On the way to high-conductivity single lithium-ion conductors
Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of sol...
Saved in:
Published in | Journal of solid state electrochemistry Vol. 21; no. 7; pp. 1879 - 1905 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li
+
transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations. |
---|---|
AbstractList | Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li+ transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations. Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li + transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations. |
Author | Strauss, E. Golodnitsky, D. Menkin, S. |
Author_xml | – sequence: 1 givenname: E. surname: Strauss fullname: Strauss, E. organization: Ministry of Science and Technology – sequence: 2 givenname: S. surname: Menkin fullname: Menkin, S. organization: School of Chemistry, Tel Aviv University – sequence: 3 givenname: D. orcidid: 0000-0002-9897-190X surname: Golodnitsky fullname: Golodnitsky, D. email: golod@post.tau.ac.il organization: School of Chemistry, Tel Aviv University, Applied Materials Research Center, Tel Aviv University |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnqOT7DbJHjxI0SoUetFz2Gaz3ZRtUpOs0n9v6vYggl5mBuZ95uOdoJF1ViN0TeCWAPC7kCIIDITjnOUCizM0JkWeY-BMjL5rikUhxAWahLCFJGQExuh-ZbPY6uyzOmTRZa3ZtFg5W_cqmg8TD1kwdtPprDOxNf0OG2ezU9_5cInOm6oL-uqUp-jt6fF1_oyXq8XL_GGJVUFJxHUpFBeM87IANeMARUHUugBNS5gxJUpV0bohfEZUU65pzYFCs2aNIpoSxXQ-RTfD3L13770OUW5d721aKUlJhBCU0TypyKBS3oXgdSP33uwqf5AE5NElObgk0_Py6JIUieG_GGViFdOb0Vem-5ekAxnSFrvR_sdNf0JfHK18oQ |
CitedBy_id | crossref_primary_10_1002_anie_202114024 crossref_primary_10_1039_C8ME00114F crossref_primary_10_1016_j_reactfunctpolym_2021_104938 crossref_primary_10_1002_mame_201900551 crossref_primary_10_1002_ange_202116635 crossref_primary_10_1039_C8TA08391F crossref_primary_10_3390_polym13060895 crossref_primary_10_1021_acsami_8b02519 crossref_primary_10_1039_C8RA07557C crossref_primary_10_1016_j_electacta_2018_01_101 crossref_primary_10_1039_D3CP04200F crossref_primary_10_1039_C8TA09056D crossref_primary_10_1002_app_47798 crossref_primary_10_1007_s40684_023_00541_4 crossref_primary_10_1021_acsaem_0c03141 crossref_primary_10_1021_acsami_0c17683 crossref_primary_10_1002_zaac_202400202 crossref_primary_10_1088_1361_6528_ac2e21 crossref_primary_10_1016_j_ensm_2020_11_030 crossref_primary_10_1002_pi_5677 crossref_primary_10_1016_j_ssi_2018_05_009 crossref_primary_10_1002_marc_202200335 crossref_primary_10_1021_acs_macromol_2c02160 crossref_primary_10_1002_anie_202116635 crossref_primary_10_1016_j_mattod_2021_08_005 crossref_primary_10_1002_ange_202114024 crossref_primary_10_1016_j_nanoen_2023_109130 crossref_primary_10_1016_j_electacta_2018_01_197 crossref_primary_10_1016_j_memsci_2022_120452 crossref_primary_10_1016_j_ssi_2020_115246 crossref_primary_10_3390_batteries10040140 crossref_primary_10_1021_acsaem_0c00410 crossref_primary_10_1002_adma_202202143 crossref_primary_10_1021_acs_macromol_2c02404 crossref_primary_10_1016_j_polymer_2019_06_010 crossref_primary_10_3390_electronicmat2020013 crossref_primary_10_1016_j_esci_2024_100278 crossref_primary_10_1021_acsami_9b10595 crossref_primary_10_1021_acs_oprd_9b00315 crossref_primary_10_1016_j_jpowsour_2022_232502 crossref_primary_10_1021_acsmacrolett_0c00139 crossref_primary_10_1016_j_jpowsour_2020_229267 crossref_primary_10_1021_acsapm_2c01326 crossref_primary_10_1039_D1TA10431D crossref_primary_10_1016_j_ssi_2019_115161 crossref_primary_10_2139_ssrn_4199023 crossref_primary_10_1016_j_ensm_2019_03_004 crossref_primary_10_1021_acsaem_0c01455 crossref_primary_10_1016_j_ccr_2022_214431 crossref_primary_10_1002_zaac_201800370 crossref_primary_10_1021_jacs_7b12292 crossref_primary_10_1039_D2PY00605G crossref_primary_10_1007_s10008_022_05206_x crossref_primary_10_1021_acsenergylett_2c02806 crossref_primary_10_1016_j_jpowsour_2020_229378 crossref_primary_10_1016_j_matt_2024_03_014 crossref_primary_10_1016_j_electacta_2019_02_058 crossref_primary_10_1080_02678292_2020_1769753 crossref_primary_10_3390_ma12233892 crossref_primary_10_1002_ente_202000580 crossref_primary_10_1016_j_jechem_2019_11_012 crossref_primary_10_1039_C8ME00117K crossref_primary_10_1016_j_ssi_2024_116716 crossref_primary_10_1021_acs_macromol_0c02001 crossref_primary_10_1002_slct_201803388 crossref_primary_10_1021_acs_iecr_1c02938 crossref_primary_10_1002_celc_201900274 crossref_primary_10_1039_D4EE03097D crossref_primary_10_1002_celc_201901916 crossref_primary_10_1016_j_memsci_2020_118926 crossref_primary_10_1070_RCR4956 crossref_primary_10_1039_D2TA09097J crossref_primary_10_1515_revic_2024_0034 crossref_primary_10_1039_D2TC02212E crossref_primary_10_1021_acsmacrolett_2c00292 crossref_primary_10_1021_jacsau_1c00505 |
Cites_doi | 10.1021/cr0103064 10.1016/j.electacta.2013.09.106 10.1039/C4TA00716F 10.1021/acsami.6b01973 10.3390/polym8110387 10.1021/acsenergylett.6b00216 10.1149/2.0161514jes 10.1016/j.electacta.2013.01.026 10.1016/j.progpolymsci.2011.05.007 10.1021/acs.chemmater.5b03735 10.1016/0013-4686(95)00202-P 10.1039/c3ee41728j 10.1016/j.jpowsour.2003.11.016 10.1021/ja3091438 10.1016/j.jpowsour.2012.11.130 10.1016/j.jpowsour.2009.01.070 10.1021/cm101407d 10.1149/1.3428710 10.1021/acs.chemrev.5b00563 10.1016/j.jpowsour.2006.07.038 10.1016/S0167-2738(02)00215-1 10.1088/0953-8984/7/34/007 10.1002/adma.19900021108 10.1016/j.ssi.2015.06.001 10.1016/j.ijhydene.2013.11.009 10.1007/s10853-014-8341-x 10.1021/ma500072j 10.1016/j.electacta.2012.08.114 10.1016/j.electacta.2015.03.149 10.1038/nmat3066 10.1149/1.1470652 10.1149/1.1344281 10.1016/j.electacta.2015.03.038 10.1039/C4RA08709G 10.1038/28818 10.1039/c3ra41167b 10.1016/j.electacta.2011.03.074 10.1021/jp208330h 10.1021/cm000420n 10.1038/nmat4369 10.1038/srep00481 10.1007/s11581-013-0922-1 10.1002/anie.200703900 10.1149/2.0221511jes 10.1039/C6TA05439K 10.1039/C3EE41655K 10.1016/j.electacta.2004.08.011 10.1039/C6TA07384K 10.1016/j.ssi.2014.10.013 10.1016/j.electacta.2014.06.173 10.1016/j.elecom.2012.05.022 10.1016/S0013-4686(99)00386-2 10.1039/C5SC02052B 10.1016/j.jpowsour.2009.11.146 10.1039/C4PY01603C 10.1016/j.electacta.2013.01.119 10.1149/1.2938916 10.1038/373557a0 10.1002/adma.201204182 10.1039/C5TA02628H 10.1007/s10008-016-3303-7 10.1002/anie.201509299 10.1016/j.jpowsour.2016.08.115 10.1039/C2TA00628F 10.1016/S0013-4686(99)00385-0 10.1016/j.jpowsour.2015.12.010 10.1016/j.electacta.2007.03.037 10.1016/j.ssi.2006.01.039 10.1039/C5TA00216H 10.1023/A:1009958118260 10.1016/0032-3861(87)90394-6 10.1063/1.371053 10.1021/jp049195d 10.1016/S0167-2738(96)00434-1 10.1038/nenergy.2016.30 10.1149/1.2086597 10.3389/fenrg.2014.00025 10.1016/j.elecom.2006.01.013 10.1016/S0167-2738(02)00032-2 10.1016/S0013-4686(99)00335-7 10.1016/j.ssi.2013.09.007 10.1016/0167-2738(94)90310-7 10.1016/j.ssi.2012.06.008 10.1016/j.electacta.2011.02.025 10.1021/cm980170z 10.1038/362137a0 10.1016/j.electacta.2005.02.040 10.1021/nl202692y 10.1073/pnas.1520394112 10.1039/C6CS00491A 10.1149/1.2722538 10.1016/j.jpowsour.2012.05.025 10.1038/nmat3602 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2017 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2017 – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10008-017-3638-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1433-0768 |
EndPage | 1905 |
ExternalDocumentID | 10_1007_s10008_017_3638_8 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9N PF0 PT4 PT5 QOR QOS R89 R9I RNI RNS ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c421t-d98c78677940c5700441cb40e29056c89ca2df1751cf9b2d7020fb6fc1e21c6e3 |
IEDL.DBID | U2A |
ISSN | 1432-8488 |
IngestDate | Fri Jul 25 11:12:29 EDT 2025 Tue Jul 01 01:24:43 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Fri Feb 21 02:30:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Single-ion conductor Ceramics Li ion battery Polymers Solid electrolyte Transference number |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-d98c78677940c5700441cb40e29056c89ca2df1751cf9b2d7020fb6fc1e21c6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9897-190X |
PQID | 1918882623 |
PQPubID | 2043698 |
PageCount | 27 |
ParticipantIDs | proquest_journals_1918882623 crossref_primary_10_1007_s10008_017_3638_8 crossref_citationtrail_10_1007_s10008_017_3638_8 springer_journals_10_1007_s10008_017_3638_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Current Research and Development in Science and Technology |
PublicationTitle | Journal of solid state electrochemistry |
PublicationTitleAbbrev | J Solid State Electrochem |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Ruiz-Hitzky, Aranda (CR93) 1990; 2 Wang, Liu, Kong, Jiang, Yao, Zhang, Cui (CR40) 2014; 262 Porcarelli, Shaplov, Salsamendi, Nair, Vygodskii, Mecerreyes, Gerbaldi (CR50) 2016; 8 Blanga, Golodnitsky, Ardel, Freedman, Gladkich, Rosenberg, Nathan, Peled (CR90) 2013; 114 Ferry, Edman, Forsyth, MacFarlane, Sun (CR70) 1999; 86 Allcock, Welna, Maher (CR16) 2006; 177 Fan, Angell (CR55) 1995; 40 Angell, Liu, Sanchez (CR54) 1993; 362 Varzi, Raccichini, Passerini, Scrosati (CR72) 2016; 4 Hassoun, Verrelli, Reale, Panero, Mariotto, Greenbaum, Scrosati (CR86) 2013; 229 Golodnitsky, Strauss, Peled, Greenbaum (CR101) 2015; 162 Wu, Wang, Evans, Deng, Yang, Xiao (CR87) 2016; 4 Armand, Chabagno, Duclot, Vashista, Mundy, Shenoy (CR5) 1979 Golodnitsky, Garche, Dyer, Moseley, Ogumi, Rand, Scrosati (CR1) 2009 Ganapatibhotla, Maranas (CR65) 2014; 47 Van Humbeck, Aubrey, Alsbaiee, Ameloot, Coates, Dichtel, Long (CR21) 2015; 6 Padmaraj, Venkateswarlu, Satyanarayana (CR10) 2013; 19 Florjańczyk, Zygadło-Monikowska, Wieczorek, Ryszawy, Tomaszewska, Fredman, Golodnitsky, Peled, Scrosati (CR53) 2004; 108 Zhu, Wang, Hou, Gao, Liu, Wu, Shimizu (CR39) 2013; 87 CR46 Blanga, Burstein, Berman, Greenbaum, Golodnitsky (CR91) 2015; 162 Eilmes, Kubisiak (CR66) 2011; 115 Rohan, Paree, Chen, Cai, Zhang, Xu, Gao, Cheng (CR36) 2015; 3 Evans, Vincent, Bruce (CR6) 1987; 28 Xu, Angell (CR35) 2001; 4 Bertasi, Vezzù, Giffin, Nosach, Sideris, Greenbaum, Vittadello, Di Noto (CR68) 2014; 39 Mathews, Budgin, Beeram, Joenathan, Stein, Werner-Zwanziger, Pink, Baker, Mahmoud, Carini, Bronstein (CR22) 2013; 1 Kato, Hori, Saito, Suzuki, Hirayama, Mitsui, Yonemura, Iba, Kanno (CR85) 2016; 1 Kamaya, Homma, Yamakawa, Hirayama, Kanno, Yonemura, Kamiyama, Kato, Hama, Kawamoto (CR80) 2011; 10 Oh, Xu, Yoo, Kim, Chanthad, Yang, Jin, Ayhan, Oh, Wang (CR37) 2015; 28 CR52 Sadoway (CR12) 2004; 129 CR51 Wei, Shriver (CR60) 1998; 10 Ghosh, Kofinas (CR23) 2008; 11 Rohan, Sun, Cai, Zhang, Paree, Xu, Cheng (CR42) 2014; 268 Zhang, Chang, Xu, Angell (CR102) 2000; 45 Appetecchi, Kim, Montanino, Carewska, Marcilla, Mecerreyes, De Meatza (CR47) 2010; 195 Xu, Sun, Rohan, Zhang, Cai, Cheng (CR26) 2014; 49 Meziane, Bonnet, Courty, Djellab, Armand (CR13) 2011; 57 Tang, Hackenberg, Fu, Ajayan, Ardebili (CR64) 2012; 12 Villaluenga, Wujcik, Tong, Devaux, Wong, DeSimone, Balsara (CR56) 2016; 113 Itoh, Inaguma, Jung, Chen, Nakamura (CR76) 1994; 70 Ohno (CR44) 2005 Zhang, Li, Piszcz, Coya, Rojo, Rodriguez-Martinez, Armand, Zhou (CR25) 2017; 46 Syzdek, Armand, Gizowska, Marcinek, Sasim, Szafran, Wieczorek (CR88) 2009; 194 Goodenough, Park (CR33) 2013; 135 Feng, Shi, Liu, Zhen, Nie, Feng, Huang, Armand, Zhou (CR14) 2013; 93 Bohnke, Bohnke, Fourquet (CR77) 1996; 91 Bron, Dehnen, Roling (CR84) 2016; 329 Boulineau, Courty, Tarascon, Viallet (CR4) 2012; 221 Shaplov, Marcilla, Mecerreyes (CR48) 2015; 175 Aono, Sugimoto, Sadaoka, Imanaka, Adachi (CR73) 1990; 137 Ghosh, Wang, Kofinas (CR11) 2010; 157 Hu, Sun (CR96) 2014; 2 Kumar, Scanlon (CR62) 2000; 5 Bertas, Negro, Vezzù, Nawn, Pagot, Di Noto (CR69) 2015; 175 Zugmann, Fleischmann, Amereller, Gschwind, Wiemhöfer, Gores (CR8) 2011; 56 Kil, Choi, Ha, Xu, Rogers, Kim, Lee, Kim, Cho, Lee (CR98) 2013; 25 Scrosati (CR83) 1995; 373 Gray (CR7) 1991 Sun, Hou, Kerr (CR17) 2005; 50 Wang, Alexandridis (CR67) 2016; 8 Croce, Sacchetti, Scrosati (CR31) 2006; 162 Zhang, Cai, Rohan, Pan, Liu, Liu, Li, Sun, Cheng (CR30) 2016; 306 Ciosek, Sannier, Siekierski, Golodnitsky, Peled, Scrosati, Głowinkowskid, Wieczorek (CR103) 2007; 53 Yan, Xie, Wu, Zhou, Qu, Wu (CR20) 2015; 6 Blanga, Goor, Burstein, Rosenberg, Gladkich, Logvinuk, Shechtman, Golodnitsky (CR92) 2016; 20 Ferry, Edman, Forsyth, MacFarlane, Sun (CR59) 2000; 45 Adachi, Imanaka, Tamura (CR75) 2002; 102 Deiseroth, Kong, Eckert, Vannahme, Reiner, Zaiß, Schlosser (CR3) 2008; 47 Kuhn, Duppel, Lotsch (CR81) 2013; 6 Singh, Galande, Miranda, Mathkar, Gao, Reddy, Vlad, Ajayan (CR95) 2012; 2 Lee, Choi, Colby, Gibson (CR100) 2010; 22 Xu, Zhang, Rohan, Cai, Cheng (CR29) 2014; 139 Seino, Ota, Takada, Hayashi, Tatsumisago (CR82) 2014; 7 Cao, Li, Wang, Zhao, Han (CR74) 2014; 2 Wang, Liu, Zhang, Kong, Yao, Han, Jiang, Xu, Cui (CR28) 2013; 92 Marcilla, Alcaide, Sardon, Pomposo, Pozo-Gonzal, Mecerreyes (CR49) 2006; 8 Croce, Appetecchi, Persi, Scrosati (CR63) 1998; 394 Porcarelli, Shaplov, Bell, Nair, Mecerreyes, Gerbaldi (CR41) 2016; 1 Qin, Liu, Zheng, Hu, Ding, Zhang, Zhao, Kong, Cui (CR27) 2015; 3 Gorecki, Jeannin, Belorizky, Roux, Armand (CR15) 1995; 7 CR99 CR97 Wenzel, Leichtweiss, Krüger, Sann, Janek (CR78) 2015; 278 Mogurampelly, Borodin, Ganesan (CR61) 2016; 8 Amereller, Schedlbauer, Moosbauer, Schreiner, Stock, Wudy (CR9) 2014; 42 Sandi, Kizilel, Carrado, Fernández-Saavedra, Castagnola (CR89) 2005; 50 Ma, Zhang, Zhou, Zheng, Cheng, Nie, Feng, Hu, Li, Huang, Chen, Armand, Zhou (CR19) 2016; 55 Zhang, Lim, Cai, Rohan, Xu, Sun, Cheng (CR32) 2014; 4 Zhang, Xu, Sun, Han, Chen, Rohan, Cheng (CR34) 2013; 3 Mecerreyes (CR43) 2011; 36 Zalewska, Pruszczyk, Sułek, Wieczorek (CR58) 2003; 157 Ito, Nishina, Ohno (CR45) 2000; 45 Bachman, Muy, Grimaud, Chang, Pour, Lux, Paschos, Maglia, Lupart, Lamp, Giordano, Horn (CR2) 2015; 116 Wang, Richards, Ong, Miara, Kim, Mo, Ceder (CR79) 2015; 14 Narayanan, Aswin, Manohar, Ratnakumar, Dudney, West, Nanda (CR71) 2015 Siska, Shriver (CR18) 2001; 13 Xu, Angell (CR57) 2002; 147 CR24 CR104 Zhu, Gao, Wang, Hou, Liu, Wu (CR38) 2012; 22 Riley, Fedkiw, Khan (CR94) 2002; 149 P Bron (3638_CR84) 2016; 329 GY Adachi (3638_CR75) 2002; 102 JC Bachman (3638_CR2) 2015; 116 HR Allcock (3638_CR16) 2006; 177 3638_CR104 B Qin (3638_CR27) 2015; 3 3638_CR24 Y Zhang (3638_CR32) 2014; 4 S Wenzel (3638_CR78) 2015; 278 L Porcarelli (3638_CR41) 2016; 1 Y Zhang (3638_CR30) 2016; 306 H Oh (3638_CR37) 2015; 28 (3638_CR44) 2005 DR Sadoway (3638_CR12) 2004; 129 Y Zhang (3638_CR34) 2013; 3 AS Shaplov (3638_CR48) 2015; 175 S Boulineau (3638_CR4) 2012; 221 S Feng (3638_CR14) 2013; 93 Q Ma (3638_CR19) 2016; 55 A Ghosh (3638_CR23) 2008; 11 B Kumar (3638_CR62) 2000; 5 J Syzdek (3638_CR88) 2009; 194 F Bertas (3638_CR69) 2015; 175 J Hassoun (3638_CR86) 2013; 229 B Wu (3638_CR87) 2016; 4 S Zhang (3638_CR102) 2000; 45 A Ferry (3638_CR70) 1999; 86 A Ferry (3638_CR59) 2000; 45 G Sandi (3638_CR89) 2005; 50 3638_CR97 3638_CR99 N Singh (3638_CR95) 2012; 2 F Croce (3638_CR63) 1998; 394 O Padmaraj (3638_CR10) 2013; 19 A Varzi (3638_CR72) 2016; 4 G Xu (3638_CR26) 2014; 49 MB Armand (3638_CR5) 1979 S Mogurampelly (3638_CR61) 2016; 8 L Porcarelli (3638_CR50) 2016; 8 G Xu (3638_CR29) 2014; 139 CA Angell (3638_CR54) 1993; 362 Z Florjańczyk (3638_CR53) 2004; 108 W Xu (3638_CR35) 2001; 4 D Mecerreyes (3638_CR43) 2011; 36 R Blanga (3638_CR91) 2015; 162 M Ciosek (3638_CR103) 2007; 53 YS Zhu (3638_CR39) 2013; 87 H Aono (3638_CR73) 1990; 137 R Rohan (3638_CR36) 2015; 3 J Fan (3638_CR55) 1995; 40 O Bohnke (3638_CR77) 1996; 91 D Golodnitsky (3638_CR101) 2015; 162 Y Hu (3638_CR96) 2014; 2 DP Siska (3638_CR18) 2001; 13 JB Goodenough (3638_CR33) 2013; 135 J Evans (3638_CR6) 1987; 28 W Wang (3638_CR67) 2016; 8 EH Kil (3638_CR98) 2013; 25 R Marcilla (3638_CR49) 2006; 8 Y Kato (3638_CR85) 2016; 1 C Cao (3638_CR74) 2014; 2 M Itoh (3638_CR76) 1994; 70 A Zalewska (3638_CR58) 2003; 157 R Blanga (3638_CR92) 2016; 20 R Meziane (3638_CR13) 2011; 57 XG Sun (3638_CR17) 2005; 50 S Zugmann (3638_CR8) 2011; 56 N Kamaya (3638_CR80) 2011; 10 R Blanga (3638_CR90) 2013; 114 M Amereller (3638_CR9) 2014; 42 JF Van Humbeck (3638_CR21) 2015; 6 K Ito (3638_CR45) 2000; 45 YS Zhu (3638_CR38) 2012; 22 H Zhang (3638_CR25) 2017; 46 LV Ganapatibhotla (3638_CR65) 2014; 47 S Yan (3638_CR20) 2015; 6 R Rohan (3638_CR42) 2014; 268 B Scrosati (3638_CR83) 1995; 373 A Kuhn (3638_CR81) 2013; 6 FM Gray (3638_CR7) 1991 3638_CR52 HJ Deiseroth (3638_CR3) 2008; 47 3638_CR51 W Xu (3638_CR57) 2002; 147 X Wang (3638_CR40) 2014; 262 M Lee (3638_CR100) 2010; 22 Y Wang (3638_CR79) 2015; 14 D Golodnitsky (3638_CR1) 2009 X Wei (3638_CR60) 1998; 10 F Bertasi (3638_CR68) 2014; 39 X Wang (3638_CR28) 2013; 92 3638_CR46 Y Seino (3638_CR82) 2014; 7 A Eilmes (3638_CR66) 2011; 115 KL Mathews (3638_CR22) 2013; 1 F Croce (3638_CR31) 2006; 162 C Tang (3638_CR64) 2012; 12 GB Appetecchi (3638_CR47) 2010; 195 W Gorecki (3638_CR15) 1995; 7 SR Narayanan (3638_CR71) 2015 E Ruiz-Hitzky (3638_CR93) 1990; 2 M Riley (3638_CR94) 2002; 149 A Ghosh (3638_CR11) 2010; 157 I Villaluenga (3638_CR56) 2016; 113 |
References_xml | – volume: 102 start-page: 2405 issue: 6 year: 2002 end-page: 2430 ident: CR75 article-title: Ionic conducting lanthanide oxides publication-title: Chem Rev doi: 10.1021/cr0103064 – ident: CR97 – volume: 114 start-page: 325 year: 2013 end-page: 333 ident: CR90 article-title: Quasi-solid polymer-in-ceramic membrane for Li-ion batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.09.106 – volume: 2 start-page: 10712 issue: 28 year: 2014 end-page: 10738 ident: CR96 article-title: Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies publication-title: J Mater Chem A doi: 10.1039/C4TA00716F – ident: CR51 – volume: 8 start-page: 10350 year: 2016 end-page: 10359 ident: CR61 article-title: Computer simulations of ion transport in polymer electrolyte membranes publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b01973 – volume: 8 start-page: 387 issue: 11 year: 2016 ident: CR67 article-title: Composite polymer electrolytes: nanoparticles affect structure and properties publication-title: Polymers doi: 10.3390/polym8110387 – volume: 1 start-page: 678 issue: 4 year: 2016 end-page: 682 ident: CR41 article-title: Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.6b00216 – year: 1991 ident: CR7 publication-title: Solid polymer electrolytes: fundamentals and technological applications – volume: 162 start-page: A2551 issue: 14 year: 2015 end-page: A2566 ident: CR101 article-title: Review—on order and disorder in polymer electrolytes publication-title: J Electrochem Soc doi: 10.1149/2.0161514jes – volume: 92 start-page: 132 year: 2013 end-page: 138 ident: CR28 article-title: Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.01.026 – volume: 36 start-page: 1629 year: 2011 end-page: 1648 ident: CR43 article-title: Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2011.05.007 – volume: 28 start-page: 188 issue: 1 year: 2015 end-page: 196 ident: CR37 article-title: Poly (arylene ether)-based single-ion conductors for lithium-ion batteries publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b03735 – volume: 40 start-page: 2397 issue: 13 year: 1995 end-page: 2400 ident: CR55 article-title: The preparation, conductivity, viscosity and mechanical properties of polymer electrolytes and new hybrid ionic rubber electrolytes publication-title: Electrochim Acta doi: 10.1016/0013-4686(95)00202-P – volume: 6 start-page: 3548 issue: 12 year: 2013 end-page: 3552 ident: CR81 article-title: Tetragonal Li 10 GeP 2 S 12 and Li 7 GePS 8–exploring the Li ion dynamics in LGPS Li electrolytes publication-title: Energy Environ Sci doi: 10.1039/c3ee41728j – volume: 129 start-page: 1 issue: 1 year: 2004 end-page: 3 ident: CR12 article-title: Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2003.11.016 – volume: 135 start-page: 1167 year: 2013 end-page: 1176 ident: CR33 article-title: The Li-ion rechargeable battery: a perspective publication-title: J Am Chem Soc doi: 10.1021/ja3091438 – volume: 229 start-page: 117 year: 2013 end-page: 122 ident: CR86 article-title: A structural, spectroscopic and electrochemical study of a lithium ion conducting Li 10 GeP 2 S 12 solid electrolyte publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.11.130 – volume: 194 start-page: 66 issue: 1 year: 2009 end-page: 72 ident: CR88 article-title: Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes—a novel approach publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.01.070 – volume: 22 start-page: 5814 issue: 21 year: 2010 end-page: 5822 ident: CR100 article-title: Ion conduction in imidazolium acrylate ionic liquids and their polymers publication-title: Chem Mater doi: 10.1021/cm101407d – volume: 157 start-page: A846 issue: 7 year: 2010 end-page: A849 ident: CR11 article-title: Block copolymer solid battery electrolyte with high Li-ion transference number publication-title: J Electrochem Soc doi: 10.1149/1.3428710 – volume: 116 start-page: 140 issue: 1 year: 2015 end-page: 162 ident: CR2 article-title: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00563 – volume: 162 start-page: 685 issue: 1 year: 2006 end-page: 689 ident: CR31 article-title: Advanced, lithium batteries based on high-performance composite polymer electrolytes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.07.038 – volume: 157 start-page: 233 issue: 1 year: 2003 end-page: 239 ident: CR58 article-title: New poly (acrylamide) based (polymer in salt) electrolytes: preparation and spectroscopic characterization publication-title: Solid State Ionics doi: 10.1016/S0167-2738(02)00215-1 – year: 1979 ident: CR5 publication-title: Fast ion transport in solids: electrodes and electrolytes – volume: 7 start-page: 6823 issue: 34 year: 1995 end-page: 6832 ident: CR15 article-title: Physical properties of solid polymer electrolyte PEO (LiTFSI) complexes publication-title: J Phys Condens Matter doi: 10.1088/0953-8984/7/34/007 – volume: 2 start-page: 545 issue: 11 year: 1990 end-page: 547 ident: CR93 article-title: Polymer-salt intercalation complexes in layer silicates publication-title: Adv Mater doi: 10.1002/adma.19900021108 – volume: 278 start-page: 98 year: 2015 end-page: 105 ident: CR78 article-title: Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy publication-title: Solid State Ionics doi: 10.1016/j.ssi.2015.06.001 – volume: 39 start-page: 2884 issue: 6 year: 2014 end-page: 2895 ident: CR68 article-title: Single-ion-conducting nanocomposite polymer electrolytes based on PEG400 and anionic nanoparticles: electrical characterization publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2013.11.009 – volume: 49 start-page: 6111 issue: 17 year: 2014 end-page: 6117 ident: CR26 article-title: A lithium poly (pyromellitic acid borate) gel electrolyte membrane for lithium-ion batteries publication-title: J Mater Sci doi: 10.1007/s10853-014-8341-x – volume: 47 start-page: 3625 issue: 11 year: 2014 end-page: 3634 ident: CR65 article-title: Interplay of surface chemistry and ion content in nanoparticle-filled solid polymer electrolytes publication-title: Macromolecules doi: 10.1021/ma500072j – volume: 87 start-page: 113 year: 2013 end-page: 118 ident: CR39 article-title: A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.08.114 – volume: 175 start-page: 113 year: 2015 end-page: 123 ident: CR69 article-title: Single-ion-conducting nanocomposite polymer electrolytes for lithium batteries based on lithiated-fluorinated-iron oxide and poly (ethylene glycol) 400 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.03.149 – volume: 10 start-page: 682 issue: 9 year: 2011 end-page: 686 ident: CR80 article-title: A lithium superionic conductor publication-title: Nat Mater doi: 10.1038/nmat3066 – volume: 149 start-page: A667 issue: 6 year: 2002 end-page: A674 ident: CR94 article-title: Transport properties of lithium hectorite-based composite electrolytes publication-title: J Electrochem Soc doi: 10.1149/1.1470652 – volume: 4 start-page: E1 issue: 1 year: 2001 end-page: E4 ident: CR35 article-title: Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions publication-title: Electrochem Solid-State Lett doi: 10.1149/1.1344281 – volume: 175 start-page: 18 year: 2015 end-page: 34 ident: CR48 article-title: Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.03.038 – ident: CR52 – year: 2015 ident: CR71 publication-title: Handbook of solid state batteries – volume: 4 start-page: 43857 issue: 83 year: 2014 end-page: 43864 ident: CR32 article-title: Design and synthesis of a single ion conducting block copolymer electrolyte with multi functionality for lithium ion batteries publication-title: RSC Adv doi: 10.1039/C4RA08709G – volume: 394 start-page: 456 issue: 6692 year: 1998 end-page: 458 ident: CR63 article-title: Nanocomposite polymer electrolytes for lithium batteries publication-title: Nature doi: 10.1038/28818 – volume: 3 start-page: 14934 issue: 35 year: 2013 end-page: 14937 ident: CR34 article-title: A class of sp 3 boron-based single-ion polymeric electrolytes for lithium ion batteries publication-title: RSC Adv doi: 10.1039/c3ra41167b – volume: 57 start-page: 14 year: 2011 end-page: 19 ident: CR13 article-title: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.03.074 – volume: 115 start-page: 14938 issue: 50 year: 2011 end-page: 14946 ident: CR66 article-title: Molecular dynamics study on the effect of Lewis acid centers in poly (ethylene oxide)/LiClO4 polymer electrolyte publication-title: J Phys Chem B doi: 10.1021/jp208330h – ident: CR24 – year: 2005 ident: CR44 publication-title: Electrochemical aspects of ionic liquids – volume: 13 start-page: 4698 issue: 12 year: 2001 end-page: 4700 ident: CR18 article-title: Li+ conductivity of polysiloxane−trifluoromethylsulfonamide polyelectrolytes publication-title: Chem Mater doi: 10.1021/cm000420n – volume: 14 start-page: 1026 year: 2015 end-page: 1031 ident: CR79 article-title: Design principles for solid-state lithium superionic conductors publication-title: Nat Mater doi: 10.1038/nmat4369 – volume: 2 start-page: 481 year: 2012 ident: CR95 publication-title: Sci Rep doi: 10.1038/srep00481 – volume: 19 start-page: 1835 issue: 12 year: 2013 end-page: 1842 ident: CR10 article-title: Effect of ZnO filler concentration on the conductivity, structure and morphology of PVdF-HFP nanocomposite solid polymer electrolyte for lithium battery application publication-title: Ionics doi: 10.1007/s11581-013-0922-1 – volume: 47 start-page: 755 issue: 4 year: 2008 end-page: 758 ident: CR3 article-title: Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility publication-title: Angew Chem Int Ed doi: 10.1002/anie.200703900 – volume: 8 start-page: 10350 issue: 16 year: 2016 end-page: 10359 ident: CR50 article-title: Single-ion block co poly(ionic liquid)s as electrolytes for all-solid state lithium batteries publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b01973 – volume: 162 start-page: D3084 issue: 11 year: 2015 end-page: D3089 ident: CR91 article-title: Solid polymer-in-ceramic electrolyte formed by electrophoretic deposition publication-title: J Electrochem Soc doi: 10.1149/2.0221511jes – volume: 4 start-page: 15266 year: 2016 end-page: 15280 ident: CR87 article-title: Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems publication-title: J Mater Chem A doi: 10.1039/C6TA05439K – volume: 7 start-page: 627 issue: 2 year: 2014 end-page: 631 ident: CR82 article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries publication-title: Energy Environ Sci doi: 10.1039/C3EE41655K – volume: 50 start-page: 1139 issue: 5 year: 2005 end-page: 1147 ident: CR17 article-title: Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate publication-title: Electrochim Acta doi: 10.1016/j.electacta.2004.08.011 – volume: 4 start-page: 17251 issue: 44 year: 2016 end-page: 17259 ident: CR72 article-title: Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries publication-title: J Mater Chem A doi: 10.1039/C6TA07384K – volume: 268 start-page: 294 year: 2014 end-page: 299 ident: CR42 article-title: Functionalized polystyrene based single ion conducting gel polymer electrolyte for lithium batteries publication-title: Solid State Ionics doi: 10.1016/j.ssi.2014.10.013 – volume: 139 start-page: 264 year: 2014 end-page: 269 ident: CR29 article-title: Synthesis, characterization and battery performance of a lithium poly (4-vinylphenol) phenolate borate composite membrane publication-title: Electrochim Acta doi: 10.1016/j.electacta.2014.06.173 – volume: 22 start-page: 29 year: 2012 end-page: 32 ident: CR38 article-title: A single-ion polymer electrolyte based on boronate for lithium ion batteries publication-title: Electrochem Commun doi: 10.1016/j.elecom.2012.05.022 – volume: 45 start-page: 1237 issue: 8 year: 2000 end-page: 1242 ident: CR59 article-title: NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF 3 SO 3 and PAN publication-title: Electrochim Acta doi: 10.1016/S0013-4686(99)00386-2 – volume: 42 start-page: 39 issue: 4 year: 2014 end-page: 56 ident: CR9 article-title: Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods publication-title: Prog Solid State Chem – volume: 6 start-page: 5499 year: 2015 ident: CR21 article-title: Tetraarylborate polymer networks as single-ion conducting solid electrolytes publication-title: Chem Sci doi: 10.1039/C5SC02052B – ident: CR46 – year: 2009 ident: CR1 article-title: Electrolytes: single lithium ion conducting polymers publication-title: Encyclopedia of electrochemical power sources, vol 5 – volume: 195 start-page: 3668 issue: 11 year: 2010 end-page: 3675 ident: CR47 article-title: Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.11.146 – volume: 6 start-page: 1052 issue: 7 year: 2015 end-page: 1055 ident: CR20 article-title: Highly efficient solid polymer electrolytes using ion containing polymer microgels publication-title: Polym Chem doi: 10.1039/C4PY01603C – volume: 93 start-page: 254 year: 2013 end-page: 263 ident: CR14 article-title: Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.01.119 – volume: 11 start-page: 131 issue: 29 year: 2008 end-page: 137 ident: CR23 article-title: PEO based block copolymer as solid state lithium battery electrolyte publication-title: ECS Trans doi: 10.1149/1.2938916 – volume: 373 start-page: 557 year: 1995 ident: CR83 article-title: Challenge of portable power publication-title: Nature doi: 10.1038/373557a0 – volume: 25 start-page: 1395 issue: 10 year: 2013 end-page: 1400 ident: CR98 article-title: Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries publication-title: Adv Mater doi: 10.1002/adma.201204182 – volume: 3 start-page: 20267 issue: 40 year: 2015 end-page: 20276 ident: CR36 article-title: A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries publication-title: J Mater Chem A doi: 10.1039/C5TA02628H – volume: 20 start-page: 3393 issue: 12 year: 2016 end-page: 3404 ident: CR92 article-title: The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries publication-title: J Solid State Electrochem doi: 10.1007/s10008-016-3303-7 – volume: 55 start-page: 2521 year: 2016 end-page: 2525 ident: CR19 article-title: Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion publication-title: Angew Chem Int Ed doi: 10.1002/anie.201509299 – volume: 329 start-page: 530 year: 2016 end-page: 535 ident: CR84 article-title: Li 10 Si 0.3 Sn 0.7 P 2 S 12—a low-cost and low-grain-boundary-resistance lithium superionic conductor publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.08.115 – volume: 1 start-page: 1108 issue: 4 year: 2013 end-page: 1116 ident: CR22 article-title: Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers publication-title: J Mater Chem A doi: 10.1039/C2TA00628F – volume: 45 start-page: 1229 issue: 8 year: 2000 end-page: 1236 ident: CR102 article-title: Molecular and anionic polymer and oligomer systems with microdecoupled conductivities publication-title: Electrochim Acta doi: 10.1016/S0013-4686(99)00385-0 – volume: 306 start-page: 152 year: 2016 end-page: 161 ident: CR30 article-title: Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp 3 boron-based solid single ion conducting polymer electrolyte publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.12.010 – volume: 53 start-page: 1409 issue: 4 year: 2007 end-page: 1416 ident: CR103 article-title: Ion transport phenomena in polymeric electrolytes publication-title: Electrochim Acta doi: 10.1016/j.electacta.2007.03.037 – volume: 177 start-page: 741 issue: 7 year: 2006 end-page: 747 ident: CR16 article-title: Single ion conductors—polyphosphazenes with sulfonimide functional groups publication-title: Solid State Ionics doi: 10.1016/j.ssi.2006.01.039 – volume: 3 start-page: 7773 year: 2015 ident: CR27 article-title: Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries publication-title: J Mater Chem A doi: 10.1039/C5TA00216H – ident: CR99 – volume: 5 start-page: 127 issue: 2 year: 2000 end-page: 139 ident: CR62 article-title: Composite electrolytes for lithium rechargeable batteries publication-title: J Electroceram doi: 10.1023/A:1009958118260 – volume: 28 start-page: 2324 issue: 13 year: 1987 end-page: 2328 ident: CR6 article-title: Electrochemical measurement of transference numbers in polymer electrolytes publication-title: Polymer doi: 10.1016/0032-3861(87)90394-6 – volume: 86 start-page: 2346 issue: 4 year: 1999 end-page: 2348 ident: CR70 article-title: Connectivity, ionic interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on poly (acrylonitrile) and LiCF 3 SO 3 publication-title: J Appl Phys doi: 10.1063/1.371053 – volume: 108 start-page: 14907 issue: 39 year: 2004 end-page: 14914 ident: CR53 article-title: Polymer-in-salt electrolytes based on acrylonitrile/butyl acrylate copolymers and lithium salts publication-title: J Phys Chem B doi: 10.1021/jp049195d – volume: 91 start-page: 21 issue: 1–2 year: 1996 end-page: 31 ident: CR77 article-title: Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate publication-title: Solid State Ionics doi: 10.1016/S0167-2738(96)00434-1 – volume: 1 start-page: 16030 year: 2016 ident: CR85 article-title: High-power all-solid-state batteries using sulfide superionic conductors publication-title: Nat Energy doi: 10.1038/nenergy.2016.30 – volume: 137 start-page: 1023 issue: 4 year: 1990 end-page: 1027 ident: CR73 article-title: Ionic conductivity of solid electrolytes based on lithium titanium phosphate publication-title: J Electrochem Soc doi: 10.1149/1.2086597 – volume: 2 start-page: 25 year: 2014 ident: CR74 article-title: Recent advances in inorganic solid electrolytes for lithium batteries publication-title: Front Energy Res doi: 10.3389/fenrg.2014.00025 – volume: 8 start-page: 482 issue: 3 year: 2006 end-page: 488 ident: CR49 article-title: Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices publication-title: Electrochem Commun doi: 10.1016/j.elecom.2006.01.013 – volume: 147 start-page: 295 issue: 3 year: 2002 end-page: 301 ident: CR57 article-title: Preparation and characterization of novel “polyMOB” polyanionic solid electrolytes with weak coulomb traps publication-title: Solid State Ionics doi: 10.1016/S0167-2738(02)00032-2 – volume: 45 start-page: 1295 year: 2000 end-page: 1298 ident: CR45 article-title: Enhanced ion conduction in imidazolium-type molten salts publication-title: Electrochim Acta doi: 10.1016/S0013-4686(99)00335-7 – volume: 262 start-page: 747 year: 2014 end-page: 753 ident: CR40 article-title: A single-ion gel polymer electrolyte based on polymeric lithium tartaric acid borate and its superior battery performance publication-title: Solid State Ionics doi: 10.1016/j.ssi.2013.09.007 – volume: 70 start-page: 203 year: 1994 end-page: 207 ident: CR76 article-title: High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3 (Ln= La, Pr, Nd, Sm) publication-title: Solid State Ionics doi: 10.1016/0167-2738(94)90310-7 – volume: 221 start-page: 1 year: 2012 end-page: 5 ident: CR4 article-title: Mechanochemical synthesis of Li-argyrodite Li 6 PS 5 X (X= Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application publication-title: Solid State Ionics doi: 10.1016/j.ssi.2012.06.008 – ident: CR104 – volume: 56 start-page: 3926 issue: 11 year: 2011 end-page: 3933 ident: CR8 article-title: Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.02.025 – volume: 10 start-page: 2307 issue: 9 year: 1998 end-page: 2308 ident: CR60 article-title: Highly conductive polymer electrolytes containing rigid polymers publication-title: Chem Mater doi: 10.1021/cm980170z – volume: 362 start-page: 137 issue: 6416 year: 1993 end-page: 139 ident: CR54 article-title: Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity publication-title: Nature doi: 10.1038/362137a0 – volume: 50 start-page: 3891 issue: 19 year: 2005 end-page: 3896 ident: CR89 article-title: Effect of the silica precursor on the conductivity of hectorite-derived polymer nanocomposites publication-title: Electrochim Acta doi: 10.1016/j.electacta.2005.02.040 – volume: 12 start-page: 1152 issue: 3 year: 2012 end-page: 1156 ident: CR64 article-title: High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers publication-title: Nano Lett doi: 10.1021/nl202692y – volume: 113 start-page: 52 issue: 1 year: 2016 end-page: 57 ident: CR56 article-title: Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1520394112 – volume: 46 start-page: 797 year: 2017 end-page: 815 ident: CR25 article-title: Single Lithium-ion conducting solid polymer electrolytes: advances and perspectives publication-title: Chem Soc Rev doi: 10.1039/C6CS00491A – volume: 45 start-page: 1295 year: 2000 ident: 3638_CR45 publication-title: Electrochim Acta doi: 10.1016/S0013-4686(99)00335-7 – volume: 362 start-page: 137 issue: 6416 year: 1993 ident: 3638_CR54 publication-title: Nature doi: 10.1038/362137a0 – volume: 14 start-page: 1026 year: 2015 ident: 3638_CR79 publication-title: Nat Mater doi: 10.1038/nmat4369 – volume: 306 start-page: 152 year: 2016 ident: 3638_CR30 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.12.010 – volume: 19 start-page: 1835 issue: 12 year: 2013 ident: 3638_CR10 publication-title: Ionics doi: 10.1007/s11581-013-0922-1 – ident: 3638_CR52 doi: 10.1149/1.2722538 – volume: 262 start-page: 747 year: 2014 ident: 3638_CR40 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2013.09.007 – ident: 3638_CR46 – volume: 329 start-page: 530 year: 2016 ident: 3638_CR84 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.08.115 – volume-title: Solid polymer electrolytes: fundamentals and technological applications year: 1991 ident: 3638_CR7 – volume: 102 start-page: 2405 issue: 6 year: 2002 ident: 3638_CR75 publication-title: Chem Rev doi: 10.1021/cr0103064 – ident: 3638_CR97 doi: 10.1039/C4TA00716F – volume: 70 start-page: 203 year: 1994 ident: 3638_CR76 publication-title: Solid State Ionics doi: 10.1016/0167-2738(94)90310-7 – ident: 3638_CR104 – volume: 55 start-page: 2521 year: 2016 ident: 3638_CR19 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201509299 – volume: 278 start-page: 98 year: 2015 ident: 3638_CR78 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2015.06.001 – volume: 4 start-page: 17251 issue: 44 year: 2016 ident: 3638_CR72 publication-title: J Mater Chem A doi: 10.1039/C6TA07384K – volume: 4 start-page: 15266 year: 2016 ident: 3638_CR87 publication-title: J Mater Chem A doi: 10.1039/C6TA05439K – volume: 8 start-page: 10350 issue: 16 year: 2016 ident: 3638_CR50 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b01973 – volume: 10 start-page: 2307 issue: 9 year: 1998 ident: 3638_CR60 publication-title: Chem Mater doi: 10.1021/cm980170z – volume: 11 start-page: 131 issue: 29 year: 2008 ident: 3638_CR23 publication-title: ECS Trans doi: 10.1149/1.2938916 – volume: 28 start-page: 2324 issue: 13 year: 1987 ident: 3638_CR6 publication-title: Polymer doi: 10.1016/0032-3861(87)90394-6 – volume: 157 start-page: A846 issue: 7 year: 2010 ident: 3638_CR11 publication-title: J Electrochem Soc doi: 10.1149/1.3428710 – volume: 40 start-page: 2397 issue: 13 year: 1995 ident: 3638_CR55 publication-title: Electrochim Acta doi: 10.1016/0013-4686(95)00202-P – volume: 8 start-page: 387 issue: 11 year: 2016 ident: 3638_CR67 publication-title: Polymers doi: 10.3390/polym8110387 – volume: 3 start-page: 14934 issue: 35 year: 2013 ident: 3638_CR34 publication-title: RSC Adv doi: 10.1039/c3ra41167b – volume: 7 start-page: 6823 issue: 34 year: 1995 ident: 3638_CR15 publication-title: J Phys Condens Matter doi: 10.1088/0953-8984/7/34/007 – volume: 221 start-page: 1 year: 2012 ident: 3638_CR4 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2012.06.008 – volume: 45 start-page: 1237 issue: 8 year: 2000 ident: 3638_CR59 publication-title: Electrochim Acta doi: 10.1016/S0013-4686(99)00386-2 – volume: 49 start-page: 6111 issue: 17 year: 2014 ident: 3638_CR26 publication-title: J Mater Sci doi: 10.1007/s10853-014-8341-x – volume-title: Handbook of solid state batteries year: 2015 ident: 3638_CR71 – volume: 149 start-page: A667 issue: 6 year: 2002 ident: 3638_CR94 publication-title: J Electrochem Soc doi: 10.1149/1.1470652 – volume: 45 start-page: 1229 issue: 8 year: 2000 ident: 3638_CR102 publication-title: Electrochim Acta doi: 10.1016/S0013-4686(99)00385-0 – volume: 1 start-page: 1108 issue: 4 year: 2013 ident: 3638_CR22 publication-title: J Mater Chem A doi: 10.1039/C2TA00628F – volume-title: Fast ion transport in solids: electrodes and electrolytes year: 1979 ident: 3638_CR5 – volume: 4 start-page: E1 issue: 1 year: 2001 ident: 3638_CR35 publication-title: Electrochem Solid-State Lett doi: 10.1149/1.1344281 – volume: 135 start-page: 1167 year: 2013 ident: 3638_CR33 publication-title: J Am Chem Soc doi: 10.1021/ja3091438 – volume: 2 start-page: 545 issue: 11 year: 1990 ident: 3638_CR93 publication-title: Adv Mater doi: 10.1002/adma.19900021108 – volume: 139 start-page: 264 year: 2014 ident: 3638_CR29 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2014.06.173 – volume: 268 start-page: 294 year: 2014 ident: 3638_CR42 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2014.10.013 – volume: 115 start-page: 14938 issue: 50 year: 2011 ident: 3638_CR66 publication-title: J Phys Chem B doi: 10.1021/jp208330h – volume: 1 start-page: 16030 year: 2016 ident: 3638_CR85 publication-title: Nat Energy doi: 10.1038/nenergy.2016.30 – volume: 157 start-page: 233 issue: 1 year: 2003 ident: 3638_CR58 publication-title: Solid State Ionics doi: 10.1016/S0167-2738(02)00215-1 – volume: 57 start-page: 14 year: 2011 ident: 3638_CR13 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.03.074 – volume: 93 start-page: 254 year: 2013 ident: 3638_CR14 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.01.119 – volume: 42 start-page: 39 issue: 4 year: 2014 ident: 3638_CR9 publication-title: Prog Solid State Chem – volume: 50 start-page: 3891 issue: 19 year: 2005 ident: 3638_CR89 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2005.02.040 – volume: 116 start-page: 140 issue: 1 year: 2015 ident: 3638_CR2 publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00563 – volume: 22 start-page: 5814 issue: 21 year: 2010 ident: 3638_CR100 publication-title: Chem Mater doi: 10.1021/cm101407d – volume: 129 start-page: 1 issue: 1 year: 2004 ident: 3638_CR12 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2003.11.016 – volume-title: Encyclopedia of electrochemical power sources, vol 5 year: 2009 ident: 3638_CR1 – volume: 147 start-page: 295 issue: 3 year: 2002 ident: 3638_CR57 publication-title: Solid State Ionics doi: 10.1016/S0167-2738(02)00032-2 – volume: 162 start-page: A2551 issue: 14 year: 2015 ident: 3638_CR101 publication-title: J Electrochem Soc doi: 10.1149/2.0161514jes – volume: 8 start-page: 10350 year: 2016 ident: 3638_CR61 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b01973 – ident: 3638_CR99 doi: 10.1016/j.jpowsour.2012.05.025 – volume: 6 start-page: 3548 issue: 12 year: 2013 ident: 3638_CR81 publication-title: Energy Environ Sci doi: 10.1039/c3ee41728j – volume: 113 start-page: 52 issue: 1 year: 2016 ident: 3638_CR56 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1520394112 – volume: 6 start-page: 5499 year: 2015 ident: 3638_CR21 publication-title: Chem Sci doi: 10.1039/C5SC02052B – volume: 3 start-page: 7773 year: 2015 ident: 3638_CR27 publication-title: J Mater Chem A doi: 10.1039/C5TA00216H – volume: 28 start-page: 188 issue: 1 year: 2015 ident: 3638_CR37 publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b03735 – volume: 53 start-page: 1409 issue: 4 year: 2007 ident: 3638_CR103 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2007.03.037 – volume: 13 start-page: 4698 issue: 12 year: 2001 ident: 3638_CR18 publication-title: Chem Mater doi: 10.1021/cm000420n – ident: 3638_CR24 doi: 10.1038/nmat3602 – volume: 177 start-page: 741 issue: 7 year: 2006 ident: 3638_CR16 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2006.01.039 – volume: 175 start-page: 18 year: 2015 ident: 3638_CR48 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.03.038 – volume: 5 start-page: 127 issue: 2 year: 2000 ident: 3638_CR62 publication-title: J Electroceram doi: 10.1023/A:1009958118260 – volume: 394 start-page: 456 issue: 6692 year: 1998 ident: 3638_CR63 publication-title: Nature doi: 10.1038/28818 – ident: 3638_CR51 – volume: 137 start-page: 1023 issue: 4 year: 1990 ident: 3638_CR73 publication-title: J Electrochem Soc doi: 10.1149/1.2086597 – volume: 114 start-page: 325 year: 2013 ident: 3638_CR90 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.09.106 – volume: 92 start-page: 132 year: 2013 ident: 3638_CR28 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.01.026 – volume: 25 start-page: 1395 issue: 10 year: 2013 ident: 3638_CR98 publication-title: Adv Mater doi: 10.1002/adma.201204182 – volume: 108 start-page: 14907 issue: 39 year: 2004 ident: 3638_CR53 publication-title: J Phys Chem B doi: 10.1021/jp049195d – volume: 6 start-page: 1052 issue: 7 year: 2015 ident: 3638_CR20 publication-title: Polym Chem doi: 10.1039/C4PY01603C – volume: 229 start-page: 117 year: 2013 ident: 3638_CR86 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.11.130 – volume: 47 start-page: 755 issue: 4 year: 2008 ident: 3638_CR3 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200703900 – volume: 162 start-page: D3084 issue: 11 year: 2015 ident: 3638_CR91 publication-title: J Electrochem Soc doi: 10.1149/2.0221511jes – volume: 4 start-page: 43857 issue: 83 year: 2014 ident: 3638_CR32 publication-title: RSC Adv doi: 10.1039/C4RA08709G – volume: 39 start-page: 2884 issue: 6 year: 2014 ident: 3638_CR68 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2013.11.009 – volume: 175 start-page: 113 year: 2015 ident: 3638_CR69 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.03.149 – volume: 195 start-page: 3668 issue: 11 year: 2010 ident: 3638_CR47 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.11.146 – volume: 3 start-page: 20267 issue: 40 year: 2015 ident: 3638_CR36 publication-title: J Mater Chem A doi: 10.1039/C5TA02628H – volume: 7 start-page: 627 issue: 2 year: 2014 ident: 3638_CR82 publication-title: Energy Environ Sci doi: 10.1039/C3EE41655K – volume: 2 start-page: 25 year: 2014 ident: 3638_CR74 publication-title: Front Energy Res – volume: 20 start-page: 3393 issue: 12 year: 2016 ident: 3638_CR92 publication-title: J Solid State Electrochem doi: 10.1007/s10008-016-3303-7 – volume: 12 start-page: 1152 issue: 3 year: 2012 ident: 3638_CR64 publication-title: Nano Lett doi: 10.1021/nl202692y – volume: 373 start-page: 557 year: 1995 ident: 3638_CR83 publication-title: Nature doi: 10.1038/373557a0 – volume: 46 start-page: 797 year: 2017 ident: 3638_CR25 publication-title: Chem Soc Rev doi: 10.1039/C6CS00491A – volume: 87 start-page: 113 year: 2013 ident: 3638_CR39 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.08.114 – volume: 2 start-page: 10712 issue: 28 year: 2014 ident: 3638_CR96 publication-title: J Mater Chem A doi: 10.1039/C4TA00716F – volume: 36 start-page: 1629 year: 2011 ident: 3638_CR43 publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2011.05.007 – volume: 47 start-page: 3625 issue: 11 year: 2014 ident: 3638_CR65 publication-title: Macromolecules doi: 10.1021/ma500072j – volume: 22 start-page: 29 year: 2012 ident: 3638_CR38 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2012.05.022 – volume: 1 start-page: 678 issue: 4 year: 2016 ident: 3638_CR41 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.6b00216 – volume: 91 start-page: 21 issue: 1–2 year: 1996 ident: 3638_CR77 publication-title: Solid State Ionics doi: 10.1016/S0167-2738(96)00434-1 – volume: 50 start-page: 1139 issue: 5 year: 2005 ident: 3638_CR17 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2004.08.011 – volume: 10 start-page: 682 issue: 9 year: 2011 ident: 3638_CR80 publication-title: Nat Mater doi: 10.1038/nmat3066 – volume: 8 start-page: 482 issue: 3 year: 2006 ident: 3638_CR49 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2006.01.013 – volume: 2 start-page: 481 year: 2012 ident: 3638_CR95 publication-title: Sci Rep doi: 10.1038/srep00481 – volume: 194 start-page: 66 issue: 1 year: 2009 ident: 3638_CR88 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.01.070 – volume: 162 start-page: 685 issue: 1 year: 2006 ident: 3638_CR31 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.07.038 – volume: 56 start-page: 3926 issue: 11 year: 2011 ident: 3638_CR8 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.02.025 – volume-title: Electrochemical aspects of ionic liquids year: 2005 ident: 3638_CR44 – volume: 86 start-page: 2346 issue: 4 year: 1999 ident: 3638_CR70 publication-title: J Appl Phys doi: 10.1063/1.371053 |
SSID | ssj0017610 |
Score | 2.4423175 |
Snippet | Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1879 |
SubjectTerms | Analytical Chemistry Anions Cationic polymerization Ceramics Chain branching Chains (polymeric) Characterization and Evaluation of Materials Chemical bonds Chemistry Chemistry and Materials Science Condensed Matter Physics Conduction Conductors Crystal structure Electrochemical analysis Electrochemistry Electrolytes Energy Storage Ethylene oxide Fillers Flammability Grain boundaries Lithium Lithium batteries Lithium-ion batteries Molten salt electrolytes Nonaqueous electrolytes Physical Chemistry Polyethylenes Polymers Receptors Rechargeable batteries Review Solid electrolytes Thermal conductivity |
Title | On the way to high-conductivity single lithium-ion conductors |
URI | https://link.springer.com/article/10.1007/s10008-017-3638-8 https://www.proquest.com/docview/1918882623 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aHvQiPrFaSw6elECSTbebg4dSWouiXizU05LXolC30gfiv3eS7rZVVPCcx2EySb7JZL4PoXPumLLaxcRa7ohQCSMqiynRisdG0UhFQT_l7j7uD8TNsDks6rin5W_3MiUZTuq1YreQqodTNQKnIckmqjZ96A5OPODtZeoA4vJQBSki2OrgnmUq86cpvl5GK4T5LSka7preLtopQCJuL1Z1D224fB9tdUpttgN09ZBjQG74XX3g2Rh7zmECga3nbg1iENi_AIwcBoz9_DJ_JWB8XLSPJ9NDNOh1Hzt9UgghECM4mxErE9PyxHNSUBMI6QUzWlDHJeAXk0ijuM0ACDCTSc1tCzBg5qt4mOPMxC46QpV8nLtjhLkGSBAJzTKaCWmE1JTZJk-0jagTktYQLS2SmoIl3ItVjNIVvzENypWslXojpkkNXSyHvC0oMv7qXC_NnBa7ZZpCzAiBOAckVkOXpenXmn-b7ORfvU_RNvdLH_7a1lFlNpm7M0AUM91A1fb10223ETzpE3o-we4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0UD3gxfkYUtQdPmiZttyzbgwdCJKiAF0i4bdpuN5rgYmCJ8d87LbuIRk08t9vD7LR905l5D6FLbplKtA1JknBLhIoYUWlIiVY8NIoGKvD6Kf1B2B2J-3FjXPRxz8tq9zIl6U_qtWY3n6qHUzUApyHRJtoCLBC5Oq4Rb61SBxCX-y5IEcBWB_csU5k_LfH1MvpEmN-Sov6u6eyinQIk4tbyr-6hDZvto2q71GY7QDePGQbkht_UO86n2HEOEwhsHXerF4PA7gVgYjFg7KfnxQsB4-NifDqbH6JR53bY7pJCCIEYwVlOEhmZpiOek4IaT0gvmNGCWi4Bv5hIGsWTFIAAM6nUPGkCBkxdFw-znJnQBkeokk0ze4ww1wAJAqFZSlMhjZCasqTBI50E1ApJa4iWFolNwRLuxCom8Se_MfXKlawZOyPGUQ1drT55XVJk_DW5Xpo5LnbLPIaYEQJxDkishq5L068N_7bYyb9mX6Bqd9jvxb27wcMp2ubODXzdbR1V8tnCngG6yPW596YPqv3DTQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQb2IT6xWzcGTEppk0-3uwUOpFt96sNDbkteiULel3SL-eyfpbq2igudkA5lMkm92Mt-H0DG3TBplQ2IMt0TIiBGZhpQoyUMtaSADr59ydx9edsV1r9ErdE7H5Wv3MiU5rWlwLE1ZXh-atD5X-ObT9nDCBuBAJFpES3AaM-fWXd6apREgRvcVkSKAbQ-uWqY1fxri68X0iTa_JUj9vdNZR2sFYMSt6QpvoAWbbaKVdqnTtoXOHjIMKA6_yXecD7DjHyYwG8fj6oUhsPsb0LcY8Pbzy-SVwELgon0wGm-jbufiqX1JClEEogVnOTFxpJuOhC4WVHtyesG0EtTyGLCMjmItuUkBFDCdxoqbJuDB1FX0MMuZDm2wgyrZILO7CHMF8CAQiqU0FbEWsaLMNHikTECtiGkV0dIiiS4Yw51wRT_55DqmXsWSNRNnxCSqopPZJ8MpXcZfnWulmZNi54wTiB8hKOeAyqrotDT9XPNvg-39q_cRWn487yS3V_c3-2iVOy_wT3BrqJKPJvYAgEauDr0zfQBdrseJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+way+to+high-conductivity+single+lithium-ion+conductors&rft.jtitle=Journal+of+solid+state+electrochemistry&rft.au=Strauss%2C+E.&rft.au=Menkin%2C+S.&rft.au=Golodnitsky%2C+D.&rft.date=2017-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-8488&rft.eissn=1433-0768&rft.volume=21&rft.issue=7&rft.spage=1879&rft.epage=1905&rft_id=info:doi/10.1007%2Fs10008-017-3638-8&rft.externalDocID=10_1007_s10008_017_3638_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-8488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-8488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-8488&client=summon |