Optimization of the gas flow system in a selective laser melting chamber using numerical methods

A well-designed flow field is a key factor to improve the surface quality of products by removing spatter, which is often generated during the selective laser melting (SLM) process. In the present study, three typical schemes are developed for the gas flow system of large-scale SLM equipment. In thi...

Full description

Saved in:
Bibliographic Details
Published inAdvances in mechanical engineering Vol. 16; no. 3
Main Authors Zhou, Zirong, Li, Yongxing, Chen, Xiaoxuan, Shang, Xin, Gou, Kunzheng, Pang, Lijuan
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.03.2024
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A well-designed flow field is a key factor to improve the surface quality of products by removing spatter, which is often generated during the selective laser melting (SLM) process. In the present study, three typical schemes are developed for the gas flow system of large-scale SLM equipment. In this regard, the flow deviation and velocity increase indices are implemented to characterize the flow uniformity in the chamber and gas flow velocity in the clearing area. The obtained results show that the inlet size significantly improves the flow uniformity and the segmented inlet increases the flow velocity above the machining surface. More specifically, when the velocity deviation index decreases from 0.3335 to 0.1538, the corresponding velocity index increases from 10.16% to 29.83%. To improve the flow uniformity on the machining surface, the effect of the inlet flow rate on the airflow over the machining surface is investigated. The obtained results show that when the inlet flow rate reduces to 0.2 m/s, the removal spatter improves while the airflow remains uniform. The results of this study can provide a reference for the design of SLM gas flow systems.
AbstractList A well-designed flow field is a key factor to improve the surface quality of products by removing spatter, which is often generated during the selective laser melting (SLM) process. In the present study, three typical schemes are developed for the gas flow system of large-scale SLM equipment. In this regard, the flow deviation and velocity increase indices are implemented to characterize the flow uniformity in the chamber and gas flow velocity in the clearing area. The obtained results show that the inlet size significantly improves the flow uniformity and the segmented inlet increases the flow velocity above the machining surface. More specifically, when the velocity deviation index decreases from 0.3335 to 0.1538, the corresponding velocity index increases from 10.16% to 29.83%. To improve the flow uniformity on the machining surface, the effect of the inlet flow rate on the airflow over the machining surface is investigated. The obtained results show that when the inlet flow rate reduces to 0.2 m/s, the removal spatter improves while the airflow remains uniform. The results of this study can provide a reference for the design of SLM gas flow systems.
Author Zhou, Zirong
Gou, Kunzheng
Chen, Xiaoxuan
Pang, Lijuan
Li, Yongxing
Shang, Xin
Author_xml – sequence: 1
  givenname: Zirong
  surname: Zhou
  fullname: Zhou, Zirong
– sequence: 2
  givenname: Yongxing
  surname: Li
  fullname: Li, Yongxing
– sequence: 3
  givenname: Xiaoxuan
  surname: Chen
  fullname: Chen, Xiaoxuan
– sequence: 4
  givenname: Xin
  orcidid: 0000-0001-8620-8686
  surname: Shang
  fullname: Shang, Xin
– sequence: 5
  givenname: Kunzheng
  surname: Gou
  fullname: Gou, Kunzheng
– sequence: 6
  givenname: Lijuan
  surname: Pang
  fullname: Pang, Lijuan
BookMark eNp9kU1PGzEQhi1EpdKUH9CbpZ5DPV7vrvdYRdBGQsqFns3YO5sY7a6D7RTBr2eTtCAVldN8Pq9ezXxip2MYibEvIC4A6vobVLrWUEhZgJRQluqEne17cw1KnL7khfzIzlPyVpSiEqJqmjN2u9pmP_gnzD6MPHQ8b4ivMfGuDw88PaZMA_cjR56oJ5f9b-I9Jop8oD77cc3dBgc71bu0r8bdQNE77Kd53oQ2fWYfOuwTnf-JM_br6vJm8XN-vfqxXHy_njslIc8dVqUqO0mgrZXONti4TgosqUawpUOrdAtW2xZUWxMCgNBaVUqDoKZVxYwtj7ptwDuzjX7A-GgCenNohLg2GLN3PRlAqbWrFJYWVN1K21hZ0HQ91RJSA5PW16PWNob7HaVs7sIujpN9UwgpCllXRTVt1cctF0NKkTrjfD7cMUf0vQFh9t8xb74zkfAP-dfve8zFkUm4plc__weeAYCrn-s
CitedBy_id crossref_primary_10_3390_app15042247
crossref_primary_10_1016_j_addma_2024_104439
crossref_primary_10_1155_2024_6500007
crossref_primary_10_1016_j_mtcomm_2024_109028
Cites_doi 10.1007/s00170-020-05351-5
10.1108/RPJ-02-2014-0020
10.1016/j.jmatprotec.2011.09.020
10.1016/j.matdes.2018.06.049
10.3788/LOP55.011401
10.1007/s00170-017-0213-5
10.3390/ma9070608
10.18063/msam.v1i1.1
10.1016/j.apsusc.2017.02.215
10.1038/s41598-019-41415-7
10.1016/j.powtec.2019.11.099
10.18063/ijb.v8i1.478
10.1080/17452759.2022.2028380
10.1016/j.msea.2018.08.037
10.1080/17452759.2021.1944229
10.3390/met12020343
10.1108/RPJ-11-2015-0159
10.1080/17452759.2022.2031232
10.1016/j.ijmachtools.2006.01.024
10.1016/j.matdes.2017.06.040
10.1016/j.flowmeasinst.2020.101738
10.1080/17452759.2019.1698967
10.1016/j.jmatprotec.2016.10.015
10.1016/j.matdes.2017.01.091
10.1080/17452759.2022.2036530
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AFRWT
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
H8D
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1177/16878132231221554
DatabaseName Open Access Journals from Sage
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Aerospace Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Engineering Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-8140
ExternalDocumentID oai_doaj_org_article_1a288c64a5b147d2b9b23e2234deae91
10_1177_16878132231221554
10.1177_16878132231221554
GrantInformation_xml – fundername: the Dongguan Social science and Technology Development (Key) Project
  grantid: 20185071021602
– fundername: the National Key Research and Development Program, China
  grantid: 2018YFB1307903
– fundername: the Scientific Research Capacity Improvement Project of Key Developing Disciplines in Guangdong Province of China
  grantid: 2021ZDJS084
– fundername: the National Natural Science Foundation, China,
  grantid: 51775473, 51905464
  funderid: https://doi.org/10.13039/501100001809
– fundername: the KEY Laboratory of Robotics and Intelligent Equipment of Guangdong Regular Institutions of Higher Education
  grantid: 2017KSYS009
– fundername: the Dongguan Scitech Commissoner
  grantid: 20211800500102
– fundername: the KeyArea Research and Development Program of Guangdong Province
  grantid: 2020B090924002
  funderid: https://doi.org/NotFound
– fundername: the Innovation Center of Robotics and Intelligent Equipment, China,
  grantid: KCYCXPT2017006
– fundername: the Dongguan Scitech Commissoner
  grantid: 20211800500242
GroupedDBID .DC
0R~
188
23M
2UF
2WC
4.4
54M
5GY
5VS
8FE
8FG
8R4
8R5
AAJPV
AASGM
ABAWP
ABJCF
ABQXT
ACGFS
ACIWK
ACROE
ADBBV
ADOGD
AEDFJ
AENEX
AEUHG
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AINHJ
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AUTPY
AYAKG
BCNDV
BDDNI
BENPR
BGLVJ
C1A
CAHYU
CCPQU
CNMHZ
E3Z
EBS
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IL9
ITC
J8X
K.F
KQ8
L6V
M7S
O9-
OK1
PHGZM
PHGZT
PIMPY
PTHSS
Q2X
RHU
ROL
SAUOL
SCDPB
SCNPE
SFC
TR2
UGNYK
AAYXX
ACHEB
CITATION
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c421t-ca6545f2e18bb2cb9a9cf20a5e7a1b5cab48d1b8bd14d7ea111088464810e9d43
IEDL.DBID AFRWT
ISSN 1687-8132
IngestDate Wed Aug 27 01:30:24 EDT 2025
Fri Jul 25 10:23:18 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
Sun Jul 06 05:04:18 EDT 2025
Tue Jun 17 22:27:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords CFD
laser splash
Wind farm optimization
gas flow uniformity
gas flow system design
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-ca6545f2e18bb2cb9a9cf20a5e7a1b5cab48d1b8bd14d7ea111088464810e9d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8620-8686
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/16878132231221554?utm_source=summon&utm_medium=discovery-provider
PQID 3020327636
PQPubID 237349
ParticipantIDs doaj_primary_oai_doaj_org_article_1a288c64a5b147d2b9b23e2234deae91
proquest_journals_3020327636
crossref_citationtrail_10_1177_16878132231221554
crossref_primary_10_1177_16878132231221554
sage_journals_10_1177_16878132231221554
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: New York
PublicationTitle Advances in mechanical engineering
PublicationYear 2024
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References 2015; 12
Chen, Tzeng, Wang 2020; 362
Wang, Wang, Wang 2016; 9
Reijonen, Revuelta, Riipinen 2020; 32
Tzeng, Chen, Wang 2020; 107
Nassar, Gundermann, Reutzel 2019; 9
Stef, Poulon-Quintin, Redjaimia 2018; 156
Zongjun, Dongdong, Lida 2015; 11
Taheri Andani, Dehghani, Karamooz-Ravari 2017; 131
Anwar, Pham 2017; 240
Yang Yongqiang, Chen Jie, Song Changhui 2018; 55
Zhang, Cheng, Tuffile 2020; 32
Osakada, Shiomi 2006; 46
Demir, Previtali 2017; 119
Wang, Chang 2017; 92
Khorasani, Gibson, Goldberg 2017; 23
Kim, Hart 2022; 17
Ladewig, Schlick, Fisser 2016; 10
Wei, Wei, Chen 2017; 408
Moussaoui, Rubio, Mousseigne 2018; 735
Ferrar, Mullen, Jones 2012; 212
Song, Yang, Wang 2016; 22
Pinghua, Qian, Zhiqiang 2019; 30
Kuo, Chua, Peng 2020; 15
Zhang, Gu, Dai 2022; 17
Chen, Wang 2020; 73
Sehhat, Sutton, Hung 2022; 1
Alquaity, Yilbas 2022; 12
Manfredi, Calignano, Krishnan 2014; 13
Drissi-Daoudi, Pandiyan, Logé 2022; 17
Taheri Andani, Dehghani, Karamooz-Ravari 2018; 20
Sing, Kuo, Shih 2021; 16
Sing 2022; 8
bibr26-16878132231221554
bibr39-16878132231221554
Chen Y (bibr35-16878132231221554) 2018
bibr36-16878132231221554
bibr10-16878132231221554
bibr16-16878132231221554
bibr13-16878132231221554
Zhang X (bibr29-16878132231221554) 2019
bibr19-16878132231221554
bibr31-16878132231221554
bibr18-16878132231221554
Reijonen J (bibr28-16878132231221554) 2020; 32
Philo AM (bibr37-16878132231221554) 2017
bibr22-16878132231221554
bibr12-16878132231221554
Zhang X (bibr38-16878132231221554) 2020; 32
bibr5-16878132231221554
bibr15-16878132231221554
bibr32-16878132231221554
bibr8-16878132231221554
ASTM.ISO/ASTM 52900:2015(E) (bibr11-16878132231221554) 2015
bibr7-16878132231221554
Taheri Andani M (bibr23-16878132231221554) 2018; 20
bibr27-16878132231221554
bibr14-16878132231221554
bibr17-16878132231221554
bibr4-16878132231221554
Manfredi D (bibr3-16878132231221554) 2014; 13
bibr1-16878132231221554
bibr34-16878132231221554
bibr21-16878132231221554
Pinghua L (bibr33-16878132231221554) 2019; 30
bibr9-16878132231221554
Zongjun T (bibr2-16878132231221554) 2015; 11
bibr6-16878132231221554
Ladewig A (bibr25-16878132231221554) 2016; 10
bibr30-16878132231221554
bibr20-16878132231221554
Kong CJ (bibr24-16878132231221554) 2011
References_xml – volume: 55
  start-page: 9
  year: 2018
  end-page: 21
  article-title: Current status and progress on technology of selective laser melting of metal parts
  publication-title: Laser Optoelectron Prog
– volume: 9
  start-page: 608
  year: 2016
  article-title: Design and fabrication of a precision template for spine surgery using selective laser melting (SLM)
  publication-title: Materials
– volume: 212
  start-page: 355
  year: 2012
  end-page: 364
  article-title: Gas flow effects on selective laser melting (SLM) manufacturing performance
  publication-title: J Mater Process Technol
– volume: 73
  start-page: 101
  year: 2020
  end-page: 738
  article-title: The applications of particle image velocimetry (PIV) to experimentally observe the flow behaviors inside the selective laser melting (SLM) working chamber
  publication-title: Flow Meas Instrum
– volume: 131
  start-page: 460
  year: 2017
  end-page: 469
  article-title: Spatter formation in selective laser melting process using multi-laser technology
  publication-title: Mater Des
– volume: 32
  year: 2020
  article-title: On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing
  publication-title: Addit Manuf
– volume: 8
  start-page: 478
  year: 2022
  article-title: Perspectives on additive manufacturing enabled Beta-titanium alloys for biomedical applications
  publication-title: Int J Bioprint
– volume: 240
  start-page: 388
  year: 2017
  end-page: 396
  article-title: Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength
  publication-title: J Mater Process Technol
– volume: 92
  start-page: 1299
  year: 2017
  end-page: 1314
  article-title: Flow analysis of the laminated manufacturing system with laser sintering of metal powder. Part I: flow uniformity inside the working chamber
  publication-title: Int J Adv Manuf Technol
– volume: 12
  start-page: 12
  year: 2015
  end-page: 30
  article-title: 3D printing of the world’s first full size copper alloy rocket engine parts
– volume: 17
  start-page: 181
  year: 2022
  end-page: 204
  article-title: Differentiation of materials and laser powder bed fusion processing regimes from airborne acoustic emission combined with machine learning
  publication-title: Virtual Phys Prototyp
– volume: 119
  start-page: 338
  year: 2017
  end-page: 350
  article-title: Additive manufacturing of cardiovascular CoCr stents by selective laser melting
  publication-title: Mater Des
– volume: 23
  start-page: 110
  year: 2017
  end-page: 121
  article-title: Production of Ti-6Al-4V acetabular shell using selective laser melting: possible limitations in fabrication
  publication-title: Rapid Prototyp J
– volume: 20
  start-page: 33
  year: 2018
  end-page: 43
  article-title: A study on the effect of energy input on spatter particles creation during selective laser melting process
  publication-title: Addit Manuf
– volume: 17
  start-page: 239
  year: 2022
  end-page: 255
  article-title: A spiral laser scanning routine for powder bed fusion inspired by natural predator-prey behaviour
  publication-title: Virtual Phys Prototyp
– volume: 12
  start-page: 343
  year: 2022
  article-title: Investigation of spatter trajectories in an SLM build chamber under argon gas flow
  publication-title: Metals
– volume: 30
  start-page: 858
  year: 2019
  end-page: 863
  article-title: Gas field simulation and flow channel structure optimization of SLM
  publication-title: China Mech Eng
– volume: 11
  start-page: 38
  year: 2015
  end-page: 42
  article-title: Application and development of laser additive manufacturing technology in aeronautics and astronautics
  publication-title: Aeronaut Manuf Technol
– volume: 22
  start-page: 330
  year: 2016
  end-page: 337
  article-title: Personalized femoral component design and its direct manufacturing by selective laser melting
  publication-title: Rapid Prototyp J
– volume: 15
  start-page: 120
  year: 2020
  end-page: 129
  article-title: Microstructure evolution and mechanical property response via 3D printing parameter development of Al–Sc alloy
  publication-title: Virtual Phys Prototyp
– volume: 107
  start-page: 4677
  year: 2020
  end-page: 4686
  article-title: Numerical studies of metal particle behaviors inside the selective laser melting (SLM) chamber through computational fluid dynamics (CFD)
  publication-title: Int J Adv Manuf Technol
– volume: 46
  start-page: 1188
  year: 2006
  end-page: 1193
  article-title: Flexible manufacturing of metallic products by selective laser melting of powder
  publication-title: Int J Mach Tools Manuf
– volume: 156
  start-page: 480
  year: 2018
  end-page: 493
  article-title: Mechanism of porosity formation and influence on mechanical properties in selective laser melting of Ti-6Al-4V parts
  publication-title: Mater Des
– volume: 9
  start-page: 5038
  year: 2019
  end-page: 5111
  article-title: Formation processes for large ejecta and interactions with melt pool formation in powder bed fusion additive manufacturing
  publication-title: Sci Rep
– volume: 32
  year: 2020
  article-title: Simulation study of the spatter removal process and optimization design of gas flow system in laser powder bed fusion
  publication-title: Addit Manuf
– volume: 1
  start-page: 1
  year: 2022
  article-title: Plasma spheroidization of gas-atomized 304L stainless steel powder for laser powder bed fusion process
  publication-title: Mater Sci Addit Manuf
– volume: 17
  start-page: 308
  year: 2022
  end-page: 328
  article-title: Laser printing path and its influence on molten pool configuration, microstructure and mechanical properties of laser powder bed fusion processed rare earth element modified Al-Mg alloy
  publication-title: Virtual Phys Prototyp
– volume: 10
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process
  publication-title: Addit Manuf
– volume: 735
  start-page: 182
  year: 2018
  end-page: 190
  article-title: Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties
  publication-title: Mater Sci Eng A
– volume: 408
  start-page: 38
  year: 2017
  end-page: 50
  article-title: The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior
  publication-title: Appl Surf Sci
– volume: 362
  start-page: 450
  year: 2020
  end-page: 461
  article-title: Numerical and experimental observations of the flow field inside a selective laser melting (SLM) chamber through computational fluid dynamics (CFD) and particle image velocimetry (PIV)
  publication-title: Powder Technol
– volume: 16
  start-page: 372
  year: 2021
  end-page: 386
  article-title: Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing
  publication-title: Virtual Phys Prototyp
– volume: 13
  start-page: 10
  year: 2014
  end-page: 66
  article-title: Additive manufacturing of Al alloys and aluminium matrix composites (AMCs)
  publication-title: InTech
– volume: 20
  start-page: 33
  year: 2018
  ident: bibr23-16878132231221554
  publication-title: Addit Manuf
– ident: bibr34-16878132231221554
  doi: 10.1007/s00170-020-05351-5
– ident: bibr7-16878132231221554
  doi: 10.1108/RPJ-02-2014-0020
– volume: 11
  start-page: 38
  year: 2015
  ident: bibr2-16878132231221554
  publication-title: Aeronaut Manuf Technol
– ident: bibr27-16878132231221554
  doi: 10.1016/j.jmatprotec.2011.09.020
– ident: bibr14-16878132231221554
  doi: 10.1016/j.matdes.2018.06.049
– volume: 32
  year: 2020
  ident: bibr38-16878132231221554
  publication-title: Addit Manuf
– ident: bibr5-16878132231221554
  doi: 10.3788/LOP55.011401
– ident: bibr36-16878132231221554
  doi: 10.1007/s00170-017-0213-5
– ident: bibr6-16878132231221554
  doi: 10.3390/ma9070608
– volume: 10
  start-page: 1
  year: 2016
  ident: bibr25-16878132231221554
  publication-title: Addit Manuf
– ident: bibr19-16878132231221554
  doi: 10.18063/msam.v1i1.1
– ident: bibr13-16878132231221554
  doi: 10.1016/j.apsusc.2017.02.215
– volume-title: 2019 International solid freeform fabrication symposium
  year: 2019
  ident: bibr29-16878132231221554
– ident: bibr15-16878132231221554
  doi: 10.1038/s41598-019-41415-7
– ident: bibr31-16878132231221554
  doi: 10.1016/j.powtec.2019.11.099
– volume-title: Standard t erminology for additive manufacturing—general principles—terminology
  year: 2015
  ident: bibr11-16878132231221554
– volume-title: 2018 International solid freeform fabrication symposium
  year: 2018
  ident: bibr35-16878132231221554
– ident: bibr9-16878132231221554
  doi: 10.18063/ijb.v8i1.478
– ident: bibr21-16878132231221554
  doi: 10.1080/17452759.2022.2028380
– ident: bibr12-16878132231221554
  doi: 10.1016/j.msea.2018.08.037
– ident: bibr20-16878132231221554
  doi: 10.1080/17452759.2021.1944229
– ident: bibr30-16878132231221554
  doi: 10.3390/met12020343
– volume: 30
  start-page: 858
  year: 2019
  ident: bibr33-16878132231221554
  publication-title: China Mech Eng
– ident: bibr10-16878132231221554
  doi: 10.1108/RPJ-11-2015-0159
– ident: bibr18-16878132231221554
  doi: 10.1080/17452759.2022.2031232
– ident: bibr1-16878132231221554
  doi: 10.1016/j.ijmachtools.2006.01.024
– ident: bibr22-16878132231221554
  doi: 10.1016/j.matdes.2017.06.040
– ident: bibr39-16878132231221554
– ident: bibr32-16878132231221554
  doi: 10.1016/j.flowmeasinst.2020.101738
– volume-title: 2017 International solid freeform fabrication symposium
  year: 2017
  ident: bibr37-16878132231221554
– ident: bibr16-16878132231221554
  doi: 10.1080/17452759.2019.1698967
– ident: bibr26-16878132231221554
  doi: 10.1016/j.jmatprotec.2016.10.015
– ident: bibr4-16878132231221554
– volume-title: 2011 International solid freeform fabrication symposium
  year: 2011
  ident: bibr24-16878132231221554
– volume: 32
  year: 2020
  ident: bibr28-16878132231221554
  publication-title: Addit Manuf
– ident: bibr8-16878132231221554
  doi: 10.1016/j.matdes.2017.01.091
– volume: 13
  start-page: 10
  year: 2014
  ident: bibr3-16878132231221554
  publication-title: InTech
– ident: bibr17-16878132231221554
  doi: 10.1080/17452759.2022.2036530
SSID ssib050600699
ssj0000395696
ssib044728254
ssib023771143
Score 2.3211236
Snippet A well-designed flow field is a key factor to improve the surface quality of products by removing spatter, which is often generated during the selective laser...
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Air flow
Chambers
Deviation
Flow velocity
Gas flow
Inlet flow
Laser beam melting
Machining
Numerical methods
Surface properties
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT4xW2YMgCMHsZpPsHlUsRVAvFnqL-0oV2lSaFv--s9m0poh68ZoHLDOzM9-ws9-H0LlgTi3ayLAwRIXMKBUCKkrCRGllJVRclbm7ww-PaX_A7ofJsCX15WbCPD2wN9wVkZRznTKZKMIyQ5VQNLZQ1Jix0tb31inUvFYzVefgGHC_SJtjTMewRFKecdd6xYRSV0TXClHN178GMltzXXWp6e2g7QYj4mu_tl20Ycs9tNViDtxHL0-w1SfNHUo8LTDgODySFS7G0w_s6ZnxW4klrmqhG8hpGHCyneGJHbtJZ6xfpdMCwW7wfYTLhT-5GWMvKV0doEHv7vm2HzZiCaEGc89DLVMAQwW1hCtFtRJS6IJGMrGZJCrRUjEO7uDKEGYyK4mb_wfwwTiJrDAsPkSdclraI4Qh_yUyttBMiJjxiApAVYAcYmitjKBWBChaWi7XDZO4E7QY56QhD_9m7ABdrn559zQav31849yx-tAxYNcPIC7yJi7yv-IiQN2lM_NmW1Z5XAvGQ0pNA3ThHPz16sfVHP_Hak7QJgU05IfXuqgzny3sKaCZuTqrA_cTbH7rUA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-QwEB7O9UUf5Lw7cdWTPAiCUK5J0x95Ej0UEfQOUfCtl19dhbXV7Yr_vjNtdl059DVNQ-lMJl-Sme8D2FOS1KKdjirHTSSdMRGiojRKjTVe44prcqodvrjMzm7k-W16Gw7c2pBWOYuJXaB2jaUz8l9Jp_WNsyE7fHyKSDWKbleDhMYSLGMILooBLB-fXP69mnmUSPKcLxDYSZlTrebcA4ldL84CIO9id4L7hU7Ui2c4-wrcq4WrUGJpojZqQkwkBC3E7xazjvP_HVBdyA3rlqvTr7AWcCY76h1jHb74-husLrAPfod_fzBcPIQ6TNZUDLEgG-mWVePmhfUUz-y-Zpq1nVgOxkWGWNtP2IMfU7Y0s3ea9EQYJc-PWP3c3_6MWS9L3f6Am9OT699nURBciCyabBpZnSGgqoTnhTHCGqWVrUSsU59rblKrjSzQpIVxXLrca041BAhgZMFjr5xMNmBQN7XfBIYxNNWJxw2JSmQRC4XIDNFHgtszp4RXQ4hnf660gY2cRDHGJQ8E5P_97CEczF957Kk4Put8TOaYdyQW7a6hmYzKMClLrtFnbCZ1arjMnTDKiMTjINJ57RUfws7MmGWY2m355ohD2CcDvz368Gu2Ph9oG1YEYqU-tW0HBtPJs_-JWGdqdoNDvwJfqvC-
  priority: 102
  providerName: ProQuest
Title Optimization of the gas flow system in a selective laser melting chamber using numerical methods
URI https://journals.sagepub.com/doi/full/10.1177/16878132231221554
https://www.proquest.com/docview/3020327636
https://doaj.org/article/1a288c64a5b147d2b9b23e2234deae91
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFD7szr7og3jF0XXIgyAIcZs0bZMn2ZUdF8FVFhf3rSZpOivMtDIXxH_vOW06zuIFnwppWg7JycmXnMsH8NwoYouuLK8r4biqnOOIijKeOe-CxR3XFZQ7_P48P7tU766yqz1oh1yYOIKrVxRWhRJ1xppWN91GH0Un45HIdaHpHJUKKWlHfL1ZL8r-untg1aAW8k9vFuTa9hQQ-YMP6W37cCCLPJMjODieXnzeLgGZFoXYqXinVEHJnVuVpXJ8SR4RfGfsUzxgdCxgJBMnoaLv9I9y3tj9OpKAG8h2J5is29-md-FOBKbsuNeke7AXmvtwe6dc4QP48gHtyyImbrK2Zgge2cyuWD1vv7O-JjT72jDLVh27DhpShuA8LNkizCm8mvlrSwQkjKLtZ6zZ9O6iOet5rFcP4XJ6-unNGY8MDdzjHK-5tzkisFoGoZ2T3hlrfC0Tm4XCCpd565RGHdCuEqoqghWUdICIR2mRBFOp9BGMmrYJj4Gh0c1sGvAEY1KlE2kQyiFcSfE8VxkZzBiSYeRKH8uXE4vGvBSxYvlvgz2Gl9tPvvW1O_7V-YSmY9uRym53De1yVsZVXAortfa5spkTqqikM06mAX-iqmCDEWM4HCazHDS5TDuWerTj-Rhe0AT_evVXaZ78d8-ncEsizurD4g5htF5uwjPESWs3gX09fTuJGo7Pk9PzjxeT7tbhJ81LBoI
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6tIAPICSkiNhxHj4gxGvZ0geXVuot9SsL0jZpN1tV_Cl-IzOJs90K0VuvTmJZnvHMN_HMfACvlCS2aKejynETSWdMhKgojVJjjdfocU1OtcN7-9nkUH4_So_W4M9QC0NplYNN7Ay1ayz9I3-XdFzfeBqyD6dnEbFG0e3qQKHRq8WO_32BIVv7fvsLyve1EOOvB58nUWAViCyuaxFZnSFqqITnhTHCGqWVrUSsU59rblKrjSxw3YVxXLrca06J8uilZcFjr5xMcN5bcFsm6MmpMn38bdBfkeQ5X2mXJ2VOlaFLfadefnEW4H_nKRKMTjoKMZ7hWS8wMgwXr9QTisZoCBGYEOT2r7jOjmHgCixeyUTrnOP4AdwPqJZ97NXwIaz5-hHcW-l1-BiOf6BxOglVn6ypGCJPNtUtq2bNBesbSrNfNdOs7ah50AozRPZ-zk78jHKzmf2pib2EUar-lNXn_V3TjPUk2O0TOLwRQTyF9bqp_QYwtNipTjyGPyqRRSwU4kDEOgkGg04Jr0YQDztX2tD7nCg4ZiUP7c7_2ewRvF1-cto3_rju5U8kjuWL1LO7G2jm0zKYgJJrURQ2kzo1XOZOGGVE4nES6bz2io9gaxBmGQxJW16q_QjekIAvH_13Nc-un-gl3Jkc7O2Wu9v7O5twVyBK65PqtmB9MT_3zxFlLcyLTrUZHN_0WfoLkLss_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULYg-iFe6WnUeFEEI3ZlMLvMgYm2X1upaxELf0rllFbZJ3Wwp_jV_neckk-0WsW99nSRDMuf2ncyZ8wG8UpLYop2OSsdNJJ0xEaKiJEqMNV5jxDUZnR3-Mkn3juSn4-R4Df70Z2GorLL3ia2jdrWlf-Rbccv1jdaQbpWhLOJwZ_z-7FdEDFK009rTaXQqcuB_X2D61rzb30FZvxZivPv9414UGAYii--4iKxOEUGUwvPcGGGN0sqWYqQTn2luEquNzPEbcuO4dJnXnIrmMWLLnI-8cjLGeW_BekZZ0QDWt3cnh996bRZxlvGV5nlSZnROdKn91NlvlIZkoI0bMeYqLaEYT9Hyc8wTwzYsdYiiMRpCPCYEgYArgbTlG7gCklfq0tpQOb4P9wLGZR86pXwAa756CHdXOh8-gpOv6KpOwxlQVpcMcSib6oaVs_qCde2l2c-Kada0RD3okxnifD9np35GldrM_tDEZcKocH_KqvNu52nGOkrs5jEc3YgonsCgqiu_AQz9d6Jjj8mQimU-EgpRISKfGFNDp4RXQxj1K1fY0AmdCDlmBQ_Nz_9Z7CG8XT5y1rUBue7mbRLH8kbq4N0O1PNpERxCwbXIc5tKnRguMyeMMiL2OIl0XnvFh7DZC7MIbqUpLo1gCG9IwJeX_vs2T6-f6CXcRjsqPu9PDp7BHYGQrauw24TBYn7unyPkWpgXQbcZnNy0Of0FWHEyjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+the+gas+flow+system+in+a+selective+laser+melting+chamber+using+numerical+methods&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Zhou%2C+Zirong&rft.au=Li%2C+Yongxing&rft.au=Chen%2C+Xiaoxuan&rft.au=Shang%2C+Xin&rft.date=2024-03-01&rft.pub=SAGE+Publications&rft.issn=1687-8132&rft.eissn=1687-8140&rft.volume=16&rft.issue=3&rft_id=info:doi/10.1177%2F16878132231221554&rft.externalDocID=10.1177_16878132231221554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon