 2473 year: 2015 end-page: 2479 ident: bib0070 article-title: Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate)(PET) publication-title: Green Chemistry – volume: 233–235 start-page: 627 year: 2012 end-page: 631 ident: bib0083 article-title: Kinetics of Glycolysis of Poly (Ethylene Terephthalate) by Shrinking-core Model publication-title: Adv. Mat. Res. – volume: 81 start-page: 2102 year: 2001 end-page: 2108 ident: bib0089 article-title: Depolymerization of Polyethyleneterephthalate in Supercritical Methanol publication-title: J. Appl. Polym. Sci. – volume: 20 start-page: 1205 year: 2018 end-page: 1212 ident: bib0075 article-title: Organocatalysed depolymerisation of PET in a fully sustainable cycle using thermally stable protic ionic salt publication-title: Green Chemistry – volume: 3 start-page: 340 year: 2015 end-page: 348 ident: bib0055 article-title: First-row transition metal-containing ionic liquids as highly active catalysts for the glycolysis of poly(ethylene terephthalate) (PET) publication-title: ACS. Sustain. Chem. Eng. – reference: . – volume: 225 start-page: 109 year: 1995 end-page: 122 ident: bib0012 article-title: Characterization of low-molecular-weight oligomers in recycled poly(ethylene terephthalate) publication-title: Die Angewandte Makromolekulare Chemie – volume: 13 start-page: 1461 year: 2020 end-page: 1476 ident: bib0096 article-title: Synergistic influences ofstearic acid coating and recycled PET microfibers on the enhanced properties of com- posite materials publication-title: Materials. (Basel) – volume: 137 start-page: 14439 year: 2015 end-page: 14445 ident: bib0064 article-title: Dual Catalysis for Selective Ring-Opening Polymerization of Lactones: evolution toward Simplicity publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 1850 year: 2006 end-page: 1854 ident: bib0034 article-title: Aminolysis of polyethylene terephthalate waste publication-title: Polym. Degrad. Stab. – volume: 60 start-page: 4180 year: 2021 end-page: 4188 ident: bib0076 article-title: Multiple hydrogen bonds promote the nonmetallic degradation process of polyethylene terephthalate with an amino acid ionic liquid catalyst publication-title: Ind. Eng. Chem. Res. – volume: 267 year: 2023 ident: bib0091 article-title: Molecular-level swelling behaviors of poly (ethylene terephthalate) glycolysis using ionic liquids as catalyst publication-title: Chem. Eng. Sci. – volume: 11 start-page: 763 year: 2010 end-page: 767 ident: bib0061 article-title: Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly(ethylene terephthalate) publication-title: Catal. Commun. – volume: 135 start-page: 267 year: 2021 end-page: 274 ident: bib0048 article-title: Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid publication-title: Waste Management – volume: 151 year: 2021 ident: bib0108 article-title: Ultrafast microwave assisted recycling of PET to a family of functional precursors and materials publication-title: Eur. Polym. J. – volume: 11 start-page: 1 year: 2023 end-page: 11 ident: bib0107 article-title: Novel terephthalamide diol monomers synthesis from PET waste to Poly(Urethane acrylates) publication-title: Front. Chem. – year: 2015 ident: bib0016 article-title: Waste Plastics into Fuel Oil? publication-title: Science in Society – volume: 146 start-page: 287 year: 2009 end-page: 294 ident: bib0087 article-title: A shrinking core model for the alkaline hydrolysis of PET assisted by tributylhexadecylphosphonium bromide publication-title: Chem. Eng. J. – reference: T. Pecorini, E.J. Moskala, D.M. Lange, R.W. Seymour, Process for the Preparation of Polyesters with High Recycle Content, WO2013025186A1, 2013. – volume: 84 start-page: 789 year: 2012 ident: 10.1016/j.polymdegradstab.2024.110729_bib0054 article-title: Effective catalysis of poly(ethylene terephthalate) (PET) degradation by metallic acetate ionic liquids publication-title: Pure and Applied Chemistry doi: 10.1351/PAC-CON-11-06-10 – volume: 59 start-page: 15402 year: 2020 ident: 10.1016/j.polymdegradstab.2024.110729_bib0098 article-title: Beyond Mechanical Recycling: giving New Life to Plastic Waste publication-title: Angew. Chemie. Int. Ed. doi: 10.1002/anie.201915651 – volume: 44 start-page: 14377 year: 2018 ident: 10.1016/j.polymdegradstab.2024.110729_bib0115 article-title: Comparison of microwave and conventional heating methods for oxidative stabilization of polyacrylonitrile fibers at different holding time and heating rate publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.05.047 – volume: 248 year: 2022 ident: 10.1016/j.polymdegradstab.2024.110729_bib0067 article-title: Colorless BHET obtained from PET by modified mesoporous catalyst ZnO/SBA-15 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117109 – volume: 61 start-page: 200 year: 2015 ident: 10.1016/j.polymdegradstab.2024.110729_bib0046 article-title: Reaction kinetics and mechanism of catalyzed hydrolysis of waste PET using solid acid catalyst in supercritical CO2 publication-title: AIChE Journal doi: 10.1002/aic.14632 – volume: 7 start-page: 7039 year: 2016 ident: 10.1016/j.polymdegradstab.2024.110729_bib0028 article-title: Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications publication-title: Polym. Chem. doi: 10.1039/C6PY01783E – volume: 18 start-page: 8 year: 2010 ident: 10.1016/j.polymdegradstab.2024.110729_bib0011 article-title: Pet waste management by chemical recycling: a review publication-title: J. Polym. Environ. doi: 10.1007/s10924-008-0106-7 – volume: 267 year: 2023 ident: 10.1016/j.polymdegradstab.2024.110729_bib0091 article-title: Molecular-level swelling behaviors of poly (ethylene terephthalate) glycolysis using ionic liquids as catalyst publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.118329 – volume: 95 start-page: 187 year: 2010 ident: 10.1016/j.polymdegradstab.2024.110729_bib0037 article-title: Chemical recycling of poly(ethylene terephthalate) waste using ethanolamine. Sorting of the end products publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2009.11.026 – volume: 16 start-page: 279 year: 2014 ident: 10.1016/j.polymdegradstab.2024.110729_bib0041 article-title: Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET publication-title: Green Chemistry doi: 10.1039/C3GC41834K – year: 2017 ident: 10.1016/j.polymdegradstab.2024.110729_bib0103 – volume: 33 year: 2022 ident: 10.1016/j.polymdegradstab.2024.110729_bib0094 article-title: Molecular dynamics simulation of effects of three accelerators on the microstructure of polyesters in non-aqueous solvents publication-title: Mater. Today Commun. – volume: 51 start-page: 8793 year: 2022 ident: 10.1016/j.polymdegradstab.2024.110729_bib0044 article-title: Main group metal polymerisation catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00048B – volume: 641 year: 2022 ident: 10.1016/j.polymdegradstab.2024.110729_bib0069 article-title: Molecular mechanism of waste polyethylene terephthalate recycling by the 1,5,7-triazabicyclo[4.4.0]decium acetate/zinc acetate deep eutectic solvent: the crucial role of 1,5,7-triazabicyclo[4.4.0]decium cation publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2022.118681 – volume: 7 start-page: 3292 year: 2019 ident: 10.1016/j.polymdegradstab.2024.110729_bib0063 article-title: Lewis Acid-Base Synergistic Catalysis for Polyethylene Terephthalate Degradation by 1,3-Dimethylurea/Zn(OAc)2 Deep Eutectic Solvent publication-title: ACS. Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b05324 – volume: 129 start-page: 2779 year: 2013 ident: 10.1016/j.polymdegradstab.2024.110729_bib0032 article-title: Microwave assisted glycolysis of poly(ethylene terepthalate) for preparation of polyester polyols publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.38970 – volume: 143 start-page: 3489 year: 2020 ident: 10.1016/j.polymdegradstab.2024.110729_bib0060 article-title: Glycolysis of poly(ethylene terephthalate) waste catalyzed by mixed Lewis acidic ionic liquids publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-10331-8 – volume: 10 start-page: 7965 year: 2022 ident: 10.1016/j.polymdegradstab.2024.110729_bib0074 article-title: Cyanamide as a Highly Efficient Organocatalyst for the Glycolysis Recycling of PET publication-title: ACS. Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c01235 – ident: 10.1016/j.polymdegradstab.2024.110729_bib0104 – volume: 16 year: 2023 ident: 10.1016/j.polymdegradstab.2024.110729_bib0024 article-title: Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts publication-title: ChemSusChem.ChemSusChem. – volume: 233–235 start-page: 627 year: 2012 ident: 10.1016/j.polymdegradstab.2024.110729_bib0083 article-title: Kinetics of Glycolysis of Poly (Ethylene Terephthalate) by Shrinking-core Model publication-title: Adv. Mat. Res. – volume: 29 start-page: 2625 year: 2009 ident: 10.1016/j.polymdegradstab.2024.110729_bib0014 article-title: Recycling and recovery routes of plastic solid waste (PSW): a review publication-title: Waste Manage doi: 10.1016/j.wasman.2009.06.004 – volume: 347 start-page: 768 year: 2015 ident: 10.1016/j.polymdegradstab.2024.110729_bib0004 article-title: Plastic waste inputs from land into the ocean publication-title: Science (1979) – volume: 55 start-page: 865 year: 2011 ident: 10.1016/j.polymdegradstab.2024.110729_bib0101 article-title: Twenty years of PET bottle to bottle recycling - An overview publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2011.04.009 – volume: 742 start-page: 1 year: 2014 ident: 10.1016/j.polymdegradstab.2024.110729_bib0085 article-title: Kinetics of hydrolysis of poly(ethylene terephthalate) wastes catalyzed by dual functional phase transfer catalyst: a mechanism of chain-end scission publication-title: Eur. J. Pharmacol. – volume: 23 start-page: 32 year: 2020 ident: 10.1016/j.polymdegradstab.2024.110729_bib0013 article-title: Tertiary recycling of plastics waste: an analysis of feedstock, chemical and biological degradation methods publication-title: J. Mater. Cycles. Waste Manage doi: 10.1007/s10163-020-01106-2 – volume: 57 start-page: 430 year: 2020 ident: 10.1016/j.polymdegradstab.2024.110729_bib0039 article-title: Synthesis of poly(ethylene terephthalate) based on glycolysis of waste PET fiber publication-title: Journal of Macromolecular Science, Part A: Pure and Applied Chemistry doi: 10.1080/10601325.2019.1709498 – volume: 42 A start-page: 237 year: 2005 ident: 10.1016/j.polymdegradstab.2024.110729_bib0080 article-title: Alkaline hydrolysis of waste poly(ethylene terephthalate): a modified shrinking core model publication-title: J. Macromol. Sci. Pure Appl. Chem. doi: 10.1081/MA-200050346 – volume: 146 start-page: 287 year: 2009 ident: 10.1016/j.polymdegradstab.2024.110729_bib0087 article-title: A shrinking core model for the alkaline hydrolysis of PET assisted by tributylhexadecylphosphonium bromide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.09.039 – volume: 60 start-page: 122 year: 2018 ident: 10.1016/j.polymdegradstab.2024.110729_bib0081 article-title: Ultrasound-assisted alkaline hydrolysis of waste poly(Ethylene Terephthalate) in aqueous and non-aqueous media at low temperature publication-title: Indian Chem Eng doi: 10.1080/00194506.2017.1310634 – volume: 11 start-page: 1 year: 2023 ident: 10.1016/j.polymdegradstab.2024.110729_bib0107 article-title: Novel terephthalamide diol monomers synthesis from PET waste to Poly(Urethane acrylates) publication-title: Front. Chem. doi: 10.3389/fchem.2023.1234763 – volume: 178 start-page: 390 year: 2010 ident: 10.1016/j.polymdegradstab.2024.110729_bib0038 article-title: Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.01.092 – volume: 23 start-page: 3765 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0033 article-title: Chemolytic depolymerisation of PET: a review publication-title: Green Chemistry doi: 10.1039/D1GC00887K – volume: 6 start-page: 43171 year: 2016 ident: 10.1016/j.polymdegradstab.2024.110729_bib0050 article-title: Tungsten-promoted titania as solid acid for catalytic hydrolysis of waste bottle PET in supercritical CO2 publication-title: RSC. Adv. doi: 10.1039/C6RA06298A – volume: 25 start-page: 6901 year: 2023 ident: 10.1016/j.polymdegradstab.2024.110729_bib0031 article-title: Magnetic hollow micro-sized nanoaggregates for synergistically accelerating PET glycolysis publication-title: Green Chemistry doi: 10.1039/D3GC01762A – volume: 81 start-page: 2102 year: 2001 ident: 10.1016/j.polymdegradstab.2024.110729_bib0089 article-title: Depolymerization of Polyethyleneterephthalate in Supercritical Methanol publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1645 – volume: 208 year: 2023 ident: 10.1016/j.polymdegradstab.2024.110729_bib0093 article-title: Depolymerization of polyethylene terephthalate with glycol under comparatively mild conditions publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2022.110245 – volume: 28 start-page: 43074 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0025 article-title: Mechanistic aspects of poly (ethylene terephthalate) recycling – toward enabling high quality sustainability decisions in waste management publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-14925-z – volume: 31 start-page: 2912 year: 2020 ident: 10.1016/j.polymdegradstab.2024.110729_bib0022 article-title: Chemical recycling of PET: a stepping-stone toward sustainability publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5023 – volume: 154 start-page: 596 year: 2020 ident: 10.1016/j.polymdegradstab.2024.110729_bib0049 article-title: Deeper insight into hydrolysis mechanisms of polyester/cotton blended fabrics for separation by explicit solvent models publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.03.130 – volume: 21 start-page: 250 year: 2002 ident: 10.1016/j.polymdegradstab.2024.110729_bib0082 article-title: Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis publication-title: Adv Polym Technol doi: 10.1002/adv.10029 – volume: 91 start-page: 1850 year: 2006 ident: 10.1016/j.polymdegradstab.2024.110729_bib0034 article-title: Aminolysis of polyethylene terephthalate waste publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2005.11.005 – start-page: 222 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0047 article-title: Poly (4-styrenesulfonic acid): a recoverable and reusable catalyst for acid hydrolysis of polyethylene terephthalate publication-title: Polymer. (Guildf) – volume: 137 start-page: 14439 year: 2015 ident: 10.1016/j.polymdegradstab.2024.110729_bib0064 article-title: Dual Catalysis for Selective Ring-Opening Polymerization of Lactones: evolution toward Simplicity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09502 – volume: 225 start-page: 109 year: 1995 ident: 10.1016/j.polymdegradstab.2024.110729_bib0012 article-title: Characterization of low-molecular-weight oligomers in recycled poly(ethylene terephthalate) publication-title: Die Angewandte Makromolekulare Chemie doi: 10.1002/apmc.1995.052250110 – volume: 20 start-page: 1205 year: 2018 ident: 10.1016/j.polymdegradstab.2024.110729_bib0075 article-title: Organocatalysed depolymerisation of PET in a fully sustainable cycle using thermally stable protic ionic salt publication-title: Green Chemistry doi: 10.1039/C7GC03396F – volume: 40 start-page: 75 year: 2001 ident: 10.1016/j.polymdegradstab.2024.110729_bib0079 article-title: Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie000592u – volume: 190 year: 2020 ident: 10.1016/j.polymdegradstab.2024.110729_bib0007 article-title: Microplastics and seafood: lower trophic organisms at highest risk of contamination publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.110066 – volume: 60 start-page: 4180 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0076 article-title: Multiple hydrogen bonds promote the nonmetallic degradation process of polyethylene terephthalate with an amino acid ionic liquid catalyst publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c06073 – volume: 15 year: 2022 ident: 10.1016/j.polymdegradstab.2024.110729_bib0095 article-title: Molecular dynamics simulation and structure changes of polyester in water and non-aqueous solvents publication-title: Materials. (Basel) – volume: 194 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0077 article-title: Metal ions immobilized on polymer ionic liquid as novel efficient and facile recycled catalyst for glycolysis of PET publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2021.109751 – ident: 10.1016/j.polymdegradstab.2024.110729_bib0102 – volume: 156 start-page: 22 year: 2018 ident: 10.1016/j.polymdegradstab.2024.110729_bib0042 article-title: High-efficiency glycolysis of poly(ethylene terephthalate) by sandwich-structure polyoxometalate catalyst with two active sites publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2018.07.004 – volume: 3 start-page: 340 year: 2015 ident: 10.1016/j.polymdegradstab.2024.110729_bib0055 article-title: First-row transition metal-containing ionic liquids as highly active catalysts for the glycolysis of poly(ethylene terephthalate) (PET) publication-title: ACS. Sustain. Chem. Eng. doi: 10.1021/sc5007522 – ident: 10.1016/j.polymdegradstab.2024.110729_bib0003 – volume: 11 start-page: 763 year: 2010 ident: 10.1016/j.polymdegradstab.2024.110729_bib0061 article-title: Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly(ethylene terephthalate) publication-title: Catal. Commun. doi: 10.1016/j.catcom.2010.02.011 – volume: 25 start-page: 53 year: 2016 ident: 10.1016/j.polymdegradstab.2024.110729_bib0020 article-title: Greener routes for recycling of polyethylene terephthalate publication-title: Egyptian Journal of Petroleum doi: 10.1016/j.ejpe.2015.03.001 – volume: 78 start-page: 8927 year: 2013 ident: 10.1016/j.polymdegradstab.2024.110729_bib0043 article-title: Developing Ligands for Palladium(II)-Catalyzed C–H Functionalization: intimate Dialogue between Ligand and Substrate publication-title: Journal of Organic Chemistry doi: 10.1021/jo400159y – volume: 9 year: 2016 ident: 10.1016/j.polymdegradstab.2024.110729_bib0116 article-title: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies publication-title: Materials. (Basel) doi: 10.3390/ma9040231 – volume: 110 start-page: 364 year: 2014 ident: 10.1016/j.polymdegradstab.2024.110729_bib0030 article-title: Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly(ethylene terephthalate) publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2014.10.005 – volume: 10 year: 2022 ident: 10.1016/j.polymdegradstab.2024.110729_bib0071 article-title: Recycling of full components of polyester/cotton blends catalyzed by betaine-based deep eutectic solvents publication-title: J. Environ. Chem. Eng. – volume: 8 start-page: 8209 year: 2018 ident: 10.1016/j.polymdegradstab.2024.110729_bib0073 article-title: Theoretical studies on glycolysis of poly(ethylene terephthalate) in ionic liquids publication-title: RSC. Adv. doi: 10.1039/C7RA13173A – volume: 11 start-page: 1450 year: 2020 ident: 10.1016/j.polymdegradstab.2024.110729_bib0045 article-title: Dual-catalytic depolymerization of polyethylene terephthalate (PET) publication-title: Polym. Chem. doi: 10.1039/C9PY01920K – year: 2023 ident: 10.1016/j.polymdegradstab.2024.110729_bib0059 article-title: Mechanistic Insights of Cosolvent Efficient Enhancement of PET Methanol Alcohololysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c04419 – volume: 48 start-page: 8230 year: 2007 ident: 10.1016/j.polymdegradstab.2024.110729_bib0051 article-title: A simple method for the alkaline hydrolysis of esters publication-title: Tetrahedron. Lett. doi: 10.1016/j.tetlet.2007.09.074 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.polymdegradstab.2024.110729_bib0017 article-title: Predicting Pyrolysis Products of PE, PP, and PET Using NRTL Activity Coefficient Model publication-title: J. Chem. doi: 10.1155/2013/487676 – volume: 446 year: 2023 ident: 10.1016/j.polymdegradstab.2024.110729_bib0053 article-title: Enhanced degradation of poly(ethylene terephthalate) by the addition of lactic acid /glycolic acid: composting degradation, seawater degradation behavior and comparison of degradation mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.130670 – volume: 53 start-page: 18443 year: 2014 ident: 10.1016/j.polymdegradstab.2024.110729_bib0111 article-title: Glycolysis of poly(ethylene terephthalate) catalyzed by the Lewis base ionic liquid [Bmim][OAc] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie503677w – volume: 57 start-page: 16239 year: 2018 ident: 10.1016/j.polymdegradstab.2024.110729_bib0092 article-title: Ultrafast homogeneous glycolysis of waste polyethylene terephthalate via a dissolution-degradation strategy publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b03854 – volume: 36 start-page: 1677 year: 1988 ident: 10.1016/j.polymdegradstab.2024.110729_bib0027 article-title: Polyester formation: aminolytic degradation and proposed mechanisms of the reaction publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1988.070360716 – volume: 26 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0068 article-title: Synthesis of two-dimensional holey MnO2/graphene oxide nanosheets with high catalytic performance for the glycolysis of poly(ethylene terephthalate) publication-title: Mater. Today Commun. – volume: 55 start-page: 34 year: 2010 ident: 10.1016/j.polymdegradstab.2024.110729_bib0097 article-title: Open-loop recycling: a LCA case study of PET bottle-to-fibre recycling publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2010.06.014 – volume: 192 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0066 article-title: Cobalt-based ionic liquid grafted on graphene as a heterogeneous catalyst for poly (ethylene terephthalate) glycolysis publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2021.109691 – volume: 16 year: 2023 ident: 10.1016/j.polymdegradstab.2024.110729_bib0078 article-title: Oxygen Vacancy Promoted Generation of Monatomic Oxygen Anion over Ni2+-Doped MgO for Efficient Glycolysis of Waste PET** publication-title: ChemSusChem.ChemSusChem. – volume: 52 start-page: 337 year: 2003 ident: 10.1016/j.polymdegradstab.2024.110729_bib0090 article-title: Kinetic and thermodynamic study of methanolysis of poly(ethylene terephthalate) waste powder publication-title: Polym. Int. doi: 10.1002/pi.1147 – volume: 1 start-page: 1 year: 2014 ident: 10.1016/j.polymdegradstab.2024.110729_bib0019 article-title: Poly (ethylene terephthalate) recycling for high value added textiles publication-title: Fashion and Textiles doi: 10.1186/s40691-014-0001-x – volume: 20 start-page: 106 year: 2016 ident: 10.1016/j.polymdegradstab.2024.110729_bib0036 article-title: Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste publication-title: International Journal of Plastics Technology doi: 10.1007/s12588-016-9134-7 – volume: 14 start-page: 173 year: 2007 ident: 10.1016/j.polymdegradstab.2024.110729_bib0086 article-title: Alkaline hydrolysis of poly(ethylene terephthalate) in presence of a phase transfer catalyst publication-title: Indian J. Chem. Technol. – volume: 60 start-page: 3269 year: 2022 ident: 10.1016/j.polymdegradstab.2024.110729_bib0023 article-title: Chemical upcycling of poly(ethylene terephthalate) waste: moving to a circular model publication-title: Journal of Polymer Science doi: 10.1002/pol.20220137 – year: 2019 ident: 10.1016/j.polymdegradstab.2024.110729_bib0026 – volume: 87 start-page: 519 year: 2010 ident: 10.1016/j.polymdegradstab.2024.110729_bib0005 article-title: The Depolymerization of Poly(ethylene terephthalate) (PET) Using N-Heterocyclic Carbenes from Ionic Liquids publication-title: Society.Society. – volume: 23 start-page: 18659 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0072 article-title: Mechanistic insight into the roles of anions and cations in the degradation of poly(ethylene terephthalate) catalyzed by ionic liquids publication-title: Physical Chemistry Chemical Physics doi: 10.1039/D1CP02038B – volume: 35 start-page: 831 year: 2017 ident: 10.1016/j.polymdegradstab.2024.110729_bib0113 article-title: Nano ZnO Catalyst for Chemical Recycling of Polyethylene terephthalate (PET) publication-title: Eng. Technol. J. doi: 10.30684/etj.35.8A.7 – volume: 115 start-page: 308 year: 2016 ident: 10.1016/j.polymdegradstab.2024.110729_bib0015 article-title: A review on pyrolysis of plastic wastes publication-title: Energy Convers. Manage doi: 10.1016/j.enconman.2016.02.037 – volume: 292 start-page: 128 year: 2007 ident: 10.1016/j.polymdegradstab.2024.110729_bib0008 article-title: Chemical recycling of poly(ethylene terephthalate) publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.200600341 – volume: 18 start-page: 3997 year: 2016 ident: 10.1016/j.polymdegradstab.2024.110729_bib0065 article-title: Fe3O4-boosted MWCNT as an efficient sustainable catalyst for PET glycolysis publication-title: Green Chemistry doi: 10.1039/C6GC00534A – volume: 17 start-page: 2473 year: 2015 ident: 10.1016/j.polymdegradstab.2024.110729_bib0070 article-title: Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate)(PET) publication-title: Green Chemistry doi: 10.1039/C4GC02401J – ident: 10.1016/j.polymdegradstab.2024.110729_bib0009 doi: 10.5772/31642 – volume: 122 start-page: 79 year: 2014 ident: 10.1016/j.polymdegradstab.2024.110729_bib0018 article-title: Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags publication-title: Fuel Processing Technology doi: 10.1016/j.fuproc.2014.01.019 – volume: 3 start-page: 25 year: 2017 ident: 10.1016/j.polymdegradstab.2024.110729_bib0006 article-title: Production, use, and fate of all plastics ever made publication-title: Sci. Adv. doi: 10.1126/sciadv.1700782 – volume: 13 start-page: 1461 year: 2020 ident: 10.1016/j.polymdegradstab.2024.110729_bib0096 article-title: Synergistic influences ofstearic acid coating and recycled PET microfibers on the enhanced properties of com- posite materials publication-title: Materials. (Basel) doi: 10.3390/ma13061461 – volume: 286 start-page: 640 year: 2001 ident: 10.1016/j.polymdegradstab.2024.110729_bib0088 article-title: Poly(ethylene terephthalate) Recycling and Recovery of Pure Terephthalic Acid. Kinetics of a Phase Transfer Catalyzed Alkaline Hydrolysis publication-title: Macromol. Mater. Eng. doi: 10.1002/1439-2054(20011001)286:10<640::AID-MAME640>3.0.CO;2-1 – volume: 70 start-page: 1939 year: 1998 ident: 10.1016/j.polymdegradstab.2024.110729_bib0109 article-title: Investigation of Alkaline Hydrolysis of Polyethylene Terephthalate by Differential Scanning Calorimetry and Thermogravimetric Analysis publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19981205)70:10<1939::AID-APP8>3.0.CO;2-G – ident: 10.1016/j.polymdegradstab.2024.110729_bib0002 – volume: 135 start-page: 267 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0048 article-title: Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid publication-title: Waste Management doi: 10.1016/j.wasman.2021.09.009 – volume: 22 start-page: 3122 year: 2020 ident: 10.1016/j.polymdegradstab.2024.110729_bib0062 article-title: Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids publication-title: Green Chemistry doi: 10.1039/D0GC00327A – volume: 23 start-page: 511 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0057 article-title: Low-energy catalytic methanolysis of poly(ethyleneterephthalate) publication-title: Green Chemistry doi: 10.1039/D0GC03536J – volume: 14 start-page: 6558 year: 2023 ident: 10.1016/j.polymdegradstab.2024.110729_bib0052 article-title: PET recycling under mild conditions via substituent-modulated intramolecular hydrolysis publication-title: Chem. Sci. doi: 10.1039/D3SC01161E – volume: 46 start-page: 135 year: 2007 ident: 10.1016/j.polymdegradstab.2024.110729_bib0084 article-title: Post consumer pet depolymerization by acid hydrolysis publication-title: Polym. Plast. Technol. Eng. doi: 10.1080/03602550601152945 – volume: 472 start-page: 425 year: 2011 ident: 10.1016/j.polymdegradstab.2024.110729_bib0001 article-title: Polymer networks take a bow publication-title: NatureNature doi: 10.1038/472425a – volume: 220 year: 2020 ident: 10.1016/j.polymdegradstab.2024.110729_bib0056 article-title: ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115642 – volume: 199 year: 2022 ident: 10.1016/j.polymdegradstab.2024.110729_bib0058 article-title: Poly(ionic liquid)s as efficient and recyclable catalysts for methanolysis of PET publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2022.109905 – volume: 53 start-page: 14185 year: 2014 ident: 10.1016/j.polymdegradstab.2024.110729_bib0105 article-title: Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) Waste publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie501995m – volume: 225 start-page: 1052 year: 2019 ident: 10.1016/j.polymdegradstab.2024.110729_bib0021 article-title: Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.019 – year: 2018 ident: 10.1016/j.polymdegradstab.2024.110729_bib0099 – volume: 296 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0100 article-title: Progress in the catalytic glycolysis of polyethylene terephthalate publication-title: J. Environ. Manage doi: 10.1016/j.jenvman.2021.113267 – volume: 61 start-page: 1241 year: 2023 ident: 10.1016/j.polymdegradstab.2024.110729_bib0106 article-title: A facile approach toward the synthesis of terephthalic acid via aminolytic depolymerization of PET waste and studies on the kinetics of depolymerization publication-title: J. Polym. Sci. doi: 10.1002/pol.20220727 – volume: 151 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0108 article-title: Ultrafast microwave assisted recycling of PET to a family of functional precursors and materials publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2021.110441 – ident: 10.1016/j.polymdegradstab.2024.110729_bib0010 – volume: 190 year: 2021 ident: 10.1016/j.polymdegradstab.2024.110729_bib0114 article-title: Formation of Bis(hydroxyethyl) terephthalate from waste plastic using ionic liquid as catalyst publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2021.109601 – year: 2015 ident: 10.1016/j.polymdegradstab.2024.110729_bib0016 article-title: Waste Plastics into Fuel Oil? publication-title: Science in Society – volume: 41 start-page: 2521 year: 2000 ident: 10.1016/j.polymdegradstab.2024.110729_bib0029 article-title: A FTIR-ATR study of liquid diffusion processes in PET films: comparison of water with simple alcohols publication-title: Polymer. (Guildf) doi: 10.1016/S0032-3861(99)00405-X – volume: 126 start-page: 1174 year: 2012 ident: 10.1016/j.polymdegradstab.2024.110729_bib0035 article-title: Ionic Liquid-Catalyzed Aminolysis of Poly(ethyleneterephthalate) Waste publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.36878 – volume: 48 start-page: 885 year: 1999 ident: 10.1016/j.polymdegradstab.2024.110729_bib0112 article-title: Kinetics of glycolysis of polyethylene terephthalate with zinc catalyst publication-title: Polym. Int. doi: 10.1002/(SICI)1097-0126(199909)48:9<885::AID-PI216>3.0.CO;2-T – volume: 98 start-page: 904 year: 2013 ident: 10.1016/j.polymdegradstab.2024.110729_bib0040 article-title: Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2013.01.007 – volume: 127 start-page: 2809 year: 2013 ident: 10.1016/j.polymdegradstab.2024.110729_bib0110 article-title: Kinetics of glycolysis of poly(ethylene terephthalate) under microwave irradiation publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.37608 |
SSID | ssj0000451 |
Score | 2.5757952 |
SecondaryResourceType | review_article |
Snippet | •Mechanistic and kinetic studies of PET chemical recycling methods are discussed.•Various approaches towards a PET circular economy are discussed and... Polyethylene Terephthalate (PET) is one of the most commonly used plastics. Currently, PET waste has been mainly recycled through mechanical methods and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110729 |
SubjectTerms | alcoholysis aminolysis catalysts Chemical reaction mechanisms circular economy degradation Glycolysis hydrolysis microwave treatment Plastic circular economy Plastic recycling Polyethylene terephthalate polyethylene terephthalates Reaction kinetics reaction mechanisms surface area synergism wastes |
Title | Theoretical insights into chemical recycling of polyethylene terephthalate (PET) |
URI | https://dx.doi.org/10.1016/j.polymdegradstab.2024.110729 https://www.proquest.com/docview/3153554065 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4hkKAcENBWhJe2EpXKwU3s3TWxxIEoIgpFRRyCxG213gcEBTsizoELv50ZP0iLekDqzbZ27fXMaudb7TffAByFLjSxtBK3JZ00EJH2QeqECaTp8tRHUusyQ-73VTy8Eb9u5e0S9JtcGKJV1mt_taaXq3X9pF1bsz0dj9tES0L4EpJIV3neRBns4oRofT9fFjQP0k-paIxhQK1X4fuC4zXNJ8-PllQZ7IwyFCJ8GRHjK8T5zzj1bsUuw9BgEzZq_Mh61RC3YMll27DWb8q2bcP6HwqDn-F6tEhUZONsRlvxGV4UOTO1VADD_3-mBMk7lntGY3XoPAxGjqHN3fS-uNcTRKTsx_X56PgL3AzOR_1hUBdRCIyIwiLw8sRa7i1PHAYm07XGIgbh3TQJUy26JFMsXWJdx3HN0XEdI3ELZXwSWS9EovlXWM7yzO0A03QGGPu443kojHRaSGxEJcUincrEtOC0MZkytcI4FbqYqIZK9qDeWVyRxVVl8RbEb92nldTGRzueNf5Rf80dhWHho6_41vhVob_o0ERnLp_PFMeQgJALkdru_39mDz7RXUWY3Ifl4mnuDhDUFOlhOWsPYaV3cTm8egVzFftE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RIPE4oEJb8ehjkUCiByuxd9fEUg-giChpQsQhSNxW632UoGBHxBz498zEdtMiDkjcLNtrr75ZzXyrnfkG4Ch0oYmllbgtaaWBiLQPUidMIE2bpz6SWi8q5C5Hce9a_L6RNyvQqWthKK2y8v2lT1946-pOs0KzOZtMmpSWhPQlJJGuxXnTB1gldSrRgNXz_qA3WjpkIcu2hCIMaMAaHC_TvGb59OnekjCDnVORQoTfo9z4knS-GqpeOO1FJOp-hK2KQrLzcpbbsOKyHVjv1J3bdmDzH5HBT3A1XtYqskk2p934HC-KnJlKLYAhBE9UI_mH5Z7RXB3aD-ORYwi7m90Wt3qKpJSdXF2Mf36G6-7FuNMLqj4KgRFRWARenlrLveWJw9hk2tZYpCG8nSZhqkWblIqlS6xrOa452q5lJO6ijE8i64VINP8CjSzP3C4wTceAsY9bnofCSKeFxJeoq1ikU5mYPfhVQ6ZMJTJOvS6mqs4mu1MvEFeEuCoR34P47_BZqbbx1oFntX3Uf8tHYWR46ycOa7sqtBedm-jM5Y9zxTEqIOtCsrb__t_8gPXe-HKohv3R4AA26EmZP_kVGsXDo_uGHKdIv1dr-BkCN_31 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+insights+into+chemical+recycling+of+polyethylene+terephthalate+%28PET%29&rft.jtitle=Polymer+degradation+and+stability&rft.au=Conroy%2C+Stuart&rft.au=Zhang%2C+Xiaolei&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0141-3910&rft.eissn=1873-2321&rft.volume=223&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2024.110729&rft.externalDocID=S0141391024000739 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon |