Construction of a Gait Adaptation Model in Human Split-Belt Treadmill Walking Using a Two-Dimensional Biped Robot

A number of studies have measured kinematics, dynamics and oxygen uptake while a person walks on a treadmill. In particular, during walking on a split-belt treadmill, in which the left and right belts have different speeds, remarkable differences in kinematics are observed between normal subjects an...

Full description

Saved in:
Bibliographic Details
Published inAdvanced robotics Vol. 23; no. 5; pp. 535 - 561
Main Authors Otoda, Yuji, Kimura, Hiroshi, Takase, Kunikatsu
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.01.2009
Subjects
Online AccessGet full text
ISSN0169-1864
1568-5535
DOI10.1163/156855309X420057

Cover

Loading…
Abstract A number of studies have measured kinematics, dynamics and oxygen uptake while a person walks on a treadmill. In particular, during walking on a split-belt treadmill, in which the left and right belts have different speeds, remarkable differences in kinematics are observed between normal subjects and subjects with cerebellar disease. In order to construct a gait adaptation model of such human split-belt treadmill walking, we proposed a simple control model and developed a new two-dimensional biped robot walk on a split-belt treadmill. We combined the conventional limit-cycle-based control consisting of joint PD control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. The data obtained in experiments on the robot (normal subject model and cerebellum disease subject model) have highly similar ratios and patterns to data obtained in experiments on normal subjects and subjects with cerebellar disease carried out by Bastian et al. We also showed that the P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in split-belt walking and that P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed a gait adaptation model for human split-belt treadmill walking, and confirmed the validity of our hypotheses and the proposed model using the biped robot.
AbstractList A number of studies have measured kinematics, dynamics and oxygen uptake while a person walks on a treadmill. In particular, during walking on a split-belt treadmill, in which the left and right belts have different speeds, remarkable differences in kinematics are observed between normal subjects and subjects with cerebellar disease. In order to construct a gait adaptation model of such human split-belt treadmill walking, we proposed a simple control model and developed a new two-dimensional biped robot walk on a split-belt treadmill. We combined the conventional limit-cycle-based control consisting of joint PD control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. The data obtained in experiments on the robot (normal subject model and cerebellum disease subject model) have highly similar ratios and patterns to data obtained in experiments on normal subjects and subjects with cerebellar disease carried out by Bastian et al. We also showed that the P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in split-belt walking and that P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed a gait adaptation model for human split-belt treadmill walking, and confirmed the validity of our hypotheses and the proposed model using the biped robot.
A number of studies have measured kinematics, dynamics and oxygen uptake while a person walks on a treadmill. In particular, during walking on a split-belt treadmill, in which the left and right belts have different speeds, remarkable differences in kinematics are observed between normal subjects and subjects with cerebellar disease. In order to construct a gait adaptation model of such human split-belt treadmill walking, we proposed a simple control model and developed a new two-dimensional biped robot walk on a split-belt treadmill. We combined the conventional limit-cycle-based control consisting of joint PD control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. The data obtained in experiments on the robot (normal subject model and cerebellum disease subject model) have highly similar ratios and patterns to data obtained in experiments on normal subjects and subjects with cerebellar disease carried out by Bastian et al. We also showed that the P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in split-belt walking and that P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed a gait adaptation model for human split-belt treadmill walking, and confirmed the validity of our hypotheses and the proposed model using the biped robot.
Author Otoda, Yuji
Takase, Kunikatsu
Kimura, Hiroshi
Author_xml – sequence: 1
  givenname: Yuji
  surname: Otoda
  fullname: Otoda, Yuji
– sequence: 2
  givenname: Hiroshi
  surname: Kimura
  fullname: Kimura, Hiroshi
– sequence: 3
  givenname: Kunikatsu
  surname: Takase
  fullname: Takase, Kunikatsu
BackLink https://cir.nii.ac.jp/crid/1573105976032875904$$DView record in CiNii
BookMark eNp9kE1vFSEUhompibfVvUsWxt0ozAADcdXeamtSY9LeRneTMwwYlIEpcNP038t1XDVpWRxy3rzP-TpGRyEGg9BbSj5QKrqPlAvJeUfUT9YSwvsXaHOQmqrxI7QhVKiGSsFeoeOcfxNCJOv6DbrbxpBL2uviYsDRYsAX4Ao-nWAp8E_8FifjsQv4cj9DwDeLd6U5M77gXTIwzc57_AP8Hxd-4dt8iIB397E5d7MJuVYAj8_cYiZ8HcdYXqOXFnw2b_7_J-j2y-fd9rK5-n7xdXt61WjW0tJYpsVEx9ZwkF2nqWyFNKxthZiUBQbjSLmSltXXE20sozWjSulR9RIk707Q-7XukuLd3uQyzC5r4z0EE_d56CrRUkWqUaxGnWLOydhBu3X1ksD5gZLhcOHh8YUrSB6BS3IzpIfnkHcrEpyrbQ6RVpkSrnpBulb2XBFWbZ9Wmws2phnuY_LTUODBx2QTBO3q_E82-Qv0iJtz
CitedBy_id crossref_primary_10_1098_rsif_2015_0542
crossref_primary_10_1007_s10514_013_9331_6
crossref_primary_10_3389_fnbot_2017_00039
crossref_primary_10_1177_02783649221110260
Cites_doi 10.1177/0278364906063822
10.1152/physrev.00028.2005
10.1093/brain/awl376
10.1007/BF03027080
10.1177/027836498400300206
10.1109/MEX.1986.4307016
10.1126/science.1138353
10.1023/A:1008858507550
10.1152/jn.00089.2005
10.1023/A:1008848227206
10.1007/s00422-006-0102-8
10.1007/978-3-540-77457-0_51
10.1016/j.neunet.2008.03.014
10.1177/0278364906069187
10.1523/JNEUROSCI.2622-06.2006
10.1007/BF00198086
10.1016/j.neunet.2008.03.010
10.1109/ROBOT.1990.126214
10.1093/gerona/58.1.M46
10.1177/0278364904042194
10.1007/s10514-005-4051-1
10.1177/02783640122067561
10.1016/j.neunet.2008.04.002
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2009
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2009
DBID RYH
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1163/156855309X420057
DatabaseName CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1568-5535
EndPage 561
ExternalDocumentID 10_1163_156855309X420057
10027462872
9739368
GroupedDBID -~X
.QJ
0BK
0R~
23M
30N
4.4
5GY
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
ADUMR
AEISY
AENEX
AEOZL
AEPSL
AEVUW
AEYOC
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMFWP
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
COF
CS3
DGEBU
DKSSO
EAP
EBS
EJD
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
I-F
IL9
IPNFZ
J.P
KYCEM
M4Z
NX~
O9-
P2P
RIG
RNANH
RNS
ROL
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
TUS
UT5
ZGOLN
~S~
AAGDL
AAHIA
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
RYH
07I
5VS
AAYXX
ACTTO
ADXEU
AEHZU
AEZBV
AFBWG
AFION
AGVKY
AGWUF
AKHJE
AKMBP
ALRRR
ALXIB
AMATQ
BGSSV
BWMZZ
C0-
CITATION
CYRSC
DAOYK
DEXXA
FETWF
HF~
IFELN
LJTGL
NUSFT
OPCYK
RNI
RZC
RZE
S7E
TAJZE
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c421t-f4c6d1b2e5a833c18268e42266d9fa4abb1598f444470cef4198f199cb978a853
ISSN 0169-1864
IngestDate Fri Jul 11 03:56:32 EDT 2025
Tue Jul 01 01:11:31 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Thu Jun 26 21:59:54 EDT 2025
Wed Dec 25 09:00:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-f4c6d1b2e5a833c18268e42266d9fa4abb1598f444470cef4198f199cb978a853
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34192190
PQPubID 23500
PageCount 27
ParticipantIDs crossref_citationtrail_10_1163_156855309X420057
proquest_miscellaneous_34192190
nii_cinii_1573105976032875904
informaworld_taylorfrancis_310_1163_156855309X420057
crossref_primary_10_1163_156855309X420057
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationTitle Advanced robotics
PublicationYear 2009
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References de Garis H. (CIT0031) 1991; 2
CIT0030
Wisse M. (CIT0022) 2006
Hirai K. (CIT0016) 1998
CIT0011
Raibert M. H. (CIT0037) 1986
Sugimoto Y. (CIT0021) 2002
Ijspeert A. J. (CIT0002) 2007; 315
Orlovsky G. (CIT0008) 1999
Sano A. (CIT0013) 1990; 3
Takanishi A. (CIT0012) 1985
Asano F. (CIT0020) 2004
CIT0014
CIT0038
CIT0015
Kawaji S. (CIT0033) 1993
CIT0017
CIT0019
Tomita N. (CIT0027) 2003
CIT0001
CIT0023
Chemori A. (CIT0025) 2004; 3
Nakanishi M. (CIT0034) 2006; 95
Nishiwaki K. (CIT0018) 2008; 39
Kandel E. R. (CIT0010) 1996
Otoda Y. (CIT0035) 2007
Endo G. (CIT0029) 2004
CIT0003
CIT0024
CIT0005
Miyakoshi S. (CIT0032) 2004
CIT0004
CIT0026
CIT0007
CIT0006
CIT0028
CIT0009
Lee J. (CIT0036) 2008
References_xml – start-page: 421
  volume-title: Proc. Int. Workshop on Advanced Motion Control
  year: 1993
  ident: CIT0033
– ident: CIT0030
  doi: 10.1177/0278364906063822
– ident: CIT0009
  doi: 10.1152/physrev.00028.2005
– ident: CIT0007
  doi: 10.1093/brain/awl376
– ident: CIT0024
  doi: 10.1007/BF03027080
– start-page: 141
  volume-title: Adaptive Motion of Animals and Machines
  year: 2006
  ident: CIT0022
– start-page: 123
  volume-title: Proc. 5th Int. Conf. on Climbing and Walking Robots
  year: 2002
  ident: CIT0021
– volume: 2
  start-page: 1391
  volume-title: Proc. Int. Joint Conf. on Neural Networks
  year: 1991
  ident: CIT0031
– ident: CIT0011
  doi: 10.1177/027836498400300206
– start-page: 94
  volume-title: Proc. AMAM2008
  year: 2008
  ident: CIT0036
– volume-title: Legged Robots That Balance
  year: 1986
  ident: CIT0037
  doi: 10.1109/MEX.1986.4307016
– volume: 315
  start-page: 1416
  year: 2007
  ident: CIT0002
  publication-title: Science
  doi: 10.1126/science.1138353
– start-page: 1321
  volume-title: Proc. IEEE Int. Conf. on Robotics and Automation
  year: 1998
  ident: CIT0016
– start-page: 3176
  volume-title: Prof. SICE Annu. Conf
  year: 2003
  ident: CIT0027
– ident: CIT0015
  doi: 10.1023/A:1008858507550
– ident: CIT0005
  doi: 10.1152/jn.00089.2005
– start-page: 3797
  volume-title: Proc. IEEE Int. Conf. on Robotics and Automation
  year: 2004
  ident: CIT0020
– ident: CIT0014
  doi: 10.1023/A:1008848227206
– volume: 95
  start-page: 503
  year: 2006
  ident: CIT0034
  publication-title: Biol. Cybernet.
  doi: 10.1007/s00422-006-0102-8
– start-page: 459
  volume-title: Proc. IEEE Int. Conf. on Advanced Robotics
  year: 1985
  ident: CIT0012
– start-page: 1538
  volume-title: Proc. IEEE Conf. on Systems, Man and Cybernetics
  year: 2004
  ident: CIT0032
– volume-title: Principles of Neural Science
  year: 1996
  ident: CIT0010
– volume: 39
  start-page: 541
  year: 2008
  ident: CIT0018
  publication-title: Springer Tracts Adv. Robotics
  doi: 10.1007/978-3-540-77457-0_51
– ident: CIT0003
  doi: 10.1016/j.neunet.2008.03.014
– ident: CIT0023
  doi: 10.1177/0278364906069187
– start-page: 3036
  volume-title: Proc. IEEE Int. Conf. on Robotics and Automation
  year: 2004
  ident: CIT0029
– ident: CIT0006
  doi: 10.1523/JNEUROSCI.2622-06.2006
– ident: CIT0026
  doi: 10.1007/BF00198086
– ident: CIT0004
  doi: 10.1016/j.neunet.2008.03.010
– volume: 3
  start-page: 1476
  volume-title: Proc. IEEE Int. Conf. on Robotics and Automation
  year: 1990
  ident: CIT0013
  doi: 10.1109/ROBOT.1990.126214
– ident: CIT0038
  doi: 10.1093/gerona/58.1.M46
– ident: CIT0017
  doi: 10.1177/0278364904042194
– ident: CIT0028
  doi: 10.1007/s10514-005-4051-1
– start-page: 2170
  volume-title: Prof. SICE Annu. Conf
  year: 2007
  ident: CIT0035
– ident: CIT0019
  doi: 10.1177/02783640122067561
– volume: 3
  start-page: 2259
  volume-title: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
  year: 2004
  ident: CIT0025
– ident: CIT0001
  doi: 10.1016/j.neunet.2008.04.002
– volume-title: Neural Control of Locomotion
  year: 1999
  ident: CIT0008
SSID ssj0008437
Score 1.8675687
Snippet A number of studies have measured kinematics, dynamics and oxygen uptake while a person walks on a treadmill. In particular, during walking on a split-belt...
SourceID proquest
crossref
nii
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 535
SubjectTerms BIPED ROBOT
GAIT ADAPTATION
MODEL OF HUMAN WALKING
P-GAIN ADJUSTMENT
SPLIT-BELT TREADMILL
STEPPING REFLEX
Title Construction of a Gait Adaptation Model in Human Split-Belt Treadmill Walking Using a Two-Dimensional Biped Robot
URI https://www.tandfonline.com/doi/abs/10.1163/156855309X420057
https://cir.nii.ac.jp/crid/1573105976032875904
https://www.proquest.com/docview/34192190
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMUWPCBC4qy28ROYh-7LFCBAAmy2sIlchJHGyhJQYmQOPPDmYnzapdFLD1YbR5W2vk6Mx7PfEPIE8mkpwOmbT9RsEDJhLbj2GO2cIJAO0ILJ8Md3Tdv_eUJf7XyVpPJr1HWUl3FB8nPP9aV_I9U4RjIFatkLyHZflI4AO9BvjCChGH8Jxljt82O_9UUOr5UORLiqk2bRIitzpBVow3WfwCXs7KP9LqyQvAWU-w5ZJ2qNcbLLZM9oKzwR2kfI-m_IeywjvINeKXvy7jciuMvuuyB73hmlDT_rirTxiX9WH_Ohz3-r3XT0sha5mCYz_oTofqiTHPH13WB5UymE0sfiZCjSEQbnPSl7QjDSn6gW4WKlV2eoSTpNK6pMG6R5Y3UZ3edscSeoWk_r-R9JJvAmbHnkVxxjIwFg0HrNvF37Fyffdise3wW7c5whey5sNiYT8neYnn86bS36IIb7tXu-3Xb3T473J1jy73ZIr8F56XI83Mmv_FjwhvkersAoQuDpptkootb5NqIlvI2-TbGFS0zqijiig64og2uaF7QBld0wBXtcUVbXNEGVzDHDq5ogyva4OoOOXnxPHy2tNvWHHbCXaeyM574qRO72lOCsQQXqUJjUbafykxxFcfgJouMwyuYJzrjDnxypExiGQgFLuJdMi3KQt8jNHUz0AosmWs34ZkrQFUo13eVxAwt0BUzctj9olHS8tZj-5R1dJEcZ-Rpf8fGcLb85Vo-FlJUNXGyzDS1idjFt-2DMOF5cHS8gOEyJfCRnDLw5JzPyONOzBHoa9yEU4Uua5gS0y7AC79_iYd8QK4O_7eHZAoI0PvgC1fxoxaqvwFWYKsN
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagHIADO2KAUh-4cHA7jh0vxxYoA7RzgKmYW2Q7thQxSgY1FRK_nvfiTNWW5dAcIkWKne3Z_t6S7yPktRW2jFpEpoIDByWZyLwvBTNc68hNNDxhRvd4rmYn8tOyXI61OadjWSX60CkTRQxzNQ5uDEbnEa7EHvgcBuVu7FJiUETfJLdKqzQqN4jp_HwiNjJTZnJlGTdKbrKUf-nh0qp0ibMU1py2af6YqYfl5_B-1lg9HVgLserk--5Z73fDryucjtd-sgfk3ghM6X62pIfkRmwfkbsX6Aofkx-o7rnhm6Vdoo5-cE1P92u3zhl9itJqK9q0dEgO0K8AcXt2EFc9XQA6rVHjiH5zK4zP06FaAfpY_OzYOxQZyAQh9KBZx5p-6XzXPyEnh-8Xb2dslGxgQRa8Z0kGVXNfxNIZIQI6Lybiz7qqtslJ5z3AJ5MkbHoaYpIcjri1wYM36wA6PCVbbdfGZ4TWRQJrEWEaiyBTYcCEXKEKZ7FyB2xoQvY2n6wKI585ymqsqsGvUaK6-jIn5M15i3Xm8vjPufKiFVT9ED9JWeykEv9utg3WAveDe15qgfBVKyQt1KWdygnZ2dhRBeMYkzOujd0ZdInpeEBnz6934R1ye7Y4PqqOPs4_vyB3cs4LA0UvyRYYRtwG6NT7V8MA-Q3K0woy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkRAcWl4VWyj1gQsHt-vYcWyJS19Lea0QbMVeUGQ7thSxShYpFRK_npl4U7WlcGgOkSLFjpN8tr-Zsb8h5JURJg-FCEx5CwZK1IE5lwumeVEEroPmESO6n6bq9Ey-n-fzNfJm2AuDyyrRho5JKKIfq7FzL6uYOrgS-2ByaMx2Y-YSfSLFHXJXATNBTIvx9GIc1jIpZnJlGNdKDkHKG2q4MildkSyFKaep678G6n72mWyS70O706KTH3vnndvzv69JOt72xR6SjRUtpQcJR4_IWmgekweXxAqfkJ-Y23NQm6VtpJa-tXVHDyq7TPF8ionVFrRuaB8aoF-B4HbsMCw6OgNuWmGGI_rNLtA7T_u1ClDH7FfLjjHFQJIHoYf1MlT0S-va7ik5m5zMjk7ZKmED8zLjHYvSq4q7LORWC-HRdNEBt-qqykQrrXNAnnSUcBRjH6LkcMWN8Q5sWQvEYYusN20TnhFaZRGwIvw4ZF7GTAOAbKYya3DdDiBoRPaHP1b6lZo5JtVYlL1Vo0R5_WOOyOuLEsuk5PGfe-VlEJRd7z2JKdVJKf5dbAfAAu3BM88LgeS1UChZWORmLEdkd4BRCb0YQzO2Ce05VInBeOBm27d78C659_l4Un58N_3wnNxPAS_0Er0g64CLsAO8qXMv--7xB4uOCN8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+a+Gait+Adaptation+Model+in+Human+Split-Belt+Treadmill+Walking+Using+a+Two-Dimensional+Biped+Robot&rft.jtitle=Advanced+robotics&rft.au=Otoda%2C+Yuji&rft.au=Kimura%2C+Hiroshi&rft.au=Takase%2C+Kunikatsu&rft.date=2009-01-01&rft.issn=0169-1864&rft.eissn=1568-5535&rft.volume=23&rft.issue=5&rft.spage=535&rft.epage=561&rft_id=info:doi/10.1163%2F156855309X420057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1163_156855309X420057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1864&client=summon