Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM
Seeds are the most fundamental and significant production tool in agriculture. They play a critical role in boosting the output and revenue of agriculture. To achieve rapid identification and protection of maize seeds, 3938 images of 11 different types of maize seeds were collected for the experimen...
Saved in:
Published in | Agriculture (Basel) Vol. 13; no. 1; p. 11 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Seeds are the most fundamental and significant production tool in agriculture. They play a critical role in boosting the output and revenue of agriculture. To achieve rapid identification and protection of maize seeds, 3938 images of 11 different types of maize seeds were collected for the experiment, along with a combination of germ and non-germ surface datasets. The training set, validation set, and test set were randomly divided by a ratio of 7:2:1. The experiment introduced the CBAM (Convolutional Block Attention Module) attention mechanism into MobileNetV2, improving the CBAM by replacing the cascade connection with a parallel connection, thus building an advanced mixed attention module, I_CBAM, and establishing a new model, I_CBAM_MobileNetV2. The proposed I_CBAM_MobileNetV2 achieved an accuracy of 98.21%, which was 4.88% higher than that of MobileNetV2. Compared to Xception, MobileNetV3, DenseNet121, E-AlexNet, and ResNet50, the accuracy was increased by 9.24%, 6.42%, 3.85%, 3.59%, and 2.57%, respectively. Gradient-Weighted Class Activation Mapping (Grad-CAM) network visualization demonstrates that I_CBAM_MobileNetV2 focuses more on distinguishing features in maize seed images, thereby boosting the accuracy of the model. Furthermore, the model is only 25.1 MB, making it suitable for portable deployment on mobile terminals. This study provides effective strategies and experimental methods for identifying maize seed varieties using deep learning technology. This research provides technical assistance for the non-destructive detection and automatic identification of maize seed varieties. |
---|---|
AbstractList | Seeds are the most fundamental and significant production tool in agriculture. They play a critical role in boosting the output and revenue of agriculture. To achieve rapid identification and protection of maize seeds, 3938 images of 11 different types of maize seeds were collected for the experiment, along with a combination of germ and non-germ surface datasets. The training set, validation set, and test set were randomly divided by a ratio of 7:2:1. The experiment introduced the CBAM (Convolutional Block Attention Module) attention mechanism into MobileNetV2, improving the CBAM by replacing the cascade connection with a parallel connection, thus building an advanced mixed attention module, I_CBAM, and establishing a new model, I_CBAM_MobileNetV2. The proposed I_CBAM_MobileNetV2 achieved an accuracy of 98.21%, which was 4.88% higher than that of MobileNetV2. Compared to Xception, MobileNetV3, DenseNet121, E-AlexNet, and ResNet50, the accuracy was increased by 9.24%, 6.42%, 3.85%, 3.59%, and 2.57%, respectively. Gradient-Weighted Class Activation Mapping (Grad-CAM) network visualization demonstrates that I_CBAM_MobileNetV2 focuses more on distinguishing features in maize seed images, thereby boosting the accuracy of the model. Furthermore, the model is only 25.1 MB, making it suitable for portable deployment on mobile terminals. This study provides effective strategies and experimental methods for identifying maize seed varieties using deep learning technology. This research provides technical assistance for the non-destructive detection and automatic identification of maize seed varieties. |
Author | Zhao, Wei Li, Li Bai, Jinqiang Guo, Hongjie Ma, Dexin Dai, Dongnan Hao, Fengqi Wang, Jia Ma, Rui Yun, Yuliang |
Author_xml | – sequence: 1 givenname: Rui surname: Ma fullname: Ma, Rui – sequence: 2 givenname: Jia surname: Wang fullname: Wang, Jia – sequence: 3 givenname: Wei surname: Zhao fullname: Zhao, Wei – sequence: 4 givenname: Hongjie surname: Guo fullname: Guo, Hongjie – sequence: 5 givenname: Dongnan surname: Dai fullname: Dai, Dongnan – sequence: 6 givenname: Yuliang surname: Yun fullname: Yun, Yuliang – sequence: 7 givenname: Li surname: Li fullname: Li, Li – sequence: 8 givenname: Fengqi surname: Hao fullname: Hao, Fengqi – sequence: 9 givenname: Jinqiang surname: Bai fullname: Bai, Jinqiang – sequence: 10 givenname: Dexin surname: Ma fullname: Ma, Dexin |
BookMark | eNp9kU9vEzEQxS1UJErpJ-BiiQuXgO312t5jiPgTqYEDtFfLscfpRJt1sb0g-unrNiChCjGXGY1-70lv5jk5mdIEhLzk7E3XDeyt22X081jnDLxjnDHOn5BTwbReMKnFyV_zM3Jeyp61GnhnmDoldh1gqhjRu4ppoinSjcNboF8BAr1yGaEiFHpZcNrRTdriCJ-hXgn6E-s1XR9ucvrRyGWt9z7NYQP-2k1YDnT1brl5QZ5GNxY4_93PyOWH999WnxYXXz6uV8uLhZeC1wVwI4yU2uvgZQ9CSuMH1Rupe-m1CFvgvQy6LVpADzzGILT3ajDQaz5Ad0bWR9-Q3N7eZDy4_Msmh_ZhkfLOulzRj2B7Lww30gW1NVIoGOJWxSCVi4wZMbjm9fro1bJ9n6FUe8DiYRzdBGkuVhijVTt9xxv66hG6T3OeWlIrtNJcKaF0o4Yj5XMqJUO0HuvDvWt2OFrO7P0n7T8-2bTdI-2fcP9T3QHkr6Xe |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3455244 crossref_primary_10_1371_journal_pone_0307329 crossref_primary_10_3390_app14135623 crossref_primary_10_3390_app13106330 crossref_primary_10_1038_s41598_025_87173_7 crossref_primary_10_3390_agronomy14091953 crossref_primary_10_1016_j_aei_2024_102553 crossref_primary_10_1016_j_compag_2024_109371 crossref_primary_10_1111_ppa_13866 crossref_primary_10_1088_1361_6501_ad6b41 crossref_primary_10_3390_jmse13010082 crossref_primary_10_3390_app13084928 crossref_primary_10_3390_rs15174156 crossref_primary_10_3390_rs15235614 crossref_primary_10_3390_rs16081394 crossref_primary_10_1186_s12870_024_04825_y crossref_primary_10_3390_agriculture14111905 crossref_primary_10_3390_s23136239 crossref_primary_10_3390_agronomy13092279 crossref_primary_10_3390_agronomy14040645 crossref_primary_10_1002_ima_70002 crossref_primary_10_1088_2631_8695_adb4c0 crossref_primary_10_1109_ACCESS_2023_3326824 crossref_primary_10_3389_fpls_2023_1175027 crossref_primary_10_1061_JPCFEV_CFENG_4615 crossref_primary_10_3390_agriculture13071352 crossref_primary_10_1007_s13349_025_00919_9 crossref_primary_10_1109_ACCESS_2024_3417310 |
Cites_doi | 10.1109/CVPR.2017.195 10.1109/ICAEM53552.2021.9547133 10.1007/s12525-021-00475-2 10.1109/CVPR.2018.00745 10.1109/ICCIT52419.2022.9711662 10.1109/ACCESS.2022.3175818 10.1002/jsfa.11095 10.1109/ICREST51555.2021.9331214 10.3390/su14106339 10.3390/sym12122018 10.1109/CVPR.2016.90 10.12792/icisip2021.007 10.1007/s11032-020-01195-9 10.1016/j.compag.2018.02.016 10.1371/journal.pone.0264586 10.1109/CVPR.2018.00474 10.1016/j.compag.2021.106002 10.1038/nature14539 10.1007/s11694-020-00707-7 10.1109/CVPR.2018.00907 10.1109/CVPR42600.2020.01155 10.1007/s11694-021-01010-9 10.1080/10942912.2020.1778724 10.1109/ACCESS.2022.3142817 10.1109/JSEN.2021.3062442 10.1109/iEECON53204.2022.9741677 10.1016/j.compag.2019.104874 10.1109/ICCV.2019.00140 10.1109/ICCV.2017.74 10.1109/CVPR.2017.243 10.3390/agronomy12081846 10.1007/978-3-030-01234-2_1 10.1007/978-0-387-72297-9 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU COVID DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 DOA |
DOI | 10.3390/agriculture13010011 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_5c28184ad6b8426e9fb6fd46af00829a 10_3390_agriculture13010011 |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K COVID DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c421t-e1828447c7dc45e2448c96584754c72dbe154d7584010ce1ffd27cc698e5719e3 |
IEDL.DBID | DOA |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:29:26 EDT 2025 Sun Aug 24 03:54:45 EDT 2025 Sun Jun 29 15:25:19 EDT 2025 Thu Apr 24 22:51:05 EDT 2025 Tue Jul 01 02:12:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-e1828447c7dc45e2448c96584754c72dbe154d7584010ce1ffd27cc698e5719e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/5c28184ad6b8426e9fb6fd46af00829a |
PQID | 2767166267 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c28184ad6b8426e9fb6fd46af00829a proquest_miscellaneous_2887633931 proquest_journals_2767166267 crossref_citationtrail_10_3390_agriculture13010011 crossref_primary_10_3390_agriculture13010011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 ref_13 Elfatimi (ref_22) 2022; 10 ref_34 ref_32 ref_31 Cheng (ref_4) 2009; 40 ref_19 ref_18 ref_17 ref_39 ref_16 ref_38 ref_15 Zhou (ref_11) 2021; 101 Ali (ref_36) 2020; 23 Feng (ref_21) 2021; 33 (ref_12) 2021; 15 Kocamaz (ref_35) 2019; 163 Ni (ref_41) 2021; 15 Dai (ref_2) 2021; 41 Tu (ref_10) 2021; 182 ref_25 ref_24 Yang (ref_3) 2013; 42 LeCun (ref_7) 2015; 521 ref_23 Kamilaris (ref_8) 2018; 147 ref_43 ref_20 ref_42 ref_40 ref_1 Cao (ref_37) 2012; 28 ref_29 ref_28 ref_27 ref_26 Jia (ref_30) 2022; 10 ref_5 Janiesch (ref_9) 2021; 31 Wang (ref_33) 2021; 52 ref_6 |
References_xml | – ident: ref_18 doi: 10.1109/CVPR.2017.195 – ident: ref_20 doi: 10.1109/ICAEM53552.2021.9547133 – volume: 31 start-page: 685 year: 2021 ident: ref_9 article-title: Machine Learning and Deep Learning publication-title: Electron Mark. doi: 10.1007/s12525-021-00475-2 – ident: ref_26 doi: 10.1109/CVPR.2018.00745 – volume: 40 start-page: 180 year: 2009 ident: ref_4 article-title: Corn Breed Recognition Based on Support Vector Machine publication-title: Trans. Chin. Soc. Agric. Mach. – ident: ref_5 – ident: ref_25 doi: 10.1109/ICCIT52419.2022.9711662 – volume: 10 start-page: 53963 year: 2022 ident: ref_30 article-title: MobileNetV3 With CBAM for Bamboo Stick Counting publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3175818 – volume: 101 start-page: 4532 year: 2021 ident: ref_11 article-title: Identification of the Variety of Maize Seeds Based on Hyperspectral Images Coupled with Convolutional Neural Networks and Subregional Voting publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.11095 – ident: ref_19 doi: 10.1109/ICREST51555.2021.9331214 – ident: ref_38 doi: 10.3390/su14106339 – ident: ref_34 doi: 10.3390/sym12122018 – ident: ref_40 doi: 10.1109/CVPR.2016.90 – volume: 33 start-page: 2983 year: 2021 ident: ref_21 article-title: Variety Recognition Based on Deep Learning and Double-Sided Characteristics of Maize Kernel publication-title: J. Syst. Simul. – volume: 52 start-page: 239 year: 2021 ident: ref_33 article-title: Fine-grained Identification Research of Crop Pests and Diseases Based on Improved CBAM via Attention publication-title: Trans. Chin. Soc. Agric. Mach. – ident: ref_24 doi: 10.12792/icisip2021.007 – volume: 28 start-page: 253 year: 2012 ident: ref_37 article-title: Purity Identification of Maize Seed Based on Discrete Wavelet Transform and BP Neural Network publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 41 start-page: 2 year: 2021 ident: ref_2 article-title: Maize Kernel Development publication-title: Mol. Breed. doi: 10.1007/s11032-020-01195-9 – volume: 147 start-page: 70 year: 2018 ident: ref_8 article-title: Deep Learning in Agriculture: A Survey publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.016 – ident: ref_31 doi: 10.1371/journal.pone.0264586 – ident: ref_16 doi: 10.1109/CVPR.2018.00474 – ident: ref_6 – volume: 182 start-page: 106002 year: 2021 ident: ref_10 article-title: A Non-Destructive and Highly Efficient Model for Detecting the Genuineness of Maize Variety ’JINGKE 968′ Using Machine Vision Combined with Deep Learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106002 – volume: 521 start-page: 436 year: 2015 ident: ref_7 article-title: Deep Learning publication-title: Nature doi: 10.1038/nature14539 – volume: 15 start-page: 1024 year: 2021 ident: ref_12 article-title: Identification of Sunflower Seeds with Deep Convolutional Neural Networks publication-title: Food Meas. doi: 10.1007/s11694-020-00707-7 – ident: ref_15 doi: 10.1109/CVPR.2018.00907 – ident: ref_28 doi: 10.1109/CVPR42600.2020.01155 – volume: 15 start-page: 4530 year: 2021 ident: ref_41 article-title: E-AlexNet: Quality Evaluation of Strawberry Based on Machine Learning publication-title: Food Meas. doi: 10.1007/s11694-021-01010-9 – volume: 23 start-page: 1110 year: 2020 ident: ref_36 article-title: Machine Learning Approach for the Classification of Corn Seed Using Hybrid Features publication-title: Int. J. Food Prop. doi: 10.1080/10942912.2020.1778724 – volume: 10 start-page: 9471 year: 2022 ident: ref_22 article-title: Beans Leaf Diseases Classification Using MobileNet Models publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3142817 – ident: ref_29 doi: 10.1109/JSEN.2021.3062442 – volume: 42 start-page: 2437 year: 2013 ident: ref_3 article-title: Discrimination of corn varieties using visible/near infrared imaging spectrometer system publication-title: Infrared Laser Eng. – ident: ref_23 doi: 10.1109/iEECON53204.2022.9741677 – ident: ref_13 – ident: ref_17 – ident: ref_43 – volume: 163 start-page: 104874 year: 2019 ident: ref_35 article-title: Identification of Haploid and Diploid Maize Seeds Using Convolutional Neural Networks and a Transfer Learning Approach publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104874 – ident: ref_39 doi: 10.1109/ICCV.2019.00140 – ident: ref_42 doi: 10.1109/ICCV.2017.74 – ident: ref_14 doi: 10.1109/CVPR.2017.243 – ident: ref_32 doi: 10.3390/agronomy12081846 – ident: ref_27 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_1 doi: 10.1007/978-0-387-72297-9 |
SSID | ssj0000913806 |
Score | 2.3817933 |
Snippet | Seeds are the most fundamental and significant production tool in agriculture. They play a critical role in boosting the output and revenue of agriculture. To... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 11 |
SubjectTerms | Accuracy Agriculture Algorithms CBAM Citrus fruits Classification Corn Crop diseases data collection Datasets Deep learning Experimental methods Experiments Identification image classification income Machine learning maize seeds Methods MobileNetV2 Model accuracy Modules Neural networks Rice Seeds Support vector machines |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC52x8vuQdwXOz6WFva4wTz6lZPMiCJCBnFX8RbSLxHciTsTL_56q5KekUXxmlSa0N31-rrrK4CfXPES1UYkhTAi4U0oE2Nz2ssW_bkzwWVU71zN5OklP7sW1xFwW8ZrlSub2Btq11rCyA9yJTG0x_BbHd7_S6hrFJ2uxhYa72EDTbDWI9iYHs_OL9YoC7Fe6lQOdEMF5vcHzc0iklp4NN_EQJT955J65v4Xhrn3NidbsBnDRDYZ1vUTvPPzz_Bx8jzqF6iHGtsQQTfWBlY1t4-e_UaHxK4oByayVNZfCmBVa1D_Z767yhlhr2xAE1By0nXDlUdWeSoDvl3-ZUfTSfUVLk-O_xydJrFdQmJ5nnWJx1RBc66scpYLj35bW6J24Upwq3JnPIZLDvMDTKlS67MQXK6slaX2QmWlL77BaN7O_XdgqgmpLBubqrzgIvXaaVn0R3YONdiZMeSrGatt5BKnlhZ3NeYUNM31K9M8hl_rj-4HKo23xae0FGtR4sHuH7SLmzqqVS0ssVnxxkmDPyd9GYwMjkv8fyoabsawu1rIOirnsn7eSmPYX79GtaKzkmbu2weU0UTVV5RFtv32EDvwgTrQD6jMLoy6xYPfwzilMz_iZnwCeYTpgw priority: 102 providerName: ProQuest |
Title | Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM |
URI | https://www.proquest.com/docview/2767166267 https://www.proquest.com/docview/2887633931 https://doaj.org/article/5c28184ad6b8426e9fb6fd46af00829a |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EL3oQn1gfZQWPBptkH8mxFaUIKeILbyH7EkFbadOLv96Z3bRWFL14TSZhmZ3ZmW935xtCTphkObgNj1KueMQql0dKJ2jLGuK5Uc7EWO9cDET_nl098seFVl94JyzQAwfFnXGNfEWsMkJlEE1s7pRwhonK-bJQnxpBzFsAU34NzuM064hAM5QCrj-rnsYNmYWFZRuZh-Ivocgz9n9bkH2Uudwg6016SLthWJtkyQ63yFr386_bpAy1ta7ZbKMjR4vq-d3SWwhE9AGxL5KkUn8ZgBYjBX4_sPVDQnHPlYZdBJDs1nW46kgLi-W_z5NXet7rFjvk_vLi7rwfNW0SIs2SuI4sQISMMaml0YxbiNeZRkoXJjnTMjHKQppkABcAlOpoGztnEqm1yDPLZZzbdJcsD0dDu0eoBK2KvNIdmaSMd2xmMpH6ozoDnmtUiyQzjZW64RDHVhYvJWAJVHP5g5pb5HT-0Vug0PhdvIdTMRdF_mv_AKyibKyi_MsqWuRwNpFl45STMpEC0CEgONkix_PX4E54RlIN7WgKMhlS9KV5Gu__xzgOyCr2pw97NodkuR5P7RFkMbVqk5XexeD6pu0N9wMk0PJR |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QF6QDzFQilGghtRE9uxkwNCu31oS5sVgrbqzSS2U1Uqm7KbCsGP6m_sTB5bIVBvvSYTKxrP255vAN5JLVNUmzgQcREHMi_ToLCcZNmiP3dF6SLqd86manIkP5_EJytw1ffC0LXK3iY2htpVlmrkm1wrDO0x_NafLn4GNDWKTlf7ERqtWOz7378wZVt83NvG_X3P-e7O4dYk6KYKBFbyqA48RtSJlNpqZ2Xs0b0llhBQpI6l1dwVHqMKh2E0Zh6h9VFZOq6tVWniYx2lXuC692BVChXyAayOd6Zfvi6rOoSymYSqhTcSIg0389N5B6Lh0V0Q4lH0lwtsJgX84wga77b7CB52YSkbtXL0GFb87AmsjW5WfQqm7ektuyIfq0qW5Wd_PPuGDpAdU85N4KysuYTAsqpAezP19TFnVOtlbfUCKUd13V6xZJmntuOzxQ-2NR5lz-DoThj5HAazauZfANN5Gao0t6HmQsahT1yiRHNE6NBiuGIIvOeYsR12OY3QODeYwxCbzX_YPIQPy48uWuiO28nHtBVLUsLdbh5U81PTqbGJLaFnydypAn9O-bQsVOmkwv-nJuV8COv9RprOGCzMjegO4e3yNaoxnc3kM19dIk1C0IAiFdHL25d4A_cnh9mBOdib7r-CBxxjrrYitA6Den7pX2OMVBcbnWAy-H7XunANErIk8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFcQ-iJ94WnUFfTNcstnsJg9F7toerTVHUVv6FrNfpVAv9S5F6p_mX-dMPq6I0re-JpMl7M73zvwG4K1QIkOxSYI40UkgSp8F2nDiZYP23GpvI-p3zmdy70h8PElO1uB33wtDZZW9TmwUta0M5chHXEl07dH9ViPflUUc7kw_XPwIaIIU3bT24zRaFjlwVz8xfFtu7e_gWb_jfLr7dXsv6CYMBEbwqA4cetepEMooa0Ti0NSlhtBQhEqEUdxqhx6GRZcao5DQuMh7y5UxMktdoqLMxbjuHVhXFBUNYH2yOzv8vMrwEOJmGsoW6iiOs3BUni46QA2HpoPQj6K_zGEzNeAfo9BYuukDuN-5qGzc8tRDWHPzR7Axvl71MRRtf6_vEn6s8iwvz3459gWNITum-JuAWllTkMDySqPumbn6mDPK-7I2k4GU47puyy1Z7qgF-Wz5nW1PxvkTOLqVjXwKg3k1d8-AqdKHMitNqHgsktClNpVxc11oUXtYPQTe71hhOhxzGqdxXmA8Q9tc_Gebh_B-9dFFC-NxM_mEjmJFShjczYNqcVp0Il0khpC0RGmlxp-TLvNaeisk_j81LJdD2OwPsugUw7K4ZuMhvFm9RpGme5py7qpLpEkJJjDO4uj5zUu8hrsoA8Wn_dnBC7jH0f1qk0ObMKgXl-4luku1ftXxJYNvty0KfwCLQCkm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Maize+Seed+Varieties+Using+MobileNetV2+with+Improved+Attention+Mechanism+CBAM&rft.jtitle=Agriculture+%28Basel%29&rft.au=Rui+Ma&rft.au=Jia+Wang&rft.au=Wei+Zhao&rft.au=Hongjie+Guo&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=13&rft.issue=1&rft.spage=11&rft_id=info:doi/10.3390%2Fagriculture13010011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5c28184ad6b8426e9fb6fd46af00829a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |