Optimization of the gas flow system in a selective laser melting chamber using numerical methods
A well-designed flow field is a key factor to improve the surface quality of products by removing spatter, which is often generated during the selective laser melting (SLM) process. In the present study, three typical schemes are developed for the gas flow system of large-scale SLM equipment. In thi...
Saved in:
Published in | Advances in mechanical engineering Vol. 16; no. 3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.03.2024
Sage Publications Ltd SAGE Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A well-designed flow field is a key factor to improve the surface quality of products by removing spatter, which is often generated during the selective laser melting (SLM) process. In the present study, three typical schemes are developed for the gas flow system of large-scale SLM equipment. In this regard, the flow deviation and velocity increase indices are implemented to characterize the flow uniformity in the chamber and gas flow velocity in the clearing area. The obtained results show that the inlet size significantly improves the flow uniformity and the segmented inlet increases the flow velocity above the machining surface. More specifically, when the velocity deviation index decreases from 0.3335 to 0.1538, the corresponding velocity index increases from 10.16% to 29.83%. To improve the flow uniformity on the machining surface, the effect of the inlet flow rate on the airflow over the machining surface is investigated. The obtained results show that when the inlet flow rate reduces to 0.2 m/s, the removal spatter improves while the airflow remains uniform. The results of this study can provide a reference for the design of SLM gas flow systems. |
---|---|
AbstractList | A well-designed flow field is a key factor to improve the surface quality of products by removing spatter, which is often generated during the selective laser melting (SLM) process. In the present study, three typical schemes are developed for the gas flow system of large-scale SLM equipment. In this regard, the flow deviation and velocity increase indices are implemented to characterize the flow uniformity in the chamber and gas flow velocity in the clearing area. The obtained results show that the inlet size significantly improves the flow uniformity and the segmented inlet increases the flow velocity above the machining surface. More specifically, when the velocity deviation index decreases from 0.3335 to 0.1538, the corresponding velocity index increases from 10.16% to 29.83%. To improve the flow uniformity on the machining surface, the effect of the inlet flow rate on the airflow over the machining surface is investigated. The obtained results show that when the inlet flow rate reduces to 0.2 m/s, the removal spatter improves while the airflow remains uniform. The results of this study can provide a reference for the design of SLM gas flow systems. |
Author | Zhou, Zirong Gou, Kunzheng Chen, Xiaoxuan Pang, Lijuan Li, Yongxing Shang, Xin |
Author_xml | – sequence: 1 givenname: Zirong surname: Zhou fullname: Zhou, Zirong – sequence: 2 givenname: Yongxing surname: Li fullname: Li, Yongxing – sequence: 3 givenname: Xiaoxuan surname: Chen fullname: Chen, Xiaoxuan – sequence: 4 givenname: Xin orcidid: 0000-0001-8620-8686 surname: Shang fullname: Shang, Xin – sequence: 5 givenname: Kunzheng surname: Gou fullname: Gou, Kunzheng – sequence: 6 givenname: Lijuan surname: Pang fullname: Pang, Lijuan |
BookMark | eNp9kU1PGzEQhi1EpdKUH9CbpZ5DPV7vrvdYRdBGQsqFns3YO5sY7a6D7RTBr2eTtCAVldN8Pq9ezXxip2MYibEvIC4A6vobVLrWUEhZgJRQluqEne17cw1KnL7khfzIzlPyVpSiEqJqmjN2u9pmP_gnzD6MPHQ8b4ivMfGuDw88PaZMA_cjR56oJ5f9b-I9Jop8oD77cc3dBgc71bu0r8bdQNE77Kd53oQ2fWYfOuwTnf-JM_br6vJm8XN-vfqxXHy_njslIc8dVqUqO0mgrZXONti4TgosqUawpUOrdAtW2xZUWxMCgNBaVUqDoKZVxYwtj7ptwDuzjX7A-GgCenNohLg2GLN3PRlAqbWrFJYWVN1K21hZ0HQ91RJSA5PW16PWNob7HaVs7sIujpN9UwgpCllXRTVt1cctF0NKkTrjfD7cMUf0vQFh9t8xb74zkfAP-dfve8zFkUm4plc__weeAYCrn-s |
CitedBy_id | crossref_primary_10_3390_app15042247 crossref_primary_10_1016_j_addma_2024_104439 crossref_primary_10_1155_2024_6500007 crossref_primary_10_1016_j_mtcomm_2024_109028 |
Cites_doi | 10.1007/s00170-020-05351-5 10.1108/RPJ-02-2014-0020 10.1016/j.jmatprotec.2011.09.020 10.1016/j.matdes.2018.06.049 10.3788/LOP55.011401 10.1007/s00170-017-0213-5 10.3390/ma9070608 10.18063/msam.v1i1.1 10.1016/j.apsusc.2017.02.215 10.1038/s41598-019-41415-7 10.1016/j.powtec.2019.11.099 10.18063/ijb.v8i1.478 10.1080/17452759.2022.2028380 10.1016/j.msea.2018.08.037 10.1080/17452759.2021.1944229 10.3390/met12020343 10.1108/RPJ-11-2015-0159 10.1080/17452759.2022.2031232 10.1016/j.ijmachtools.2006.01.024 10.1016/j.matdes.2017.06.040 10.1016/j.flowmeasinst.2020.101738 10.1080/17452759.2019.1698967 10.1016/j.jmatprotec.2016.10.015 10.1016/j.matdes.2017.01.091 10.1080/17452759.2022.2036530 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AFRWT AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 H8D HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1177/16878132231221554 |
DatabaseName | Open Access Journals from Sage CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Aerospace Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Engineering Database (NC LIVE) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-8140 |
ExternalDocumentID | oai_doaj_org_article_1a288c64a5b147d2b9b23e2234deae91 10_1177_16878132231221554 10.1177_16878132231221554 |
GrantInformation_xml | – fundername: the Dongguan Social science and Technology Development (Key) Project grantid: 20185071021602 – fundername: the National Key Research and Development Program, China grantid: 2018YFB1307903 – fundername: the Scientific Research Capacity Improvement Project of Key Developing Disciplines in Guangdong Province of China grantid: 2021ZDJS084 – fundername: the National Natural Science Foundation, China, grantid: 51775473, 51905464 funderid: https://doi.org/10.13039/501100001809 – fundername: the KEY Laboratory of Robotics and Intelligent Equipment of Guangdong Regular Institutions of Higher Education grantid: 2017KSYS009 – fundername: the Dongguan Scitech Commissoner grantid: 20211800500102 – fundername: the KeyArea Research and Development Program of Guangdong Province grantid: 2020B090924002 funderid: https://doi.org/NotFound – fundername: the Innovation Center of Robotics and Intelligent Equipment, China, grantid: KCYCXPT2017006 – fundername: the Dongguan Scitech Commissoner grantid: 20211800500242 |
GroupedDBID | .DC 0R~ 188 23M 2UF 2WC 4.4 54M 5GY 5VS 8FE 8FG 8R4 8R5 AAJPV AASGM ABAWP ABJCF ABQXT ACGFS ACIWK ACROE ADBBV ADOGD AEDFJ AENEX AEUHG AEWDL AFCOW AFKRA AFKRG AFRWT AINHJ AJUZI ALMA_UNASSIGNED_HOLDINGS AUTPY AYAKG BCNDV BDDNI BENPR BGLVJ C1A CAHYU CCPQU CNMHZ E3Z EBS EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IL9 ITC J8X K.F KQ8 L6V M7S O9- OK1 PHGZM PHGZT PIMPY PTHSS Q2X RHU ROL SAUOL SCDPB SCNPE SFC TR2 UGNYK AAYXX ACHEB CITATION 7TB 8FD ABUWG AZQEC DWQXO FR3 H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c421t-ca6545f2e18bb2cb9a9cf20a5e7a1b5cab48d1b8bd14d7ea111088464810e9d43 |
IEDL.DBID | AFRWT |
ISSN | 1687-8132 |
IngestDate | Wed Aug 27 01:30:24 EDT 2025 Fri Jul 25 10:23:18 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 Sun Jul 06 05:04:18 EDT 2025 Tue Jun 17 22:27:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | CFD laser splash Wind farm optimization gas flow uniformity gas flow system design |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-ca6545f2e18bb2cb9a9cf20a5e7a1b5cab48d1b8bd14d7ea111088464810e9d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8620-8686 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/16878132231221554?utm_source=summon&utm_medium=discovery-provider |
PQID | 3020327636 |
PQPubID | 237349 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a288c64a5b147d2b9b23e2234deae91 proquest_journals_3020327636 crossref_citationtrail_10_1177_16878132231221554 crossref_primary_10_1177_16878132231221554 sage_journals_10_1177_16878132231221554 |
PublicationCentury | 2000 |
PublicationDate | 20240300 2024-03-00 20240301 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: New York |
PublicationTitle | Advances in mechanical engineering |
PublicationYear | 2024 |
Publisher | SAGE Publications Sage Publications Ltd SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: SAGE Publishing |
References | 2015; 12 Chen, Tzeng, Wang 2020; 362 Wang, Wang, Wang 2016; 9 Reijonen, Revuelta, Riipinen 2020; 32 Tzeng, Chen, Wang 2020; 107 Nassar, Gundermann, Reutzel 2019; 9 Stef, Poulon-Quintin, Redjaimia 2018; 156 Zongjun, Dongdong, Lida 2015; 11 Taheri Andani, Dehghani, Karamooz-Ravari 2017; 131 Anwar, Pham 2017; 240 Yang Yongqiang, Chen Jie, Song Changhui 2018; 55 Zhang, Cheng, Tuffile 2020; 32 Osakada, Shiomi 2006; 46 Demir, Previtali 2017; 119 Wang, Chang 2017; 92 Khorasani, Gibson, Goldberg 2017; 23 Kim, Hart 2022; 17 Ladewig, Schlick, Fisser 2016; 10 Wei, Wei, Chen 2017; 408 Moussaoui, Rubio, Mousseigne 2018; 735 Ferrar, Mullen, Jones 2012; 212 Song, Yang, Wang 2016; 22 Pinghua, Qian, Zhiqiang 2019; 30 Kuo, Chua, Peng 2020; 15 Zhang, Gu, Dai 2022; 17 Chen, Wang 2020; 73 Sehhat, Sutton, Hung 2022; 1 Alquaity, Yilbas 2022; 12 Manfredi, Calignano, Krishnan 2014; 13 Drissi-Daoudi, Pandiyan, Logé 2022; 17 Taheri Andani, Dehghani, Karamooz-Ravari 2018; 20 Sing, Kuo, Shih 2021; 16 Sing 2022; 8 bibr26-16878132231221554 bibr39-16878132231221554 Chen Y (bibr35-16878132231221554) 2018 bibr36-16878132231221554 bibr10-16878132231221554 bibr16-16878132231221554 bibr13-16878132231221554 Zhang X (bibr29-16878132231221554) 2019 bibr19-16878132231221554 bibr31-16878132231221554 bibr18-16878132231221554 Reijonen J (bibr28-16878132231221554) 2020; 32 Philo AM (bibr37-16878132231221554) 2017 bibr22-16878132231221554 bibr12-16878132231221554 Zhang X (bibr38-16878132231221554) 2020; 32 bibr5-16878132231221554 bibr15-16878132231221554 bibr32-16878132231221554 bibr8-16878132231221554 ASTM.ISO/ASTM 52900:2015(E) (bibr11-16878132231221554) 2015 bibr7-16878132231221554 Taheri Andani M (bibr23-16878132231221554) 2018; 20 bibr27-16878132231221554 bibr14-16878132231221554 bibr17-16878132231221554 bibr4-16878132231221554 Manfredi D (bibr3-16878132231221554) 2014; 13 bibr1-16878132231221554 bibr34-16878132231221554 bibr21-16878132231221554 Pinghua L (bibr33-16878132231221554) 2019; 30 bibr9-16878132231221554 Zongjun T (bibr2-16878132231221554) 2015; 11 bibr6-16878132231221554 Ladewig A (bibr25-16878132231221554) 2016; 10 bibr30-16878132231221554 bibr20-16878132231221554 Kong CJ (bibr24-16878132231221554) 2011 |
References_xml | – volume: 55 start-page: 9 year: 2018 end-page: 21 article-title: Current status and progress on technology of selective laser melting of metal parts publication-title: Laser Optoelectron Prog – volume: 9 start-page: 608 year: 2016 article-title: Design and fabrication of a precision template for spine surgery using selective laser melting (SLM) publication-title: Materials – volume: 212 start-page: 355 year: 2012 end-page: 364 article-title: Gas flow effects on selective laser melting (SLM) manufacturing performance publication-title: J Mater Process Technol – volume: 73 start-page: 101 year: 2020 end-page: 738 article-title: The applications of particle image velocimetry (PIV) to experimentally observe the flow behaviors inside the selective laser melting (SLM) working chamber publication-title: Flow Meas Instrum – volume: 131 start-page: 460 year: 2017 end-page: 469 article-title: Spatter formation in selective laser melting process using multi-laser technology publication-title: Mater Des – volume: 32 year: 2020 article-title: On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing publication-title: Addit Manuf – volume: 8 start-page: 478 year: 2022 article-title: Perspectives on additive manufacturing enabled Beta-titanium alloys for biomedical applications publication-title: Int J Bioprint – volume: 240 start-page: 388 year: 2017 end-page: 396 article-title: Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength publication-title: J Mater Process Technol – volume: 92 start-page: 1299 year: 2017 end-page: 1314 article-title: Flow analysis of the laminated manufacturing system with laser sintering of metal powder. Part I: flow uniformity inside the working chamber publication-title: Int J Adv Manuf Technol – volume: 12 start-page: 12 year: 2015 end-page: 30 article-title: 3D printing of the world’s first full size copper alloy rocket engine parts – volume: 17 start-page: 181 year: 2022 end-page: 204 article-title: Differentiation of materials and laser powder bed fusion processing regimes from airborne acoustic emission combined with machine learning publication-title: Virtual Phys Prototyp – volume: 119 start-page: 338 year: 2017 end-page: 350 article-title: Additive manufacturing of cardiovascular CoCr stents by selective laser melting publication-title: Mater Des – volume: 23 start-page: 110 year: 2017 end-page: 121 article-title: Production of Ti-6Al-4V acetabular shell using selective laser melting: possible limitations in fabrication publication-title: Rapid Prototyp J – volume: 20 start-page: 33 year: 2018 end-page: 43 article-title: A study on the effect of energy input on spatter particles creation during selective laser melting process publication-title: Addit Manuf – volume: 17 start-page: 239 year: 2022 end-page: 255 article-title: A spiral laser scanning routine for powder bed fusion inspired by natural predator-prey behaviour publication-title: Virtual Phys Prototyp – volume: 12 start-page: 343 year: 2022 article-title: Investigation of spatter trajectories in an SLM build chamber under argon gas flow publication-title: Metals – volume: 30 start-page: 858 year: 2019 end-page: 863 article-title: Gas field simulation and flow channel structure optimization of SLM publication-title: China Mech Eng – volume: 11 start-page: 38 year: 2015 end-page: 42 article-title: Application and development of laser additive manufacturing technology in aeronautics and astronautics publication-title: Aeronaut Manuf Technol – volume: 22 start-page: 330 year: 2016 end-page: 337 article-title: Personalized femoral component design and its direct manufacturing by selective laser melting publication-title: Rapid Prototyp J – volume: 15 start-page: 120 year: 2020 end-page: 129 article-title: Microstructure evolution and mechanical property response via 3D printing parameter development of Al–Sc alloy publication-title: Virtual Phys Prototyp – volume: 107 start-page: 4677 year: 2020 end-page: 4686 article-title: Numerical studies of metal particle behaviors inside the selective laser melting (SLM) chamber through computational fluid dynamics (CFD) publication-title: Int J Adv Manuf Technol – volume: 46 start-page: 1188 year: 2006 end-page: 1193 article-title: Flexible manufacturing of metallic products by selective laser melting of powder publication-title: Int J Mach Tools Manuf – volume: 156 start-page: 480 year: 2018 end-page: 493 article-title: Mechanism of porosity formation and influence on mechanical properties in selective laser melting of Ti-6Al-4V parts publication-title: Mater Des – volume: 9 start-page: 5038 year: 2019 end-page: 5111 article-title: Formation processes for large ejecta and interactions with melt pool formation in powder bed fusion additive manufacturing publication-title: Sci Rep – volume: 32 year: 2020 article-title: Simulation study of the spatter removal process and optimization design of gas flow system in laser powder bed fusion publication-title: Addit Manuf – volume: 1 start-page: 1 year: 2022 article-title: Plasma spheroidization of gas-atomized 304L stainless steel powder for laser powder bed fusion process publication-title: Mater Sci Addit Manuf – volume: 17 start-page: 308 year: 2022 end-page: 328 article-title: Laser printing path and its influence on molten pool configuration, microstructure and mechanical properties of laser powder bed fusion processed rare earth element modified Al-Mg alloy publication-title: Virtual Phys Prototyp – volume: 10 start-page: 1 year: 2016 end-page: 9 article-title: Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process publication-title: Addit Manuf – volume: 735 start-page: 182 year: 2018 end-page: 190 article-title: Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties publication-title: Mater Sci Eng A – volume: 408 start-page: 38 year: 2017 end-page: 50 article-title: The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior publication-title: Appl Surf Sci – volume: 362 start-page: 450 year: 2020 end-page: 461 article-title: Numerical and experimental observations of the flow field inside a selective laser melting (SLM) chamber through computational fluid dynamics (CFD) and particle image velocimetry (PIV) publication-title: Powder Technol – volume: 16 start-page: 372 year: 2021 end-page: 386 article-title: Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing publication-title: Virtual Phys Prototyp – volume: 13 start-page: 10 year: 2014 end-page: 66 article-title: Additive manufacturing of Al alloys and aluminium matrix composites (AMCs) publication-title: InTech – volume: 20 start-page: 33 year: 2018 ident: bibr23-16878132231221554 publication-title: Addit Manuf – ident: bibr34-16878132231221554 doi: 10.1007/s00170-020-05351-5 – ident: bibr7-16878132231221554 doi: 10.1108/RPJ-02-2014-0020 – volume: 11 start-page: 38 year: 2015 ident: bibr2-16878132231221554 publication-title: Aeronaut Manuf Technol – ident: bibr27-16878132231221554 doi: 10.1016/j.jmatprotec.2011.09.020 – ident: bibr14-16878132231221554 doi: 10.1016/j.matdes.2018.06.049 – volume: 32 year: 2020 ident: bibr38-16878132231221554 publication-title: Addit Manuf – ident: bibr5-16878132231221554 doi: 10.3788/LOP55.011401 – ident: bibr36-16878132231221554 doi: 10.1007/s00170-017-0213-5 – ident: bibr6-16878132231221554 doi: 10.3390/ma9070608 – volume: 10 start-page: 1 year: 2016 ident: bibr25-16878132231221554 publication-title: Addit Manuf – ident: bibr19-16878132231221554 doi: 10.18063/msam.v1i1.1 – ident: bibr13-16878132231221554 doi: 10.1016/j.apsusc.2017.02.215 – volume-title: 2019 International solid freeform fabrication symposium year: 2019 ident: bibr29-16878132231221554 – ident: bibr15-16878132231221554 doi: 10.1038/s41598-019-41415-7 – ident: bibr31-16878132231221554 doi: 10.1016/j.powtec.2019.11.099 – volume-title: Standard t erminology for additive manufacturing—general principles—terminology year: 2015 ident: bibr11-16878132231221554 – volume-title: 2018 International solid freeform fabrication symposium year: 2018 ident: bibr35-16878132231221554 – ident: bibr9-16878132231221554 doi: 10.18063/ijb.v8i1.478 – ident: bibr21-16878132231221554 doi: 10.1080/17452759.2022.2028380 – ident: bibr12-16878132231221554 doi: 10.1016/j.msea.2018.08.037 – ident: bibr20-16878132231221554 doi: 10.1080/17452759.2021.1944229 – ident: bibr30-16878132231221554 doi: 10.3390/met12020343 – volume: 30 start-page: 858 year: 2019 ident: bibr33-16878132231221554 publication-title: China Mech Eng – ident: bibr10-16878132231221554 doi: 10.1108/RPJ-11-2015-0159 – ident: bibr18-16878132231221554 doi: 10.1080/17452759.2022.2031232 – ident: bibr1-16878132231221554 doi: 10.1016/j.ijmachtools.2006.01.024 – ident: bibr22-16878132231221554 doi: 10.1016/j.matdes.2017.06.040 – ident: bibr39-16878132231221554 – ident: bibr32-16878132231221554 doi: 10.1016/j.flowmeasinst.2020.101738 – volume-title: 2017 International solid freeform fabrication symposium year: 2017 ident: bibr37-16878132231221554 – ident: bibr16-16878132231221554 doi: 10.1080/17452759.2019.1698967 – ident: bibr26-16878132231221554 doi: 10.1016/j.jmatprotec.2016.10.015 – ident: bibr4-16878132231221554 – volume-title: 2011 International solid freeform fabrication symposium year: 2011 ident: bibr24-16878132231221554 – volume: 32 year: 2020 ident: bibr28-16878132231221554 publication-title: Addit Manuf – ident: bibr8-16878132231221554 doi: 10.1016/j.matdes.2017.01.091 – volume: 13 start-page: 10 year: 2014 ident: bibr3-16878132231221554 publication-title: InTech – ident: bibr17-16878132231221554 doi: 10.1080/17452759.2022.2036530 |
SSID | ssib050600699 ssj0000395696 ssib044728254 ssib023771143 |
Score | 2.3211236 |
Snippet | A well-designed flow field is a key factor to improve the surface quality of products by removing spatter, which is often generated during the selective laser... |
SourceID | doaj proquest crossref sage |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Air flow Chambers Deviation Flow velocity Gas flow Inlet flow Laser beam melting Machining Numerical methods Surface properties |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT4xW2YMgCMHsZpPsHlUsRVAvFnqL-0oV2lSaFv--s9m0poh68ZoHLDOzM9-ws9-H0LlgTi3ayLAwRIXMKBUCKkrCRGllJVRclbm7ww-PaX_A7ofJsCX15WbCPD2wN9wVkZRznTKZKMIyQ5VQNLZQ1Jix0tb31inUvFYzVefgGHC_SJtjTMewRFKecdd6xYRSV0TXClHN178GMltzXXWp6e2g7QYj4mu_tl20Ycs9tNViDtxHL0-w1SfNHUo8LTDgODySFS7G0w_s6ZnxW4klrmqhG8hpGHCyneGJHbtJZ6xfpdMCwW7wfYTLhT-5GWMvKV0doEHv7vm2HzZiCaEGc89DLVMAQwW1hCtFtRJS6IJGMrGZJCrRUjEO7uDKEGYyK4mb_wfwwTiJrDAsPkSdclraI4Qh_yUyttBMiJjxiApAVYAcYmitjKBWBChaWi7XDZO4E7QY56QhD_9m7ABdrn559zQav31849yx-tAxYNcPIC7yJi7yv-IiQN2lM_NmW1Z5XAvGQ0pNA3ThHPz16sfVHP_Hak7QJgU05IfXuqgzny3sKaCZuTqrA_cTbH7rUA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-QwEB7O9UUf5Lw7cdWTPAiCUK5J0x95Ej0UEfQOUfCtl19dhbXV7Yr_vjNtdl059DVNQ-lMJl-Sme8D2FOS1KKdjirHTSSdMRGiojRKjTVe44prcqodvrjMzm7k-W16Gw7c2pBWOYuJXaB2jaUz8l9Jp_WNsyE7fHyKSDWKbleDhMYSLGMILooBLB-fXP69mnmUSPKcLxDYSZlTrebcA4ldL84CIO9id4L7hU7Ui2c4-wrcq4WrUGJpojZqQkwkBC3E7xazjvP_HVBdyA3rlqvTr7AWcCY76h1jHb74-husLrAPfod_fzBcPIQ6TNZUDLEgG-mWVePmhfUUz-y-Zpq1nVgOxkWGWNtP2IMfU7Y0s3ea9EQYJc-PWP3c3_6MWS9L3f6Am9OT699nURBciCyabBpZnSGgqoTnhTHCGqWVrUSsU59rblKrjSzQpIVxXLrca041BAhgZMFjr5xMNmBQN7XfBIYxNNWJxw2JSmQRC4XIDNFHgtszp4RXQ4hnf660gY2cRDHGJQ8E5P_97CEczF957Kk4Put8TOaYdyQW7a6hmYzKMClLrtFnbCZ1arjMnTDKiMTjINJ57RUfws7MmGWY2m355ohD2CcDvz368Gu2Ph9oG1YEYqU-tW0HBtPJs_-JWGdqdoNDvwJfqvC- priority: 102 providerName: ProQuest |
Title | Optimization of the gas flow system in a selective laser melting chamber using numerical methods |
URI | https://journals.sagepub.com/doi/full/10.1177/16878132231221554 https://www.proquest.com/docview/3020327636 https://doaj.org/article/1a288c64a5b147d2b9b23e2234deae91 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFD7szr7og3jF0XXIgyAIcZs0bZMn2ZUdF8FVFhf3rSZpOivMtDIXxH_vOW06zuIFnwppWg7JycmXnMsH8NwoYouuLK8r4biqnOOIijKeOe-CxR3XFZQ7_P48P7tU766yqz1oh1yYOIKrVxRWhRJ1xppWN91GH0Un45HIdaHpHJUKKWlHfL1ZL8r-untg1aAW8k9vFuTa9hQQ-YMP6W37cCCLPJMjODieXnzeLgGZFoXYqXinVEHJnVuVpXJ8SR4RfGfsUzxgdCxgJBMnoaLv9I9y3tj9OpKAG8h2J5is29-md-FOBKbsuNeke7AXmvtwe6dc4QP48gHtyyImbrK2Zgge2cyuWD1vv7O-JjT72jDLVh27DhpShuA8LNkizCm8mvlrSwQkjKLtZ6zZ9O6iOet5rFcP4XJ6-unNGY8MDdzjHK-5tzkisFoGoZ2T3hlrfC0Tm4XCCpd565RGHdCuEqoqghWUdICIR2mRBFOp9BGMmrYJj4Gh0c1sGvAEY1KlE2kQyiFcSfE8VxkZzBiSYeRKH8uXE4vGvBSxYvlvgz2Gl9tPvvW1O_7V-YSmY9uRym53De1yVsZVXAortfa5spkTqqikM06mAX-iqmCDEWM4HCazHDS5TDuWerTj-Rhe0AT_evVXaZ78d8-ncEsizurD4g5htF5uwjPESWs3gX09fTuJGo7Pk9PzjxeT7tbhJ81LBoI |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6tIAPICSkiNhxHj4gxGvZ0geXVuot9SsL0jZpN1tV_Cl-IzOJs90K0VuvTmJZnvHMN_HMfACvlCS2aKejynETSWdMhKgojVJjjdfocU1OtcN7-9nkUH4_So_W4M9QC0NplYNN7Ay1ayz9I3-XdFzfeBqyD6dnEbFG0e3qQKHRq8WO_32BIVv7fvsLyve1EOOvB58nUWAViCyuaxFZnSFqqITnhTHCGqWVrUSsU59rblKrjSxw3YVxXLrca06J8uilZcFjr5xMcN5bcFsm6MmpMn38bdBfkeQ5X2mXJ2VOlaFLfadefnEW4H_nKRKMTjoKMZ7hWS8wMgwXr9QTisZoCBGYEOT2r7jOjmHgCixeyUTrnOP4AdwPqJZ97NXwIaz5-hHcW-l1-BiOf6BxOglVn6ypGCJPNtUtq2bNBesbSrNfNdOs7ah50AozRPZ-zk78jHKzmf2pib2EUar-lNXn_V3TjPUk2O0TOLwRQTyF9bqp_QYwtNipTjyGPyqRRSwU4kDEOgkGg04Jr0YQDztX2tD7nCg4ZiUP7c7_2ewRvF1-cto3_rju5U8kjuWL1LO7G2jm0zKYgJJrURQ2kzo1XOZOGGVE4nES6bz2io9gaxBmGQxJW16q_QjekIAvH_13Nc-un-gl3Jkc7O2Wu9v7O5twVyBK65PqtmB9MT_3zxFlLcyLTrUZHN_0WfoLkLss_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULYg-iFe6WnUeFEEI3ZlMLvMgYm2X1upaxELf0rllFbZJ3Wwp_jV_neckk-0WsW99nSRDMuf2ncyZ8wG8UpLYop2OSsdNJJ0xEaKiJEqMNV5jxDUZnR3-Mkn3juSn4-R4Df70Z2GorLL3ia2jdrWlf-Rbccv1jdaQbpWhLOJwZ_z-7FdEDFK009rTaXQqcuB_X2D61rzb30FZvxZivPv9414UGAYii--4iKxOEUGUwvPcGGGN0sqWYqQTn2luEquNzPEbcuO4dJnXnIrmMWLLnI-8cjLGeW_BekZZ0QDWt3cnh996bRZxlvGV5nlSZnROdKn91NlvlIZkoI0bMeYqLaEYT9Hyc8wTwzYsdYiiMRpCPCYEgYArgbTlG7gCklfq0tpQOb4P9wLGZR86pXwAa756CHdXOh8-gpOv6KpOwxlQVpcMcSib6oaVs_qCde2l2c-Kada0RD3okxnifD9np35GldrM_tDEZcKocH_KqvNu52nGOkrs5jEc3YgonsCgqiu_AQz9d6Jjj8mQimU-EgpRISKfGFNDp4RXQxj1K1fY0AmdCDlmBQ_Nz_9Z7CG8XT5y1rUBue7mbRLH8kbq4N0O1PNpERxCwbXIc5tKnRguMyeMMiL2OIl0XnvFh7DZC7MIbqUpLo1gCG9IwJeX_vs2T6-f6CXcRjsqPu9PDp7BHYGQrauw24TBYn7unyPkWpgXQbcZnNy0Of0FWHEyjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+the+gas+flow+system+in+a+selective+laser+melting+chamber+using+numerical+methods&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Zhou%2C+Zirong&rft.au=Li%2C+Yongxing&rft.au=Chen%2C+Xiaoxuan&rft.au=Shang%2C+Xin&rft.date=2024-03-01&rft.pub=SAGE+Publications&rft.issn=1687-8132&rft.eissn=1687-8140&rft.volume=16&rft.issue=3&rft_id=info:doi/10.1177%2F16878132231221554&rft.externalDocID=10.1177_16878132231221554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon |