Construction of a Gait Adaptation Model in Human Split-Belt Treadmill Walking Using a Two-Dimensional Biped Robot
A number of studies have measured kinematics, dynamics and oxygen uptake while a person walks on a treadmill. In particular, during walking on a split-belt treadmill, in which the left and right belts have different speeds, remarkable differences in kinematics are observed between normal subjects an...
Saved in:
Published in | Advanced robotics Vol. 23; no. 5; pp. 535 - 561 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
01.01.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-1864 1568-5535 |
DOI | 10.1163/156855309X420057 |
Cover
Loading…
Abstract | A number of studies have measured kinematics, dynamics and oxygen uptake while a person walks on a treadmill. In particular, during walking on a split-belt treadmill, in which the left and right belts have different speeds, remarkable differences in kinematics are observed between normal
subjects and subjects with cerebellar disease. In order to construct a gait adaptation model of such human split-belt treadmill walking, we proposed a simple control model and developed a new two-dimensional biped robot walk on a split-belt treadmill. We combined the conventional limit-cycle-based
control consisting of joint PD control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. The data obtained in experiments on the robot (normal subject model and cerebellum disease subject model) have highly
similar ratios and patterns to data obtained in experiments on normal subjects and subjects with cerebellar disease carried out by Bastian et al. We also showed that the P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in split-belt
walking and that P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed a gait adaptation model for human split-belt treadmill walking, and confirmed the validity of our hypotheses and the proposed model using the biped robot. |
---|---|
AbstractList | A number of studies have measured kinematics, dynamics and oxygen uptake while a person walks on a treadmill. In particular, during walking on a split-belt treadmill, in which the left and right belts have different speeds, remarkable differences in kinematics are observed between normal subjects and subjects with cerebellar disease. In order to construct a gait adaptation model of such human split-belt treadmill walking, we proposed a simple control model and developed a new two-dimensional biped robot walk on a split-belt treadmill. We combined the conventional limit-cycle-based control consisting of joint PD control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. The data obtained in experiments on the robot (normal subject model and cerebellum disease subject model) have highly similar ratios and patterns to data obtained in experiments on normal subjects and subjects with cerebellar disease carried out by Bastian et al. We also showed that the P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in split-belt walking and that P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed a gait adaptation model for human split-belt treadmill walking, and confirmed the validity of our hypotheses and the proposed model using the biped robot. A number of studies have measured kinematics, dynamics and oxygen uptake while a person walks on a treadmill. In particular, during walking on a split-belt treadmill, in which the left and right belts have different speeds, remarkable differences in kinematics are observed between normal subjects and subjects with cerebellar disease. In order to construct a gait adaptation model of such human split-belt treadmill walking, we proposed a simple control model and developed a new two-dimensional biped robot walk on a split-belt treadmill. We combined the conventional limit-cycle-based control consisting of joint PD control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. The data obtained in experiments on the robot (normal subject model and cerebellum disease subject model) have highly similar ratios and patterns to data obtained in experiments on normal subjects and subjects with cerebellar disease carried out by Bastian et al. We also showed that the P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in split-belt walking and that P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed a gait adaptation model for human split-belt treadmill walking, and confirmed the validity of our hypotheses and the proposed model using the biped robot. |
Author | Otoda, Yuji Takase, Kunikatsu Kimura, Hiroshi |
Author_xml | – sequence: 1 givenname: Yuji surname: Otoda fullname: Otoda, Yuji – sequence: 2 givenname: Hiroshi surname: Kimura fullname: Kimura, Hiroshi – sequence: 3 givenname: Kunikatsu surname: Takase fullname: Takase, Kunikatsu |
BackLink | https://cir.nii.ac.jp/crid/1573105976032875904$$DView record in CiNii |
BookMark | eNp9kE1vFSEUhompibfVvUsWxt0ozAADcdXeamtSY9LeRneTMwwYlIEpcNP038t1XDVpWRxy3rzP-TpGRyEGg9BbSj5QKrqPlAvJeUfUT9YSwvsXaHOQmqrxI7QhVKiGSsFeoeOcfxNCJOv6DbrbxpBL2uviYsDRYsAX4Ao-nWAp8E_8FifjsQv4cj9DwDeLd6U5M77gXTIwzc57_AP8Hxd-4dt8iIB397E5d7MJuVYAj8_cYiZ8HcdYXqOXFnw2b_7_J-j2y-fd9rK5-n7xdXt61WjW0tJYpsVEx9ZwkF2nqWyFNKxthZiUBQbjSLmSltXXE20sozWjSulR9RIk707Q-7XukuLd3uQyzC5r4z0EE_d56CrRUkWqUaxGnWLOydhBu3X1ksD5gZLhcOHh8YUrSB6BS3IzpIfnkHcrEpyrbQ6RVpkSrnpBulb2XBFWbZ9Wmws2phnuY_LTUODBx2QTBO3q_E82-Qv0iJtz |
CitedBy_id | crossref_primary_10_1098_rsif_2015_0542 crossref_primary_10_1007_s10514_013_9331_6 crossref_primary_10_3389_fnbot_2017_00039 crossref_primary_10_1177_02783649221110260 |
Cites_doi | 10.1177/0278364906063822 10.1152/physrev.00028.2005 10.1093/brain/awl376 10.1007/BF03027080 10.1177/027836498400300206 10.1109/MEX.1986.4307016 10.1126/science.1138353 10.1023/A:1008858507550 10.1152/jn.00089.2005 10.1023/A:1008848227206 10.1007/s00422-006-0102-8 10.1007/978-3-540-77457-0_51 10.1016/j.neunet.2008.03.014 10.1177/0278364906069187 10.1523/JNEUROSCI.2622-06.2006 10.1007/BF00198086 10.1016/j.neunet.2008.03.010 10.1109/ROBOT.1990.126214 10.1093/gerona/58.1.M46 10.1177/0278364904042194 10.1007/s10514-005-4051-1 10.1177/02783640122067561 10.1016/j.neunet.2008.04.002 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2009 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2009 |
DBID | RYH AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1163/156855309X420057 |
DatabaseName | CiNii Complete CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1568-5535 |
EndPage | 561 |
ExternalDocumentID | 10_1163_156855309X420057 10027462872 9739368 |
GroupedDBID | -~X .QJ 0BK 0R~ 23M 30N 4.4 5GY AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ACUHS ADCVX ADGTB ADUMR AEISY AENEX AEOZL AEPSL AEVUW AEYOC AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMFWP AQRUH AVBZW AWYRJ BLEHA CAG CCCUG COF CS3 DGEBU DKSSO EAP EBS EJD EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HZ~ H~P I-F IL9 IPNFZ J.P KYCEM M4Z NX~ O9- P2P RIG RNANH RNS ROL ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ TUS UT5 ZGOLN ~S~ AAGDL AAHIA ADMLS ADYSH AFRVT AIYEW AMPGV RYH 07I 5VS AAYXX ACTTO ADXEU AEHZU AEZBV AFBWG AFION AGVKY AGWUF AKHJE AKMBP ALRRR ALXIB AMATQ BGSSV BWMZZ C0- CITATION CYRSC DAOYK DEXXA FETWF HF~ IFELN LJTGL NUSFT OPCYK RNI RZC RZE S7E TAJZE 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c421t-f4c6d1b2e5a833c18268e42266d9fa4abb1598f444470cef4198f199cb978a853 |
ISSN | 0169-1864 |
IngestDate | Fri Jul 11 03:56:32 EDT 2025 Tue Jul 01 01:11:31 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Thu Jun 26 21:59:54 EDT 2025 Wed Dec 25 09:00:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c421t-f4c6d1b2e5a833c18268e42266d9fa4abb1598f444470cef4198f199cb978a853 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 34192190 |
PQPubID | 23500 |
PageCount | 27 |
ParticipantIDs | crossref_citationtrail_10_1163_156855309X420057 proquest_miscellaneous_34192190 nii_cinii_1573105976032875904 informaworld_taylorfrancis_310_1163_156855309X420057 crossref_primary_10_1163_156855309X420057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-01-01 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Advanced robotics |
PublicationYear | 2009 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | de Garis H. (CIT0031) 1991; 2 CIT0030 Wisse M. (CIT0022) 2006 Hirai K. (CIT0016) 1998 CIT0011 Raibert M. H. (CIT0037) 1986 Sugimoto Y. (CIT0021) 2002 Ijspeert A. J. (CIT0002) 2007; 315 Orlovsky G. (CIT0008) 1999 Sano A. (CIT0013) 1990; 3 Takanishi A. (CIT0012) 1985 Asano F. (CIT0020) 2004 CIT0014 CIT0038 CIT0015 Kawaji S. (CIT0033) 1993 CIT0017 CIT0019 Tomita N. (CIT0027) 2003 CIT0001 CIT0023 Chemori A. (CIT0025) 2004; 3 Nakanishi M. (CIT0034) 2006; 95 Nishiwaki K. (CIT0018) 2008; 39 Kandel E. R. (CIT0010) 1996 Otoda Y. (CIT0035) 2007 Endo G. (CIT0029) 2004 CIT0003 CIT0024 CIT0005 Miyakoshi S. (CIT0032) 2004 CIT0004 CIT0026 CIT0007 CIT0006 CIT0028 CIT0009 Lee J. (CIT0036) 2008 |
References_xml | – start-page: 421 volume-title: Proc. Int. Workshop on Advanced Motion Control year: 1993 ident: CIT0033 – ident: CIT0030 doi: 10.1177/0278364906063822 – ident: CIT0009 doi: 10.1152/physrev.00028.2005 – ident: CIT0007 doi: 10.1093/brain/awl376 – ident: CIT0024 doi: 10.1007/BF03027080 – start-page: 141 volume-title: Adaptive Motion of Animals and Machines year: 2006 ident: CIT0022 – start-page: 123 volume-title: Proc. 5th Int. Conf. on Climbing and Walking Robots year: 2002 ident: CIT0021 – volume: 2 start-page: 1391 volume-title: Proc. Int. Joint Conf. on Neural Networks year: 1991 ident: CIT0031 – ident: CIT0011 doi: 10.1177/027836498400300206 – start-page: 94 volume-title: Proc. AMAM2008 year: 2008 ident: CIT0036 – volume-title: Legged Robots That Balance year: 1986 ident: CIT0037 doi: 10.1109/MEX.1986.4307016 – volume: 315 start-page: 1416 year: 2007 ident: CIT0002 publication-title: Science doi: 10.1126/science.1138353 – start-page: 1321 volume-title: Proc. IEEE Int. Conf. on Robotics and Automation year: 1998 ident: CIT0016 – start-page: 3176 volume-title: Prof. SICE Annu. Conf year: 2003 ident: CIT0027 – ident: CIT0015 doi: 10.1023/A:1008858507550 – ident: CIT0005 doi: 10.1152/jn.00089.2005 – start-page: 3797 volume-title: Proc. IEEE Int. Conf. on Robotics and Automation year: 2004 ident: CIT0020 – ident: CIT0014 doi: 10.1023/A:1008848227206 – volume: 95 start-page: 503 year: 2006 ident: CIT0034 publication-title: Biol. Cybernet. doi: 10.1007/s00422-006-0102-8 – start-page: 459 volume-title: Proc. IEEE Int. Conf. on Advanced Robotics year: 1985 ident: CIT0012 – start-page: 1538 volume-title: Proc. IEEE Conf. on Systems, Man and Cybernetics year: 2004 ident: CIT0032 – volume-title: Principles of Neural Science year: 1996 ident: CIT0010 – volume: 39 start-page: 541 year: 2008 ident: CIT0018 publication-title: Springer Tracts Adv. Robotics doi: 10.1007/978-3-540-77457-0_51 – ident: CIT0003 doi: 10.1016/j.neunet.2008.03.014 – ident: CIT0023 doi: 10.1177/0278364906069187 – start-page: 3036 volume-title: Proc. IEEE Int. Conf. on Robotics and Automation year: 2004 ident: CIT0029 – ident: CIT0006 doi: 10.1523/JNEUROSCI.2622-06.2006 – ident: CIT0026 doi: 10.1007/BF00198086 – ident: CIT0004 doi: 10.1016/j.neunet.2008.03.010 – volume: 3 start-page: 1476 volume-title: Proc. IEEE Int. Conf. on Robotics and Automation year: 1990 ident: CIT0013 doi: 10.1109/ROBOT.1990.126214 – ident: CIT0038 doi: 10.1093/gerona/58.1.M46 – ident: CIT0017 doi: 10.1177/0278364904042194 – ident: CIT0028 doi: 10.1007/s10514-005-4051-1 – start-page: 2170 volume-title: Prof. SICE Annu. Conf year: 2007 ident: CIT0035 – ident: CIT0019 doi: 10.1177/02783640122067561 – volume: 3 start-page: 2259 volume-title: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems year: 2004 ident: CIT0025 – ident: CIT0001 doi: 10.1016/j.neunet.2008.04.002 – volume-title: Neural Control of Locomotion year: 1999 ident: CIT0008 |
SSID | ssj0008437 |
Score | 1.8675687 |
Snippet | A number of studies have measured kinematics, dynamics and oxygen uptake while a person walks on a treadmill. In particular, during walking on a split-belt... |
SourceID | proquest crossref nii informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 535 |
SubjectTerms | BIPED ROBOT GAIT ADAPTATION MODEL OF HUMAN WALKING P-GAIN ADJUSTMENT SPLIT-BELT TREADMILL STEPPING REFLEX |
Title | Construction of a Gait Adaptation Model in Human Split-Belt Treadmill Walking Using a Two-Dimensional Biped Robot |
URI | https://www.tandfonline.com/doi/abs/10.1163/156855309X420057 https://cir.nii.ac.jp/crid/1573105976032875904 https://www.proquest.com/docview/34192190 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMUWPCBC4qy28ROYh-7LFCBAAmy2sIlchJHGyhJQYmQOPPDmYnzapdFLD1YbR5W2vk6Mx7PfEPIE8mkpwOmbT9RsEDJhLbj2GO2cIJAO0ILJ8Md3Tdv_eUJf7XyVpPJr1HWUl3FB8nPP9aV_I9U4RjIFatkLyHZflI4AO9BvjCChGH8Jxljt82O_9UUOr5UORLiqk2bRIitzpBVow3WfwCXs7KP9LqyQvAWU-w5ZJ2qNcbLLZM9oKzwR2kfI-m_IeywjvINeKXvy7jciuMvuuyB73hmlDT_rirTxiX9WH_Ohz3-r3XT0sha5mCYz_oTofqiTHPH13WB5UymE0sfiZCjSEQbnPSl7QjDSn6gW4WKlV2eoSTpNK6pMG6R5Y3UZ3edscSeoWk_r-R9JJvAmbHnkVxxjIwFg0HrNvF37Fyffdise3wW7c5whey5sNiYT8neYnn86bS36IIb7tXu-3Xb3T473J1jy73ZIr8F56XI83Mmv_FjwhvkersAoQuDpptkootb5NqIlvI2-TbGFS0zqijiig64og2uaF7QBld0wBXtcUVbXNEGVzDHDq5ogyva4OoOOXnxPHy2tNvWHHbCXaeyM574qRO72lOCsQQXqUJjUbafykxxFcfgJouMwyuYJzrjDnxypExiGQgFLuJdMi3KQt8jNHUz0AosmWs34ZkrQFUo13eVxAwt0BUzctj9olHS8tZj-5R1dJEcZ-Rpf8fGcLb85Vo-FlJUNXGyzDS1idjFt-2DMOF5cHS8gOEyJfCRnDLw5JzPyONOzBHoa9yEU4Uua5gS0y7AC79_iYd8QK4O_7eHZAoI0PvgC1fxoxaqvwFWYKsN |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagHIADO2KAUh-4cHA7jh0vxxYoA7RzgKmYW2Q7thQxSgY1FRK_nvfiTNWW5dAcIkWKne3Z_t6S7yPktRW2jFpEpoIDByWZyLwvBTNc68hNNDxhRvd4rmYn8tOyXI61OadjWSX60CkTRQxzNQ5uDEbnEa7EHvgcBuVu7FJiUETfJLdKqzQqN4jp_HwiNjJTZnJlGTdKbrKUf-nh0qp0ibMU1py2af6YqYfl5_B-1lg9HVgLserk--5Z73fDryucjtd-sgfk3ghM6X62pIfkRmwfkbsX6Aofkx-o7rnhm6Vdoo5-cE1P92u3zhl9itJqK9q0dEgO0K8AcXt2EFc9XQA6rVHjiH5zK4zP06FaAfpY_OzYOxQZyAQh9KBZx5p-6XzXPyEnh-8Xb2dslGxgQRa8Z0kGVXNfxNIZIQI6Lybiz7qqtslJ5z3AJ5MkbHoaYpIcjri1wYM36wA6PCVbbdfGZ4TWRQJrEWEaiyBTYcCEXKEKZ7FyB2xoQvY2n6wKI585ymqsqsGvUaK6-jIn5M15i3Xm8vjPufKiFVT9ED9JWeykEv9utg3WAveDe15qgfBVKyQt1KWdygnZ2dhRBeMYkzOujd0ZdInpeEBnz6934R1ye7Y4PqqOPs4_vyB3cs4LA0UvyRYYRtwG6NT7V8MA-Q3K0woy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkRAcWl4VWyj1gQsHt-vYcWyJS19Lea0QbMVeUGQ7thSxShYpFRK_npl4U7WlcGgOkSLFjpN8tr-Zsb8h5JURJg-FCEx5CwZK1IE5lwumeVEEroPmESO6n6bq9Ey-n-fzNfJm2AuDyyrRho5JKKIfq7FzL6uYOrgS-2ByaMx2Y-YSfSLFHXJXATNBTIvx9GIc1jIpZnJlGNdKDkHKG2q4MildkSyFKaep678G6n72mWyS70O706KTH3vnndvzv69JOt72xR6SjRUtpQcJR4_IWmgekweXxAqfkJ-Y23NQm6VtpJa-tXVHDyq7TPF8ionVFrRuaB8aoF-B4HbsMCw6OgNuWmGGI_rNLtA7T_u1ClDH7FfLjjHFQJIHoYf1MlT0S-va7ik5m5zMjk7ZKmED8zLjHYvSq4q7LORWC-HRdNEBt-qqykQrrXNAnnSUcBRjH6LkcMWN8Q5sWQvEYYusN20TnhFaZRGwIvw4ZF7GTAOAbKYya3DdDiBoRPaHP1b6lZo5JtVYlL1Vo0R5_WOOyOuLEsuk5PGfe-VlEJRd7z2JKdVJKf5dbAfAAu3BM88LgeS1UChZWORmLEdkd4BRCb0YQzO2Ce05VInBeOBm27d78C659_l4Un58N_3wnNxPAS_0Er0g64CLsAO8qXMv--7xB4uOCN8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+a+Gait+Adaptation+Model+in+Human+Split-Belt+Treadmill+Walking+Using+a+Two-Dimensional+Biped+Robot&rft.jtitle=Advanced+robotics&rft.au=Otoda%2C+Yuji&rft.au=Kimura%2C+Hiroshi&rft.au=Takase%2C+Kunikatsu&rft.date=2009-01-01&rft.issn=0169-1864&rft.eissn=1568-5535&rft.volume=23&rft.issue=5&rft.spage=535&rft.epage=561&rft_id=info:doi/10.1163%2F156855309X420057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1163_156855309X420057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1864&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1864&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1864&client=summon |