Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning

The aim of this study was to develop models based on linear dimensions or shape factors, and the sets of combined linear dimensions and shape factors for discrimination of sour cherry pits of different cultivars (‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’, ‘Kelleris’). The geometric parameters were ca...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 11; no. 12; p. 1212
Main Authors Ropelewska, Ewa, Sabanci, Kadir, Aslan, Muhammet Fatih
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this study was to develop models based on linear dimensions or shape factors, and the sets of combined linear dimensions and shape factors for discrimination of sour cherry pits of different cultivars (‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’, ‘Kelleris’). The geometric parameters were calculated using image processing. The pits of different sour cherry cultivars statistically significantly differed in terms of selected dimensions and shape factors. The discriminative models built based on linear dimensions produced average accuracies of up to 95% for distinguishing the pit cultivars in the case of ‘Nefris’ vs. ‘Kelleris’ and 72% for all four cultivars. The average accuracies for the discriminative models built based on shape factors were up to 95% for the ‘Nefris’ and ‘Kelleris’ pits and 73% for four cultivars. The models combining the linear dimensions and shape factors produced accuracies reaching 96% for the ‘Nefris’ vs. ‘Kelleris’ pits and 75% for all cultivars. The geometric parameters with high discriminative power may be used for distinguishing different cultivars of sour cherry pits. It can be of great importance for practical applications. It may allow avoiding the adulteration and mixing of different cultivars.
AbstractList The aim of this study was to develop models based on linear dimensions or shape factors, and the sets of combined linear dimensions and shape factors for discrimination of sour cherry pits of different cultivars (‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’, ‘Kelleris’). The geometric parameters were calculated using image processing. The pits of different sour cherry cultivars statistically significantly differed in terms of selected dimensions and shape factors. The discriminative models built based on linear dimensions produced average accuracies of up to 95% for distinguishing the pit cultivars in the case of ‘Nefris’ vs. ‘Kelleris’ and 72% for all four cultivars. The average accuracies for the discriminative models built based on shape factors were up to 95% for the ‘Nefris’ and ‘Kelleris’ pits and 73% for four cultivars. The models combining the linear dimensions and shape factors produced accuracies reaching 96% for the ‘Nefris’ vs. ‘Kelleris’ pits and 75% for all cultivars. The geometric parameters with high discriminative power may be used for distinguishing different cultivars of sour cherry pits. It can be of great importance for practical applications. It may allow avoiding the adulteration and mixing of different cultivars.
Author Ropelewska, Ewa
Aslan, Muhammet Fatih
Sabanci, Kadir
Author_xml – sequence: 1
  givenname: Ewa
  orcidid: 0000-0001-8891-236X
  surname: Ropelewska
  fullname: Ropelewska, Ewa
– sequence: 2
  givenname: Kadir
  surname: Sabanci
  fullname: Sabanci, Kadir
– sequence: 3
  givenname: Muhammet Fatih
  orcidid: 0000-0001-7549-0137
  surname: Aslan
  fullname: Aslan, Muhammet Fatih
BookMark eNp9UU1vEzEUXKEiUUp_ARdLXLgE_LFrr48ogVIpFZGgZ-ut_Zw62qyL7W2Vf49DEEIVqn3w82hm7PfmdXM2xQmb5i2jH4TQ9CNsU7DzWOaEjDF-3C-ac06VWtBW8bN_6lfNZc47WpdmoqfyvDmsQrYp7MMEJTwg2cRHTCR6coVxj6U6kw0kqCWmfMRXwXtMOBWyrG-GBzjB3-OcyPIOUzqQTSiZrI6KaouO3OYwbckN2Lt6JWuENFXgTfPSw5jx8s950dx--fxj-XWx_nZ1vfy0XtiWs7JwA6eydV4xy3VnPQPAASm3njM5UKe07kB5p6Tvdet76YZBoB4EKN077MRFc33ydRF25r72CulgIgTzG4hpayCVYEc0THdSCkWF9rZVrO07KjsmOnBusEzo6vX-5HWf4s8ZczH7Oj4cR5gwztlwKaSSqm9ppb57Qt3VEU2108piXDHVc1FZ4sSyKeac0P_9IKPmmK75T7pVpZ-obCg1vziVBGF8VvsLTz-xBg
CitedBy_id crossref_primary_10_1007_s00217_022_04057_0
crossref_primary_10_3390_jimaging10040094
crossref_primary_10_1007_s00217_022_04019_6
crossref_primary_10_3390_agriculture12020285
crossref_primary_10_3390_horticulturae9080940
crossref_primary_10_3390_agronomy12040762
crossref_primary_10_1007_s00217_022_04059_y
crossref_primary_10_3390_agriculture12101652
crossref_primary_10_3390_agriengineering5020050
crossref_primary_10_3390_agriculture13010074
Cites_doi 10.1016/j.gltp.2021.01.004
10.3390/nu10030368
10.1016/S0961-9534(01)00027-7
10.1016/j.cmpb.2008.08.005
10.1177/0967033517712130
10.1007/s00217-021-03797-9
10.1016/j.indcrop.2015.12.010
10.1080/10408398.2018.1496901
10.9787/PBB.2019.7.3.175
10.3390/s20154319
10.1016/j.jaap.2014.04.015
10.1111/jfpe.13694
10.1109/ACCESS.2020.3048415
10.1080/11263504.2019.1701126
10.1016/j.indcrop.2013.04.048
10.1016/j.compag.2017.02.009
10.1007/s12274-017-1608-1
10.1016/j.jspr.2020.101668
10.3390/s21113758
10.3906/tar-1504-95
10.1016/j.apsusc.2018.03.195
10.1016/j.envpol.2020.116073
10.21203/rs.3.rs-477719/v1
10.3390/agriculture11010006
10.1016/j.tifs.2019.02.052
10.1016/j.jclepro.2018.06.136
10.1093/aob/mcm260
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
DOA
DOI 10.3390/agriculture11121212
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_1956637039fc471485065135addbc139
10_3390_agriculture11121212
GeographicLocations Poland
GeographicLocations_xml – name: Poland
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c421t-db2064df71c295cf1aaebe02cf216b0d7995a7fd76f894f86dbb3e9b3a798de53
IEDL.DBID BENPR
ISSN 2077-0472
IngestDate Wed Aug 27 01:19:33 EDT 2025
Thu Jul 10 23:06:49 EDT 2025
Mon Jun 30 05:13:11 EDT 2025
Tue Jul 01 02:12:40 EDT 2025
Thu Apr 24 23:07:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-db2064df71c295cf1aaebe02cf216b0d7995a7fd76f894f86dbb3e9b3a798de53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7549-0137
0000-0001-8891-236X
OpenAccessLink https://www.proquest.com/docview/2612717823?pq-origsite=%requestingapplication%
PQID 2612717823
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_1956637039fc471485065135addbc139
proquest_miscellaneous_2636767840
proquest_journals_2612717823
crossref_primary_10_3390_agriculture11121212
crossref_citationtrail_10_3390_agriculture11121212
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yangali (ref_7) 2014; 108
(ref_26) 2006; 40
Liang (ref_3) 2017; 25
Depypere (ref_27) 2007; 100
ref_34
ref_33
(ref_12) 2013; 49
Savova (ref_6) 2001; 21
Moreno (ref_9) 2018; 11
ref_17
ref_16
Ropelewska (ref_24) 2021; 20
Szczypinski (ref_32) 2009; 94
Ropelewska (ref_23) 2021; 247
Sarigu (ref_28) 2017; 136
Karaaslan (ref_5) 2019; 59
Li (ref_10) 2018; 447
Blando (ref_1) 2019; 86
Sharma (ref_18) 2020; 9
Ajaz (ref_19) 2015; 2
Barber (ref_8) 2018; 197
ref_25
Sharma (ref_14) 2021; 2
Frigau (ref_29) 2020; 154
ref_20
Ropelewska (ref_21) 2021; 44
Beyaz (ref_30) 2016; 40
Asongo (ref_15) 2021; 11
Ropelewska (ref_22) 2020; 88
ref_2
Mousa (ref_4) 2019; 10
Raczyk (ref_13) 2016; 82
Kim (ref_31) 2019; 7
Pollard (ref_11) 2021; 270
References_xml – volume: 2
  start-page: 24
  year: 2021
  ident: ref_14
  article-title: Machine Learning and Deep Learning Applications—A Vision
  publication-title: Glob. Transit. Proc.
  doi: 10.1016/j.gltp.2021.01.004
– ident: ref_2
  doi: 10.3390/nu10030368
– volume: 21
  start-page: 133
  year: 2001
  ident: ref_6
  article-title: Biomass conversion to carbon adsorbents and gas
  publication-title: Biomass Bioenergy
  doi: 10.1016/S0961-9534(01)00027-7
– volume: 94
  start-page: 66
  year: 2009
  ident: ref_32
  article-title: MaZda—A software package for image texture analysis
  publication-title: Comput. Meth. Prog. Biomed.
  doi: 10.1016/j.cmpb.2008.08.005
– ident: ref_34
– volume: 20
  start-page: 52
  year: 2021
  ident: ref_24
  article-title: Classification of the pits of different sour cherry cultivars based on the surface textural features
  publication-title: J. Saudi Soc. Agric. Sci.
– volume: 25
  start-page: 196
  year: 2017
  ident: ref_3
  article-title: Detection of pits and pit fragments in fresh cherries using near infrared spectroscopy
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1177/0967033517712130
– volume: 247
  start-page: 2371
  year: 2021
  ident: ref_23
  article-title: Differentiation of peach cultivars by image analysis based on the skin, flesh, stone and seed textures
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-021-03797-9
– volume: 82
  start-page: 44
  year: 2016
  ident: ref_13
  article-title: Composition of bioactive compounds in kernel oils recovered from sour cherry (Prunus cerasus L.) by-products: Impact of the cultivar on potential applications
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2015.12.010
– volume: 59
  start-page: 3549
  year: 2019
  ident: ref_5
  article-title: Sour Cherry By-products: Compositions, Functional Properties and Recovery Potentials—A Review
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2018.1496901
– volume: 7
  start-page: 175
  year: 2019
  ident: ref_31
  article-title: Analysis of Qualitative and Quantitative Traits to Identify Different Chinese Jujube Cultivars
  publication-title: Plant Breed. Biotechnol.
  doi: 10.9787/PBB.2019.7.3.175
– ident: ref_20
  doi: 10.3390/s20154319
– volume: 10
  start-page: 867
  year: 2019
  ident: ref_4
  article-title: Mechanical Behavior of Apricot and Cherry Pits under Compression Loading
  publication-title: J. Soil Sci. Agric. Eng.
– volume: 40
  start-page: 311
  year: 2006
  ident: ref_26
  article-title: Stone and kernel characteristics as elements in identification of apricot cultivars
  publication-title: Voćarstvo
– volume: 108
  start-page: 203
  year: 2014
  ident: ref_7
  article-title: Co-pyrolysis reaction rates and activation energies of West Virginia coal and cherry pit blends
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2014.04.015
– volume: 44
  start-page: 13694
  year: 2021
  ident: ref_21
  article-title: A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross-section and seed textures determined using image processing
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.13694
– volume: 9
  start-page: 4843
  year: 2020
  ident: ref_18
  article-title: Machine learning applications for precision agriculture: A comprehensive review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048415
– volume: 154
  start-page: 877
  year: 2020
  ident: ref_29
  article-title: Statistical Approach to the Morphological Classification of Prunus sp. Seeds
  publication-title: Plant Biosyst.
  doi: 10.1080/11263504.2019.1701126
– ident: ref_33
– volume: 49
  start-page: 130
  year: 2013
  ident: ref_12
  article-title: Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2013.04.048
– volume: 136
  start-page: 25
  year: 2017
  ident: ref_28
  article-title: Phenotypic identification of plum varieties (Prunus domestica L.) by endocarps morpho-colorimetric and textural descriptors
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.02.009
– volume: 11
  start-page: 89
  year: 2018
  ident: ref_9
  article-title: Low-cost disordered carbons for Li/S batteries: A high-performance carbon with dual porosity derived from cherry pits
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1608-1
– volume: 11
  start-page: 55
  year: 2021
  ident: ref_15
  article-title: Machine Learning Techniques, methods and Algorithms: Conceptual and Practical Insights
  publication-title: Int. J. Eng. Res. Appl.
– volume: 88
  start-page: 101668
  year: 2020
  ident: ref_22
  article-title: The use of seed texture features for discriminating different cultivars of stored apples
  publication-title: J. Stored Prod. Res.
  doi: 10.1016/j.jspr.2020.101668
– ident: ref_17
  doi: 10.3390/s21113758
– volume: 40
  start-page: 671
  year: 2016
  ident: ref_30
  article-title: Identification of olive cultivars using image processing techniques
  publication-title: Turk. J. Agric. For.
  doi: 10.3906/tar-1504-95
– volume: 447
  start-page: 57
  year: 2018
  ident: ref_10
  article-title: Nitrogen-doped hierarchically porous carbon derived from cherry stone as a catalyst support for purification of terephthalic acid
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.195
– volume: 270
  start-page: 116073
  year: 2021
  ident: ref_11
  article-title: Valorization of cherry pits: Great Lakes agro-industrial waste to mediate Great Lakes water quality
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.116073
– ident: ref_16
  doi: 10.21203/rs.3.rs-477719/v1
– ident: ref_25
  doi: 10.3390/agriculture11010006
– volume: 86
  start-page: 517
  year: 2019
  ident: ref_1
  article-title: Sweet and sour cherries: Origin, distribution, nutritional composition and health benefits
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2019.02.052
– volume: 197
  start-page: 1597
  year: 2018
  ident: ref_8
  article-title: Closing nutrient cycles with biochar-from filtration to fertilizer
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.06.136
– volume: 100
  start-page: 1585
  year: 2007
  ident: ref_27
  article-title: Stony endocarp dimension and shape variation in Prunus section Prunus
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcm260
– volume: 2
  start-page: 1098
  year: 2015
  ident: ref_19
  article-title: Seed Classification using Machine Learning Techniques
  publication-title: J. Multidiscip. Eng. Sci. Technol. (JMEST)
SSID ssj0000913806
Score 2.233591
Snippet The aim of this study was to develop models based on linear dimensions or shape factors, and the sets of combined linear dimensions and shape factors for...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1212
SubjectTerms adulterated products
Agricultural production
agriculture
Artificial intelligence
Cultivars
discrimination
Fruits
geometry
Image processing
Learning algorithms
linear dimensions
Machine learning
Mathematical models
Parameters
pit images
Pits
Prunus cerasus
Seeds
shape factors
sour cherry cultivars
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA7iSQ_iiuNGBI8Wm6RLclTHBUEZUMFbySoDOiNaBf-976VxVBS9SG9p0oa8Je-RL98jZIflygRpZSaEwgSl9pkyvsikNqzQUhnB8Dby-UV1el2c3ZQ3n0p9ISasowfuFm4P77NVAvRSBQuOtECGtZKJEuzSWAhf0PvCnvcpmYo-WDEh86qjGYJp5Hv69jGRWXgwb47Pl60oMvZ_c8hxlzmeJ3MpPKT73bQWyJQfLZLZ_Y-vLpHX_hBNHSEs6KroAOuc0XGgJ358j_WxLB1ohFwhbya291MNlJYif-bwRXfNl_AveojMjK90MGyfaD8hY7yjEUhAzyPQ0tPEwXq7TK6Pj64OT7NUQCGzBWdt5gyHiMOFmlmuShuY1iCznNvAWWVyh2Rwug6uroJURZCVM0Z4kI-ulXS-FCtkejQe-VVCIZEKTBWc41Gpt5Vm3pmyDIG7yqhgeoS_r2VjE7s4Frm4ayDLQAE0PwigR3Yngx46co3fux-gkCZdkRk7NoC-NElfmr_0pUc23kXcJHN9apBHDfJayUWPbE9eg6Hh6Yke-fEz9onkdpAQr_3HPNbJDEd4TETGbJDp9vHZb0J805qtqMpvuNP6Gw
  priority: 102
  providerName: Directory of Open Access Journals
Title Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning
URI https://www.proquest.com/docview/2612717823
https://www.proquest.com/docview/2636767840
https://doaj.org/article/1956637039fc471485065135addbc139
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSyMxEA939eXuQfQ-uGqVHPh4i5vsV_Ik1arlQCneCb4t-SyFu662W8H_3pk0bRFF9i2bzS47mcnM5JffEHLEUqm9MCLJMokBSuUSqV2eCKVZroTUGcPTyFfX5fA2_31X3MWE2zzCKlc2MRhq2xjMkR8j1RWEHoJnJ_cPCVaNwt3VWELjI9kCEywg-No6Pb8e3ayzLMh6KdJySTcEn5Meq_Esklo4UHOO14slKTD3vzLMYbW52CHb0U2k_aVcd8kHN_1CPvc3o34lT4MJqjxCWdBk0RHWO6ONp5eu-Y91sgwdKYReIX8mtg9iLZSWIo_m5FEtm__Au-gZMjQ-0dGkndNBRMg4SwOggF4FwKWjkYt1_I3cXpz_PRsmsZBCYnLO2sRqDp6H9RUzXBbGM6VAdik3nrNSpxZJ4VTlbVV6IXMvSqt15kBOqpLCuiL7TjrTZup-EAoBlWcy5xy3TJ0pFXNWF4X33JZaet0lfPUvaxNZxrHYxb8aog0UQP2GALrk1_qh-yXJxvvdT1FI667IkB0amtm4jgpX4znIMgN7Jr2BBThHZr6CZQXYc23A7e2S3krEdVTbeb2ZZF3yc30bFA53UdTUNQvsE0juIDDee3-IffKJIwAmYF96pNPOFu4APJhWH8ZpehgyAM8kkPWv
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9AAcEOUhUgo1EtxYde192QeE2qYlpU0UQSv1tvgZRYJsSbag_Cl-IzO73lQI1Fu1N6_3Yc94xmOPv4-QNyyW2gsjoiSRGKAULpLapZFQmqVKSJ0wPI08GufDi_TTZXa5QX53Z2EwrbKziY2htpXBNfI9hLqC0EPw5MPVjwhZo3B3taPQaNXi1K1-Qci2fH8yAPm-5fz46PxwGAVWgciknNWR1RzcsPUFM1xmxjOloCExN56zXMcWEdJU4W2ReyFTL3KrdeLgp1UhhXXIEgEmfzNNIJTpkc2Do_Hk83pVB1E2RZy38EbQ_HhPTRcBRMOBWeF4_eUCG6aAfxxB492OH5GHYVpK91s92iIbbv6YPNi_eesTshrM0MRg6gyaSDpBfjVaefrRVd-Rl8vQicJUL8TrxPJB4F6pKeJ2zn6qtvgLfIseIiLkik5m9ZIOQkaOs7RJYKCjJsHT0YD9On1KLu6ki5-R3ryau-eEQgDnmUw5xy1aZ3LFnNVZ5j23uZZe9wnv-rI0AdUcyTW-lRDdoADK_wigT96tH7pqQT1ur36AQlpXRUTupqBaTMswwEs8d5knYD-lN-DwU0QCzFiSgf_QBqbZfbLTibgMZmJZ3ih1n7xe34YBjrs2au6qa6zTgOpBIL59-yt2yb3h-eisPDsZn74g9zkm3zR5NzukVy-u3UuYPdX6VVBZSr7e9Sj5A3TTM2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggFoeYkuhRoIb0cbO0weE2qZLS-kqAir1FvxcrQSbdjcF7V_j1zGTOFshUG9Vbo6TyB57xhN__j5CXrNQKJfrPIgigQlKZgOhbBzkUrFY5kJFDE8jn03S4_P440VysUF-92dhEFbZ-8TWUZta4z_yEVJdQeqR82jkPCyiLMbvL68CVJDCndZeTqMbIqd29QvSt-W7kwJs_Ybz8dHXw-PAKwwEOuasCYziEJKNy5jmItGOSQmNCrl2nKUqNMiWJjNnstTlInZ5apSKLDRAZiI3FhUjwP1vZtDGcEA2D44m5ef1Hx5k3MzDtKM6gq4IR3K68IQaFlwMx-uvcNiqBvwTFNpIN94iD_0Sle53Y2qbbNj5I_Jg_-atj8mqmKG7QRgNuktaotYarR39YOsfqNGlaSkR9oXcnVheeB2WhiKH5-yn7Iq_wLfoIbJDrmg5a5a08Ogca2gLZqBnLdjTUs8DO31Czu-ki5-Swbye22eEQjLnmIg5x-1aq1PJrFFJ4hw3qRJODQnv-7LSnuEchTa-V5DpoAGq_xhgSN6uH7rsCD5ur36ARlpXRXbutqBeTCs_2Ss8g5lG4EuF0xD8Y2QFTFiUQCxRGpbcQ7Lbm7jyLmNZ3QzwIXm1vg2THXdw5NzW11inJdiDpHzn9lfskXswO6pPJ5PT5-Q-RxxOC8HZJYNmcW1fwEKqUS_9iKXk211Pkj9P0Teh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminative+Power+of+Geometric+Parameters+of+Different+Cultivars+of+Sour+Cherry+Pits+Determined+Using+Machine+Learning&rft.jtitle=Agriculture+%28Basel%29&rft.au=Ropelewska%2C+Ewa&rft.au=Sabanci%2C+Kadir&rft.au=Aslan%2C+Muhammet+Fatih&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=11&rft.issue=12&rft.spage=1212&rft_id=info:doi/10.3390%2Fagriculture11121212&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon