On the way to high-conductivity single lithium-ion conductors

Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of sol...

Full description

Saved in:
Bibliographic Details
Published inJournal of solid state electrochemistry Vol. 21; no. 7; pp. 1879 - 1905
Main Authors Strauss, E., Menkin, S., Golodnitsky, D.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li + transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations.
AbstractList Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li+ transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations.
Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li + transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations.
Author Strauss, E.
Golodnitsky, D.
Menkin, S.
Author_xml – sequence: 1
  givenname: E.
  surname: Strauss
  fullname: Strauss, E.
  organization: Ministry of Science and Technology
– sequence: 2
  givenname: S.
  surname: Menkin
  fullname: Menkin, S.
  organization: School of Chemistry, Tel Aviv University
– sequence: 3
  givenname: D.
  orcidid: 0000-0002-9897-190X
  surname: Golodnitsky
  fullname: Golodnitsky, D.
  email: golod@post.tau.ac.il
  organization: School of Chemistry, Tel Aviv University, Applied Materials Research Center, Tel Aviv University
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnqOT7DbJHjxI0SoUetFz2Gaz3ZRtUpOs0n9v6vYggl5mBuZ95uOdoJF1ViN0TeCWAPC7kCIIDITjnOUCizM0JkWeY-BMjL5rikUhxAWahLCFJGQExuh-ZbPY6uyzOmTRZa3ZtFg5W_cqmg8TD1kwdtPprDOxNf0OG2ezU9_5cInOm6oL-uqUp-jt6fF1_oyXq8XL_GGJVUFJxHUpFBeM87IANeMARUHUugBNS5gxJUpV0bohfEZUU65pzYFCs2aNIpoSxXQ-RTfD3L13770OUW5d721aKUlJhBCU0TypyKBS3oXgdSP33uwqf5AE5NElObgk0_Py6JIUieG_GGViFdOb0Vem-5ekAxnSFrvR_sdNf0JfHK18oQ
CitedBy_id crossref_primary_10_1002_anie_202114024
crossref_primary_10_1039_C8ME00114F
crossref_primary_10_1016_j_reactfunctpolym_2021_104938
crossref_primary_10_1002_mame_201900551
crossref_primary_10_1002_ange_202116635
crossref_primary_10_1039_C8TA08391F
crossref_primary_10_3390_polym13060895
crossref_primary_10_1021_acsami_8b02519
crossref_primary_10_1039_C8RA07557C
crossref_primary_10_1016_j_electacta_2018_01_101
crossref_primary_10_1039_D3CP04200F
crossref_primary_10_1039_C8TA09056D
crossref_primary_10_1002_app_47798
crossref_primary_10_1007_s40684_023_00541_4
crossref_primary_10_1021_acsaem_0c03141
crossref_primary_10_1021_acsami_0c17683
crossref_primary_10_1002_zaac_202400202
crossref_primary_10_1088_1361_6528_ac2e21
crossref_primary_10_1016_j_ensm_2020_11_030
crossref_primary_10_1002_pi_5677
crossref_primary_10_1016_j_ssi_2018_05_009
crossref_primary_10_1002_marc_202200335
crossref_primary_10_1021_acs_macromol_2c02160
crossref_primary_10_1002_anie_202116635
crossref_primary_10_1016_j_mattod_2021_08_005
crossref_primary_10_1002_ange_202114024
crossref_primary_10_1016_j_nanoen_2023_109130
crossref_primary_10_1016_j_electacta_2018_01_197
crossref_primary_10_1016_j_memsci_2022_120452
crossref_primary_10_1016_j_ssi_2020_115246
crossref_primary_10_3390_batteries10040140
crossref_primary_10_1021_acsaem_0c00410
crossref_primary_10_1002_adma_202202143
crossref_primary_10_1021_acs_macromol_2c02404
crossref_primary_10_1016_j_polymer_2019_06_010
crossref_primary_10_3390_electronicmat2020013
crossref_primary_10_1016_j_esci_2024_100278
crossref_primary_10_1021_acsami_9b10595
crossref_primary_10_1021_acs_oprd_9b00315
crossref_primary_10_1016_j_jpowsour_2022_232502
crossref_primary_10_1021_acsmacrolett_0c00139
crossref_primary_10_1016_j_jpowsour_2020_229267
crossref_primary_10_1021_acsapm_2c01326
crossref_primary_10_1039_D1TA10431D
crossref_primary_10_1016_j_ssi_2019_115161
crossref_primary_10_2139_ssrn_4199023
crossref_primary_10_1016_j_ensm_2019_03_004
crossref_primary_10_1021_acsaem_0c01455
crossref_primary_10_1016_j_ccr_2022_214431
crossref_primary_10_1002_zaac_201800370
crossref_primary_10_1021_jacs_7b12292
crossref_primary_10_1039_D2PY00605G
crossref_primary_10_1007_s10008_022_05206_x
crossref_primary_10_1021_acsenergylett_2c02806
crossref_primary_10_1016_j_jpowsour_2020_229378
crossref_primary_10_1016_j_matt_2024_03_014
crossref_primary_10_1016_j_electacta_2019_02_058
crossref_primary_10_1080_02678292_2020_1769753
crossref_primary_10_3390_ma12233892
crossref_primary_10_1002_ente_202000580
crossref_primary_10_1016_j_jechem_2019_11_012
crossref_primary_10_1039_C8ME00117K
crossref_primary_10_1016_j_ssi_2024_116716
crossref_primary_10_1021_acs_macromol_0c02001
crossref_primary_10_1002_slct_201803388
crossref_primary_10_1021_acs_iecr_1c02938
crossref_primary_10_1002_celc_201900274
crossref_primary_10_1039_D4EE03097D
crossref_primary_10_1002_celc_201901916
crossref_primary_10_1016_j_memsci_2020_118926
crossref_primary_10_1070_RCR4956
crossref_primary_10_1039_D2TA09097J
crossref_primary_10_1515_revic_2024_0034
crossref_primary_10_1039_D2TC02212E
crossref_primary_10_1021_acsmacrolett_2c00292
crossref_primary_10_1021_jacsau_1c00505
Cites_doi 10.1021/cr0103064
10.1016/j.electacta.2013.09.106
10.1039/C4TA00716F
10.1021/acsami.6b01973
10.3390/polym8110387
10.1021/acsenergylett.6b00216
10.1149/2.0161514jes
10.1016/j.electacta.2013.01.026
10.1016/j.progpolymsci.2011.05.007
10.1021/acs.chemmater.5b03735
10.1016/0013-4686(95)00202-P
10.1039/c3ee41728j
10.1016/j.jpowsour.2003.11.016
10.1021/ja3091438
10.1016/j.jpowsour.2012.11.130
10.1016/j.jpowsour.2009.01.070
10.1021/cm101407d
10.1149/1.3428710
10.1021/acs.chemrev.5b00563
10.1016/j.jpowsour.2006.07.038
10.1016/S0167-2738(02)00215-1
10.1088/0953-8984/7/34/007
10.1002/adma.19900021108
10.1016/j.ssi.2015.06.001
10.1016/j.ijhydene.2013.11.009
10.1007/s10853-014-8341-x
10.1021/ma500072j
10.1016/j.electacta.2012.08.114
10.1016/j.electacta.2015.03.149
10.1038/nmat3066
10.1149/1.1470652
10.1149/1.1344281
10.1016/j.electacta.2015.03.038
10.1039/C4RA08709G
10.1038/28818
10.1039/c3ra41167b
10.1016/j.electacta.2011.03.074
10.1021/jp208330h
10.1021/cm000420n
10.1038/nmat4369
10.1038/srep00481
10.1007/s11581-013-0922-1
10.1002/anie.200703900
10.1149/2.0221511jes
10.1039/C6TA05439K
10.1039/C3EE41655K
10.1016/j.electacta.2004.08.011
10.1039/C6TA07384K
10.1016/j.ssi.2014.10.013
10.1016/j.electacta.2014.06.173
10.1016/j.elecom.2012.05.022
10.1016/S0013-4686(99)00386-2
10.1039/C5SC02052B
10.1016/j.jpowsour.2009.11.146
10.1039/C4PY01603C
10.1016/j.electacta.2013.01.119
10.1149/1.2938916
10.1038/373557a0
10.1002/adma.201204182
10.1039/C5TA02628H
10.1007/s10008-016-3303-7
10.1002/anie.201509299
10.1016/j.jpowsour.2016.08.115
10.1039/C2TA00628F
10.1016/S0013-4686(99)00385-0
10.1016/j.jpowsour.2015.12.010
10.1016/j.electacta.2007.03.037
10.1016/j.ssi.2006.01.039
10.1039/C5TA00216H
10.1023/A:1009958118260
10.1016/0032-3861(87)90394-6
10.1063/1.371053
10.1021/jp049195d
10.1016/S0167-2738(96)00434-1
10.1038/nenergy.2016.30
10.1149/1.2086597
10.3389/fenrg.2014.00025
10.1016/j.elecom.2006.01.013
10.1016/S0167-2738(02)00032-2
10.1016/S0013-4686(99)00335-7
10.1016/j.ssi.2013.09.007
10.1016/0167-2738(94)90310-7
10.1016/j.ssi.2012.06.008
10.1016/j.electacta.2011.02.025
10.1021/cm980170z
10.1038/362137a0
10.1016/j.electacta.2005.02.040
10.1021/nl202692y
10.1073/pnas.1520394112
10.1039/C6CS00491A
10.1149/1.2722538
10.1016/j.jpowsour.2012.05.025
10.1038/nmat3602
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s10008-017-3638-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1433-0768
EndPage 1905
ExternalDocumentID 10_1007_s10008_017_3638_8
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9N
PF0
PT4
PT5
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c421t-d98c78677940c5700441cb40e29056c89ca2df1751cf9b2d7020fb6fc1e21c6e3
IEDL.DBID U2A
ISSN 1432-8488
IngestDate Fri Jul 25 11:12:29 EDT 2025
Tue Jul 01 01:24:43 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Fri Feb 21 02:30:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Single-ion conductor
Ceramics
Li ion battery
Polymers
Solid electrolyte
Transference number
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-d98c78677940c5700441cb40e29056c89ca2df1751cf9b2d7020fb6fc1e21c6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9897-190X
PQID 1918882623
PQPubID 2043698
PageCount 27
ParticipantIDs proquest_journals_1918882623
crossref_primary_10_1007_s10008_017_3638_8
crossref_citationtrail_10_1007_s10008_017_3638_8
springer_journals_10_1007_s10008_017_3638_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Current Research and Development in Science and Technology
PublicationTitle Journal of solid state electrochemistry
PublicationTitleAbbrev J Solid State Electrochem
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ruiz-Hitzky, Aranda (CR93) 1990; 2
Wang, Liu, Kong, Jiang, Yao, Zhang, Cui (CR40) 2014; 262
Porcarelli, Shaplov, Salsamendi, Nair, Vygodskii, Mecerreyes, Gerbaldi (CR50) 2016; 8
Blanga, Golodnitsky, Ardel, Freedman, Gladkich, Rosenberg, Nathan, Peled (CR90) 2013; 114
Ferry, Edman, Forsyth, MacFarlane, Sun (CR70) 1999; 86
Allcock, Welna, Maher (CR16) 2006; 177
Fan, Angell (CR55) 1995; 40
Angell, Liu, Sanchez (CR54) 1993; 362
Varzi, Raccichini, Passerini, Scrosati (CR72) 2016; 4
Hassoun, Verrelli, Reale, Panero, Mariotto, Greenbaum, Scrosati (CR86) 2013; 229
Golodnitsky, Strauss, Peled, Greenbaum (CR101) 2015; 162
Wu, Wang, Evans, Deng, Yang, Xiao (CR87) 2016; 4
Armand, Chabagno, Duclot, Vashista, Mundy, Shenoy (CR5) 1979
Golodnitsky, Garche, Dyer, Moseley, Ogumi, Rand, Scrosati (CR1) 2009
Ganapatibhotla, Maranas (CR65) 2014; 47
Van Humbeck, Aubrey, Alsbaiee, Ameloot, Coates, Dichtel, Long (CR21) 2015; 6
Padmaraj, Venkateswarlu, Satyanarayana (CR10) 2013; 19
Florjańczyk, Zygadło-Monikowska, Wieczorek, Ryszawy, Tomaszewska, Fredman, Golodnitsky, Peled, Scrosati (CR53) 2004; 108
Zhu, Wang, Hou, Gao, Liu, Wu, Shimizu (CR39) 2013; 87
CR46
Blanga, Burstein, Berman, Greenbaum, Golodnitsky (CR91) 2015; 162
Eilmes, Kubisiak (CR66) 2011; 115
Rohan, Paree, Chen, Cai, Zhang, Xu, Gao, Cheng (CR36) 2015; 3
Evans, Vincent, Bruce (CR6) 1987; 28
Xu, Angell (CR35) 2001; 4
Bertasi, Vezzù, Giffin, Nosach, Sideris, Greenbaum, Vittadello, Di Noto (CR68) 2014; 39
Mathews, Budgin, Beeram, Joenathan, Stein, Werner-Zwanziger, Pink, Baker, Mahmoud, Carini, Bronstein (CR22) 2013; 1
Kato, Hori, Saito, Suzuki, Hirayama, Mitsui, Yonemura, Iba, Kanno (CR85) 2016; 1
Kamaya, Homma, Yamakawa, Hirayama, Kanno, Yonemura, Kamiyama, Kato, Hama, Kawamoto (CR80) 2011; 10
Oh, Xu, Yoo, Kim, Chanthad, Yang, Jin, Ayhan, Oh, Wang (CR37) 2015; 28
CR52
Sadoway (CR12) 2004; 129
CR51
Wei, Shriver (CR60) 1998; 10
Ghosh, Kofinas (CR23) 2008; 11
Rohan, Sun, Cai, Zhang, Paree, Xu, Cheng (CR42) 2014; 268
Zhang, Chang, Xu, Angell (CR102) 2000; 45
Appetecchi, Kim, Montanino, Carewska, Marcilla, Mecerreyes, De Meatza (CR47) 2010; 195
Xu, Sun, Rohan, Zhang, Cai, Cheng (CR26) 2014; 49
Meziane, Bonnet, Courty, Djellab, Armand (CR13) 2011; 57
Tang, Hackenberg, Fu, Ajayan, Ardebili (CR64) 2012; 12
Villaluenga, Wujcik, Tong, Devaux, Wong, DeSimone, Balsara (CR56) 2016; 113
Itoh, Inaguma, Jung, Chen, Nakamura (CR76) 1994; 70
Ohno (CR44) 2005
Zhang, Li, Piszcz, Coya, Rojo, Rodriguez-Martinez, Armand, Zhou (CR25) 2017; 46
Syzdek, Armand, Gizowska, Marcinek, Sasim, Szafran, Wieczorek (CR88) 2009; 194
Goodenough, Park (CR33) 2013; 135
Feng, Shi, Liu, Zhen, Nie, Feng, Huang, Armand, Zhou (CR14) 2013; 93
Bohnke, Bohnke, Fourquet (CR77) 1996; 91
Bron, Dehnen, Roling (CR84) 2016; 329
Boulineau, Courty, Tarascon, Viallet (CR4) 2012; 221
Shaplov, Marcilla, Mecerreyes (CR48) 2015; 175
Aono, Sugimoto, Sadaoka, Imanaka, Adachi (CR73) 1990; 137
Ghosh, Wang, Kofinas (CR11) 2010; 157
Hu, Sun (CR96) 2014; 2
Kumar, Scanlon (CR62) 2000; 5
Bertas, Negro, Vezzù, Nawn, Pagot, Di Noto (CR69) 2015; 175
Zugmann, Fleischmann, Amereller, Gschwind, Wiemhöfer, Gores (CR8) 2011; 56
Kil, Choi, Ha, Xu, Rogers, Kim, Lee, Kim, Cho, Lee (CR98) 2013; 25
Scrosati (CR83) 1995; 373
Gray (CR7) 1991
Sun, Hou, Kerr (CR17) 2005; 50
Wang, Alexandridis (CR67) 2016; 8
Croce, Sacchetti, Scrosati (CR31) 2006; 162
Zhang, Cai, Rohan, Pan, Liu, Liu, Li, Sun, Cheng (CR30) 2016; 306
Ciosek, Sannier, Siekierski, Golodnitsky, Peled, Scrosati, Głowinkowskid, Wieczorek (CR103) 2007; 53
Yan, Xie, Wu, Zhou, Qu, Wu (CR20) 2015; 6
Blanga, Goor, Burstein, Rosenberg, Gladkich, Logvinuk, Shechtman, Golodnitsky (CR92) 2016; 20
Ferry, Edman, Forsyth, MacFarlane, Sun (CR59) 2000; 45
Adachi, Imanaka, Tamura (CR75) 2002; 102
Deiseroth, Kong, Eckert, Vannahme, Reiner, Zaiß, Schlosser (CR3) 2008; 47
Kuhn, Duppel, Lotsch (CR81) 2013; 6
Singh, Galande, Miranda, Mathkar, Gao, Reddy, Vlad, Ajayan (CR95) 2012; 2
Lee, Choi, Colby, Gibson (CR100) 2010; 22
Xu, Zhang, Rohan, Cai, Cheng (CR29) 2014; 139
Seino, Ota, Takada, Hayashi, Tatsumisago (CR82) 2014; 7
Cao, Li, Wang, Zhao, Han (CR74) 2014; 2
Wang, Liu, Zhang, Kong, Yao, Han, Jiang, Xu, Cui (CR28) 2013; 92
Marcilla, Alcaide, Sardon, Pomposo, Pozo-Gonzal, Mecerreyes (CR49) 2006; 8
Croce, Appetecchi, Persi, Scrosati (CR63) 1998; 394
Porcarelli, Shaplov, Bell, Nair, Mecerreyes, Gerbaldi (CR41) 2016; 1
Qin, Liu, Zheng, Hu, Ding, Zhang, Zhao, Kong, Cui (CR27) 2015; 3
Gorecki, Jeannin, Belorizky, Roux, Armand (CR15) 1995; 7
CR99
CR97
Wenzel, Leichtweiss, Krüger, Sann, Janek (CR78) 2015; 278
Mogurampelly, Borodin, Ganesan (CR61) 2016; 8
Amereller, Schedlbauer, Moosbauer, Schreiner, Stock, Wudy (CR9) 2014; 42
Sandi, Kizilel, Carrado, Fernández-Saavedra, Castagnola (CR89) 2005; 50
Ma, Zhang, Zhou, Zheng, Cheng, Nie, Feng, Hu, Li, Huang, Chen, Armand, Zhou (CR19) 2016; 55
Zhang, Lim, Cai, Rohan, Xu, Sun, Cheng (CR32) 2014; 4
Zhang, Xu, Sun, Han, Chen, Rohan, Cheng (CR34) 2013; 3
Mecerreyes (CR43) 2011; 36
Zalewska, Pruszczyk, Sułek, Wieczorek (CR58) 2003; 157
Ito, Nishina, Ohno (CR45) 2000; 45
Bachman, Muy, Grimaud, Chang, Pour, Lux, Paschos, Maglia, Lupart, Lamp, Giordano, Horn (CR2) 2015; 116
Wang, Richards, Ong, Miara, Kim, Mo, Ceder (CR79) 2015; 14
Narayanan, Aswin, Manohar, Ratnakumar, Dudney, West, Nanda (CR71) 2015
Siska, Shriver (CR18) 2001; 13
Xu, Angell (CR57) 2002; 147
CR24
CR104
Zhu, Gao, Wang, Hou, Liu, Wu (CR38) 2012; 22
Riley, Fedkiw, Khan (CR94) 2002; 149
P Bron (3638_CR84) 2016; 329
GY Adachi (3638_CR75) 2002; 102
JC Bachman (3638_CR2) 2015; 116
HR Allcock (3638_CR16) 2006; 177
3638_CR104
B Qin (3638_CR27) 2015; 3
3638_CR24
Y Zhang (3638_CR32) 2014; 4
S Wenzel (3638_CR78) 2015; 278
L Porcarelli (3638_CR41) 2016; 1
Y Zhang (3638_CR30) 2016; 306
H Oh (3638_CR37) 2015; 28
(3638_CR44) 2005
DR Sadoway (3638_CR12) 2004; 129
Y Zhang (3638_CR34) 2013; 3
AS Shaplov (3638_CR48) 2015; 175
S Boulineau (3638_CR4) 2012; 221
S Feng (3638_CR14) 2013; 93
Q Ma (3638_CR19) 2016; 55
A Ghosh (3638_CR23) 2008; 11
B Kumar (3638_CR62) 2000; 5
J Syzdek (3638_CR88) 2009; 194
F Bertas (3638_CR69) 2015; 175
J Hassoun (3638_CR86) 2013; 229
B Wu (3638_CR87) 2016; 4
S Zhang (3638_CR102) 2000; 45
A Ferry (3638_CR70) 1999; 86
A Ferry (3638_CR59) 2000; 45
G Sandi (3638_CR89) 2005; 50
3638_CR97
3638_CR99
N Singh (3638_CR95) 2012; 2
F Croce (3638_CR63) 1998; 394
O Padmaraj (3638_CR10) 2013; 19
A Varzi (3638_CR72) 2016; 4
G Xu (3638_CR26) 2014; 49
MB Armand (3638_CR5) 1979
S Mogurampelly (3638_CR61) 2016; 8
L Porcarelli (3638_CR50) 2016; 8
G Xu (3638_CR29) 2014; 139
CA Angell (3638_CR54) 1993; 362
Z Florjańczyk (3638_CR53) 2004; 108
W Xu (3638_CR35) 2001; 4
D Mecerreyes (3638_CR43) 2011; 36
R Blanga (3638_CR91) 2015; 162
M Ciosek (3638_CR103) 2007; 53
YS Zhu (3638_CR39) 2013; 87
H Aono (3638_CR73) 1990; 137
R Rohan (3638_CR36) 2015; 3
J Fan (3638_CR55) 1995; 40
O Bohnke (3638_CR77) 1996; 91
D Golodnitsky (3638_CR101) 2015; 162
Y Hu (3638_CR96) 2014; 2
DP Siska (3638_CR18) 2001; 13
JB Goodenough (3638_CR33) 2013; 135
J Evans (3638_CR6) 1987; 28
W Wang (3638_CR67) 2016; 8
EH Kil (3638_CR98) 2013; 25
R Marcilla (3638_CR49) 2006; 8
Y Kato (3638_CR85) 2016; 1
C Cao (3638_CR74) 2014; 2
M Itoh (3638_CR76) 1994; 70
A Zalewska (3638_CR58) 2003; 157
R Blanga (3638_CR92) 2016; 20
R Meziane (3638_CR13) 2011; 57
XG Sun (3638_CR17) 2005; 50
S Zugmann (3638_CR8) 2011; 56
N Kamaya (3638_CR80) 2011; 10
R Blanga (3638_CR90) 2013; 114
M Amereller (3638_CR9) 2014; 42
JF Van Humbeck (3638_CR21) 2015; 6
K Ito (3638_CR45) 2000; 45
YS Zhu (3638_CR38) 2012; 22
H Zhang (3638_CR25) 2017; 46
LV Ganapatibhotla (3638_CR65) 2014; 47
S Yan (3638_CR20) 2015; 6
R Rohan (3638_CR42) 2014; 268
B Scrosati (3638_CR83) 1995; 373
A Kuhn (3638_CR81) 2013; 6
FM Gray (3638_CR7) 1991
3638_CR52
HJ Deiseroth (3638_CR3) 2008; 47
3638_CR51
W Xu (3638_CR57) 2002; 147
X Wang (3638_CR40) 2014; 262
M Lee (3638_CR100) 2010; 22
Y Wang (3638_CR79) 2015; 14
D Golodnitsky (3638_CR1) 2009
X Wei (3638_CR60) 1998; 10
F Bertasi (3638_CR68) 2014; 39
X Wang (3638_CR28) 2013; 92
3638_CR46
Y Seino (3638_CR82) 2014; 7
A Eilmes (3638_CR66) 2011; 115
KL Mathews (3638_CR22) 2013; 1
F Croce (3638_CR31) 2006; 162
C Tang (3638_CR64) 2012; 12
GB Appetecchi (3638_CR47) 2010; 195
W Gorecki (3638_CR15) 1995; 7
SR Narayanan (3638_CR71) 2015
E Ruiz-Hitzky (3638_CR93) 1990; 2
M Riley (3638_CR94) 2002; 149
A Ghosh (3638_CR11) 2010; 157
I Villaluenga (3638_CR56) 2016; 113
References_xml – volume: 102
  start-page: 2405
  issue: 6
  year: 2002
  end-page: 2430
  ident: CR75
  article-title: Ionic conducting lanthanide oxides
  publication-title: Chem Rev
  doi: 10.1021/cr0103064
– ident: CR97
– volume: 114
  start-page: 325
  year: 2013
  end-page: 333
  ident: CR90
  article-title: Quasi-solid polymer-in-ceramic membrane for Li-ion batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.09.106
– volume: 2
  start-page: 10712
  issue: 28
  year: 2014
  end-page: 10738
  ident: CR96
  article-title: Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA00716F
– ident: CR51
– volume: 8
  start-page: 10350
  year: 2016
  end-page: 10359
  ident: CR61
  article-title: Computer simulations of ion transport in polymer electrolyte membranes
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b01973
– volume: 8
  start-page: 387
  issue: 11
  year: 2016
  ident: CR67
  article-title: Composite polymer electrolytes: nanoparticles affect structure and properties
  publication-title: Polymers
  doi: 10.3390/polym8110387
– volume: 1
  start-page: 678
  issue: 4
  year: 2016
  end-page: 682
  ident: CR41
  article-title: Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.6b00216
– year: 1991
  ident: CR7
  publication-title: Solid polymer electrolytes: fundamentals and technological applications
– volume: 162
  start-page: A2551
  issue: 14
  year: 2015
  end-page: A2566
  ident: CR101
  article-title: Review—on order and disorder in polymer electrolytes
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0161514jes
– volume: 92
  start-page: 132
  year: 2013
  end-page: 138
  ident: CR28
  article-title: Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.01.026
– volume: 36
  start-page: 1629
  year: 2011
  end-page: 1648
  ident: CR43
  article-title: Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2011.05.007
– volume: 28
  start-page: 188
  issue: 1
  year: 2015
  end-page: 196
  ident: CR37
  article-title: Poly (arylene ether)-based single-ion conductors for lithium-ion batteries
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b03735
– volume: 40
  start-page: 2397
  issue: 13
  year: 1995
  end-page: 2400
  ident: CR55
  article-title: The preparation, conductivity, viscosity and mechanical properties of polymer electrolytes and new hybrid ionic rubber electrolytes
  publication-title: Electrochim Acta
  doi: 10.1016/0013-4686(95)00202-P
– volume: 6
  start-page: 3548
  issue: 12
  year: 2013
  end-page: 3552
  ident: CR81
  article-title: Tetragonal Li 10 GeP 2 S 12 and Li 7 GePS 8–exploring the Li ion dynamics in LGPS Li electrolytes
  publication-title: Energy Environ Sci
  doi: 10.1039/c3ee41728j
– volume: 129
  start-page: 1
  issue: 1
  year: 2004
  end-page: 3
  ident: CR12
  article-title: Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2003.11.016
– volume: 135
  start-page: 1167
  year: 2013
  end-page: 1176
  ident: CR33
  article-title: The Li-ion rechargeable battery: a perspective
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3091438
– volume: 229
  start-page: 117
  year: 2013
  end-page: 122
  ident: CR86
  article-title: A structural, spectroscopic and electrochemical study of a lithium ion conducting Li 10 GeP 2 S 12 solid electrolyte
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.11.130
– volume: 194
  start-page: 66
  issue: 1
  year: 2009
  end-page: 72
  ident: CR88
  article-title: Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes—a novel approach
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.01.070
– volume: 22
  start-page: 5814
  issue: 21
  year: 2010
  end-page: 5822
  ident: CR100
  article-title: Ion conduction in imidazolium acrylate ionic liquids and their polymers
  publication-title: Chem Mater
  doi: 10.1021/cm101407d
– volume: 157
  start-page: A846
  issue: 7
  year: 2010
  end-page: A849
  ident: CR11
  article-title: Block copolymer solid battery electrolyte with high Li-ion transference number
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3428710
– volume: 116
  start-page: 140
  issue: 1
  year: 2015
  end-page: 162
  ident: CR2
  article-title: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00563
– volume: 162
  start-page: 685
  issue: 1
  year: 2006
  end-page: 689
  ident: CR31
  article-title: Advanced, lithium batteries based on high-performance composite polymer electrolytes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.07.038
– volume: 157
  start-page: 233
  issue: 1
  year: 2003
  end-page: 239
  ident: CR58
  article-title: New poly (acrylamide) based (polymer in salt) electrolytes: preparation and spectroscopic characterization
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00215-1
– year: 1979
  ident: CR5
  publication-title: Fast ion transport in solids: electrodes and electrolytes
– volume: 7
  start-page: 6823
  issue: 34
  year: 1995
  end-page: 6832
  ident: CR15
  article-title: Physical properties of solid polymer electrolyte PEO (LiTFSI) complexes
  publication-title: J Phys Condens Matter
  doi: 10.1088/0953-8984/7/34/007
– volume: 2
  start-page: 545
  issue: 11
  year: 1990
  end-page: 547
  ident: CR93
  article-title: Polymer-salt intercalation complexes in layer silicates
  publication-title: Adv Mater
  doi: 10.1002/adma.19900021108
– volume: 278
  start-page: 98
  year: 2015
  end-page: 105
  ident: CR78
  article-title: Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2015.06.001
– volume: 39
  start-page: 2884
  issue: 6
  year: 2014
  end-page: 2895
  ident: CR68
  article-title: Single-ion-conducting nanocomposite polymer electrolytes based on PEG400 and anionic nanoparticles: electrical characterization
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2013.11.009
– volume: 49
  start-page: 6111
  issue: 17
  year: 2014
  end-page: 6117
  ident: CR26
  article-title: A lithium poly (pyromellitic acid borate) gel electrolyte membrane for lithium-ion batteries
  publication-title: J Mater Sci
  doi: 10.1007/s10853-014-8341-x
– volume: 47
  start-page: 3625
  issue: 11
  year: 2014
  end-page: 3634
  ident: CR65
  article-title: Interplay of surface chemistry and ion content in nanoparticle-filled solid polymer electrolytes
  publication-title: Macromolecules
  doi: 10.1021/ma500072j
– volume: 87
  start-page: 113
  year: 2013
  end-page: 118
  ident: CR39
  article-title: A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.08.114
– volume: 175
  start-page: 113
  year: 2015
  end-page: 123
  ident: CR69
  article-title: Single-ion-conducting nanocomposite polymer electrolytes for lithium batteries based on lithiated-fluorinated-iron oxide and poly (ethylene glycol) 400
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.03.149
– volume: 10
  start-page: 682
  issue: 9
  year: 2011
  end-page: 686
  ident: CR80
  article-title: A lithium superionic conductor
  publication-title: Nat Mater
  doi: 10.1038/nmat3066
– volume: 149
  start-page: A667
  issue: 6
  year: 2002
  end-page: A674
  ident: CR94
  article-title: Transport properties of lithium hectorite-based composite electrolytes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1470652
– volume: 4
  start-page: E1
  issue: 1
  year: 2001
  end-page: E4
  ident: CR35
  article-title: Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions
  publication-title: Electrochem Solid-State Lett
  doi: 10.1149/1.1344281
– volume: 175
  start-page: 18
  year: 2015
  end-page: 34
  ident: CR48
  article-title: Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.03.038
– ident: CR52
– year: 2015
  ident: CR71
  publication-title: Handbook of solid state batteries
– volume: 4
  start-page: 43857
  issue: 83
  year: 2014
  end-page: 43864
  ident: CR32
  article-title: Design and synthesis of a single ion conducting block copolymer electrolyte with multi functionality for lithium ion batteries
  publication-title: RSC Adv
  doi: 10.1039/C4RA08709G
– volume: 394
  start-page: 456
  issue: 6692
  year: 1998
  end-page: 458
  ident: CR63
  article-title: Nanocomposite polymer electrolytes for lithium batteries
  publication-title: Nature
  doi: 10.1038/28818
– volume: 3
  start-page: 14934
  issue: 35
  year: 2013
  end-page: 14937
  ident: CR34
  article-title: A class of sp 3 boron-based single-ion polymeric electrolytes for lithium ion batteries
  publication-title: RSC Adv
  doi: 10.1039/c3ra41167b
– volume: 57
  start-page: 14
  year: 2011
  end-page: 19
  ident: CR13
  article-title: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2011.03.074
– volume: 115
  start-page: 14938
  issue: 50
  year: 2011
  end-page: 14946
  ident: CR66
  article-title: Molecular dynamics study on the effect of Lewis acid centers in poly (ethylene oxide)/LiClO4 polymer electrolyte
  publication-title: J Phys Chem B
  doi: 10.1021/jp208330h
– ident: CR24
– year: 2005
  ident: CR44
  publication-title: Electrochemical aspects of ionic liquids
– volume: 13
  start-page: 4698
  issue: 12
  year: 2001
  end-page: 4700
  ident: CR18
  article-title: Li+ conductivity of polysiloxane−trifluoromethylsulfonamide polyelectrolytes
  publication-title: Chem Mater
  doi: 10.1021/cm000420n
– volume: 14
  start-page: 1026
  year: 2015
  end-page: 1031
  ident: CR79
  article-title: Design principles for solid-state lithium superionic conductors
  publication-title: Nat Mater
  doi: 10.1038/nmat4369
– volume: 2
  start-page: 481
  year: 2012
  ident: CR95
  publication-title: Sci Rep
  doi: 10.1038/srep00481
– volume: 19
  start-page: 1835
  issue: 12
  year: 2013
  end-page: 1842
  ident: CR10
  article-title: Effect of ZnO filler concentration on the conductivity, structure and morphology of PVdF-HFP nanocomposite solid polymer electrolyte for lithium battery application
  publication-title: Ionics
  doi: 10.1007/s11581-013-0922-1
– volume: 47
  start-page: 755
  issue: 4
  year: 2008
  end-page: 758
  ident: CR3
  article-title: Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200703900
– volume: 8
  start-page: 10350
  issue: 16
  year: 2016
  end-page: 10359
  ident: CR50
  article-title: Single-ion block co poly(ionic liquid)s as electrolytes for all-solid state lithium batteries
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b01973
– volume: 162
  start-page: D3084
  issue: 11
  year: 2015
  end-page: D3089
  ident: CR91
  article-title: Solid polymer-in-ceramic electrolyte formed by electrophoretic deposition
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0221511jes
– volume: 4
  start-page: 15266
  year: 2016
  end-page: 15280
  ident: CR87
  article-title: Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA05439K
– volume: 7
  start-page: 627
  issue: 2
  year: 2014
  end-page: 631
  ident: CR82
  article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
  publication-title: Energy Environ Sci
  doi: 10.1039/C3EE41655K
– volume: 50
  start-page: 1139
  issue: 5
  year: 2005
  end-page: 1147
  ident: CR17
  article-title: Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2004.08.011
– volume: 4
  start-page: 17251
  issue: 44
  year: 2016
  end-page: 17259
  ident: CR72
  article-title: Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA07384K
– volume: 268
  start-page: 294
  year: 2014
  end-page: 299
  ident: CR42
  article-title: Functionalized polystyrene based single ion conducting gel polymer electrolyte for lithium batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2014.10.013
– volume: 139
  start-page: 264
  year: 2014
  end-page: 269
  ident: CR29
  article-title: Synthesis, characterization and battery performance of a lithium poly (4-vinylphenol) phenolate borate composite membrane
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2014.06.173
– volume: 22
  start-page: 29
  year: 2012
  end-page: 32
  ident: CR38
  article-title: A single-ion polymer electrolyte based on boronate for lithium ion batteries
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2012.05.022
– volume: 45
  start-page: 1237
  issue: 8
  year: 2000
  end-page: 1242
  ident: CR59
  article-title: NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF 3 SO 3 and PAN
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(99)00386-2
– volume: 42
  start-page: 39
  issue: 4
  year: 2014
  end-page: 56
  ident: CR9
  article-title: Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods
  publication-title: Prog Solid State Chem
– volume: 6
  start-page: 5499
  year: 2015
  ident: CR21
  article-title: Tetraarylborate polymer networks as single-ion conducting solid electrolytes
  publication-title: Chem Sci
  doi: 10.1039/C5SC02052B
– ident: CR46
– year: 2009
  ident: CR1
  article-title: Electrolytes: single lithium ion conducting polymers
  publication-title: Encyclopedia of electrochemical power sources, vol 5
– volume: 195
  start-page: 3668
  issue: 11
  year: 2010
  end-page: 3675
  ident: CR47
  article-title: Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.11.146
– volume: 6
  start-page: 1052
  issue: 7
  year: 2015
  end-page: 1055
  ident: CR20
  article-title: Highly efficient solid polymer electrolytes using ion containing polymer microgels
  publication-title: Polym Chem
  doi: 10.1039/C4PY01603C
– volume: 93
  start-page: 254
  year: 2013
  end-page: 263
  ident: CR14
  article-title: Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.01.119
– volume: 11
  start-page: 131
  issue: 29
  year: 2008
  end-page: 137
  ident: CR23
  article-title: PEO based block copolymer as solid state lithium battery electrolyte
  publication-title: ECS Trans
  doi: 10.1149/1.2938916
– volume: 373
  start-page: 557
  year: 1995
  ident: CR83
  article-title: Challenge of portable power
  publication-title: Nature
  doi: 10.1038/373557a0
– volume: 25
  start-page: 1395
  issue: 10
  year: 2013
  end-page: 1400
  ident: CR98
  article-title: Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries
  publication-title: Adv Mater
  doi: 10.1002/adma.201204182
– volume: 3
  start-page: 20267
  issue: 40
  year: 2015
  end-page: 20276
  ident: CR36
  article-title: A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA02628H
– volume: 20
  start-page: 3393
  issue: 12
  year: 2016
  end-page: 3404
  ident: CR92
  article-title: The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries
  publication-title: J Solid State Electrochem
  doi: 10.1007/s10008-016-3303-7
– volume: 55
  start-page: 2521
  year: 2016
  end-page: 2525
  ident: CR19
  article-title: Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201509299
– volume: 329
  start-page: 530
  year: 2016
  end-page: 535
  ident: CR84
  article-title: Li 10 Si 0.3 Sn 0.7 P 2 S 12—a low-cost and low-grain-boundary-resistance lithium superionic conductor
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.08.115
– volume: 1
  start-page: 1108
  issue: 4
  year: 2013
  end-page: 1116
  ident: CR22
  article-title: Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers
  publication-title: J Mater Chem A
  doi: 10.1039/C2TA00628F
– volume: 45
  start-page: 1229
  issue: 8
  year: 2000
  end-page: 1236
  ident: CR102
  article-title: Molecular and anionic polymer and oligomer systems with microdecoupled conductivities
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(99)00385-0
– volume: 306
  start-page: 152
  year: 2016
  end-page: 161
  ident: CR30
  article-title: Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp 3 boron-based solid single ion conducting polymer electrolyte
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.12.010
– volume: 53
  start-page: 1409
  issue: 4
  year: 2007
  end-page: 1416
  ident: CR103
  article-title: Ion transport phenomena in polymeric electrolytes
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2007.03.037
– volume: 177
  start-page: 741
  issue: 7
  year: 2006
  end-page: 747
  ident: CR16
  article-title: Single ion conductors—polyphosphazenes with sulfonimide functional groups
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2006.01.039
– volume: 3
  start-page: 7773
  year: 2015
  ident: CR27
  article-title: Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA00216H
– ident: CR99
– volume: 5
  start-page: 127
  issue: 2
  year: 2000
  end-page: 139
  ident: CR62
  article-title: Composite electrolytes for lithium rechargeable batteries
  publication-title: J Electroceram
  doi: 10.1023/A:1009958118260
– volume: 28
  start-page: 2324
  issue: 13
  year: 1987
  end-page: 2328
  ident: CR6
  article-title: Electrochemical measurement of transference numbers in polymer electrolytes
  publication-title: Polymer
  doi: 10.1016/0032-3861(87)90394-6
– volume: 86
  start-page: 2346
  issue: 4
  year: 1999
  end-page: 2348
  ident: CR70
  article-title: Connectivity, ionic interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on poly (acrylonitrile) and LiCF 3 SO 3
  publication-title: J Appl Phys
  doi: 10.1063/1.371053
– volume: 108
  start-page: 14907
  issue: 39
  year: 2004
  end-page: 14914
  ident: CR53
  article-title: Polymer-in-salt electrolytes based on acrylonitrile/butyl acrylate copolymers and lithium salts
  publication-title: J Phys Chem B
  doi: 10.1021/jp049195d
– volume: 91
  start-page: 21
  issue: 1–2
  year: 1996
  end-page: 31
  ident: CR77
  article-title: Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(96)00434-1
– volume: 1
  start-page: 16030
  year: 2016
  ident: CR85
  article-title: High-power all-solid-state batteries using sulfide superionic conductors
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2016.30
– volume: 137
  start-page: 1023
  issue: 4
  year: 1990
  end-page: 1027
  ident: CR73
  article-title: Ionic conductivity of solid electrolytes based on lithium titanium phosphate
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2086597
– volume: 2
  start-page: 25
  year: 2014
  ident: CR74
  article-title: Recent advances in inorganic solid electrolytes for lithium batteries
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2014.00025
– volume: 8
  start-page: 482
  issue: 3
  year: 2006
  end-page: 488
  ident: CR49
  article-title: Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2006.01.013
– volume: 147
  start-page: 295
  issue: 3
  year: 2002
  end-page: 301
  ident: CR57
  article-title: Preparation and characterization of novel “polyMOB” polyanionic solid electrolytes with weak coulomb traps
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00032-2
– volume: 45
  start-page: 1295
  year: 2000
  end-page: 1298
  ident: CR45
  article-title: Enhanced ion conduction in imidazolium-type molten salts
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(99)00335-7
– volume: 262
  start-page: 747
  year: 2014
  end-page: 753
  ident: CR40
  article-title: A single-ion gel polymer electrolyte based on polymeric lithium tartaric acid borate and its superior battery performance
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2013.09.007
– volume: 70
  start-page: 203
  year: 1994
  end-page: 207
  ident: CR76
  article-title: High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3 (Ln= La, Pr, Nd, Sm)
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(94)90310-7
– volume: 221
  start-page: 1
  year: 2012
  end-page: 5
  ident: CR4
  article-title: Mechanochemical synthesis of Li-argyrodite Li 6 PS 5 X (X= Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2012.06.008
– ident: CR104
– volume: 56
  start-page: 3926
  issue: 11
  year: 2011
  end-page: 3933
  ident: CR8
  article-title: Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2011.02.025
– volume: 10
  start-page: 2307
  issue: 9
  year: 1998
  end-page: 2308
  ident: CR60
  article-title: Highly conductive polymer electrolytes containing rigid polymers
  publication-title: Chem Mater
  doi: 10.1021/cm980170z
– volume: 362
  start-page: 137
  issue: 6416
  year: 1993
  end-page: 139
  ident: CR54
  article-title: Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity
  publication-title: Nature
  doi: 10.1038/362137a0
– volume: 50
  start-page: 3891
  issue: 19
  year: 2005
  end-page: 3896
  ident: CR89
  article-title: Effect of the silica precursor on the conductivity of hectorite-derived polymer nanocomposites
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2005.02.040
– volume: 12
  start-page: 1152
  issue: 3
  year: 2012
  end-page: 1156
  ident: CR64
  article-title: High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers
  publication-title: Nano Lett
  doi: 10.1021/nl202692y
– volume: 113
  start-page: 52
  issue: 1
  year: 2016
  end-page: 57
  ident: CR56
  article-title: Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1520394112
– volume: 46
  start-page: 797
  year: 2017
  end-page: 815
  ident: CR25
  article-title: Single Lithium-ion conducting solid polymer electrolytes: advances and perspectives
  publication-title: Chem Soc Rev
  doi: 10.1039/C6CS00491A
– volume: 45
  start-page: 1295
  year: 2000
  ident: 3638_CR45
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(99)00335-7
– volume: 362
  start-page: 137
  issue: 6416
  year: 1993
  ident: 3638_CR54
  publication-title: Nature
  doi: 10.1038/362137a0
– volume: 14
  start-page: 1026
  year: 2015
  ident: 3638_CR79
  publication-title: Nat Mater
  doi: 10.1038/nmat4369
– volume: 306
  start-page: 152
  year: 2016
  ident: 3638_CR30
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.12.010
– volume: 19
  start-page: 1835
  issue: 12
  year: 2013
  ident: 3638_CR10
  publication-title: Ionics
  doi: 10.1007/s11581-013-0922-1
– ident: 3638_CR52
  doi: 10.1149/1.2722538
– volume: 262
  start-page: 747
  year: 2014
  ident: 3638_CR40
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2013.09.007
– ident: 3638_CR46
– volume: 329
  start-page: 530
  year: 2016
  ident: 3638_CR84
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.08.115
– volume-title: Solid polymer electrolytes: fundamentals and technological applications
  year: 1991
  ident: 3638_CR7
– volume: 102
  start-page: 2405
  issue: 6
  year: 2002
  ident: 3638_CR75
  publication-title: Chem Rev
  doi: 10.1021/cr0103064
– ident: 3638_CR97
  doi: 10.1039/C4TA00716F
– volume: 70
  start-page: 203
  year: 1994
  ident: 3638_CR76
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(94)90310-7
– ident: 3638_CR104
– volume: 55
  start-page: 2521
  year: 2016
  ident: 3638_CR19
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201509299
– volume: 278
  start-page: 98
  year: 2015
  ident: 3638_CR78
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2015.06.001
– volume: 4
  start-page: 17251
  issue: 44
  year: 2016
  ident: 3638_CR72
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA07384K
– volume: 4
  start-page: 15266
  year: 2016
  ident: 3638_CR87
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA05439K
– volume: 8
  start-page: 10350
  issue: 16
  year: 2016
  ident: 3638_CR50
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b01973
– volume: 10
  start-page: 2307
  issue: 9
  year: 1998
  ident: 3638_CR60
  publication-title: Chem Mater
  doi: 10.1021/cm980170z
– volume: 11
  start-page: 131
  issue: 29
  year: 2008
  ident: 3638_CR23
  publication-title: ECS Trans
  doi: 10.1149/1.2938916
– volume: 28
  start-page: 2324
  issue: 13
  year: 1987
  ident: 3638_CR6
  publication-title: Polymer
  doi: 10.1016/0032-3861(87)90394-6
– volume: 157
  start-page: A846
  issue: 7
  year: 2010
  ident: 3638_CR11
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3428710
– volume: 40
  start-page: 2397
  issue: 13
  year: 1995
  ident: 3638_CR55
  publication-title: Electrochim Acta
  doi: 10.1016/0013-4686(95)00202-P
– volume: 8
  start-page: 387
  issue: 11
  year: 2016
  ident: 3638_CR67
  publication-title: Polymers
  doi: 10.3390/polym8110387
– volume: 3
  start-page: 14934
  issue: 35
  year: 2013
  ident: 3638_CR34
  publication-title: RSC Adv
  doi: 10.1039/c3ra41167b
– volume: 7
  start-page: 6823
  issue: 34
  year: 1995
  ident: 3638_CR15
  publication-title: J Phys Condens Matter
  doi: 10.1088/0953-8984/7/34/007
– volume: 221
  start-page: 1
  year: 2012
  ident: 3638_CR4
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2012.06.008
– volume: 45
  start-page: 1237
  issue: 8
  year: 2000
  ident: 3638_CR59
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(99)00386-2
– volume: 49
  start-page: 6111
  issue: 17
  year: 2014
  ident: 3638_CR26
  publication-title: J Mater Sci
  doi: 10.1007/s10853-014-8341-x
– volume-title: Handbook of solid state batteries
  year: 2015
  ident: 3638_CR71
– volume: 149
  start-page: A667
  issue: 6
  year: 2002
  ident: 3638_CR94
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1470652
– volume: 45
  start-page: 1229
  issue: 8
  year: 2000
  ident: 3638_CR102
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(99)00385-0
– volume: 1
  start-page: 1108
  issue: 4
  year: 2013
  ident: 3638_CR22
  publication-title: J Mater Chem A
  doi: 10.1039/C2TA00628F
– volume-title: Fast ion transport in solids: electrodes and electrolytes
  year: 1979
  ident: 3638_CR5
– volume: 4
  start-page: E1
  issue: 1
  year: 2001
  ident: 3638_CR35
  publication-title: Electrochem Solid-State Lett
  doi: 10.1149/1.1344281
– volume: 135
  start-page: 1167
  year: 2013
  ident: 3638_CR33
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3091438
– volume: 2
  start-page: 545
  issue: 11
  year: 1990
  ident: 3638_CR93
  publication-title: Adv Mater
  doi: 10.1002/adma.19900021108
– volume: 139
  start-page: 264
  year: 2014
  ident: 3638_CR29
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2014.06.173
– volume: 268
  start-page: 294
  year: 2014
  ident: 3638_CR42
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2014.10.013
– volume: 115
  start-page: 14938
  issue: 50
  year: 2011
  ident: 3638_CR66
  publication-title: J Phys Chem B
  doi: 10.1021/jp208330h
– volume: 1
  start-page: 16030
  year: 2016
  ident: 3638_CR85
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2016.30
– volume: 157
  start-page: 233
  issue: 1
  year: 2003
  ident: 3638_CR58
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00215-1
– volume: 57
  start-page: 14
  year: 2011
  ident: 3638_CR13
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2011.03.074
– volume: 93
  start-page: 254
  year: 2013
  ident: 3638_CR14
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.01.119
– volume: 42
  start-page: 39
  issue: 4
  year: 2014
  ident: 3638_CR9
  publication-title: Prog Solid State Chem
– volume: 50
  start-page: 3891
  issue: 19
  year: 2005
  ident: 3638_CR89
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2005.02.040
– volume: 116
  start-page: 140
  issue: 1
  year: 2015
  ident: 3638_CR2
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00563
– volume: 22
  start-page: 5814
  issue: 21
  year: 2010
  ident: 3638_CR100
  publication-title: Chem Mater
  doi: 10.1021/cm101407d
– volume: 129
  start-page: 1
  issue: 1
  year: 2004
  ident: 3638_CR12
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2003.11.016
– volume-title: Encyclopedia of electrochemical power sources, vol 5
  year: 2009
  ident: 3638_CR1
– volume: 147
  start-page: 295
  issue: 3
  year: 2002
  ident: 3638_CR57
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00032-2
– volume: 162
  start-page: A2551
  issue: 14
  year: 2015
  ident: 3638_CR101
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0161514jes
– volume: 8
  start-page: 10350
  year: 2016
  ident: 3638_CR61
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b01973
– ident: 3638_CR99
  doi: 10.1016/j.jpowsour.2012.05.025
– volume: 6
  start-page: 3548
  issue: 12
  year: 2013
  ident: 3638_CR81
  publication-title: Energy Environ Sci
  doi: 10.1039/c3ee41728j
– volume: 113
  start-page: 52
  issue: 1
  year: 2016
  ident: 3638_CR56
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1520394112
– volume: 6
  start-page: 5499
  year: 2015
  ident: 3638_CR21
  publication-title: Chem Sci
  doi: 10.1039/C5SC02052B
– volume: 3
  start-page: 7773
  year: 2015
  ident: 3638_CR27
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA00216H
– volume: 28
  start-page: 188
  issue: 1
  year: 2015
  ident: 3638_CR37
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b03735
– volume: 53
  start-page: 1409
  issue: 4
  year: 2007
  ident: 3638_CR103
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2007.03.037
– volume: 13
  start-page: 4698
  issue: 12
  year: 2001
  ident: 3638_CR18
  publication-title: Chem Mater
  doi: 10.1021/cm000420n
– ident: 3638_CR24
  doi: 10.1038/nmat3602
– volume: 177
  start-page: 741
  issue: 7
  year: 2006
  ident: 3638_CR16
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2006.01.039
– volume: 175
  start-page: 18
  year: 2015
  ident: 3638_CR48
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.03.038
– volume: 5
  start-page: 127
  issue: 2
  year: 2000
  ident: 3638_CR62
  publication-title: J Electroceram
  doi: 10.1023/A:1009958118260
– volume: 394
  start-page: 456
  issue: 6692
  year: 1998
  ident: 3638_CR63
  publication-title: Nature
  doi: 10.1038/28818
– ident: 3638_CR51
– volume: 137
  start-page: 1023
  issue: 4
  year: 1990
  ident: 3638_CR73
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2086597
– volume: 114
  start-page: 325
  year: 2013
  ident: 3638_CR90
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.09.106
– volume: 92
  start-page: 132
  year: 2013
  ident: 3638_CR28
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.01.026
– volume: 25
  start-page: 1395
  issue: 10
  year: 2013
  ident: 3638_CR98
  publication-title: Adv Mater
  doi: 10.1002/adma.201204182
– volume: 108
  start-page: 14907
  issue: 39
  year: 2004
  ident: 3638_CR53
  publication-title: J Phys Chem B
  doi: 10.1021/jp049195d
– volume: 6
  start-page: 1052
  issue: 7
  year: 2015
  ident: 3638_CR20
  publication-title: Polym Chem
  doi: 10.1039/C4PY01603C
– volume: 229
  start-page: 117
  year: 2013
  ident: 3638_CR86
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.11.130
– volume: 47
  start-page: 755
  issue: 4
  year: 2008
  ident: 3638_CR3
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200703900
– volume: 162
  start-page: D3084
  issue: 11
  year: 2015
  ident: 3638_CR91
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0221511jes
– volume: 4
  start-page: 43857
  issue: 83
  year: 2014
  ident: 3638_CR32
  publication-title: RSC Adv
  doi: 10.1039/C4RA08709G
– volume: 39
  start-page: 2884
  issue: 6
  year: 2014
  ident: 3638_CR68
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2013.11.009
– volume: 175
  start-page: 113
  year: 2015
  ident: 3638_CR69
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.03.149
– volume: 195
  start-page: 3668
  issue: 11
  year: 2010
  ident: 3638_CR47
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.11.146
– volume: 3
  start-page: 20267
  issue: 40
  year: 2015
  ident: 3638_CR36
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA02628H
– volume: 7
  start-page: 627
  issue: 2
  year: 2014
  ident: 3638_CR82
  publication-title: Energy Environ Sci
  doi: 10.1039/C3EE41655K
– volume: 2
  start-page: 25
  year: 2014
  ident: 3638_CR74
  publication-title: Front Energy Res
– volume: 20
  start-page: 3393
  issue: 12
  year: 2016
  ident: 3638_CR92
  publication-title: J Solid State Electrochem
  doi: 10.1007/s10008-016-3303-7
– volume: 12
  start-page: 1152
  issue: 3
  year: 2012
  ident: 3638_CR64
  publication-title: Nano Lett
  doi: 10.1021/nl202692y
– volume: 373
  start-page: 557
  year: 1995
  ident: 3638_CR83
  publication-title: Nature
  doi: 10.1038/373557a0
– volume: 46
  start-page: 797
  year: 2017
  ident: 3638_CR25
  publication-title: Chem Soc Rev
  doi: 10.1039/C6CS00491A
– volume: 87
  start-page: 113
  year: 2013
  ident: 3638_CR39
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.08.114
– volume: 2
  start-page: 10712
  issue: 28
  year: 2014
  ident: 3638_CR96
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA00716F
– volume: 36
  start-page: 1629
  year: 2011
  ident: 3638_CR43
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2011.05.007
– volume: 47
  start-page: 3625
  issue: 11
  year: 2014
  ident: 3638_CR65
  publication-title: Macromolecules
  doi: 10.1021/ma500072j
– volume: 22
  start-page: 29
  year: 2012
  ident: 3638_CR38
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2012.05.022
– volume: 1
  start-page: 678
  issue: 4
  year: 2016
  ident: 3638_CR41
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.6b00216
– volume: 91
  start-page: 21
  issue: 1–2
  year: 1996
  ident: 3638_CR77
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(96)00434-1
– volume: 50
  start-page: 1139
  issue: 5
  year: 2005
  ident: 3638_CR17
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2004.08.011
– volume: 10
  start-page: 682
  issue: 9
  year: 2011
  ident: 3638_CR80
  publication-title: Nat Mater
  doi: 10.1038/nmat3066
– volume: 8
  start-page: 482
  issue: 3
  year: 2006
  ident: 3638_CR49
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2006.01.013
– volume: 2
  start-page: 481
  year: 2012
  ident: 3638_CR95
  publication-title: Sci Rep
  doi: 10.1038/srep00481
– volume: 194
  start-page: 66
  issue: 1
  year: 2009
  ident: 3638_CR88
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.01.070
– volume: 162
  start-page: 685
  issue: 1
  year: 2006
  ident: 3638_CR31
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.07.038
– volume: 56
  start-page: 3926
  issue: 11
  year: 2011
  ident: 3638_CR8
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2011.02.025
– volume-title: Electrochemical aspects of ionic liquids
  year: 2005
  ident: 3638_CR44
– volume: 86
  start-page: 2346
  issue: 4
  year: 1999
  ident: 3638_CR70
  publication-title: J Appl Phys
  doi: 10.1063/1.371053
SSID ssj0017610
Score 2.4423175
Snippet Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1879
SubjectTerms Analytical Chemistry
Anions
Cationic polymerization
Ceramics
Chain branching
Chains (polymeric)
Characterization and Evaluation of Materials
Chemical bonds
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Conduction
Conductors
Crystal structure
Electrochemical analysis
Electrochemistry
Electrolytes
Energy Storage
Ethylene oxide
Fillers
Flammability
Grain boundaries
Lithium
Lithium batteries
Lithium-ion batteries
Molten salt electrolytes
Nonaqueous electrolytes
Physical Chemistry
Polyethylenes
Polymers
Receptors
Rechargeable batteries
Review
Solid electrolytes
Thermal conductivity
Title On the way to high-conductivity single lithium-ion conductors
URI https://link.springer.com/article/10.1007/s10008-017-3638-8
https://www.proquest.com/docview/1918882623
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aHvQiPrFaSw6elECSTbebg4dSWouiXizU05LXolC30gfiv3eS7rZVVPCcx2EySb7JZL4PoXPumLLaxcRa7ohQCSMqiynRisdG0UhFQT_l7j7uD8TNsDks6rin5W_3MiUZTuq1YreQqodTNQKnIckmqjZ96A5OPODtZeoA4vJQBSki2OrgnmUq86cpvl5GK4T5LSka7preLtopQCJuL1Z1D224fB9tdUpttgN09ZBjQG74XX3g2Rh7zmECga3nbg1iENi_AIwcBoz9_DJ_JWB8XLSPJ9NDNOh1Hzt9UgghECM4mxErE9PyxHNSUBMI6QUzWlDHJeAXk0ijuM0ACDCTSc1tCzBg5qt4mOPMxC46QpV8nLtjhLkGSBAJzTKaCWmE1JTZJk-0jagTktYQLS2SmoIl3ItVjNIVvzENypWslXojpkkNXSyHvC0oMv7qXC_NnBa7ZZpCzAiBOAckVkOXpenXmn-b7ORfvU_RNvdLH_7a1lFlNpm7M0AUM91A1fb10223ETzpE3o-we4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0UD3gxfkYUtQdPmiZttyzbgwdCJKiAF0i4bdpuN5rgYmCJ8d87LbuIRk08t9vD7LR905l5D6FLbplKtA1JknBLhIoYUWlIiVY8NIoGKvD6Kf1B2B2J-3FjXPRxz8tq9zIl6U_qtWY3n6qHUzUApyHRJtoCLBC5Oq4Rb61SBxCX-y5IEcBWB_csU5k_LfH1MvpEmN-Sov6u6eyinQIk4tbyr-6hDZvto2q71GY7QDePGQbkht_UO86n2HEOEwhsHXerF4PA7gVgYjFg7KfnxQsB4-NifDqbH6JR53bY7pJCCIEYwVlOEhmZpiOek4IaT0gvmNGCWi4Bv5hIGsWTFIAAM6nUPGkCBkxdFw-znJnQBkeokk0ze4ww1wAJAqFZSlMhjZCasqTBI50E1ApJa4iWFolNwRLuxCom8Se_MfXKlawZOyPGUQ1drT55XVJk_DW5Xpo5LnbLPIaYEQJxDkishq5L068N_7bYyb9mX6Bqd9jvxb27wcMp2ubODXzdbR1V8tnCngG6yPW596YPqv3DTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQb2IT6xWzcGTEppk0-3uwUOpFt96sNDbkteiULel3SL-eyfpbq2igudkA5lMkm92Mt-H0DG3TBplQ2IMt0TIiBGZhpQoyUMtaSADr59ydx9edsV1r9ErdE7H5Wv3MiU5rWlwLE1ZXh-atD5X-ObT9nDCBuBAJFpES3AaM-fWXd6apREgRvcVkSKAbQ-uWqY1fxri68X0iTa_JUj9vdNZR2sFYMSt6QpvoAWbbaKVdqnTtoXOHjIMKA6_yXecD7DjHyYwG8fj6oUhsPsb0LcY8Pbzy-SVwELgon0wGm-jbufiqX1JClEEogVnOTFxpJuOhC4WVHtyesG0EtTyGLCMjmItuUkBFDCdxoqbJuDB1FX0MMuZDm2wgyrZILO7CHMF8CAQiqU0FbEWsaLMNHikTECtiGkV0dIiiS4Yw51wRT_55DqmXsWSNRNnxCSqopPZJ8MpXcZfnWulmZNi54wTiB8hKOeAyqrotDT9XPNvg-39q_cRWn487yS3V_c3-2iVOy_wT3BrqJKPJvYAgEauDr0zfQBdrseJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+way+to+high-conductivity+single+lithium-ion+conductors&rft.jtitle=Journal+of+solid+state+electrochemistry&rft.au=Strauss%2C+E.&rft.au=Menkin%2C+S.&rft.au=Golodnitsky%2C+D.&rft.date=2017-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-8488&rft.eissn=1433-0768&rft.volume=21&rft.issue=7&rft.spage=1879&rft.epage=1905&rft_id=info:doi/10.1007%2Fs10008-017-3638-8&rft.externalDocID=10_1007_s10008_017_3638_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-8488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-8488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-8488&client=summon