Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning
The aim of this study was to develop models based on linear dimensions or shape factors, and the sets of combined linear dimensions and shape factors for discrimination of sour cherry pits of different cultivars (‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’, ‘Kelleris’). The geometric parameters were ca...
Saved in:
Published in | Agriculture (Basel) Vol. 11; no. 12; p. 1212 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this study was to develop models based on linear dimensions or shape factors, and the sets of combined linear dimensions and shape factors for discrimination of sour cherry pits of different cultivars (‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’, ‘Kelleris’). The geometric parameters were calculated using image processing. The pits of different sour cherry cultivars statistically significantly differed in terms of selected dimensions and shape factors. The discriminative models built based on linear dimensions produced average accuracies of up to 95% for distinguishing the pit cultivars in the case of ‘Nefris’ vs. ‘Kelleris’ and 72% for all four cultivars. The average accuracies for the discriminative models built based on shape factors were up to 95% for the ‘Nefris’ and ‘Kelleris’ pits and 73% for four cultivars. The models combining the linear dimensions and shape factors produced accuracies reaching 96% for the ‘Nefris’ vs. ‘Kelleris’ pits and 75% for all cultivars. The geometric parameters with high discriminative power may be used for distinguishing different cultivars of sour cherry pits. It can be of great importance for practical applications. It may allow avoiding the adulteration and mixing of different cultivars. |
---|---|
AbstractList | The aim of this study was to develop models based on linear dimensions or shape factors, and the sets of combined linear dimensions and shape factors for discrimination of sour cherry pits of different cultivars (‘Debreceni botermo’, ‘Łutówka’, ‘Nefris’, ‘Kelleris’). The geometric parameters were calculated using image processing. The pits of different sour cherry cultivars statistically significantly differed in terms of selected dimensions and shape factors. The discriminative models built based on linear dimensions produced average accuracies of up to 95% for distinguishing the pit cultivars in the case of ‘Nefris’ vs. ‘Kelleris’ and 72% for all four cultivars. The average accuracies for the discriminative models built based on shape factors were up to 95% for the ‘Nefris’ and ‘Kelleris’ pits and 73% for four cultivars. The models combining the linear dimensions and shape factors produced accuracies reaching 96% for the ‘Nefris’ vs. ‘Kelleris’ pits and 75% for all cultivars. The geometric parameters with high discriminative power may be used for distinguishing different cultivars of sour cherry pits. It can be of great importance for practical applications. It may allow avoiding the adulteration and mixing of different cultivars. |
Author | Ropelewska, Ewa Aslan, Muhammet Fatih Sabanci, Kadir |
Author_xml | – sequence: 1 givenname: Ewa orcidid: 0000-0001-8891-236X surname: Ropelewska fullname: Ropelewska, Ewa – sequence: 2 givenname: Kadir surname: Sabanci fullname: Sabanci, Kadir – sequence: 3 givenname: Muhammet Fatih orcidid: 0000-0001-7549-0137 surname: Aslan fullname: Aslan, Muhammet Fatih |
BookMark | eNp9UU1vEzEUXKEiUUp_ARdLXLgE_LFrr48ogVIpFZGgZ-ut_Zw62qyL7W2Vf49DEEIVqn3w82hm7PfmdXM2xQmb5i2jH4TQ9CNsU7DzWOaEjDF-3C-ac06VWtBW8bN_6lfNZc47WpdmoqfyvDmsQrYp7MMEJTwg2cRHTCR6coVxj6U6kw0kqCWmfMRXwXtMOBWyrG-GBzjB3-OcyPIOUzqQTSiZrI6KaouO3OYwbckN2Lt6JWuENFXgTfPSw5jx8s950dx--fxj-XWx_nZ1vfy0XtiWs7JwA6eydV4xy3VnPQPAASm3njM5UKe07kB5p6Tvdet76YZBoB4EKN077MRFc33ydRF25r72CulgIgTzG4hpayCVYEc0THdSCkWF9rZVrO07KjsmOnBusEzo6vX-5HWf4s8ZczH7Oj4cR5gwztlwKaSSqm9ppb57Qt3VEU2108piXDHVc1FZ4sSyKeac0P_9IKPmmK75T7pVpZ-obCg1vziVBGF8VvsLTz-xBg |
CitedBy_id | crossref_primary_10_1007_s00217_022_04057_0 crossref_primary_10_3390_jimaging10040094 crossref_primary_10_1007_s00217_022_04019_6 crossref_primary_10_3390_agriculture12020285 crossref_primary_10_3390_horticulturae9080940 crossref_primary_10_3390_agronomy12040762 crossref_primary_10_1007_s00217_022_04059_y crossref_primary_10_3390_agriculture12101652 crossref_primary_10_3390_agriengineering5020050 crossref_primary_10_3390_agriculture13010074 |
Cites_doi | 10.1016/j.gltp.2021.01.004 10.3390/nu10030368 10.1016/S0961-9534(01)00027-7 10.1016/j.cmpb.2008.08.005 10.1177/0967033517712130 10.1007/s00217-021-03797-9 10.1016/j.indcrop.2015.12.010 10.1080/10408398.2018.1496901 10.9787/PBB.2019.7.3.175 10.3390/s20154319 10.1016/j.jaap.2014.04.015 10.1111/jfpe.13694 10.1109/ACCESS.2020.3048415 10.1080/11263504.2019.1701126 10.1016/j.indcrop.2013.04.048 10.1016/j.compag.2017.02.009 10.1007/s12274-017-1608-1 10.1016/j.jspr.2020.101668 10.3390/s21113758 10.3906/tar-1504-95 10.1016/j.apsusc.2018.03.195 10.1016/j.envpol.2020.116073 10.21203/rs.3.rs-477719/v1 10.3390/agriculture11010006 10.1016/j.tifs.2019.02.052 10.1016/j.jclepro.2018.06.136 10.1093/aob/mcm260 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 DOA |
DOI | 10.3390/agriculture11121212 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_1956637039fc471485065135addbc139 10_3390_agriculture11121212 |
GeographicLocations | Poland |
GeographicLocations_xml | – name: Poland |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c421t-db2064df71c295cf1aaebe02cf216b0d7995a7fd76f894f86dbb3e9b3a798de53 |
IEDL.DBID | BENPR |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:19:33 EDT 2025 Thu Jul 10 23:06:49 EDT 2025 Mon Jun 30 05:13:11 EDT 2025 Tue Jul 01 02:12:40 EDT 2025 Thu Apr 24 23:07:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-db2064df71c295cf1aaebe02cf216b0d7995a7fd76f894f86dbb3e9b3a798de53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7549-0137 0000-0001-8891-236X |
OpenAccessLink | https://www.proquest.com/docview/2612717823?pq-origsite=%requestingapplication% |
PQID | 2612717823 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1956637039fc471485065135addbc139 proquest_miscellaneous_2636767840 proquest_journals_2612717823 crossref_primary_10_3390_agriculture11121212 crossref_citationtrail_10_3390_agriculture11121212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yangali (ref_7) 2014; 108 (ref_26) 2006; 40 Liang (ref_3) 2017; 25 Depypere (ref_27) 2007; 100 ref_34 ref_33 (ref_12) 2013; 49 Savova (ref_6) 2001; 21 Moreno (ref_9) 2018; 11 ref_17 ref_16 Ropelewska (ref_24) 2021; 20 Szczypinski (ref_32) 2009; 94 Ropelewska (ref_23) 2021; 247 Sarigu (ref_28) 2017; 136 Karaaslan (ref_5) 2019; 59 Li (ref_10) 2018; 447 Blando (ref_1) 2019; 86 Sharma (ref_18) 2020; 9 Ajaz (ref_19) 2015; 2 Barber (ref_8) 2018; 197 ref_25 Sharma (ref_14) 2021; 2 Frigau (ref_29) 2020; 154 ref_20 Ropelewska (ref_21) 2021; 44 Beyaz (ref_30) 2016; 40 Asongo (ref_15) 2021; 11 Ropelewska (ref_22) 2020; 88 ref_2 Mousa (ref_4) 2019; 10 Raczyk (ref_13) 2016; 82 Kim (ref_31) 2019; 7 Pollard (ref_11) 2021; 270 |
References_xml | – volume: 2 start-page: 24 year: 2021 ident: ref_14 article-title: Machine Learning and Deep Learning Applications—A Vision publication-title: Glob. Transit. Proc. doi: 10.1016/j.gltp.2021.01.004 – ident: ref_2 doi: 10.3390/nu10030368 – volume: 21 start-page: 133 year: 2001 ident: ref_6 article-title: Biomass conversion to carbon adsorbents and gas publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(01)00027-7 – volume: 94 start-page: 66 year: 2009 ident: ref_32 article-title: MaZda—A software package for image texture analysis publication-title: Comput. Meth. Prog. Biomed. doi: 10.1016/j.cmpb.2008.08.005 – ident: ref_34 – volume: 20 start-page: 52 year: 2021 ident: ref_24 article-title: Classification of the pits of different sour cherry cultivars based on the surface textural features publication-title: J. Saudi Soc. Agric. Sci. – volume: 25 start-page: 196 year: 2017 ident: ref_3 article-title: Detection of pits and pit fragments in fresh cherries using near infrared spectroscopy publication-title: J. Near Infrared Spectrosc. doi: 10.1177/0967033517712130 – volume: 247 start-page: 2371 year: 2021 ident: ref_23 article-title: Differentiation of peach cultivars by image analysis based on the skin, flesh, stone and seed textures publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-021-03797-9 – volume: 82 start-page: 44 year: 2016 ident: ref_13 article-title: Composition of bioactive compounds in kernel oils recovered from sour cherry (Prunus cerasus L.) by-products: Impact of the cultivar on potential applications publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2015.12.010 – volume: 59 start-page: 3549 year: 2019 ident: ref_5 article-title: Sour Cherry By-products: Compositions, Functional Properties and Recovery Potentials—A Review publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2018.1496901 – volume: 7 start-page: 175 year: 2019 ident: ref_31 article-title: Analysis of Qualitative and Quantitative Traits to Identify Different Chinese Jujube Cultivars publication-title: Plant Breed. Biotechnol. doi: 10.9787/PBB.2019.7.3.175 – ident: ref_20 doi: 10.3390/s20154319 – volume: 10 start-page: 867 year: 2019 ident: ref_4 article-title: Mechanical Behavior of Apricot and Cherry Pits under Compression Loading publication-title: J. Soil Sci. Agric. Eng. – volume: 40 start-page: 311 year: 2006 ident: ref_26 article-title: Stone and kernel characteristics as elements in identification of apricot cultivars publication-title: Voćarstvo – volume: 108 start-page: 203 year: 2014 ident: ref_7 article-title: Co-pyrolysis reaction rates and activation energies of West Virginia coal and cherry pit blends publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2014.04.015 – volume: 44 start-page: 13694 year: 2021 ident: ref_21 article-title: A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross-section and seed textures determined using image processing publication-title: J. Food Process Eng. doi: 10.1111/jfpe.13694 – volume: 9 start-page: 4843 year: 2020 ident: ref_18 article-title: Machine learning applications for precision agriculture: A comprehensive review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3048415 – volume: 154 start-page: 877 year: 2020 ident: ref_29 article-title: Statistical Approach to the Morphological Classification of Prunus sp. Seeds publication-title: Plant Biosyst. doi: 10.1080/11263504.2019.1701126 – ident: ref_33 – volume: 49 start-page: 130 year: 2013 ident: ref_12 article-title: Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2013.04.048 – volume: 136 start-page: 25 year: 2017 ident: ref_28 article-title: Phenotypic identification of plum varieties (Prunus domestica L.) by endocarps morpho-colorimetric and textural descriptors publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.02.009 – volume: 11 start-page: 89 year: 2018 ident: ref_9 article-title: Low-cost disordered carbons for Li/S batteries: A high-performance carbon with dual porosity derived from cherry pits publication-title: Nano Res. doi: 10.1007/s12274-017-1608-1 – volume: 11 start-page: 55 year: 2021 ident: ref_15 article-title: Machine Learning Techniques, methods and Algorithms: Conceptual and Practical Insights publication-title: Int. J. Eng. Res. Appl. – volume: 88 start-page: 101668 year: 2020 ident: ref_22 article-title: The use of seed texture features for discriminating different cultivars of stored apples publication-title: J. Stored Prod. Res. doi: 10.1016/j.jspr.2020.101668 – ident: ref_17 doi: 10.3390/s21113758 – volume: 40 start-page: 671 year: 2016 ident: ref_30 article-title: Identification of olive cultivars using image processing techniques publication-title: Turk. J. Agric. For. doi: 10.3906/tar-1504-95 – volume: 447 start-page: 57 year: 2018 ident: ref_10 article-title: Nitrogen-doped hierarchically porous carbon derived from cherry stone as a catalyst support for purification of terephthalic acid publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.195 – volume: 270 start-page: 116073 year: 2021 ident: ref_11 article-title: Valorization of cherry pits: Great Lakes agro-industrial waste to mediate Great Lakes water quality publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.116073 – ident: ref_16 doi: 10.21203/rs.3.rs-477719/v1 – ident: ref_25 doi: 10.3390/agriculture11010006 – volume: 86 start-page: 517 year: 2019 ident: ref_1 article-title: Sweet and sour cherries: Origin, distribution, nutritional composition and health benefits publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2019.02.052 – volume: 197 start-page: 1597 year: 2018 ident: ref_8 article-title: Closing nutrient cycles with biochar-from filtration to fertilizer publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.06.136 – volume: 100 start-page: 1585 year: 2007 ident: ref_27 article-title: Stony endocarp dimension and shape variation in Prunus section Prunus publication-title: Ann. Bot. doi: 10.1093/aob/mcm260 – volume: 2 start-page: 1098 year: 2015 ident: ref_19 article-title: Seed Classification using Machine Learning Techniques publication-title: J. Multidiscip. Eng. Sci. Technol. (JMEST) |
SSID | ssj0000913806 |
Score | 2.233591 |
Snippet | The aim of this study was to develop models based on linear dimensions or shape factors, and the sets of combined linear dimensions and shape factors for... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1212 |
SubjectTerms | adulterated products Agricultural production agriculture Artificial intelligence Cultivars discrimination Fruits geometry Image processing Learning algorithms linear dimensions Machine learning Mathematical models Parameters pit images Pits Prunus cerasus Seeds shape factors sour cherry cultivars |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA7iSQ_iiuNGBI8Wm6RLclTHBUEZUMFbySoDOiNaBf-976VxVBS9SG9p0oa8Je-RL98jZIflygRpZSaEwgSl9pkyvsikNqzQUhnB8Dby-UV1el2c3ZQ3n0p9ISasowfuFm4P77NVAvRSBQuOtECGtZKJEuzSWAhf0PvCnvcpmYo-WDEh86qjGYJp5Hv69jGRWXgwb47Pl60oMvZ_c8hxlzmeJ3MpPKT73bQWyJQfLZLZ_Y-vLpHX_hBNHSEs6KroAOuc0XGgJ358j_WxLB1ohFwhbya291MNlJYif-bwRXfNl_AveojMjK90MGyfaD8hY7yjEUhAzyPQ0tPEwXq7TK6Pj64OT7NUQCGzBWdt5gyHiMOFmlmuShuY1iCznNvAWWVyh2Rwug6uroJURZCVM0Z4kI-ulXS-FCtkejQe-VVCIZEKTBWc41Gpt5Vm3pmyDIG7yqhgeoS_r2VjE7s4Frm4ayDLQAE0PwigR3Yngx46co3fux-gkCZdkRk7NoC-NElfmr_0pUc23kXcJHN9apBHDfJayUWPbE9eg6Hh6Yke-fEz9onkdpAQr_3HPNbJDEd4TETGbJDp9vHZb0J805qtqMpvuNP6Gw priority: 102 providerName: Directory of Open Access Journals |
Title | Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning |
URI | https://www.proquest.com/docview/2612717823 https://www.proquest.com/docview/2636767840 https://doaj.org/article/1956637039fc471485065135addbc139 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSyMxEA939eXuQfQ-uGqVHPh4i5vsV_Ik1arlQCneCb4t-SyFu662W8H_3pk0bRFF9i2bzS47mcnM5JffEHLEUqm9MCLJMokBSuUSqV2eCKVZroTUGcPTyFfX5fA2_31X3MWE2zzCKlc2MRhq2xjMkR8j1RWEHoJnJ_cPCVaNwt3VWELjI9kCEywg-No6Pb8e3ayzLMh6KdJySTcEn5Meq_Esklo4UHOO14slKTD3vzLMYbW52CHb0U2k_aVcd8kHN_1CPvc3o34lT4MJqjxCWdBk0RHWO6ONp5eu-Y91sgwdKYReIX8mtg9iLZSWIo_m5FEtm__Au-gZMjQ-0dGkndNBRMg4SwOggF4FwKWjkYt1_I3cXpz_PRsmsZBCYnLO2sRqDp6H9RUzXBbGM6VAdik3nrNSpxZJ4VTlbVV6IXMvSqt15kBOqpLCuiL7TjrTZup-EAoBlWcy5xy3TJ0pFXNWF4X33JZaet0lfPUvaxNZxrHYxb8aog0UQP2GALrk1_qh-yXJxvvdT1FI667IkB0amtm4jgpX4znIMgN7Jr2BBThHZr6CZQXYc23A7e2S3krEdVTbeb2ZZF3yc30bFA53UdTUNQvsE0juIDDee3-IffKJIwAmYF96pNPOFu4APJhWH8ZpehgyAM8kkPWv |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9AAcEOUhUgo1EtxYde192QeE2qYlpU0UQSv1tvgZRYJsSbag_Cl-IzO73lQI1Fu1N6_3Yc94xmOPv4-QNyyW2gsjoiSRGKAULpLapZFQmqVKSJ0wPI08GufDi_TTZXa5QX53Z2EwrbKziY2htpXBNfI9hLqC0EPw5MPVjwhZo3B3taPQaNXi1K1-Qci2fH8yAPm-5fz46PxwGAVWgciknNWR1RzcsPUFM1xmxjOloCExN56zXMcWEdJU4W2ReyFTL3KrdeLgp1UhhXXIEgEmfzNNIJTpkc2Do_Hk83pVB1E2RZy38EbQ_HhPTRcBRMOBWeF4_eUCG6aAfxxB492OH5GHYVpK91s92iIbbv6YPNi_eesTshrM0MRg6gyaSDpBfjVaefrRVd-Rl8vQicJUL8TrxPJB4F6pKeJ2zn6qtvgLfIseIiLkik5m9ZIOQkaOs7RJYKCjJsHT0YD9On1KLu6ki5-R3ryau-eEQgDnmUw5xy1aZ3LFnNVZ5j23uZZe9wnv-rI0AdUcyTW-lRDdoADK_wigT96tH7pqQT1ur36AQlpXRUTupqBaTMswwEs8d5knYD-lN-DwU0QCzFiSgf_QBqbZfbLTibgMZmJZ3ih1n7xe34YBjrs2au6qa6zTgOpBIL59-yt2yb3h-eisPDsZn74g9zkm3zR5NzukVy-u3UuYPdX6VVBZSr7e9Sj5A3TTM2w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggFoeYkuhRoIb0cbO0weE2qZLS-kqAir1FvxcrQSbdjcF7V_j1zGTOFshUG9Vbo6TyB57xhN__j5CXrNQKJfrPIgigQlKZgOhbBzkUrFY5kJFDE8jn03S4_P440VysUF-92dhEFbZ-8TWUZta4z_yEVJdQeqR82jkPCyiLMbvL68CVJDCndZeTqMbIqd29QvSt-W7kwJs_Ybz8dHXw-PAKwwEOuasCYziEJKNy5jmItGOSQmNCrl2nKUqNMiWJjNnstTlInZ5apSKLDRAZiI3FhUjwP1vZtDGcEA2D44m5ef1Hx5k3MzDtKM6gq4IR3K68IQaFlwMx-uvcNiqBvwTFNpIN94iD_0Sle53Y2qbbNj5I_Jg_-atj8mqmKG7QRgNuktaotYarR39YOsfqNGlaSkR9oXcnVheeB2WhiKH5-yn7Iq_wLfoIbJDrmg5a5a08Ogca2gLZqBnLdjTUs8DO31Czu-ki5-Swbye22eEQjLnmIg5x-1aq1PJrFFJ4hw3qRJODQnv-7LSnuEchTa-V5DpoAGq_xhgSN6uH7rsCD5ur36ARlpXRXbutqBeTCs_2Ss8g5lG4EuF0xD8Y2QFTFiUQCxRGpbcQ7Lbm7jyLmNZ3QzwIXm1vg2THXdw5NzW11inJdiDpHzn9lfskXswO6pPJ5PT5-Q-RxxOC8HZJYNmcW1fwEKqUS_9iKXk211Pkj9P0Teh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminative+Power+of+Geometric+Parameters+of+Different+Cultivars+of+Sour+Cherry+Pits+Determined+Using+Machine+Learning&rft.jtitle=Agriculture+%28Basel%29&rft.au=Ropelewska%2C+Ewa&rft.au=Sabanci%2C+Kadir&rft.au=Aslan%2C+Muhammet+Fatih&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=11&rft.issue=12&rft.spage=1212&rft_id=info:doi/10.3390%2Fagriculture11121212&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |