A Deep Learning-Based Model for Predicting Abnormal Liver Function in Workers in the Automotive Manufacturing Industry: A Cross-Sectional Survey in Chongqing, China

To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in Chongqing. Automotive manufacturing workers in Chongqing city surveyed during 2019–2021 were used as the study subjects. Logistic regression an...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 19; no. 21; p. 14300
Main Authors Ni, Linghao, Chen, Fengqiong, Ran, Ruihong, Li, Xiaoping, Jin, Nan, Zhang, Huadong, Peng, Bin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.11.2022
MDPI
Subjects
Online AccessGet full text
ISSN1660-4601
1661-7827
1660-4601
DOI10.3390/ijerph192114300

Cover

Loading…
Abstract To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in Chongqing. Automotive manufacturing workers in Chongqing city surveyed during 2019–2021 were used as the study subjects. Logistic regression analysis was used to identify the influencing factors of abnormal liver function. A restricted cubic spline model was used to further explore the influence of the length of service. Finally, a deep neural network-based model for predicting the risk of abnormal liver function among workers was developed. Of all 6087 study subjects, a total of 1018 (16.7%) cases were detected with abnormal liver function. Increased BMI, length of service, DBP, SBP, and being male were independent risk factors for abnormal liver function. The risk of abnormal liver function rises sharply with increasing length of service below 10 years. AUC values of the model were 0.764 (95% CI: 0.746–0.783) and 0.756 (95% CI: 0.727–0.786) in the training and test sets, respectively. The other four evaluation indices of the DNN model also achieved good values.
AbstractList To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in Chongqing. Automotive manufacturing workers in Chongqing city surveyed during 2019-2021 were used as the study subjects. Logistic regression analysis was used to identify the influencing factors of abnormal liver function. A restricted cubic spline model was used to further explore the influence of the length of service. Finally, a deep neural network-based model for predicting the risk of abnormal liver function among workers was developed. Of all 6087 study subjects, a total of 1018 (16.7%) cases were detected with abnormal liver function. Increased BMI, length of service, DBP, SBP, and being male were independent risk factors for abnormal liver function. The risk of abnormal liver function rises sharply with increasing length of service below 10 years. AUC values of the model were 0.764 (95% CI: 0.746-0.783) and 0.756 (95% CI: 0.727-0.786) in the training and test sets, respectively. The other four evaluation indices of the DNN model also achieved good values.To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in Chongqing. Automotive manufacturing workers in Chongqing city surveyed during 2019-2021 were used as the study subjects. Logistic regression analysis was used to identify the influencing factors of abnormal liver function. A restricted cubic spline model was used to further explore the influence of the length of service. Finally, a deep neural network-based model for predicting the risk of abnormal liver function among workers was developed. Of all 6087 study subjects, a total of 1018 (16.7%) cases were detected with abnormal liver function. Increased BMI, length of service, DBP, SBP, and being male were independent risk factors for abnormal liver function. The risk of abnormal liver function rises sharply with increasing length of service below 10 years. AUC values of the model were 0.764 (95% CI: 0.746-0.783) and 0.756 (95% CI: 0.727-0.786) in the training and test sets, respectively. The other four evaluation indices of the DNN model also achieved good values.
To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in Chongqing. Automotive manufacturing workers in Chongqing city surveyed during 2019–2021 were used as the study subjects. Logistic regression analysis was used to identify the influencing factors of abnormal liver function. A restricted cubic spline model was used to further explore the influence of the length of service. Finally, a deep neural network-based model for predicting the risk of abnormal liver function among workers was developed. Of all 6087 study subjects, a total of 1018 (16.7%) cases were detected with abnormal liver function. Increased BMI, length of service, DBP, SBP, and being male were independent risk factors for abnormal liver function. The risk of abnormal liver function rises sharply with increasing length of service below 10 years. AUC values of the model were 0.764 (95% CI: 0.746–0.783) and 0.756 (95% CI: 0.727–0.786) in the training and test sets, respectively. The other four evaluation indices of the DNN model also achieved good values.
Author Peng, Bin
Zhang, Huadong
Li, Xiaoping
Chen, Fengqiong
Ran, Ruihong
Ni, Linghao
Jin, Nan
AuthorAffiliation 1 School of Public Health, Chongqing Medical University, Chongqing 400016, China
2 Department of Occupational Health and Radiation Health, Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
AuthorAffiliation_xml – name: 1 School of Public Health, Chongqing Medical University, Chongqing 400016, China
– name: 2 Department of Occupational Health and Radiation Health, Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
Author_xml – sequence: 1
  givenname: Linghao
  orcidid: 0000-0001-6434-5778
  surname: Ni
  fullname: Ni, Linghao
– sequence: 2
  givenname: Fengqiong
  surname: Chen
  fullname: Chen, Fengqiong
– sequence: 3
  givenname: Ruihong
  surname: Ran
  fullname: Ran, Ruihong
– sequence: 4
  givenname: Xiaoping
  surname: Li
  fullname: Li, Xiaoping
– sequence: 5
  givenname: Nan
  surname: Jin
  fullname: Jin, Nan
– sequence: 6
  givenname: Huadong
  surname: Zhang
  fullname: Zhang, Huadong
– sequence: 7
  givenname: Bin
  surname: Peng
  fullname: Peng, Bin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36361178$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAQgC1URB9w5oYsceFAqB0nTsyhUlgoVNoKpII4Wo492fWStbd2stL-n_7QOn2gshInjzzffBrNzDE6cN4BQq8p-cCYIKd2BWGzpCKntGCEPENHlHOSFZzQgyfxITqOcUUIqwsuXqBDxhmntKqP0E2DPwNs8BxUcNYtsk8qgsGX3kCPOx_wjwDG6iGlcNM6H9aqx3O7hYDPR5f-vcPW4d8-_IEQp3BYAm7Gwa_9kDB8qdzYKT2MYVJcODPGIew-4gbPgo8xu4I7SbJejWELu0kxW3q3uE78-xRap16i553qI7x6eE_Qr_MvP2ffsvn3rxezZp7pIqdDpsui7KgQYCpTF1qUUAlKWUW1Ul3NSMXbvBOFMYaXtYDScCNazduqLHImWMdO0Nm9dzO2azAa3BBULzfBrlXYSa-s_Dfj7FIu_FYKXpZVRZPg3YMg-OsR4iDXNmroe-XAj1HmFSvrihHGEvp2D135MaQ53FEFZ4wIkqg3Tzv628rjAhNQ3gN6mmaATmo7qGmiqUHbS0rkdChy71BS3ele3aP6fxW3_LHDbA
CitedBy_id crossref_primary_10_1097_JOM_0000000000003212
Cites_doi 10.1016/j.jhep.2018.09.014
10.1073/pnas.1412759111
10.1186/s12872-020-01411-6
10.3109/15368378.2013.773909
10.3390/ijerph19148572
10.1111/apt.14172
10.1016/j.exger.2005.06.009
10.1186/s12916-014-0145-y
10.1002/ajim.20969
10.1016/j.cld.2013.09.010
10.1016/S0168-8278(86)80157-X
10.1097/HJH.0000000000002758
10.1155/2021/3927551
10.1016/j.neunet.2014.09.003
10.1155/2018/4304376
10.3748/wjg.v19.i46.8459
10.1172/JCI103055
10.1002/hep.27406
10.5604/01.3001.0012.7854
10.3390/ijerph182413062
10.1101/gr.267013.120
10.1186/s12902-021-00878-4
10.1097/MPG.0000000000002523
10.1016/j.cub.2017.09.019
10.1515/reveh-2019-0107
10.1186/1476-069X-12-30
10.1111/acel.12829
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ijerph192114300
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1660-4601
ExternalDocumentID PMC9655771
36361178
10_3390_ijerph192114300
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
Chongqing China
GeographicLocations_xml – name: China
– name: Chongqing China
GrantInformation_xml – fundername: Chongqing Municipal Health Commission
  grantid: 2022ZDXM034
– fundername: Chongqing Science and Technology Bureau
  grantid: 2022ZDXM034
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABGAM
ABUWG
ACGFO
ACGOD
ACIWK
ADBBV
AENEX
AFKRA
AFRAH
AFZYC
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
FYUFA
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
Q2X
RNS
RPM
SV3
TR2
UKHRP
XSB
2XV
3V.
ABJCF
ATCPS
AZQEC
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
IAO
IEP
M2P
M7S
M~E
NPM
PATMY
PYCSY
7XB
8FK
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c421t-c545f199ed7d84c95e7911371caaf83076b2f94ddd6589e5d6d9bc6b7542393f3
IEDL.DBID M48
ISSN 1660-4601
1661-7827
IngestDate Thu Aug 21 18:39:27 EDT 2025
Tue Aug 05 10:42:02 EDT 2025
Fri Jul 25 09:36:25 EDT 2025
Wed Feb 19 02:25:55 EST 2025
Thu Apr 24 23:06:39 EDT 2025
Tue Jul 01 01:25:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords deep learning
risk factors
predictive model
abnormal liver function
automotive manufacturing industry
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-c545f199ed7d84c95e7911371caaf83076b2f94ddd6589e5d6d9bc6b7542393f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this paper.
ORCID 0000-0001-6434-5778
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph192114300
PMID 36361178
PQID 2734633090
PQPubID 54923
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9655771
proquest_miscellaneous_2735873033
proquest_journals_2734633090
pubmed_primary_36361178
crossref_citationtrail_10_3390_ijerph192114300
crossref_primary_10_3390_ijerph192114300
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of environmental research and public health
PublicationTitleAlternate Int J Environ Res Public Health
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Cuzmar (ref_30) 2020; 70
Luo (ref_11) 2018; 36
ref_36
Tajiri (ref_26) 2013; 19
ref_10
Liu (ref_14) 2013; 32
ref_31
Huang (ref_32) 2021; 39
Goodman (ref_29) 2014; 18
ref_18
ref_15
Afshari (ref_5) 2020; 35
Yip (ref_20) 2017; 46
Dehghani (ref_16) 2018; 8
Jiang (ref_22) 2021; 2021
Ma (ref_23) 2018; 2018
Horvath (ref_28) 2014; 111
Schmucker (ref_27) 2005; 40
Lippmann (ref_7) 2011; 54
Hide (ref_25) 2018; 17
Travill (ref_12) 2019; 24
Azam (ref_9) 2020; 11
Wang (ref_24) 2014; 60
Schmidhuber (ref_35) 2015; 61
Sancini (ref_13) 2014; 26
ref_2
Sturgeon (ref_8) 2009; 1
Ma (ref_21) 2021; 13
Karmen (ref_17) 1955; 34
Abdalrada (ref_19) 2019; 7
Deng (ref_6) 2013; 12
Trefts (ref_1) 2017; 27
Chembazhi (ref_34) 2021; 31
Asrani (ref_3) 2019; 70
Campollo (ref_33) 2019; 18
(ref_4) 1986; 3
References_xml – volume: 70
  start-page: 151
  year: 2019
  ident: ref_3
  article-title: Burden of liver diseases in the world
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2018.09.014
– volume: 111
  start-page: 15538
  year: 2014
  ident: ref_28
  article-title: Obesity accelerates epigenetic aging of human liver
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1412759111
– ident: ref_31
  doi: 10.1186/s12872-020-01411-6
– volume: 24
  start-page: 1227
  year: 2019
  ident: ref_12
  article-title: Cardiovascular and metabolic risk factors of shift workers within the automotive industry
  publication-title: Health SA
– volume: 32
  start-page: 551
  year: 2013
  ident: ref_14
  article-title: Effects of extremely low frequency electromagnetic field on the health of workers in automotive industry
  publication-title: Electromagn. Biol. Med.
  doi: 10.3109/15368378.2013.773909
– ident: ref_15
  doi: 10.3390/ijerph19148572
– volume: 46
  start-page: 447
  year: 2017
  ident: ref_20
  article-title: Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in the general population
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1111/apt.14172
– volume: 40
  start-page: 650
  year: 2005
  ident: ref_27
  article-title: Age-Related changes in liver structure and function: Implications for disease?
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2005.06.009
– ident: ref_2
  doi: 10.1186/s12916-014-0145-y
– volume: 54
  start-page: 618
  year: 2011
  ident: ref_7
  article-title: Elevated serum liver enzymes and fatty liver changes associated with long driving among taxi drivers
  publication-title: Am. J. Ind. Med.
  doi: 10.1002/ajim.20969
– volume: 8
  start-page: 55
  year: 2018
  ident: ref_16
  article-title: Health risk assessment of exposure to volatile organic compounds (BTEX) in a painting unit of an automotive industry
  publication-title: J. Health Saf. Work.
– volume: 18
  start-page: 33
  year: 2014
  ident: ref_29
  article-title: The impact of obesity on liver histology
  publication-title: Clin. Liver Dis.
  doi: 10.1016/j.cld.2013.09.010
– volume: 3
  start-page: 131
  year: 1986
  ident: ref_4
  article-title: Occupational toxic liver damage
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(86)80157-X
– volume: 39
  start-page: 1221
  year: 2021
  ident: ref_32
  article-title: Blood pressure control and progression of arteriosclerosis in hypertension
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000002758
– ident: ref_18
– volume: 2021
  start-page: 3927551
  year: 2021
  ident: ref_22
  article-title: Predictive Analysis and Evaluation Model of Chronic Liver Disease Based on BP Neural Network with Improved Ant Colony Algorithm
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2021/3927551
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_35
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 2018
  start-page: 4304376
  year: 2018
  ident: ref_23
  article-title: Application of Machine Learning Techniques for Clinical Predictive Modeling: A Cross-Sectional Study on Nonalcoholic Fatty Liver Disease in China
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2018/4304376
– volume: 19
  start-page: 8459
  year: 2013
  ident: ref_26
  article-title: Liver physiology and liver diseases in the elderly
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v19.i46.8459
– volume: 34
  start-page: 126
  year: 1955
  ident: ref_17
  article-title: Transaminase activity in human blood
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI103055
– volume: 7
  start-page: 1255
  year: 2019
  ident: ref_19
  article-title: A predictive model for liver disease progression based on logistic regression algorithm
  publication-title: Period. Eng. Nat. Sci. (PEN)
– volume: 11
  start-page: 913
  year: 2020
  ident: ref_9
  article-title: Investment and Financing Analysis: An Investigation of the Automotive Industry of China
  publication-title: Syst. Rev. Pharm.
– volume: 60
  start-page: 2099
  year: 2014
  ident: ref_24
  article-title: The global burden of liver disease: The major impact of China
  publication-title: Hepatology
  doi: 10.1002/hep.27406
– volume: 18
  start-page: 6
  year: 2019
  ident: ref_33
  article-title: Alcohol and the Liver: The Return of the Prodigal Son
  publication-title: Ann. Hepatol.
  doi: 10.5604/01.3001.0012.7854
– ident: ref_10
  doi: 10.3390/ijerph182413062
– volume: 26
  start-page: 148
  year: 2014
  ident: ref_13
  article-title: Liver damage in automotive and industrial workers of the glass
  publication-title: Ann. Ig.
– volume: 31
  start-page: 576
  year: 2021
  ident: ref_34
  article-title: Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver
  publication-title: Genome Res.
  doi: 10.1101/gr.267013.120
– ident: ref_36
  doi: 10.1186/s12902-021-00878-4
– volume: 70
  start-page: 93
  year: 2020
  ident: ref_30
  article-title: Early Obesity: Risk Factor for Fatty Liver Disease
  publication-title: J. Pediatr. Gastroenterol. Nutr.
  doi: 10.1097/MPG.0000000000002523
– volume: 1
  start-page: 7
  year: 2009
  ident: ref_8
  article-title: Globalisation of the automotive industry: Main features and trends
  publication-title: Int. J. Technol. Learn. Innov. Dev.
– volume: 27
  start-page: R1147
  year: 2017
  ident: ref_1
  article-title: The liver
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.09.019
– volume: 35
  start-page: 517
  year: 2020
  ident: ref_5
  article-title: Effect of occupational exposure to petrol and gasoline components on liver and renal biochemical parameters among gas station attendants, a review and meta-analysis
  publication-title: Rev. Environ. Health
  doi: 10.1515/reveh-2019-0107
– volume: 12
  start-page: 30
  year: 2013
  ident: ref_6
  article-title: Interaction of occupational manganese exposure and alcohol drinking aggravates the increase of liver enzyme concentrations from a cross-sectional study in China
  publication-title: Environ. Health
  doi: 10.1186/1476-069X-12-30
– volume: 36
  start-page: 445
  year: 2018
  ident: ref_11
  article-title: Analysis on characteristics of hearing loss in occupational noise-exposed workers in automotive manufacturing industry
  publication-title: Chin. J. Ind. Hyg. Occup. Dis.
– volume: 17
  start-page: e12829
  year: 2018
  ident: ref_25
  article-title: Effects of aging on liver microcirculatory function and sinusoidal phenotype
  publication-title: Aging Cell
  doi: 10.1111/acel.12829
– volume: 13
  start-page: 12704
  year: 2021
  ident: ref_21
  article-title: A predictive model for the diagnosis of non-alcoholic fatty liver disease based on an integrated machine learning method
  publication-title: Am. J. Transl. Res.
SSID ssj0038469
Score 2.3414721
Snippet To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 14300
SubjectTerms Automobile industry
Automobile production
Blood pressure
China - epidemiology
Cross-Sectional Studies
Data collection
Deep Learning
Enzymes
Female
Hearing loss
Humans
Laboratories
Liver Diseases
Machine learning
Male
Manufacturing
Manufacturing Industry
Occupational health
Population
Regulation
VOCs
Volatile organic compounds
Workers
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXJAQonwGWjRIHDhguo4TO-6lCgurClGEVCrtLYpjp120ym63m0r9P_xQZpxsaIvgFslOYmvsmTf2zBvG3lpfW-UqjU6OdTypUQ9aUSY8RtcA7YsUVaBdPPqmDk-SL9N02h-4XfRhlRudGBS1W1R0Rr5HNCwKnW8zOliec6oaRberfQmNu-weUZdRSJeeDg6XRNtK8FegDeJoCXVH7SPRzd-b_fQ4DyIDQ8BA6W3XrdJfUPN2xOQ1EzR5xB722BHyTtjb7I5vHrMH3cEbdPlET9ivHD55v4SeOPWUf0Q75YBqns0BESp8X9HdDEU7Q24bgqxz-ErRGTBBG0dyglkDdIiOyJAeESJC3q5D2N6lh6OyaSkdIuQ3Ql_642ofchjT3PhxCO6igR63q0t_RZ8Yny2a03Ps_x5Cwe6n7GTy-cf4kPelGHiVxGLNKwRatTDGO-2ypDKp16glpRZVWdYZ6gll49okzjlENManTjljK2Wpvq40spbP2FazaPwLBkqWJiuFLUeE5WprM4uS8_EosVZ76yL2YSOKoup5yqlcxrxAf4VkV9ySXcTeDS8sO4qOf3fd2ci26PfqRfFnZUXszdCMu4yuTsrGL9rQJ81QGUoZsefdUhj-JZVUQugsYvrGIhk6EIP3zZZmdhaYvI1KU63Fy_8P6xW7H1PSRciA3GFb61XrdxEKre3rsN5_AySHCzg
  priority: 102
  providerName: ProQuest
Title A Deep Learning-Based Model for Predicting Abnormal Liver Function in Workers in the Automotive Manufacturing Industry: A Cross-Sectional Survey in Chongqing, China
URI https://www.ncbi.nlm.nih.gov/pubmed/36361178
https://www.proquest.com/docview/2734633090
https://www.proquest.com/docview/2735873033
https://pubmed.ncbi.nlm.nih.gov/PMC9655771
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk9AkhMZtFLbqIPHAAxl1nNgxEpqysjIhOk2MSn2L4tjZiqp0K81E_w8_lHOSNLswXniJItlJnJxjf9-Jz4WxN8blRtpMoZFjrBfkuA4angaej6YB4ovgWZV2cXgkD0fBl3E4vioH1HzAn3eadlRPajSf7v66WO7hhP9IFiea7O8nPxyOiRJ7Ifj30H5fR1hSNEuHQbulIBBoiQtzBCQPYVHVeX7uusEGeyCkkJxT7bXraPUXBb3tSXkNmgab7FHDKSGuleAxu-eKJ-xh_UMO6jijp-x3DJ-cO4cmoeqpt4_4ZYFqoU0BmSscz2nPhrygITYFUdkpfCWvDRgg9pH8YFIA_VxHxkinSB0hLheVO9-lg2FalBQmUcU9QlMSZPkBYujTu3knldMXDfSknF-6Jd2ifzYrTi-w_zuoCnk_Y6PBwff-odeUaPCywOcLL0MClnOtnVU2CjIdOoWrp1A8S9M8wvVDGj_XgbUWmY52oZVWm0waqrsrtMjFc7ZWzAr3goEUqY5SbtIecbzcmMjoMHJ-LzBGOWM7bHcliiRr8pdTGY1pgnYMiTG5JcYOe9tecF6n7vh31-2VbJOVCiaU-EcK0dPY_LptxtlHWypp4WZl1SeMcJEUosO2alVon7XSoQ5TN5Sk7UCZvW-2FJOzKsO3lmGoFH_531e-Yhs-xWlUQZPbbG0xL90OsqeF6bL7aqzwGPU5HQefu2x9_-Do-Fu3mi9_AK8pIHY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOYCEKt6kFDASSBwITeLEjpEQCltWW7pbIbWV9hbi2GkXrbLb7aZo_w9nfiMzzoO2CG69RYrznPF839jzIOSVMoXiOhfg5CjthgXYQeVnoRuAawD4wvzcll0c7fPBUfhlHI3XyK82FwbDKlubaA21nuW4Rr6NZVg4ON_S-zg_dbFrFO6uti00arXYM6sf4LKdfdjdAfm-DoL-58PewG26Crh5GPhLNwfOUPhSGi10HOYyMgImPBN-nmVFDCrPVVDIUGsN4CxNpLmWKucKW8UyyQoG971BbgLwejijxLhz8BhgOdJtHzDPBeQVdSkhxqS3Pflu4L9h8TEgKJhOdxEF_6K2VyM0L0Be_y7ZaLgqTWrlukfWTHmf3KkX-midv_SA_EzojjFz2hRqPXY_AS5qij3WphQYMf26wL0gjK6miSqRIk_pEKNBaB8wFfWCTkqKi_bARPEQKClNqqUNEzw3dJSVFaZf2HxK2rQaWb2nCe3ht7kHNpgMX_SgWpybFd6idzIrj09h_FtqG4Q_JEfXIqRHZL2cleYJoZxlMs58lXnIHQulYiWj2AReqJQwSjvkXSuKNG_qomN7jmkK_hHKLr0iO4e86S6Y1yVB_j10q5Vt2tiGs_SPJjvkZXcaZjVu1WSlmVV2TBSD8WXMIY9rVeiexTjjvi9ih4hLStINwIrhl8-UkxNbOVzyKBLC3_z_a70gtwaHo2E63N3fe0puB5jwYbMvt8j6clGZZ0DDluq51X1Kvl33ZPsNRxhHyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBASmriTMcBIIPFAWB0ndoyEUGipNnbRpDGpbyGOna2oSruuGer_4Vfw6zjHubANwdveItlJnJzbd-xzIeSVtoUWJpfg5GjjhwXoQc2y0A_ANQD7wlnuyi7u7Yuto_DLKBqtkF9tLgyGVbY60SlqM81xj3wTy7AIcL5Vb7NowiIOBsOPs1MfO0jhSWvbTqNmkR27_AHu29mH7QHQ-nUQDD9_7W_5TYcBPw8DtvBzwA8FU8oaaeIwV5GVIPxcsjzLihjYX-igUKExBgy1spERRulcaGwbyxUvODz3BrkpecRQxuSoc_Y42HWE3gzsnw9WWNZlhTiH9Y-_W_iHWIgMwAqm1l20iH_B3KvRmhfM3_AuWWtwK01qRrtHVmx5n9ypN_1oncv0gPxM6MDaGW2Kth77n8BGGor91iYU0DE9mOO5EEZa00SXCJcndBcjQ-gQ7CvyCB2XFDfwAZXiJcBTmlQLFzJ4buleVlaYiuFyK2nTdmT5nia0j9_mH7rAMlzoYTU_t0t8RP9kWh6fwvy31DULf0iOroVIj8hqOS3tE0IFz1ScMZ31EEcWWsdaRbENeqHW0mrjkXctKdK8qZGOrTomKfhKSLv0Cu088qa7YVaXB_n31I2WtmmjJ87SP1ztkZfdMEg4HttkpZ1Wbk4UgyLm3COPa1bo3sUFF4zJ2CPyEpN0E7B6-OWRcnziqogrEUVSsvX_L-sFuQVilu5u7-88JbcDzP1wiZgbZHUxr-wzQGQL_dyxPiXfrlvWfgNV-EwB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning-Based+Model+for+Predicting+Abnormal+Liver+Function+in+Workers+in+the+Automotive+Manufacturing+Industry%3A+A+Cross-Sectional+Survey+in+Chongqing%2C+China&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Ni%2C+Linghao&rft.au=Chen%2C+Fengqiong&rft.au=Ran%2C+Ruihong&rft.au=Li%2C+Xiaoping&rft.date=2022-11-01&rft.pub=MDPI&rft.issn=1661-7827&rft.eissn=1660-4601&rft.volume=19&rft.issue=21&rft_id=info:doi/10.3390%2Fijerph192114300&rft_id=info%3Apmid%2F36361178&rft.externalDocID=PMC9655771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon