Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM

Seeds are the most fundamental and significant production tool in agriculture. They play a critical role in boosting the output and revenue of agriculture. To achieve rapid identification and protection of maize seeds, 3938 images of 11 different types of maize seeds were collected for the experimen...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 13; no. 1; p. 11
Main Authors Ma, Rui, Wang, Jia, Zhao, Wei, Guo, Hongjie, Dai, Dongnan, Yun, Yuliang, Li, Li, Hao, Fengqi, Bai, Jinqiang, Ma, Dexin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Seeds are the most fundamental and significant production tool in agriculture. They play a critical role in boosting the output and revenue of agriculture. To achieve rapid identification and protection of maize seeds, 3938 images of 11 different types of maize seeds were collected for the experiment, along with a combination of germ and non-germ surface datasets. The training set, validation set, and test set were randomly divided by a ratio of 7:2:1. The experiment introduced the CBAM (Convolutional Block Attention Module) attention mechanism into MobileNetV2, improving the CBAM by replacing the cascade connection with a parallel connection, thus building an advanced mixed attention module, I_CBAM, and establishing a new model, I_CBAM_MobileNetV2. The proposed I_CBAM_MobileNetV2 achieved an accuracy of 98.21%, which was 4.88% higher than that of MobileNetV2. Compared to Xception, MobileNetV3, DenseNet121, E-AlexNet, and ResNet50, the accuracy was increased by 9.24%, 6.42%, 3.85%, 3.59%, and 2.57%, respectively. Gradient-Weighted Class Activation Mapping (Grad-CAM) network visualization demonstrates that I_CBAM_MobileNetV2 focuses more on distinguishing features in maize seed images, thereby boosting the accuracy of the model. Furthermore, the model is only 25.1 MB, making it suitable for portable deployment on mobile terminals. This study provides effective strategies and experimental methods for identifying maize seed varieties using deep learning technology. This research provides technical assistance for the non-destructive detection and automatic identification of maize seed varieties.
AbstractList Seeds are the most fundamental and significant production tool in agriculture. They play a critical role in boosting the output and revenue of agriculture. To achieve rapid identification and protection of maize seeds, 3938 images of 11 different types of maize seeds were collected for the experiment, along with a combination of germ and non-germ surface datasets. The training set, validation set, and test set were randomly divided by a ratio of 7:2:1. The experiment introduced the CBAM (Convolutional Block Attention Module) attention mechanism into MobileNetV2, improving the CBAM by replacing the cascade connection with a parallel connection, thus building an advanced mixed attention module, I_CBAM, and establishing a new model, I_CBAM_MobileNetV2. The proposed I_CBAM_MobileNetV2 achieved an accuracy of 98.21%, which was 4.88% higher than that of MobileNetV2. Compared to Xception, MobileNetV3, DenseNet121, E-AlexNet, and ResNet50, the accuracy was increased by 9.24%, 6.42%, 3.85%, 3.59%, and 2.57%, respectively. Gradient-Weighted Class Activation Mapping (Grad-CAM) network visualization demonstrates that I_CBAM_MobileNetV2 focuses more on distinguishing features in maize seed images, thereby boosting the accuracy of the model. Furthermore, the model is only 25.1 MB, making it suitable for portable deployment on mobile terminals. This study provides effective strategies and experimental methods for identifying maize seed varieties using deep learning technology. This research provides technical assistance for the non-destructive detection and automatic identification of maize seed varieties.
Author Zhao, Wei
Li, Li
Bai, Jinqiang
Guo, Hongjie
Ma, Dexin
Dai, Dongnan
Hao, Fengqi
Wang, Jia
Ma, Rui
Yun, Yuliang
Author_xml – sequence: 1
  givenname: Rui
  surname: Ma
  fullname: Ma, Rui
– sequence: 2
  givenname: Jia
  surname: Wang
  fullname: Wang, Jia
– sequence: 3
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
– sequence: 4
  givenname: Hongjie
  surname: Guo
  fullname: Guo, Hongjie
– sequence: 5
  givenname: Dongnan
  surname: Dai
  fullname: Dai, Dongnan
– sequence: 6
  givenname: Yuliang
  surname: Yun
  fullname: Yun, Yuliang
– sequence: 7
  givenname: Li
  surname: Li
  fullname: Li, Li
– sequence: 8
  givenname: Fengqi
  surname: Hao
  fullname: Hao, Fengqi
– sequence: 9
  givenname: Jinqiang
  surname: Bai
  fullname: Bai, Jinqiang
– sequence: 10
  givenname: Dexin
  surname: Ma
  fullname: Ma, Dexin
BookMark eNp9kU9vEzEQxS1UJErpJ-BiiQuXgO312t5jiPgTqYEDtFfLscfpRJt1sb0g-unrNiChCjGXGY1-70lv5jk5mdIEhLzk7E3XDeyt22X081jnDLxjnDHOn5BTwbReMKnFyV_zM3Jeyp61GnhnmDoldh1gqhjRu4ppoinSjcNboF8BAr1yGaEiFHpZcNrRTdriCJ-hXgn6E-s1XR9ucvrRyGWt9z7NYQP-2k1YDnT1brl5QZ5GNxY4_93PyOWH999WnxYXXz6uV8uLhZeC1wVwI4yU2uvgZQ9CSuMH1Rupe-m1CFvgvQy6LVpADzzGILT3ajDQaz5Ad0bWR9-Q3N7eZDy4_Msmh_ZhkfLOulzRj2B7Lww30gW1NVIoGOJWxSCVi4wZMbjm9fro1bJ9n6FUe8DiYRzdBGkuVhijVTt9xxv66hG6T3OeWlIrtNJcKaF0o4Yj5XMqJUO0HuvDvWt2OFrO7P0n7T8-2bTdI-2fcP9T3QHkr6Xe
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3455244
crossref_primary_10_1371_journal_pone_0307329
crossref_primary_10_3390_app14135623
crossref_primary_10_3390_app13106330
crossref_primary_10_1038_s41598_025_87173_7
crossref_primary_10_3390_agronomy14091953
crossref_primary_10_1016_j_aei_2024_102553
crossref_primary_10_1016_j_compag_2024_109371
crossref_primary_10_1111_ppa_13866
crossref_primary_10_1088_1361_6501_ad6b41
crossref_primary_10_3390_jmse13010082
crossref_primary_10_3390_app13084928
crossref_primary_10_3390_rs15174156
crossref_primary_10_3390_rs15235614
crossref_primary_10_3390_rs16081394
crossref_primary_10_1186_s12870_024_04825_y
crossref_primary_10_3390_agriculture14111905
crossref_primary_10_3390_s23136239
crossref_primary_10_3390_agronomy13092279
crossref_primary_10_3390_agronomy14040645
crossref_primary_10_1002_ima_70002
crossref_primary_10_1088_2631_8695_adb4c0
crossref_primary_10_1109_ACCESS_2023_3326824
crossref_primary_10_3389_fpls_2023_1175027
crossref_primary_10_1061_JPCFEV_CFENG_4615
crossref_primary_10_3390_agriculture13071352
crossref_primary_10_1007_s13349_025_00919_9
crossref_primary_10_1109_ACCESS_2024_3417310
Cites_doi 10.1109/CVPR.2017.195
10.1109/ICAEM53552.2021.9547133
10.1007/s12525-021-00475-2
10.1109/CVPR.2018.00745
10.1109/ICCIT52419.2022.9711662
10.1109/ACCESS.2022.3175818
10.1002/jsfa.11095
10.1109/ICREST51555.2021.9331214
10.3390/su14106339
10.3390/sym12122018
10.1109/CVPR.2016.90
10.12792/icisip2021.007
10.1007/s11032-020-01195-9
10.1016/j.compag.2018.02.016
10.1371/journal.pone.0264586
10.1109/CVPR.2018.00474
10.1016/j.compag.2021.106002
10.1038/nature14539
10.1007/s11694-020-00707-7
10.1109/CVPR.2018.00907
10.1109/CVPR42600.2020.01155
10.1007/s11694-021-01010-9
10.1080/10942912.2020.1778724
10.1109/ACCESS.2022.3142817
10.1109/JSEN.2021.3062442
10.1109/iEECON53204.2022.9741677
10.1016/j.compag.2019.104874
10.1109/ICCV.2019.00140
10.1109/ICCV.2017.74
10.1109/CVPR.2017.243
10.3390/agronomy12081846
10.1007/978-3-030-01234-2_1
10.1007/978-0-387-72297-9
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
DOA
DOI 10.3390/agriculture13010011
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_5c28184ad6b8426e9fb6fd46af00829a
10_3390_agriculture13010011
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
COVID
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c421t-e1828447c7dc45e2448c96584754c72dbe154d7584010ce1ffd27cc698e5719e3
IEDL.DBID DOA
ISSN 2077-0472
IngestDate Wed Aug 27 01:29:26 EDT 2025
Sun Aug 24 03:54:45 EDT 2025
Sun Jun 29 15:25:19 EDT 2025
Thu Apr 24 22:51:05 EDT 2025
Tue Jul 01 02:12:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-e1828447c7dc45e2448c96584754c72dbe154d7584010ce1ffd27cc698e5719e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/5c28184ad6b8426e9fb6fd46af00829a
PQID 2767166267
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_5c28184ad6b8426e9fb6fd46af00829a
proquest_miscellaneous_2887633931
proquest_journals_2767166267
crossref_citationtrail_10_3390_agriculture13010011
crossref_primary_10_3390_agriculture13010011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_13
Elfatimi (ref_22) 2022; 10
ref_34
ref_32
ref_31
Cheng (ref_4) 2009; 40
ref_19
ref_18
ref_17
ref_39
ref_16
ref_38
ref_15
Zhou (ref_11) 2021; 101
Ali (ref_36) 2020; 23
Feng (ref_21) 2021; 33
(ref_12) 2021; 15
Kocamaz (ref_35) 2019; 163
Ni (ref_41) 2021; 15
Dai (ref_2) 2021; 41
Tu (ref_10) 2021; 182
ref_25
ref_24
Yang (ref_3) 2013; 42
LeCun (ref_7) 2015; 521
ref_23
Kamilaris (ref_8) 2018; 147
ref_43
ref_20
ref_42
ref_40
ref_1
Cao (ref_37) 2012; 28
ref_29
ref_28
ref_27
ref_26
Jia (ref_30) 2022; 10
ref_5
Janiesch (ref_9) 2021; 31
Wang (ref_33) 2021; 52
ref_6
References_xml – ident: ref_18
  doi: 10.1109/CVPR.2017.195
– ident: ref_20
  doi: 10.1109/ICAEM53552.2021.9547133
– volume: 31
  start-page: 685
  year: 2021
  ident: ref_9
  article-title: Machine Learning and Deep Learning
  publication-title: Electron Mark.
  doi: 10.1007/s12525-021-00475-2
– ident: ref_26
  doi: 10.1109/CVPR.2018.00745
– volume: 40
  start-page: 180
  year: 2009
  ident: ref_4
  article-title: Corn Breed Recognition Based on Support Vector Machine
  publication-title: Trans. Chin. Soc. Agric. Mach.
– ident: ref_5
– ident: ref_25
  doi: 10.1109/ICCIT52419.2022.9711662
– volume: 10
  start-page: 53963
  year: 2022
  ident: ref_30
  article-title: MobileNetV3 With CBAM for Bamboo Stick Counting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3175818
– volume: 101
  start-page: 4532
  year: 2021
  ident: ref_11
  article-title: Identification of the Variety of Maize Seeds Based on Hyperspectral Images Coupled with Convolutional Neural Networks and Subregional Voting
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.11095
– ident: ref_19
  doi: 10.1109/ICREST51555.2021.9331214
– ident: ref_38
  doi: 10.3390/su14106339
– ident: ref_34
  doi: 10.3390/sym12122018
– ident: ref_40
  doi: 10.1109/CVPR.2016.90
– volume: 33
  start-page: 2983
  year: 2021
  ident: ref_21
  article-title: Variety Recognition Based on Deep Learning and Double-Sided Characteristics of Maize Kernel
  publication-title: J. Syst. Simul.
– volume: 52
  start-page: 239
  year: 2021
  ident: ref_33
  article-title: Fine-grained Identification Research of Crop Pests and Diseases Based on Improved CBAM via Attention
  publication-title: Trans. Chin. Soc. Agric. Mach.
– ident: ref_24
  doi: 10.12792/icisip2021.007
– volume: 28
  start-page: 253
  year: 2012
  ident: ref_37
  article-title: Purity Identification of Maize Seed Based on Discrete Wavelet Transform and BP Neural Network
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 41
  start-page: 2
  year: 2021
  ident: ref_2
  article-title: Maize Kernel Development
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-020-01195-9
– volume: 147
  start-page: 70
  year: 2018
  ident: ref_8
  article-title: Deep Learning in Agriculture: A Survey
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.016
– ident: ref_31
  doi: 10.1371/journal.pone.0264586
– ident: ref_16
  doi: 10.1109/CVPR.2018.00474
– ident: ref_6
– volume: 182
  start-page: 106002
  year: 2021
  ident: ref_10
  article-title: A Non-Destructive and Highly Efficient Model for Detecting the Genuineness of Maize Variety ’JINGKE 968′ Using Machine Vision Combined with Deep Learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106002
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_7
  article-title: Deep Learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 15
  start-page: 1024
  year: 2021
  ident: ref_12
  article-title: Identification of Sunflower Seeds with Deep Convolutional Neural Networks
  publication-title: Food Meas.
  doi: 10.1007/s11694-020-00707-7
– ident: ref_15
  doi: 10.1109/CVPR.2018.00907
– ident: ref_28
  doi: 10.1109/CVPR42600.2020.01155
– volume: 15
  start-page: 4530
  year: 2021
  ident: ref_41
  article-title: E-AlexNet: Quality Evaluation of Strawberry Based on Machine Learning
  publication-title: Food Meas.
  doi: 10.1007/s11694-021-01010-9
– volume: 23
  start-page: 1110
  year: 2020
  ident: ref_36
  article-title: Machine Learning Approach for the Classification of Corn Seed Using Hybrid Features
  publication-title: Int. J. Food Prop.
  doi: 10.1080/10942912.2020.1778724
– volume: 10
  start-page: 9471
  year: 2022
  ident: ref_22
  article-title: Beans Leaf Diseases Classification Using MobileNet Models
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3142817
– ident: ref_29
  doi: 10.1109/JSEN.2021.3062442
– volume: 42
  start-page: 2437
  year: 2013
  ident: ref_3
  article-title: Discrimination of corn varieties using visible/near infrared imaging spectrometer system
  publication-title: Infrared Laser Eng.
– ident: ref_23
  doi: 10.1109/iEECON53204.2022.9741677
– ident: ref_13
– ident: ref_17
– ident: ref_43
– volume: 163
  start-page: 104874
  year: 2019
  ident: ref_35
  article-title: Identification of Haploid and Diploid Maize Seeds Using Convolutional Neural Networks and a Transfer Learning Approach
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104874
– ident: ref_39
  doi: 10.1109/ICCV.2019.00140
– ident: ref_42
  doi: 10.1109/ICCV.2017.74
– ident: ref_14
  doi: 10.1109/CVPR.2017.243
– ident: ref_32
  doi: 10.3390/agronomy12081846
– ident: ref_27
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_1
  doi: 10.1007/978-0-387-72297-9
SSID ssj0000913806
Score 2.3817933
Snippet Seeds are the most fundamental and significant production tool in agriculture. They play a critical role in boosting the output and revenue of agriculture. To...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 11
SubjectTerms Accuracy
Agriculture
Algorithms
CBAM
Citrus fruits
Classification
Corn
Crop diseases
data collection
Datasets
Deep learning
Experimental methods
Experiments
Identification
image classification
income
Machine learning
maize seeds
Methods
MobileNetV2
Model accuracy
Modules
Neural networks
Rice
Seeds
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC52x8vuQdwXOz6WFva4wTz6lZPMiCJCBnFX8RbSLxHciTsTL_56q5KekUXxmlSa0N31-rrrK4CfXPES1UYkhTAi4U0oE2Nz2ssW_bkzwWVU71zN5OklP7sW1xFwW8ZrlSub2Btq11rCyA9yJTG0x_BbHd7_S6hrFJ2uxhYa72EDTbDWI9iYHs_OL9YoC7Fe6lQOdEMF5vcHzc0iklp4NN_EQJT955J65v4Xhrn3NidbsBnDRDYZ1vUTvPPzz_Bx8jzqF6iHGtsQQTfWBlY1t4-e_UaHxK4oByayVNZfCmBVa1D_Z767yhlhr2xAE1By0nXDlUdWeSoDvl3-ZUfTSfUVLk-O_xydJrFdQmJ5nnWJx1RBc66scpYLj35bW6J24Upwq3JnPIZLDvMDTKlS67MQXK6slaX2QmWlL77BaN7O_XdgqgmpLBubqrzgIvXaaVn0R3YONdiZMeSrGatt5BKnlhZ3NeYUNM31K9M8hl_rj-4HKo23xae0FGtR4sHuH7SLmzqqVS0ssVnxxkmDPyd9GYwMjkv8fyoabsawu1rIOirnsn7eSmPYX79GtaKzkmbu2weU0UTVV5RFtv32EDvwgTrQD6jMLoy6xYPfwzilMz_iZnwCeYTpgw
  priority: 102
  providerName: ProQuest
Title Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM
URI https://www.proquest.com/docview/2767166267
https://www.proquest.com/docview/2887633931
https://doaj.org/article/5c28184ad6b8426e9fb6fd46af00829a
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EL3oQn1gfZQWPBptkH8mxFaUIKeILbyH7EkFbadOLv96Z3bRWFL14TSZhmZ3ZmW935xtCTphkObgNj1KueMQql0dKJ2jLGuK5Uc7EWO9cDET_nl098seFVl94JyzQAwfFnXGNfEWsMkJlEE1s7pRwhonK-bJQnxpBzFsAU34NzuM064hAM5QCrj-rnsYNmYWFZRuZh-Ivocgz9n9bkH2Uudwg6016SLthWJtkyQ63yFr386_bpAy1ta7ZbKMjR4vq-d3SWwhE9AGxL5KkUn8ZgBYjBX4_sPVDQnHPlYZdBJDs1nW46kgLi-W_z5NXet7rFjvk_vLi7rwfNW0SIs2SuI4sQISMMaml0YxbiNeZRkoXJjnTMjHKQppkABcAlOpoGztnEqm1yDPLZZzbdJcsD0dDu0eoBK2KvNIdmaSMd2xmMpH6ozoDnmtUiyQzjZW64RDHVhYvJWAJVHP5g5pb5HT-0Vug0PhdvIdTMRdF_mv_AKyibKyi_MsqWuRwNpFl45STMpEC0CEgONkix_PX4E54RlIN7WgKMhlS9KV5Gu__xzgOyCr2pw97NodkuR5P7RFkMbVqk5XexeD6pu0N9wMk0PJR
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QF6QDzFQilGghtRE9uxkwNCu31oS5sVgrbqzSS2U1Uqm7KbCsGP6m_sTB5bIVBvvSYTKxrP255vAN5JLVNUmzgQcREHMi_ToLCcZNmiP3dF6SLqd86manIkP5_EJytw1ffC0LXK3iY2htpVlmrkm1wrDO0x_NafLn4GNDWKTlf7ERqtWOz7378wZVt83NvG_X3P-e7O4dYk6KYKBFbyqA48RtSJlNpqZ2Xs0b0llhBQpI6l1dwVHqMKh2E0Zh6h9VFZOq6tVWniYx2lXuC692BVChXyAayOd6Zfvi6rOoSymYSqhTcSIg0389N5B6Lh0V0Q4lH0lwtsJgX84wga77b7CB52YSkbtXL0GFb87AmsjW5WfQqm7ektuyIfq0qW5Wd_PPuGDpAdU85N4KysuYTAsqpAezP19TFnVOtlbfUCKUd13V6xZJmntuOzxQ-2NR5lz-DoThj5HAazauZfANN5Gao0t6HmQsahT1yiRHNE6NBiuGIIvOeYsR12OY3QODeYwxCbzX_YPIQPy48uWuiO28nHtBVLUsLdbh5U81PTqbGJLaFnydypAn9O-bQsVOmkwv-nJuV8COv9RprOGCzMjegO4e3yNaoxnc3kM19dIk1C0IAiFdHL25d4A_cnh9mBOdib7r-CBxxjrrYitA6Den7pX2OMVBcbnWAy-H7XunANErIk8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFcQ-iJ94WnUFfTNcstnsJg9F7toerTVHUVv6FrNfpVAv9S5F6p_mX-dMPq6I0re-JpMl7M73zvwG4K1QIkOxSYI40UkgSp8F2nDiZYP23GpvI-p3zmdy70h8PElO1uB33wtDZZW9TmwUta0M5chHXEl07dH9ViPflUUc7kw_XPwIaIIU3bT24zRaFjlwVz8xfFtu7e_gWb_jfLr7dXsv6CYMBEbwqA4cetepEMooa0Ti0NSlhtBQhEqEUdxqhx6GRZcao5DQuMh7y5UxMktdoqLMxbjuHVhXFBUNYH2yOzv8vMrwEOJmGsoW6iiOs3BUni46QA2HpoPQj6K_zGEzNeAfo9BYuukDuN-5qGzc8tRDWHPzR7Axvl71MRRtf6_vEn6s8iwvz3459gWNITum-JuAWllTkMDySqPumbn6mDPK-7I2k4GU47puyy1Z7qgF-Wz5nW1PxvkTOLqVjXwKg3k1d8-AqdKHMitNqHgsktClNpVxc11oUXtYPQTe71hhOhxzGqdxXmA8Q9tc_Gebh_B-9dFFC-NxM_mEjmJFShjczYNqcVp0Il0khpC0RGmlxp-TLvNaeisk_j81LJdD2OwPsugUw7K4ZuMhvFm9RpGme5py7qpLpEkJJjDO4uj5zUu8hrsoA8Wn_dnBC7jH0f1qk0ObMKgXl-4luku1ftXxJYNvty0KfwCLQCkm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Maize+Seed+Varieties+Using+MobileNetV2+with+Improved+Attention+Mechanism+CBAM&rft.jtitle=Agriculture+%28Basel%29&rft.au=Rui+Ma&rft.au=Jia+Wang&rft.au=Wei+Zhao&rft.au=Hongjie+Guo&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=13&rft.issue=1&rft.spage=11&rft_id=info:doi/10.3390%2Fagriculture13010011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5c28184ad6b8426e9fb6fd46af00829a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon