Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress
Environmental pollution, increasing CO2 atmospheric levels and the greenhouse effect are closely associated with the ongoing climate change and the extreme climatic events we are witnessing all over the Earth. Drought, high temperature and salinity are among the main environmental stresses that nega...
Saved in:
Published in | Agriculture (Basel) Vol. 11; no. 5; p. 463 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
19.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Environmental pollution, increasing CO2 atmospheric levels and the greenhouse effect are closely associated with the ongoing climate change and the extreme climatic events we are witnessing all over the Earth. Drought, high temperature and salinity are among the main environmental stresses that negatively affect the yield of numerous crops, challenging the world food safety. These effects are more profound in vegetable crops which are generally more susceptible to climate change than field or tree crops. The response to single or combined environmental stressors involves various changes in plant morphology and physiology or in molecular processes. Knowing the mechanisms behind these responses may help towards the creation of more tolerant genotypes in the long-term. However, the imediacy of the problem requires urgently short-term measures such as the use of eco-sustainable agricultural practices which can alleviate the negative effects of environmental pollution and allow vegetable crops to adapt to adverse climatic conditions. In this review, the main abiotic stressors were examined, namely drought, heat and salinity stress, focusing on the mechanisms involved in the most common vegetable crops responses. Moreover, the use of eco-sustainable cultural techniques, such as biostimulants, grafting and genomic sequencing techniques, to increase the quality of tomato crop under adverse environmental conditions are also presented. |
---|---|
AbstractList | Environmental pollution, increasing CO₂ atmospheric levels and the greenhouse effect are closely associated with the ongoing climate change and the extreme climatic events we are witnessing all over the Earth. Drought, high temperature and salinity are among the main environmental stresses that negatively affect the yield of numerous crops, challenging the world food safety. These effects are more profound in vegetable crops which are generally more susceptible to climate change than field or tree crops. The response to single or combined environmental stressors involves various changes in plant morphology and physiology or in molecular processes. Knowing the mechanisms behind these responses may help towards the creation of more tolerant genotypes in the long-term. However, the imediacy of the problem requires urgently short-term measures such as the use of eco-sustainable agricultural practices which can alleviate the negative effects of environmental pollution and allow vegetable crops to adapt to adverse climatic conditions. In this review, the main abiotic stressors were examined, namely drought, heat and salinity stress, focusing on the mechanisms involved in the most common vegetable crops responses. Moreover, the use of eco-sustainable cultural techniques, such as biostimulants, grafting and genomic sequencing techniques, to increase the quality of tomato crop under adverse environmental conditions are also presented. Environmental pollution, increasing CO2 atmospheric levels and the greenhouse effect are closely associated with the ongoing climate change and the extreme climatic events we are witnessing all over the Earth. Drought, high temperature and salinity are among the main environmental stresses that negatively affect the yield of numerous crops, challenging the world food safety. These effects are more profound in vegetable crops which are generally more susceptible to climate change than field or tree crops. The response to single or combined environmental stressors involves various changes in plant morphology and physiology or in molecular processes. Knowing the mechanisms behind these responses may help towards the creation of more tolerant genotypes in the long-term. However, the imediacy of the problem requires urgently short-term measures such as the use of eco-sustainable agricultural practices which can alleviate the negative effects of environmental pollution and allow vegetable crops to adapt to adverse climatic conditions. In this review, the main abiotic stressors were examined, namely drought, heat and salinity stress, focusing on the mechanisms involved in the most common vegetable crops responses. Moreover, the use of eco-sustainable cultural techniques, such as biostimulants, grafting and genomic sequencing techniques, to increase the quality of tomato crop under adverse environmental conditions are also presented. |
Author | Rouphael, Youssef Giordano, Maria Petropoulos, Spyridon A. |
Author_xml | – sequence: 1 givenname: Maria orcidid: 0000-0001-5463-3768 surname: Giordano fullname: Giordano, Maria – sequence: 2 givenname: Spyridon A. orcidid: 0000-0002-0324-7960 surname: Petropoulos fullname: Petropoulos, Spyridon A. – sequence: 3 givenname: Youssef orcidid: 0000-0002-1002-8651 surname: Rouphael fullname: Rouphael, Youssef |
BookMark | eNp9kc9rFDEUx4NUsK79C7wEvHhwa37MTDJH2aotVASrnoTwNnmZZplN1iRz6H9v7BaRIuaSED6f73uP95ycxBSRkJecnUs5srcw5WCXuS4ZOWc96wb5hJwKptSadUqc_PV-Rs5K2bF2Ri41G07Jjy9YDikWpBAdvUCP0SL9hPYWYij7QpOn33HCCtsZ6SanQ6EwQYil0ouclum2vqGXCPXev4E5xFDv6E3NWMoL8tTDXPDs4V6Rbx_ef91crq8_f7zavLte207wunacwVZZ5gbhYVQeNfRMWg4ax94NXvE2ku5B-62UTQGJqBWCZmMnuVZyRa6OuS7Bzhxy2EO-MwmCuf9IeTKQa7AzGoEc0I56GIXtkCsYtt5hq-qcRulYy3p9zDrk9HPBUs0-FIvzDBHTUozoe8GEbHUb-uoRuktLjm3SRkkuG9kaXBF5pGxOpWT0fxrkzPxeoPnHAps1PrJsqFBDijVDmP_r_gJq06Zx |
CitedBy_id | crossref_primary_10_3390_horticulturae10101063 crossref_primary_10_1080_08941920_2025_2475503 crossref_primary_10_1007_s10343_025_01128_6 crossref_primary_10_3389_fpls_2021_787292 crossref_primary_10_1016_j_plaphy_2024_109162 crossref_primary_10_1371_journal_pone_0295512 crossref_primary_10_3389_fpls_2023_1077140 crossref_primary_10_3390_horticulturae7120517 crossref_primary_10_17660_ActaHortic_2024_1391_83 crossref_primary_10_3389_fpls_2021_740524 crossref_primary_10_1080_01140671_2024_2432624 crossref_primary_10_1080_21645698_2022_2106111 crossref_primary_10_1134_S0012496623700485 crossref_primary_10_1016_j_stress_2023_100152 crossref_primary_10_3389_fpls_2022_1074889 crossref_primary_10_1111_jfbc_14056 crossref_primary_10_33619_2414_2948_102_25 crossref_primary_10_1111_plb_13510 crossref_primary_10_1007_s12892_023_00196_2 crossref_primary_10_3390_horticulturae9060673 crossref_primary_10_1007_s42729_022_01044_y crossref_primary_10_1016_j_stress_2023_100319 crossref_primary_10_1080_1343943X_2024_2439874 crossref_primary_10_3390_horticulturae7070160 crossref_primary_10_1039_D3NR02322B crossref_primary_10_1007_s12355_023_01355_z crossref_primary_10_1007_s10142_023_00967_8 crossref_primary_10_3390_agronomy13112675 crossref_primary_10_1038_s41598_024_64537_z crossref_primary_10_3390_su13126869 crossref_primary_10_1007_s11356_025_35952_0 crossref_primary_10_3390_agronomy13092314 crossref_primary_10_1079_cabireviews_2024_0025 crossref_primary_10_3390_agriculture12020259 crossref_primary_10_1155_2023_3238867 crossref_primary_10_1111_plb_13368 crossref_primary_10_33202_comuagri_1361583 crossref_primary_10_1016_j_stress_2023_100268 crossref_primary_10_1007_s10343_024_00975_z crossref_primary_10_1007_s00203_024_03879_8 crossref_primary_10_48130_vegres_0024_0034 crossref_primary_10_3390_agriculture13091823 crossref_primary_10_3390_stresses2010009 crossref_primary_10_1016_j_plaphy_2024_108644 crossref_primary_10_1007_s00344_023_11146_1 crossref_primary_10_3390_horticulturae8070645 crossref_primary_10_3390_ijms232214216 crossref_primary_10_3390_horticulturae9101080 crossref_primary_10_3390_ijms252413297 crossref_primary_10_3390_insects13040351 crossref_primary_10_1038_s41598_024_79178_5 crossref_primary_10_1590_0103_8478cr20210913 crossref_primary_10_3390_ijms24043738 crossref_primary_10_3390_agronomy12030739 crossref_primary_10_1016_j_jafr_2023_100713 crossref_primary_10_31857_S2686738923600164 crossref_primary_10_1080_21645698_2024_2445795 crossref_primary_10_3390_horticulturae9111161 crossref_primary_10_1007_s42729_025_02365_4 crossref_primary_10_1007_s41748_023_00349_x crossref_primary_10_1007_s42729_024_02025_z crossref_primary_10_1016_j_scienta_2023_112454 crossref_primary_10_3390_ijms24043190 crossref_primary_10_16882_hortis_1479101 crossref_primary_10_3390_agronomy11061237 crossref_primary_10_1038_s41598_024_75434_w crossref_primary_10_3390_ijms222413362 crossref_primary_10_3390_ijerph191710883 crossref_primary_10_3390_plants11060800 crossref_primary_10_3390_plants13121701 crossref_primary_10_1016_j_scienta_2025_114031 crossref_primary_10_3390_agronomy14010173 crossref_primary_10_1111_pce_14783 crossref_primary_10_3390_plants12040928 crossref_primary_10_3390_agronomy15030626 crossref_primary_10_1016_j_scienta_2024_113456 crossref_primary_10_1016_j_scienta_2022_111039 crossref_primary_10_1016_j_scienta_2023_112648 crossref_primary_10_1080_07352689_2024_2351678 crossref_primary_10_1186_s12870_025_06187_5 crossref_primary_10_1186_s12870_024_04836_9 crossref_primary_10_3389_fpls_2023_1121780 crossref_primary_10_3390_plants13101335 crossref_primary_10_1186_s12870_025_06078_9 crossref_primary_10_3389_fpls_2022_1050359 crossref_primary_10_3390_horticulturae10111186 crossref_primary_10_3390_plants11212852 crossref_primary_10_1016_j_stress_2024_100359 crossref_primary_10_3389_fpls_2023_1215394 crossref_primary_10_1007_s40626_023_00286_0 crossref_primary_10_1186_s12870_024_04905_z crossref_primary_10_3390_antiox13040448 crossref_primary_10_1007_s13199_023_00897_w crossref_primary_10_1007_s42729_023_01127_4 crossref_primary_10_3390_agriculture13030685 crossref_primary_10_1007_s10343_022_00675_6 crossref_primary_10_3389_fpls_2021_786309 crossref_primary_10_3389_fpls_2024_1403895 crossref_primary_10_1016_j_geosus_2024_07_007 crossref_primary_10_1016_j_toxrep_2023_09_003 crossref_primary_10_1016_j_micres_2024_127708 crossref_primary_10_3390_horticulturae10020156 crossref_primary_10_3390_ijms24032249 crossref_primary_10_1002_sae2_12061 crossref_primary_10_3390_agronomy13071843 crossref_primary_10_1371_journal_pone_0283900 crossref_primary_10_3390_agriculture11121227 crossref_primary_10_1007_s13580_024_00663_x crossref_primary_10_3390_agronomy12102351 crossref_primary_10_1590_1519_6984_274595 crossref_primary_10_3390_agronomy12092014 crossref_primary_10_1186_s12870_024_04998_6 crossref_primary_10_3390_plants13172464 crossref_primary_10_3390_ijms241813876 crossref_primary_10_3390_ijpb14010010 crossref_primary_10_1016_j_agwat_2025_109311 crossref_primary_10_3389_fpls_2024_1484251 crossref_primary_10_4236_as_2023_142018 crossref_primary_10_1016_j_jaap_2024_106851 crossref_primary_10_3390_agronomy14051048 crossref_primary_10_1016_j_envexpbot_2024_105924 crossref_primary_10_1016_j_scienta_2023_112130 crossref_primary_10_3389_fpls_2022_949541 crossref_primary_10_2139_ssrn_4517869 crossref_primary_10_1186_s12864_024_10704_5 crossref_primary_10_3390_plants10071472 crossref_primary_10_1071_CP22192 crossref_primary_10_1016_j_plantsci_2023_111764 crossref_primary_10_1007_s42729_025_02296_0 crossref_primary_10_1111_1541_4337_70139 crossref_primary_10_3389_fpls_2022_1072782 crossref_primary_10_3390_plants12091836 crossref_primary_10_3390_plants13111552 crossref_primary_10_3389_fsufs_2023_1237206 crossref_primary_10_3389_fmicb_2023_1171980 crossref_primary_10_3390_agronomy13020463 |
Cites_doi | 10.3389/fpls.2017.01147 10.17660/ActaHortic.2020.1268.17 10.4161/psb.6.11.17613 10.1007/s11816-016-0392-9 10.1016/j.scienta.2014.05.023 10.1126/science.1204531 10.1007/978-94-007-2220-0 10.1016/j.scienta.2017.09.046 10.1007/978-981-15-1322-0 10.1371/journal.pone.0069810 10.7717/peerj.5082 10.1007/978-981-13-6883-7_15 10.1093/jxb/erp069 10.1016/j.wace.2016.01.002 10.21273/HORTSCI13954-19 10.1093/pcp/pct054 10.1111/jac.12393 10.1080/19315260.2011.570419 10.3389/fpls.2018.01655 10.1080/14620316.2019.1700173 10.1104/pp.106.092635 10.1073/pnas.1701762114 10.1017/S0021859613000804 10.1002/dvg.1020010406 10.1021/jf0733719 10.1016/S1161-0301(02)00004-7 10.1007/978-1-4614-0815-4 10.1007/978-981-15-9132-7_2 10.1038/s41598-020-63809-8 10.1016/j.scienta.2018.02.026 10.1016/j.scienta.2008.10.016 10.1093/jxb/erw157 10.1002/jsfa.5861 10.3389/fpls.2016.00187 10.1007/s11104-011-1108-0 10.1111/ppl.12540 10.1016/j.foodchem.2016.07.080 10.3390/agronomy8030025 10.1016/j.envexpbot.2010.12.017 10.1016/j.bbrc.2013.01.104 10.3389/fpls.2018.00985 10.1016/j.scienta.2015.09.021 10.3329/bjar.v35i3.6459 10.1007/978-981-15-2156-0_5 10.1016/S1875-2780(09)60022-5 10.1074/mcp.RA117.000135 10.1021/pr800460y 10.1016/j.envexpbot.2012.02.009 10.1016/j.tplants.2016.08.009 10.1016/j.scienta.2007.10.008 10.3390/horticulturae4020011 10.3390/agronomy10070967 10.1016/j.scienta.2012.03.028 10.3389/fpls.2018.01197 10.1186/s12870-018-1299-0 10.3389/fpls.2017.02202 10.3390/agronomy9060335 10.3389/fpls.2014.00448 10.1016/j.jenvman.2020.110320 10.21273/HORTSCI11414-16 10.3390/metabo9120303 10.1016/j.scienta.2010.08.004 10.1007/s13562-020-00556-x 10.1016/j.scienta.2015.09.012 10.1139/cjb-2018-0125 10.1155/2020/3645371 10.3390/plants8020034 10.1111/pce.13366 10.1016/j.plaphy.2009.12.007 10.1186/s12870-015-0535-0 10.1016/j.jclepro.2017.09.224 10.1016/j.ecoenv.2004.06.010 10.1002/jsfa.1846 10.3389/fpls.2017.00935 10.1016/j.agwat.2018.07.015 10.21775/cimb.023.001 10.3390/agronomy10121976 10.1146/annurev.arplant.59.032607.092911 10.21273/HORTSCI13510-18 10.1007/s11356-014-3739-1 10.1093/jxb/ery420 10.3390/plants10020326 10.3390/plants9070922 10.1016/j.tplants.2004.03.006 10.1016/j.jplph.2018.10.003 10.1016/j.cell.2016.08.029 10.1111/pce.13207 10.1111/pbi.12659 10.1016/j.sajb.2020.10.031 10.3390/agronomy10091358 10.1016/j.scienta.2015.08.037 10.1073/pnas.1222463110 10.3389/fpls.2017.01130 10.1016/j.envexpbot.2010.05.011 10.1016/j.pbi.2011.03.002 10.1016/j.plaphy.2019.05.012 10.1080/14620316.2018.1537725 10.1016/j.tplants.2009.11.009 10.1007/s13580-011-0012-0 10.1038/s41598-018-30897-6 10.1016/j.tplants.2013.09.008 10.1016/j.envexpbot.2016.01.008 10.1016/j.scienta.2020.109578 10.5772/45842 10.1002/9781119324928.ch7 10.1111/jac.12266 10.1016/j.jplph.2008.08.001 10.3906/tar-1701-95 10.1007/s13580-015-0122-1 10.1016/j.plaphy.2018.05.008 10.21273/HORTSCI12667-17 10.1016/j.indcrop.2012.06.020 10.3389/fpls.2016.00114 10.1016/j.scitotenv.2017.10.247 10.1111/j.1469-8137.2005.01487.x 10.1002/9783527675265 10.1093/jxb/ern053 10.1016/j.fcr.2016.04.012 10.1016/j.scitotenv.2018.08.349 10.1007/978-981-13-6883-7_22 10.1126/science.aat3466 10.3389/fpls.2018.00617 10.3389/fpls.2016.00948 10.1016/j.wace.2015.08.001 10.3390/ijms12042488 10.1002/pmic.200800340 10.1016/j.crm.2016.12.001 10.1007/s12230-019-09716-9 10.1021/acs.jafc.7b02745 10.1016/j.scienta.2014.11.022 10.1186/s12870-018-1490-3 10.1016/S1360-1385(00)01838-0 10.1016/j.scienta.2018.06.016 10.1146/annurev-ecolsys-110512-135806 10.1007/s11104-018-3802-7 10.1111/jfq.12066 10.1016/j.cpb.2016.09.001 10.1007/978-1-4020-5578-2 10.1093/jxb/eraa034 10.3390/ijms140611607 10.3390/molecules24010185 10.13080/z-a.2017.104.034 10.1080/15427528.2014.921800 10.1016/j.scienta.2018.02.048 10.3389/fpls.2019.00563 10.1111/j.1469-8137.2008.02478.x 10.3390/agronomy10030427 10.1016/j.scienta.2021.109943 10.3390/plants7040089 10.1007/s13593-014-0260-3 10.1002/jsfa.9423 10.17957/IJAB/15.0107 10.1111/pbi.12760 10.1007/s11104-014-2131-8 10.1016/j.plaphy.2009.12.010 10.1007/s10725-020-00658-5 10.1016/j.scienta.2018.02.033 10.3390/agronomy10020263 10.11118/actaun.2021.009 10.1016/j.jclepro.2019.119920 10.1080/07388551.2021.1874280 10.1111/nph.16536 10.1007/s11104-016-3007-x 10.1093/mp/ssn058 10.1105/tpc.104.022830 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 DOA |
DOI | 10.3390/agriculture11050463 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_2e1aec98692c4e17a6bfdea97dd8e3d0 10_3390_agriculture11050463 |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c421t-d10ab7c0d62fa97fe8a503c1a8e95d6f7146385a8fb33c42a3ee87ea809431873 |
IEDL.DBID | DOA |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:26:53 EDT 2025 Thu Jul 10 23:05:05 EDT 2025 Mon Jun 30 10:59:49 EDT 2025 Thu Apr 24 22:51:10 EDT 2025 Tue Jul 01 02:12:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-d10ab7c0d62fa97fe8a503c1a8e95d6f7146385a8fb33c42a3ee87ea809431873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1002-8651 0000-0002-0324-7960 0000-0001-5463-3768 |
OpenAccessLink | https://doaj.org/article/2e1aec98692c4e17a6bfdea97dd8e3d0 |
PQID | 2531355294 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2e1aec98692c4e17a6bfdea97dd8e3d0 proquest_miscellaneous_2552023318 proquest_journals_2531355294 crossref_primary_10_3390_agriculture11050463 crossref_citationtrail_10_3390_agriculture11050463 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210519 |
PublicationDateYYYYMMDD | 2021-05-19 |
PublicationDate_xml | – month: 05 year: 2021 text: 20210519 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Roy (ref_168) 2011; 14 Jacob (ref_76) 2017; 15 Zandalinas (ref_24) 2018; 162 (ref_31) 2019; 4 ref_98 ref_132 Wakchaure (ref_33) 2020; 262 ref_95 Wang (ref_90) 2004; 9 Wiegant (ref_51) 2012; 11 Parida (ref_131) 2005; 60 Lucini (ref_151) 2015; 182 Selmar (ref_53) 2015; 35 Aghaei (ref_135) 2008; 7 Sarker (ref_154) 2019; 99 Moles (ref_47) 2018; 128 Rouphael (ref_187) 2018; 9 ref_120 Anjum (ref_45) 2012; 140 Calvo (ref_184) 2014; 383 ref_123 Kim (ref_143) 2008; 56 Oh (ref_96) 2015; 56 Xu (ref_124) 2011; 12 Colla (ref_156) 2013; 93 Pang (ref_147) 2012; 355 Walter (ref_4) 2013; 94 ref_159 ref_71 ref_158 Rayapuram (ref_23) 2018; 17 Hatfield (ref_69) 2015; 10 ref_79 ref_150 ref_157 Hastilestari (ref_106) 2018; 41 Munns (ref_149) 2008; 59 Mantovani (ref_62) 2019; 54 Akula (ref_144) 2011; 6 ref_160 Szabados (ref_41) 2010; 15 Cocetta (ref_109) 2018; 231 Akbarimoghaddam (ref_125) 2011; 9 Aghdam (ref_89) 2015; 153 Zhu (ref_119) 2001; 6 ref_83 ref_82 Nejat (ref_172) 2017; 23 Zhang (ref_130) 2020; 2020 Alam (ref_134) 2011; 71 ref_87 Forni (ref_16) 2017; 410 Munns (ref_137) 2005; 167 Bavougian (ref_162) 2018; 6 Ali (ref_84) 2017; 16 Sunkar (ref_93) 2004; 16 Saha (ref_129) 2010; 48 Tang (ref_107) 2018; 96 Deligios (ref_161) 2019; 649 Paim (ref_49) 2020; 272 Hellin (ref_68) 2014; 28 Chatterjee (ref_28) 2015; 1 Yang (ref_138) 2009; 2 Petropoulos (ref_152) 2017; 214 Chitwood (ref_118) 2016; 51 Bisbis (ref_116) 2018; 170 Bashandy (ref_66) 2021; 69 Caplan (ref_58) 2019; 54 Morris (ref_103) 2018; 16 Meise (ref_48) 2018; 204 Mallya (ref_34) 2016; 12 Barnett (ref_86) 1980; 1 Plantenga (ref_94) 2019; 70 Choi (ref_97) 2011; 52 Wang (ref_176) 2017; 65 Sahin (ref_46) 2018; 240 ref_113 Moreno (ref_148) 2013; 14 ref_112 Rouphael (ref_141) 2018; 234 Kumar (ref_139) 2009; 166 ref_104 Kumar (ref_29) 2012; 39 Flexas (ref_197) 2009; 60 Kaveh (ref_128) 2011; 5 ref_100 Saha (ref_110) 2010; 35 Zhu (ref_173) 2017; 22 Thakur (ref_50) 2020; 12 Akash (ref_115) 2012; 18 Aydin (ref_188) 2012; 7 Zhu (ref_1) 2016; 167 Lobell (ref_78) 2011; 333 ref_14 ref_13 Ghai (ref_114) 2016; 8 ref_19 ref_18 ref_17 Anjum (ref_32) 2017; 104 Olesen (ref_67) 2002; 16 Bulgari (ref_186) 2017; 8 Bettaieb (ref_56) 2009; 120 Selmar (ref_54) 2013; 42 Ruelland (ref_72) 2010; 69 Simeunovic (ref_22) 2016; 67 ref_25 Petropoulos (ref_59) 2004; 84 Pushpavalli (ref_15) 2020; 206 ref_20 Steven (ref_75) 2008; 179 Cao (ref_80) 2008; 34 ref_27 Potters (ref_42) 2010; 48 Janni (ref_92) 2020; 71 Battacharyya (ref_190) 2015; 196 Schmitt (ref_136) 2010; 10 Petropoulos (ref_57) 2008; 115 Banik (ref_196) 2016; 126 Sarker (ref_155) 2018; 8 Petrozza (ref_189) 2014; 174 Zhao (ref_11) 2017; 114 Haque (ref_175) 2018; 9 Dong (ref_6) 2020; 253 Hernandez (ref_167) 2013; 44 Araus (ref_170) 2014; 19 Parihar (ref_122) 2015; 22 Colla (ref_179) 2010; 127 Colla (ref_191) 2015; 196 Waters (ref_88) 2020; 227 Selmar (ref_55) 2013; 54 Kyriacou (ref_146) 2018; 234 Shah (ref_171) 2016; 18 Jamalluddin (ref_30) 2019; 94 Ghanaatiyan (ref_61) 2017; 92 (ref_182) 2015; 196 Sing (ref_77) 2020; 95 Suwa (ref_81) 2010; 48 Tomasi (ref_108) 2011; 461 Zhu (ref_35) 2020; 10 Deutsch (ref_74) 2018; 361 Cheng (ref_133) 2009; 9 Comas (ref_5) 2019; 212 Sorrentino (ref_52) 2020; 1268 ref_178 Rouphael (ref_142) 2018; 234 Guedes (ref_165) 2019; 96 Sage (ref_70) 2008; 59 ref_180 ref_181 Lucini (ref_145) 2016; 7 Mathieu (ref_101) 2018; 432 Thuy (ref_111) 2015; 5 Colla (ref_192) 2017; 8 Dhankher (ref_10) 2018; 41 Scheben (ref_12) 2016; 6 ref_60 Zeng (ref_85) 2021; 30 ref_169 ref_164 ref_163 ref_65 ref_166 ref_64 Petretto (ref_121) 2019; 141 ref_63 Jiang (ref_140) 2007; 143 Demirel (ref_105) 2017; 41 Faiz (ref_73) 2020; 57 Gwang (ref_99) 2018; 53 Jaganathan (ref_174) 2018; 9 Colla (ref_193) 2014; 5 ref_36 ref_194 Khodarahmpour (ref_126) 2012; 11 Rouphael (ref_183) 2018; 9 Neocleous (ref_153) 2014; 37 ref_38 Karapanos (ref_117) 2008; 2 Sun (ref_39) 2015; 33 Raymundo (ref_102) 2017; 202 Qu (ref_91) 2013; 432 Ors (ref_26) 2021; 137 Rosenzweig (ref_8) 2014; 111 ref_44 ref_185 ref_43 Lim (ref_177) 2016; 10 Newton (ref_21) 2016; 8 ref_40 ref_3 ref_2 Ulfat (ref_127) 2007; 39 Bona (ref_195) 2018; 234 ref_9 ref_7 Goto (ref_37) 2021; 281 |
References_xml | – ident: ref_27 doi: 10.3389/fpls.2017.01147 – volume: 1268 start-page: 133 year: 2020 ident: ref_52 article-title: Lettuce reaction to drought stress: Automated high-throughput phenotyping of plant growth and photosynthetic performance publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2020.1268.17 – volume: 6 start-page: 1720 year: 2011 ident: ref_144 article-title: Influence of abiotic stress signals on secondary metabolites in plants publication-title: Plant Signal. Behav. doi: 10.4161/psb.6.11.17613 – volume: 10 start-page: 105 year: 2016 ident: ref_177 article-title: Transgenic tomato plants expressing strawberry d-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses publication-title: Plant Biotechnol. Rep. doi: 10.1007/s11816-016-0392-9 – volume: 92 start-page: 404 year: 2017 ident: ref_61 article-title: Differential responses of chicory ecotypes exposed to drought stress in relation to enzymatic and non-enzymatic antioxidants as well as ABA concentration publication-title: J. Hortic. Sci. Biotechnol. – ident: ref_178 – ident: ref_65 – volume: 174 start-page: 185 year: 2014 ident: ref_189 article-title: Physiological responses to MegafolR treatments in tomato plants under drought stress: A phenomic and molecular approach publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2014.05.023 – volume: 333 start-page: 616 year: 2011 ident: ref_78 article-title: Climate trends and global crop production since 1980 publication-title: Science doi: 10.1126/science.1204531 – ident: ref_132 – ident: ref_79 doi: 10.1007/978-94-007-2220-0 – volume: 234 start-page: 463 year: 2018 ident: ref_146 article-title: Towards a new definition of quality for fresh fruits and vegetables publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2017.09.046 – ident: ref_150 doi: 10.1007/978-981-15-1322-0 – ident: ref_83 doi: 10.1371/journal.pone.0069810 – volume: 6 start-page: e5082 year: 2018 ident: ref_162 article-title: Mulch and groundcover effects on soil temperature and moisture, surface reflectance, grapevine water potential, and vineyard weed management publication-title: PeerJ doi: 10.7717/peerj.5082 – ident: ref_166 – ident: ref_18 doi: 10.1007/978-981-13-6883-7_15 – ident: ref_120 – volume: 60 start-page: 2361 year: 2009 ident: ref_197 article-title: Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri xV. rupestris) publication-title: J. Expt. Bot. doi: 10.1093/jxb/erp069 – volume: 12 start-page: 43 year: 2016 ident: ref_34 article-title: Trends and variability of droughts over the Indian monsoon region publication-title: Weather Clim. Extrem. doi: 10.1016/j.wace.2016.01.002 – volume: 54 start-page: 1039 year: 2019 ident: ref_62 article-title: Photosynthetic characterization and response to drought and temperature in wild asparagus (Asparagus acutifolius L.) publication-title: HortScience doi: 10.21273/HORTSCI13954-19 – volume: 54 start-page: 817 year: 2013 ident: ref_55 article-title: Stress enhances the synthesis of secondary plant products: The impact of stress-related over-reduction on the accumulation publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pct054 – volume: 206 start-page: 405 year: 2020 ident: ref_15 article-title: Cross-tolerance for drought, heat and salinity stresses in chickpea (Cicer arietinum L.) publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12393 – volume: 18 start-page: 49 year: 2012 ident: ref_115 article-title: Onion seed germination as affected by temperature and light publication-title: Int. J. Veg. Sci. doi: 10.1080/19315260.2011.570419 – volume: 9 start-page: 1655 year: 2018 ident: ref_183 article-title: Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01655 – volume: 95 start-page: 407 year: 2020 ident: ref_77 article-title: Impact of heat stress on potato (Solanum tuberosum L.): Present scenario and future opportunities publication-title: J. Hortic. Sci. Biotechnol. doi: 10.1080/14620316.2019.1700173 – volume: 143 start-page: 1001 year: 2007 ident: ref_140 article-title: Conservation of the salt overly sensitive pathway in rice publication-title: Plant Physiol. doi: 10.1104/pp.106.092635 – volume: 114 start-page: 9326 year: 2017 ident: ref_11 article-title: Temperature increase reduces global yields of major crops in four independent estimates publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1701762114 – volume: 153 start-page: 7 year: 2015 ident: ref_89 article-title: The contribution of biotechnology to improving post-harvest chilling tolerance in fruits and vegetables using heat-shock proteins publication-title: J. Agric. Sci. doi: 10.1017/S0021859613000804 – volume: 1 start-page: 331 year: 1980 ident: ref_86 article-title: Heat shock induced proteins in plant cells publication-title: Dev. Genet. doi: 10.1002/dvg.1020010406 – volume: 56 start-page: 3772 year: 2008 ident: ref_143 article-title: Salt in irrigation water a_ects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.) publication-title: J. Agric. Food Chem. doi: 10.1021/jf0733719 – volume: 16 start-page: 239 year: 2002 ident: ref_67 article-title: Consequences of climate change for European agricultural productivity, land use and policy publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00004-7 – ident: ref_82 doi: 10.1007/978-1-4614-0815-4 – ident: ref_13 doi: 10.1007/978-981-15-9132-7_2 – volume: 10 start-page: 6968 year: 2020 ident: ref_35 article-title: Physiological and biochemical responses of four cassava cultivars to drought stress publication-title: Sci. Rep. doi: 10.1038/s41598-020-63809-8 – volume: 234 start-page: 160 year: 2018 ident: ref_195 article-title: Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.02.026 – ident: ref_14 – volume: 120 start-page: 271 year: 2009 ident: ref_56 article-title: Water deficit effects on Salvia officinalis fatty acids and essential oils composition publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2008.10.016 – volume: 67 start-page: 3855 year: 2016 ident: ref_22 article-title: Know where your clients are: Subcellular localization and targets of calcium-dependent protein kinases publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw157 – volume: 93 start-page: 1119 year: 2013 ident: ref_156 article-title: Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.5861 – ident: ref_20 doi: 10.3389/fpls.2016.00187 – volume: 355 start-page: 363 year: 2012 ident: ref_147 article-title: Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea publication-title: Plant Soil doi: 10.1007/s11104-011-1108-0 – volume: 162 start-page: 2 year: 2018 ident: ref_24 article-title: Plant adaptations to the combination of drought and high temperatures publication-title: Physiol. Plant doi: 10.1111/ppl.12540 – volume: 214 start-page: 129 year: 2017 ident: ref_152 article-title: Salinity e_ect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.07.080 – ident: ref_9 doi: 10.3390/agronomy8030025 – volume: 71 start-page: 321 year: 2011 ident: ref_134 article-title: Differential proteomic analysis of salt response in Sorghum bicolor leaves publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2010.12.017 – volume: 432 start-page: 203 year: 2013 ident: ref_91 article-title: Molecular mechanisms of the plant heat stress response publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2013.01.104 – volume: 11 start-page: 298 year: 2012 ident: ref_126 article-title: Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage publication-title: Afr. J. Biotechnol. – volume: 9 start-page: 985 year: 2018 ident: ref_174 article-title: CRISPR for crop improvement: An update review publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00985 – volume: 196 start-page: 3 year: 2015 ident: ref_182 article-title: Plant biostimulants: Definition, concept, main categories and regulation publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2015.09.021 – volume: 35 start-page: 525 year: 2010 ident: ref_110 article-title: Effect of high temperature stress on the performance of twelve sweet pepper genotypes publication-title: Bangladesh J. Agric. Res. doi: 10.3329/bjar.v35i3.6459 – ident: ref_3 doi: 10.1007/978-981-15-2156-0_5 – volume: 34 start-page: 2134 year: 2008 ident: ref_80 article-title: Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism publication-title: Acta Agron. Sin. doi: 10.1016/S1875-2780(09)60022-5 – ident: ref_64 – volume: 17 start-page: 61 year: 2018 ident: ref_23 article-title: Quantitative phosphoproteomic analysis reveals shared and specific targets of Arabidopsis mitogen-activated protein kinases (MAPKs) MPK3, MPK4, and MPK6 publication-title: Mol. Cell Proteom. doi: 10.1074/mcp.RA117.000135 – volume: 7 start-page: 1073 year: 2012 ident: ref_188 article-title: Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage publication-title: Afr. J. Agric. Res. – volume: 7 start-page: 4858 year: 2008 ident: ref_135 article-title: Proteome analysis of potato under salt stress publication-title: J. Proteome Res. doi: 10.1021/pr800460y – volume: 94 start-page: 3 year: 2013 ident: ref_4 article-title: Ecological stress memory and cross stress tolerance in plants in the face of climate extremes publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2012.02.009 – volume: 22 start-page: 38 year: 2017 ident: ref_173 article-title: Characteristics of genome editing mutations in cereal crops publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.009 – volume: 115 start-page: 393 year: 2008 ident: ref_57 article-title: The effect of water deficit stress on the growth, yield and composition of essential oils of parsley publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2007.10.008 – ident: ref_100 doi: 10.3390/horticulturae4020011 – ident: ref_159 doi: 10.3390/agronomy10070967 – volume: 140 start-page: 66 year: 2012 ident: ref_45 article-title: Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought publication-title: Sci. Hort. doi: 10.1016/j.scienta.2012.03.028 – volume: 9 start-page: 1197 year: 2018 ident: ref_187 article-title: Highthroughput plant phenotyping for developing novel biostimulants: From lab to field or from field to lab? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01197 – ident: ref_25 doi: 10.1186/s12870-018-1299-0 – volume: 8 start-page: 2202 year: 2017 ident: ref_192 article-title: Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02202 – ident: ref_194 doi: 10.3390/agronomy9060335 – volume: 39 start-page: 1593 year: 2007 ident: ref_127 article-title: Appraisal of physiological and biochemical selection criteria for evaluation of salt tolerance in canola (Brassica napus L.) publication-title: Pak. J. Bot. – volume: 5 start-page: 448 year: 2014 ident: ref_193 article-title: Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00448 – volume: 262 start-page: 110320 year: 2020 ident: ref_33 article-title: Effect of plant growth regulators and deficit irrigation on canopy traits, yield, water productivity and fruit quality of eggplant (Solanum melongena L.) grown in the water scarce environment publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.110320 – volume: 8 start-page: 1133 year: 2016 ident: ref_114 article-title: Physiological and biochemical response to higher temperature stress in hot pepper (Capsicum annuum L.) publication-title: J. Appl. Nat. Sci. – volume: 51 start-page: 1475 year: 2016 ident: ref_118 article-title: Effect of temperature on seed germination in spinach (Spinacia oleracea) publication-title: HortScience doi: 10.21273/HORTSCI11414-16 – ident: ref_17 doi: 10.3390/metabo9120303 – volume: 127 start-page: 147 year: 2010 ident: ref_179 article-title: Role of grafting in vegetable crops grown under saline conditions publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2010.08.004 – volume: 30 start-page: 184 year: 2021 ident: ref_85 article-title: Validation of suitable reference genes for qRT-PCR in cabbage (Brassica oleracea L.) under different abiotic stress experimental conditions publication-title: J. Plant Biochem. Biotechnol. doi: 10.1007/s13562-020-00556-x – volume: 196 start-page: 39 year: 2015 ident: ref_190 article-title: Seaweed extracts as biostimulants in horticulture publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2015.09.012 – volume: 96 start-page: 897 year: 2018 ident: ref_107 article-title: Physiological and growth responses of potato cultivars to heat stress publication-title: Bots doi: 10.1139/cjb-2018-0125 – volume: 2020 start-page: 1 year: 2020 ident: ref_130 article-title: Comparative transcriptome analysis reveals molecular defensive mechanism of Arachis hypogaea in response to salt stress publication-title: Int. J. Genom. doi: 10.1155/2020/3645371 – volume: 48 start-page: 593 year: 2010 ident: ref_129 article-title: NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L.Wilczek) publication-title: Indian J. Exp. Biol. – ident: ref_2 doi: 10.3390/plants8020034 – ident: ref_38 – volume: 41 start-page: 2600 year: 2018 ident: ref_106 article-title: Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures publication-title: Plant Cell Environ. doi: 10.1111/pce.13366 – volume: 10 start-page: 4444 year: 2010 ident: ref_136 article-title: Proteomic changes inmaize roots after short-term adjustment to saline growth conditions publication-title: Proteomics – ident: ref_7 – volume: 48 start-page: 292 year: 2010 ident: ref_42 article-title: The cellular redox state in plant stress biology—A charging concept publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2009.12.007 – ident: ref_98 doi: 10.1186/s12870-015-0535-0 – volume: 170 start-page: 1602 year: 2018 ident: ref_116 article-title: Potential impacts of climate change on vegetable production and product quality—A review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.09.224 – volume: 60 start-page: 324 year: 2005 ident: ref_131 article-title: Salt tolerance and salinity effect on plants: A review publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2004.06.010 – volume: 84 start-page: 1606 year: 2004 ident: ref_59 article-title: The effect of sowing date and growth stage on the essential oil composition of three types of parsley publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.1846 – volume: 8 start-page: 935 year: 2017 ident: ref_186 article-title: Evaluation of borage extracts as potential biostimulant using a phenomic, agronomic, physiological, and biochemical approach publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00935 – volume: 212 start-page: 433 year: 2019 ident: ref_5 article-title: Water productivity under strategic growth stage-based deficit irrigation in maize publication-title: Agr. Water Mgt. doi: 10.1016/j.agwat.2018.07.015 – volume: 23 start-page: 1 year: 2017 ident: ref_172 article-title: Plant immune system: Crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence publication-title: Curr. Issues Mol. Biol. doi: 10.21775/cimb.023.001 – ident: ref_60 doi: 10.3390/agronomy10121976 – volume: 59 start-page: 651 year: 2008 ident: ref_149 article-title: Mechanisms of salinity tolerance. Annu publication-title: Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 54 start-page: 964 year: 2019 ident: ref_58 article-title: Increasing inflorescence dry weight and cannabinoid content in medical Cannabis using controlled drought stress publication-title: HortScience doi: 10.21273/HORTSCI13510-18 – volume: 22 start-page: 4056 year: 2015 ident: ref_122 article-title: Effect of salinity stress on plants and its tolerance strategies: A review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3739-1 – volume: 70 start-page: 937 year: 2019 ident: ref_94 article-title: The tuberization signal StSP6A represses flower bud development in potato publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery420 – ident: ref_185 doi: 10.3390/plants10020326 – ident: ref_163 doi: 10.3390/plants9070922 – volume: 9 start-page: 244 year: 2004 ident: ref_90 article-title: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2004.03.006 – volume: 231 start-page: 261 year: 2018 ident: ref_109 article-title: Effect of heat root stress and high salinity on glucosinolates metabolism in wild rocket publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2018.10.003 – volume: 8 start-page: a005926 year: 2016 ident: ref_21 article-title: Second messengers publication-title: CSH Perspect. Biol. – volume: 167 start-page: 313 year: 2016 ident: ref_1 article-title: Abiotic stress signaling and responses in plants publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 41 start-page: 877 year: 2018 ident: ref_10 article-title: Climate resilient crops for improving global food security and safety publication-title: Plant Cell Environ. doi: 10.1111/pce.13207 – volume: 57 start-page: 371 year: 2020 ident: ref_73 article-title: Morphological, physiological and biochemical responses of eggplant (Solanum melongena L.) seedling to heat stress publication-title: J. Agric. Sci. – volume: 15 start-page: 405 year: 2017 ident: ref_76 article-title: The heatshock protein/chaperone network and multiple stress resistance publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12659 – volume: 137 start-page: 335 year: 2021 ident: ref_26 article-title: Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2020.10.031 – ident: ref_158 doi: 10.3390/agronomy10091358 – volume: 196 start-page: 28 year: 2015 ident: ref_191 article-title: Protein hydrolysates as biostimulants in horticulture publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2015.08.037 – volume: 111 start-page: 3268 year: 2014 ident: ref_8 article-title: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1222463110 – ident: ref_181 doi: 10.3389/fpls.2017.01130 – volume: 69 start-page: 225 year: 2010 ident: ref_72 article-title: How plants sense temperature publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2010.05.011 – volume: 14 start-page: 232 year: 2011 ident: ref_168 article-title: Genetic analysis of abiotic stress tolerance in crops publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2011.03.002 – volume: 141 start-page: 30 year: 2019 ident: ref_121 article-title: Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.05.012 – volume: 94 start-page: 448 year: 2019 ident: ref_30 article-title: Transpiration efficiency of Amaranth (Amaranthus sp.) in response to drought stress publication-title: J. Hortic. Sci. Biotechnol. doi: 10.1080/14620316.2018.1537725 – volume: 15 start-page: 89 year: 2010 ident: ref_41 article-title: Proline: A multifunctional amino acid publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2009.11.009 – volume: 52 start-page: 376 year: 2011 ident: ref_97 article-title: Growth and physiological responses of Chinese cabbage and radish to long-term exposure to elevated carbon dioxide and temperature publication-title: Hort. Environ. Biotechnol. doi: 10.1007/s13580-011-0012-0 – volume: 8 start-page: 12349 year: 2018 ident: ref_155 article-title: Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress publication-title: Sci. Rep. doi: 10.1038/s41598-018-30897-6 – volume: 19 start-page: 52 year: 2014 ident: ref_170 article-title: Field high-throughput phenotyping: The new crop breeding frontier publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.09.008 – volume: 12 start-page: 1 year: 2020 ident: ref_50 article-title: Improving production of plant secondary metabolites through biotic and abiotic elicitation publication-title: J. Appl. Res. Med. Aromat. Plants – volume: 126 start-page: 76 year: 2016 ident: ref_196 article-title: Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.01.008 – volume: 272 start-page: 109578 year: 2020 ident: ref_49 article-title: Mild drought stress has potential to improve lettuce yield and quality publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2020.109578 – ident: ref_71 doi: 10.5772/45842 – ident: ref_43 doi: 10.1002/9781119324928.ch7 – volume: 204 start-page: 359 year: 2018 ident: ref_48 article-title: Impact of nitrogen supply on leaf water relations and physiological traits in a set of potato (Solanum tuberosum L.) cultivars under drought stress publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12266 – volume: 166 start-page: 507 year: 2009 ident: ref_139 article-title: Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2008.08.001 – volume: 41 start-page: 218 year: 2017 ident: ref_105 article-title: Assessment of morphophysiological traits for selection of heat-tolerant potato genotypes publication-title: Turkish J. Agric. For. doi: 10.3906/tar-1701-95 – volume: 1 start-page: 149 year: 2015 ident: ref_28 article-title: Functional physiology in drought tolerance of vegetable crops-an approch to mitigate climate change impact publication-title: Clim. Dyn. Hortic. Sci. – volume: 56 start-page: 159 year: 2015 ident: ref_96 article-title: Photosynthesis of Chinese cabbage and radish in response to rising leaf temperature during spring publication-title: Hort. Environ. Biotechnol. doi: 10.1007/s13580-015-0122-1 – ident: ref_169 – volume: 128 start-page: 24 year: 2018 ident: ref_47 article-title: Drought induced changes of leaf-to-root relationships in two tomato genotypes publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.05.008 – volume: 53 start-page: 195 year: 2018 ident: ref_99 article-title: Differential responses of Pak Choi and Edible Amaranth to an elevated temperature publication-title: HortScience doi: 10.21273/HORTSCI12667-17 – volume: 42 start-page: 558 year: 2013 ident: ref_54 article-title: Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants publication-title: Ind. Crop Prod. doi: 10.1016/j.indcrop.2012.06.020 – ident: ref_87 doi: 10.3389/fpls.2016.00114 – ident: ref_160 doi: 10.1016/j.scitotenv.2017.10.247 – volume: 167 start-page: 645 year: 2005 ident: ref_137 article-title: Genes and salt tolerance: Bringing them together publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01487.x – volume: 5 start-page: 515 year: 2015 ident: ref_111 article-title: Effect of high temperature on fruit productivity and seed-set of sweet pepper (Capsicum annuum L.) in the field condition publication-title: J. Agric. Sci. Technol. – ident: ref_36 doi: 10.1002/9783527675265 – volume: 59 start-page: 1581 year: 2008 ident: ref_70 article-title: Rubisco, Rubisco activase, and global climate change publication-title: J. Exp. Bot. doi: 10.1093/jxb/ern053 – volume: 202 start-page: 57 year: 2017 ident: ref_102 article-title: Performance of the SUBSTOR-potato model across contrasting growing conditions publication-title: Field Crops Res. doi: 10.1016/j.fcr.2016.04.012 – volume: 649 start-page: 461 year: 2019 ident: ref_161 article-title: Climate change adaptation and water saving by innovative irrigation management applied on open field globe artichoke publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.349 – ident: ref_44 doi: 10.1007/978-981-13-6883-7_22 – volume: 361 start-page: 916 year: 2018 ident: ref_74 article-title: Increase in crop losses to insect pests in a warming climate publication-title: Science doi: 10.1126/science.aat3466 – volume: 5 start-page: 159 year: 2011 ident: ref_128 article-title: How salinity affect germination and emergence of tomato lines publication-title: J. Biol. Environ. Sci. – volume: 9 start-page: 617 year: 2018 ident: ref_175 article-title: Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: Recent progress, prospects, and challenges publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00617 – ident: ref_112 – volume: 7 start-page: 948 year: 2016 ident: ref_145 article-title: Mild Potassium chloride stress alters the mineral composition, hormone network, and phenolic profile in artichoke leaves publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00948 – volume: 10 start-page: 4 year: 2015 ident: ref_69 article-title: Temperature extremes: Effect on plant growth and development publication-title: Weather Clim. Extrem. doi: 10.1016/j.wace.2015.08.001 – volume: 12 start-page: 2488 year: 2011 ident: ref_124 article-title: Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms12042488 – volume: 9 start-page: 3100 year: 2009 ident: ref_133 article-title: New changes in the plasma-membrane-associated proteome of rice roots under salt stress publication-title: Proteomics doi: 10.1002/pmic.200800340 – volume: 16 start-page: 183 year: 2017 ident: ref_84 article-title: Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan publication-title: Clim. Risk Manag. doi: 10.1016/j.crm.2016.12.001 – volume: 96 start-page: 294 year: 2019 ident: ref_165 article-title: Heat tolerance in diploid wild potato species in vitro publication-title: Am. J. Potato Res. doi: 10.1007/s12230-019-09716-9 – volume: 65 start-page: 8674 year: 2017 ident: ref_176 article-title: Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b02745 – volume: 182 start-page: 124 year: 2015 ident: ref_151 article-title: The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2014.11.022 – ident: ref_113 doi: 10.1186/s12870-018-1490-3 – volume: 6 start-page: 66 year: 2001 ident: ref_119 article-title: Plant salt tolerance publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(00)01838-0 – volume: 240 start-page: 196 year: 2018 ident: ref_46 article-title: Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata) publication-title: Sci. Hort. doi: 10.1016/j.scienta.2018.06.016 – volume: 44 start-page: 5 year: 2013 ident: ref_167 article-title: Genotype-by-environment interaction and plasticity: Exploring genomic responses of plants to the abiotic environment publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev-ecolsys-110512-135806 – volume: 432 start-page: 273 year: 2018 ident: ref_101 article-title: Impact of high temperature on sucrose translocation, sugar content and inulin yield in Cichorium intybus L. var. sativum publication-title: Plant Soil doi: 10.1007/s11104-018-3802-7 – volume: 37 start-page: 1 year: 2014 ident: ref_153 article-title: Assessing the salinity e_ects on mineral composition and nutritional quality of green and red “Baby” lettuce publication-title: J. Food Qual. doi: 10.1111/jfq.12066 – volume: 6 start-page: 2 year: 2016 ident: ref_12 article-title: Advances in genomics for adapting crops to climate change publication-title: Curr. Plant Biol. doi: 10.1016/j.cpb.2016.09.001 – ident: ref_123 doi: 10.1007/978-1-4020-5578-2 – volume: 71 start-page: 3780 year: 2020 ident: ref_92 article-title: Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa034 – volume: 14 start-page: 11607 year: 2013 ident: ref_148 article-title: The physiological importance of glucosinolates on plant response to abiotic stress in brassica publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms140611607 – ident: ref_157 doi: 10.3390/molecules24010185 – volume: 104 start-page: 267 year: 2017 ident: ref_32 article-title: Growth and developmental responses of crop plants under drought stress: A review publication-title: Zemdirb. Agric. doi: 10.13080/z-a.2017.104.034 – volume: 28 start-page: 484 year: 2014 ident: ref_68 article-title: Maize landraces and adaptation to climate change in Mexico publication-title: J. Crop Improv. doi: 10.1080/15427528.2014.921800 – volume: 234 start-page: 361 year: 2018 ident: ref_142 article-title: Salinity as eustressor for enhancing quality of vegetables publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.02.048 – ident: ref_104 doi: 10.3389/fpls.2019.00563 – volume: 179 start-page: 615 year: 2008 ident: ref_75 article-title: Temperature perception and signal transduction in plants publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02478.x – ident: ref_164 doi: 10.3390/agronomy10030427 – volume: 281 start-page: 109943 year: 2021 ident: ref_37 article-title: Response of leaf water potential, stomatal conductance and chlorophyll content under different levels of soil water, air vapor pressure deficit and solar radiation in chili pepper (Capsicum chinense) publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2021.109943 – ident: ref_19 doi: 10.3390/plants7040089 – volume: 35 start-page: 121 year: 2015 ident: ref_53 article-title: New insights explain that drought stress enhances the quality of spice and medicinal plants: Potential applications publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0260-3 – volume: 99 start-page: 2275 year: 2019 ident: ref_154 article-title: Salinity stress enhances color parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.9423 – volume: 18 start-page: 471 year: 2016 ident: ref_171 article-title: Genetic improvement of tomato (Solanum lycopersicum) with AtDREB1A dene for cold stress tolerance using optimized agrobacterium-mediated transformation system publication-title: Int. J. Agric. Biol. doi: 10.17957/IJAB/15.0107 – volume: 39 start-page: 1 year: 2012 ident: ref_29 article-title: Breeding for drought tolerance in vegetables publication-title: Veg. Sci. – volume: 16 start-page: 197 year: 2018 ident: ref_103 article-title: Engineering heat tolerance in potato by temperature-dependent expression of a specific allele of HEAT-SHOCK COGNATE 70 publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12760 – volume: 383 start-page: 3 year: 2014 ident: ref_184 article-title: Agricultural uses of plant biostimulants publication-title: Plant Soil doi: 10.1007/s11104-014-2131-8 – ident: ref_63 – volume: 48 start-page: 124 year: 2010 ident: ref_81 article-title: High temperature effects on photosynthetic partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2009.12.010 – ident: ref_95 doi: 10.1007/s10725-020-00658-5 – volume: 11 start-page: 413 year: 2012 ident: ref_51 article-title: Hormesis and cellular quality control: A possible explanation for the molecular mechanisms that underlie the benefits of mild stress publication-title: Dose Response – volume: 9 start-page: 43 year: 2011 ident: ref_125 article-title: Salinity effects on seed germination and seedling growth of bread wheat cultivars publication-title: Trakia J. Sci. – volume: 2 start-page: 88 year: 2008 ident: ref_117 article-title: Fruit set in solanaceous vegetable crops as affected by floral and environmental factors publication-title: Eur. J. Plant Sci. Biotechnol. – volume: 234 start-page: 275 year: 2018 ident: ref_141 article-title: Improving vegetable quality in controlled environments publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.02.033 – ident: ref_180 doi: 10.3390/agronomy10020263 – volume: 33 start-page: 625 year: 2015 ident: ref_39 article-title: Proline, sugars, and antioxidant enzymes respond to drought stress in the leaves of strawberry plants publication-title: Kor. J. Hort. Sci. Technol. – volume: 69 start-page: 79 year: 2021 ident: ref_66 article-title: Morphological and molecular marker screening for drought tolerance in Egyptian Jew’s Mallow (Corchorus olitorius L.) landraces publication-title: Acta Univ. Agric. Silvic. Mendel. Brun. doi: 10.11118/actaun.2021.009 – volume: 253 start-page: 119920 year: 2020 ident: ref_6 article-title: Sustainable vegetable production under changing climate: The impact of elevated CO2 on yield of vegetables and the interactions with environments-A review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119920 – volume: 461 start-page: 619 year: 2011 ident: ref_108 article-title: The effect of growth medium temperature on corn salad [Valerianella locusta (L.) Laterr] baby leaf yield and quality publication-title: HortScience – ident: ref_40 doi: 10.1080/07388551.2021.1874280 – volume: 227 start-page: 24 year: 2020 ident: ref_88 article-title: Plant small heat shock proteins—Evolutionary and functional diversity publication-title: New Phytol. doi: 10.1111/nph.16536 – volume: 4 start-page: 1044 year: 2019 ident: ref_31 article-title: Contribution of glycine betaine and proline to water deficit tolerance in pepper plants publication-title: HortScience – volume: 410 start-page: 335 year: 2017 ident: ref_16 article-title: Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria publication-title: Plant Soil doi: 10.1007/s11104-016-3007-x – volume: 2 start-page: 22 year: 2009 ident: ref_138 article-title: Over-expression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis publication-title: Mol. Plant doi: 10.1093/mp/ssn058 – volume: 16 start-page: 2001 year: 2004 ident: ref_93 article-title: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.104.022830 |
SSID | ssj0000913806 |
Score | 2.5554445 |
SecondaryResourceType | review_article |
Snippet | Environmental pollution, increasing CO2 atmospheric levels and the greenhouse effect are closely associated with the ongoing climate change and the extreme... Environmental pollution, increasing CO₂ atmospheric levels and the greenhouse effect are closely associated with the ongoing climate change and the extreme... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 463 |
SubjectTerms | Abiotic stress Adaptation Agricultural practices Agricultural production agriculture Carbon dioxide Climate change Climatic conditions Crops Defense mechanisms Drought Environmental conditions Environmental effects Environmental stress extreme temperature Farm buildings Food safety Genetically altered foods genomics Genotypes Greenhouse effect Heat High temperature Kinases Metabolism Morphology osmotic stress Physiology Plant morphology pollution Proteins Salinity Salinity effects salt stress Sustainable agriculture Sustainable practices temperature Tomatoes Transcription factors Tree crops trees Vegetables water stress |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4EDKi-x0CIjcWzUxI5j-1T1qRVSK9RS1ANSNLHHq0qQLJv0wL_Hk_VuhYp6TWwfxvPw2DPfx9hnBIveqjzzZIVl5VwGTpnMuGC9rYyGkQ7o_KKaXZdfbtRNunDrU1nl2ieOjtp3ju7I90VUlhgbhS0PFr8zYo2i19VEofGUbUUXbMyEbR2dXny93NyyEOqlyasV3JCM-f0-zJcJ1AJj5FMEmPVPSBqR-x845jHanG2zF-mYyA9X-_qSPcH2FXt-eL_qa_bjclXeihxaz08wkI3yc6RW3tv-V8-7wL_jHAdqjuLHy27Rc5jDbTwP8pORnGfY47Poisf5V0AtksMffjU2j7xh12en345nWeJKyFwpiiHzRQ6NdrmvRACrAxpQuXQFGLTKV0FHjyiNAhMaKeMUkIhGIxiqLCyMlm_ZpO1afMe4LFAEUYQ8YMyVAjYxfmllIeatoDGEKRNrcdUuAYkTn8XPOiYUJOP6PzKesr3NpMUKR-Px4Ue0D5uhBII9fuiW8zrZVC2wAHTWVFa4EgsNVRN8VD7tvUHp8ynbWe9inSyzr-_1aMo-bX5Hm6KHEmixu6Mxiljlo1zeP77EB_ZMUI0LobnaHTYZlne4Gw8pQ_MxaeJfBNfqtA priority: 102 providerName: ProQuest |
Title | Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress |
URI | https://www.proquest.com/docview/2531355294 https://www.proquest.com/docview/2552023318 https://doaj.org/article/2e1aec98692c4e17a6bfdea97dd8e3d0 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlubSH0ifdNg0q9BgTS7Is6ZgnSyGhJE3JoWDG0mgJpN6w6xzy7zOSnU1KQnvp1dbYYjRPNPMNY18RHAanyyIkLaxq7wvw2hbWRxdcbQ3kcUBHx_X0rPp2rs8fjPpKNWEDPPDAuG2JAtA7WzvpKxQG6jYG-oMJwaIKOVsnn_cgmco22Ally3qAGVKU12_DbDGCWSB5PJ2Asv5wRRmx_5FBzl7m8BV7OYaHfGfY1mv2DLs37MXO_Vffsl8nQ1krcugC38eYdJMfYWrhvVj-XvJ55D9xhn1qiuJ7i_nVksMMLigO5Pt5KE-_xadkgjP9KaTWyP6Gn-amkXfs7PDgx960GGckFL6Soi-CKKE1vgy1jMSUiBZ0qbwAi06HOhqyhMpqsLFVikhAIVqDYFNFobBGvWdr3bzDD4wrgTJKEcuIlCNFbMlvGe2A8lUwGOOEyTt2NX4EEE9zLC4bSiQSj5sneDxhWyuiqwE_4-_Ld9M5rJYm8Ov8gESiGUWi-ZdITNjG3Sk2o0YuG0nGhmIr6aoJ-7J6TbqULkigw_l1WqPTNHniy8f_sY9P7LlMFTAJ69VtsLV-cY2fKYTp2022vntw_P1kM0vtLWEF9Ro |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioYCR4NaoiZ2HfUCo7bba0u4K9YF6QAqOPV5VgmTZTYX6p_iNePLYCoF66zWxfRjPw2PPfB_AO9QKrUrCwJIVxqkxgTaJDKRxyqpUZrqhA5pM0_FZ_Ok8OV-D330vDJVV9j6xcdS2MnRHvsW9svjYyFX8cf4zINYoel3tKTRatTjEq18-ZVt-OBj5_X3P-f7e6e446FgFAhPzqA5sFOoiM6FNudMqcyh1EgoTaYkqsanLvO8QMtHSFUL4KVogygy1pBq8SGbCr3sH1mORhnwA6zt708_Hq1sdQtmUYdrCGwmhwi09W3QgGugjbUIAXX-FwIYp4J9A0ES3_YfwoDuWsu1Wjx7BGpaP4f729apP4OtxW06LTJeWjdCRT2ATpNbhi-WPJasc-4IzrKkZi-0uqvmS6Zm-8OdPNmrIgOpNNvauv5l_oqkls75iJ02zylM4uxUpPoNBWZX4HJiIkDseudChz80cFj5eZonSPk_WGTo3BN6LKzcdcDnxZ3zPfQJDMs7_I-MhbK4mzVvcjpuH79A-rIYS6HbzoVrM8s6Gc46RRqNkqriJMcp0WjjrlT2zVqKw4RA2-l3MO0-wzK_1dghvV7-9DdPDjC6xuqQxCbHYe7m8uHmJN3B3fDo5yo8Opocv4R6n-hpCklUbMKgXl_jKH5Dq4nWnlQy-3bYh_AEYvCdu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzFlgJGglujTewktg8Itd2utpSuqpaiHpBSxx6vKkGy3aRC_Wv8Ojx5bIVAvfWa2D6M5-GxZ76PkPegFViVhIFFK4xTYwJtEhlI45RVqRS6oQM6nKXT0_jzWXK2Rn73vTBYVtn7xMZR29LgHfmIeWXxsZGpeOS6soij8eTT4jJABil8ae3pNFoVOYDrXz59qz7uj_1ef2Bssvd1dxp0DAOBiVlUBzYKdS5MaFPmtBIOpE5CbiItQSU2dcL7ES4TLV3OuZ-iOYAUoCXW40VScL_uPbIuMCsakPWdvdnR8eqGBxE3ZZi2UEecq3Ck58sOUAN81E0QrOuvcNiwBvwTFJpIN3lMHnVHVLrd6tQTsgbFU_Jw-2bVZ-T7cVtaC1QXlo7BoX-gh4BtxBfVz4qWjn6DOdTYmEV3l-WionquL_xZlI4bYqB6i059GGjmn2hsz6yv6UnTuPKcnN6JFF-QQVEW8JJQHgFzLHKhA5-nOch97BSJ0j5n1gKcGxLWiyszHYg5cmn8yHwygzLO_iPjIdlaTVq0GB63D9_BfVgNRQDu5kO5nGedPWcMIg1GyVQxE0MkdJo76xVfWCuB23BINvtdzDqvUGU3Ojwk71a_vT3jI40uoLzCMQky2nu5bNy-xFty3xtA9mV_dvCKPGBYaoOgsmqTDOrlFbz2Z6U6f9MpJSXnd20HfwCAbyuj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+and+Defence+Mechanisms+of+Vegetable+Crops+against+Drought%2C+Heat+and+Salinity+Stress&rft.jtitle=Agriculture+%28Basel%29&rft.au=Giordano%2C+Maria&rft.au=Petropoulos%2C+Spyridon+A.&rft.au=Rouphael%2C+Youssef&rft.date=2021-05-19&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=11&rft.issue=5&rft.spage=463&rft_id=info:doi/10.3390%2Fagriculture11050463&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriculture11050463 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |