A Deep Learning-Based Model for Predicting Abnormal Liver Function in Workers in the Automotive Manufacturing Industry: A Cross-Sectional Survey in Chongqing, China
To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in Chongqing. Automotive manufacturing workers in Chongqing city surveyed during 2019–2021 were used as the study subjects. Logistic regression an...
Saved in:
Published in | International journal of environmental research and public health Vol. 19; no. 21; p. 14300 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.11.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1660-4601 1661-7827 1660-4601 |
DOI | 10.3390/ijerph192114300 |
Cover
Loading…
Abstract | To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in Chongqing. Automotive manufacturing workers in Chongqing city surveyed during 2019–2021 were used as the study subjects. Logistic regression analysis was used to identify the influencing factors of abnormal liver function. A restricted cubic spline model was used to further explore the influence of the length of service. Finally, a deep neural network-based model for predicting the risk of abnormal liver function among workers was developed. Of all 6087 study subjects, a total of 1018 (16.7%) cases were detected with abnormal liver function. Increased BMI, length of service, DBP, SBP, and being male were independent risk factors for abnormal liver function. The risk of abnormal liver function rises sharply with increasing length of service below 10 years. AUC values of the model were 0.764 (95% CI: 0.746–0.783) and 0.756 (95% CI: 0.727–0.786) in the training and test sets, respectively. The other four evaluation indices of the DNN model also achieved good values. |
---|---|
AbstractList | To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in Chongqing. Automotive manufacturing workers in Chongqing city surveyed during 2019-2021 were used as the study subjects. Logistic regression analysis was used to identify the influencing factors of abnormal liver function. A restricted cubic spline model was used to further explore the influence of the length of service. Finally, a deep neural network-based model for predicting the risk of abnormal liver function among workers was developed. Of all 6087 study subjects, a total of 1018 (16.7%) cases were detected with abnormal liver function. Increased BMI, length of service, DBP, SBP, and being male were independent risk factors for abnormal liver function. The risk of abnormal liver function rises sharply with increasing length of service below 10 years. AUC values of the model were 0.764 (95% CI: 0.746-0.783) and 0.756 (95% CI: 0.727-0.786) in the training and test sets, respectively. The other four evaluation indices of the DNN model also achieved good values.To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in Chongqing. Automotive manufacturing workers in Chongqing city surveyed during 2019-2021 were used as the study subjects. Logistic regression analysis was used to identify the influencing factors of abnormal liver function. A restricted cubic spline model was used to further explore the influence of the length of service. Finally, a deep neural network-based model for predicting the risk of abnormal liver function among workers was developed. Of all 6087 study subjects, a total of 1018 (16.7%) cases were detected with abnormal liver function. Increased BMI, length of service, DBP, SBP, and being male were independent risk factors for abnormal liver function. The risk of abnormal liver function rises sharply with increasing length of service below 10 years. AUC values of the model were 0.764 (95% CI: 0.746-0.783) and 0.756 (95% CI: 0.727-0.786) in the training and test sets, respectively. The other four evaluation indices of the DNN model also achieved good values. To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in Chongqing. Automotive manufacturing workers in Chongqing city surveyed during 2019–2021 were used as the study subjects. Logistic regression analysis was used to identify the influencing factors of abnormal liver function. A restricted cubic spline model was used to further explore the influence of the length of service. Finally, a deep neural network-based model for predicting the risk of abnormal liver function among workers was developed. Of all 6087 study subjects, a total of 1018 (16.7%) cases were detected with abnormal liver function. Increased BMI, length of service, DBP, SBP, and being male were independent risk factors for abnormal liver function. The risk of abnormal liver function rises sharply with increasing length of service below 10 years. AUC values of the model were 0.764 (95% CI: 0.746–0.783) and 0.756 (95% CI: 0.727–0.786) in the training and test sets, respectively. The other four evaluation indices of the DNN model also achieved good values. |
Author | Peng, Bin Zhang, Huadong Li, Xiaoping Chen, Fengqiong Ran, Ruihong Ni, Linghao Jin, Nan |
AuthorAffiliation | 1 School of Public Health, Chongqing Medical University, Chongqing 400016, China 2 Department of Occupational Health and Radiation Health, Chongqing Center for Disease Control and Prevention, Chongqing 400042, China |
AuthorAffiliation_xml | – name: 1 School of Public Health, Chongqing Medical University, Chongqing 400016, China – name: 2 Department of Occupational Health and Radiation Health, Chongqing Center for Disease Control and Prevention, Chongqing 400042, China |
Author_xml | – sequence: 1 givenname: Linghao orcidid: 0000-0001-6434-5778 surname: Ni fullname: Ni, Linghao – sequence: 2 givenname: Fengqiong surname: Chen fullname: Chen, Fengqiong – sequence: 3 givenname: Ruihong surname: Ran fullname: Ran, Ruihong – sequence: 4 givenname: Xiaoping surname: Li fullname: Li, Xiaoping – sequence: 5 givenname: Nan surname: Jin fullname: Jin, Nan – sequence: 6 givenname: Huadong surname: Zhang fullname: Zhang, Huadong – sequence: 7 givenname: Bin surname: Peng fullname: Peng, Bin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36361178$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAQgC1URB9w5oYsceFAqB0nTsyhUlgoVNoKpII4Wo492fWStbd2stL-n_7QOn2gshInjzzffBrNzDE6cN4BQq8p-cCYIKd2BWGzpCKntGCEPENHlHOSFZzQgyfxITqOcUUIqwsuXqBDxhmntKqP0E2DPwNs8BxUcNYtsk8qgsGX3kCPOx_wjwDG6iGlcNM6H9aqx3O7hYDPR5f-vcPW4d8-_IEQp3BYAm7Gwa_9kDB8qdzYKT2MYVJcODPGIew-4gbPgo8xu4I7SbJejWELu0kxW3q3uE78-xRap16i553qI7x6eE_Qr_MvP2ffsvn3rxezZp7pIqdDpsui7KgQYCpTF1qUUAlKWUW1Ul3NSMXbvBOFMYaXtYDScCNazduqLHImWMdO0Nm9dzO2azAa3BBULzfBrlXYSa-s_Dfj7FIu_FYKXpZVRZPg3YMg-OsR4iDXNmroe-XAj1HmFSvrihHGEvp2D135MaQ53FEFZ4wIkqg3Tzv628rjAhNQ3gN6mmaATmo7qGmiqUHbS0rkdChy71BS3ele3aP6fxW3_LHDbA |
CitedBy_id | crossref_primary_10_1097_JOM_0000000000003212 |
Cites_doi | 10.1016/j.jhep.2018.09.014 10.1073/pnas.1412759111 10.1186/s12872-020-01411-6 10.3109/15368378.2013.773909 10.3390/ijerph19148572 10.1111/apt.14172 10.1016/j.exger.2005.06.009 10.1186/s12916-014-0145-y 10.1002/ajim.20969 10.1016/j.cld.2013.09.010 10.1016/S0168-8278(86)80157-X 10.1097/HJH.0000000000002758 10.1155/2021/3927551 10.1016/j.neunet.2014.09.003 10.1155/2018/4304376 10.3748/wjg.v19.i46.8459 10.1172/JCI103055 10.1002/hep.27406 10.5604/01.3001.0012.7854 10.3390/ijerph182413062 10.1101/gr.267013.120 10.1186/s12902-021-00878-4 10.1097/MPG.0000000000002523 10.1016/j.cub.2017.09.019 10.1515/reveh-2019-0107 10.1186/1476-069X-12-30 10.1111/acel.12829 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8C1 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ijerph192114300 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1660-4601 |
ExternalDocumentID | PMC9655771 36361178 10_3390_ijerph192114300 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China Chongqing China |
GeographicLocations_xml | – name: China – name: Chongqing China |
GrantInformation_xml | – fundername: Chongqing Municipal Health Commission grantid: 2022ZDXM034 – fundername: Chongqing Science and Technology Bureau grantid: 2022ZDXM034 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 A8Z AADQD AAFWJ AAHBH AAYXX ABGAM ABUWG ACGFO ACGOD ACIWK ADBBV AENEX AFKRA AFRAH AFZYC AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN F5P FYUFA GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO Q2X RNS RPM SV3 TR2 UKHRP XSB 2XV 3V. ABJCF ATCPS AZQEC BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ IAO IEP M2P M7S M~E NPM PATMY PYCSY 7XB 8FK DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c421t-c545f199ed7d84c95e7911371caaf83076b2f94ddd6589e5d6d9bc6b7542393f3 |
IEDL.DBID | M48 |
ISSN | 1660-4601 1661-7827 |
IngestDate | Thu Aug 21 18:39:27 EDT 2025 Tue Aug 05 10:42:02 EDT 2025 Fri Jul 25 09:36:25 EDT 2025 Wed Feb 19 02:25:55 EST 2025 Thu Apr 24 23:06:39 EDT 2025 Tue Jul 01 01:25:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | deep learning risk factors predictive model abnormal liver function automotive manufacturing industry |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-c545f199ed7d84c95e7911371caaf83076b2f94ddd6589e5d6d9bc6b7542393f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this paper. |
ORCID | 0000-0001-6434-5778 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph192114300 |
PMID | 36361178 |
PQID | 2734633090 |
PQPubID | 54923 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9655771 proquest_miscellaneous_2735873033 proquest_journals_2734633090 pubmed_primary_36361178 crossref_citationtrail_10_3390_ijerph192114300 crossref_primary_10_3390_ijerph192114300 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of environmental research and public health |
PublicationTitleAlternate | Int J Environ Res Public Health |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Cuzmar (ref_30) 2020; 70 Luo (ref_11) 2018; 36 ref_36 Tajiri (ref_26) 2013; 19 ref_10 Liu (ref_14) 2013; 32 ref_31 Huang (ref_32) 2021; 39 Goodman (ref_29) 2014; 18 ref_18 ref_15 Afshari (ref_5) 2020; 35 Yip (ref_20) 2017; 46 Dehghani (ref_16) 2018; 8 Jiang (ref_22) 2021; 2021 Ma (ref_23) 2018; 2018 Horvath (ref_28) 2014; 111 Schmucker (ref_27) 2005; 40 Lippmann (ref_7) 2011; 54 Hide (ref_25) 2018; 17 Travill (ref_12) 2019; 24 Azam (ref_9) 2020; 11 Wang (ref_24) 2014; 60 Schmidhuber (ref_35) 2015; 61 Sancini (ref_13) 2014; 26 ref_2 Sturgeon (ref_8) 2009; 1 Ma (ref_21) 2021; 13 Karmen (ref_17) 1955; 34 Abdalrada (ref_19) 2019; 7 Deng (ref_6) 2013; 12 Trefts (ref_1) 2017; 27 Chembazhi (ref_34) 2021; 31 Asrani (ref_3) 2019; 70 Campollo (ref_33) 2019; 18 (ref_4) 1986; 3 |
References_xml | – volume: 70 start-page: 151 year: 2019 ident: ref_3 article-title: Burden of liver diseases in the world publication-title: J. Hepatol. doi: 10.1016/j.jhep.2018.09.014 – volume: 111 start-page: 15538 year: 2014 ident: ref_28 article-title: Obesity accelerates epigenetic aging of human liver publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1412759111 – ident: ref_31 doi: 10.1186/s12872-020-01411-6 – volume: 24 start-page: 1227 year: 2019 ident: ref_12 article-title: Cardiovascular and metabolic risk factors of shift workers within the automotive industry publication-title: Health SA – volume: 32 start-page: 551 year: 2013 ident: ref_14 article-title: Effects of extremely low frequency electromagnetic field on the health of workers in automotive industry publication-title: Electromagn. Biol. Med. doi: 10.3109/15368378.2013.773909 – ident: ref_15 doi: 10.3390/ijerph19148572 – volume: 46 start-page: 447 year: 2017 ident: ref_20 article-title: Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in the general population publication-title: Aliment. Pharmacol. Ther. doi: 10.1111/apt.14172 – volume: 40 start-page: 650 year: 2005 ident: ref_27 article-title: Age-Related changes in liver structure and function: Implications for disease? publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2005.06.009 – ident: ref_2 doi: 10.1186/s12916-014-0145-y – volume: 54 start-page: 618 year: 2011 ident: ref_7 article-title: Elevated serum liver enzymes and fatty liver changes associated with long driving among taxi drivers publication-title: Am. J. Ind. Med. doi: 10.1002/ajim.20969 – volume: 8 start-page: 55 year: 2018 ident: ref_16 article-title: Health risk assessment of exposure to volatile organic compounds (BTEX) in a painting unit of an automotive industry publication-title: J. Health Saf. Work. – volume: 18 start-page: 33 year: 2014 ident: ref_29 article-title: The impact of obesity on liver histology publication-title: Clin. Liver Dis. doi: 10.1016/j.cld.2013.09.010 – volume: 3 start-page: 131 year: 1986 ident: ref_4 article-title: Occupational toxic liver damage publication-title: J. Hepatol. doi: 10.1016/S0168-8278(86)80157-X – volume: 39 start-page: 1221 year: 2021 ident: ref_32 article-title: Blood pressure control and progression of arteriosclerosis in hypertension publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000002758 – ident: ref_18 – volume: 2021 start-page: 3927551 year: 2021 ident: ref_22 article-title: Predictive Analysis and Evaluation Model of Chronic Liver Disease Based on BP Neural Network with Improved Ant Colony Algorithm publication-title: J. Healthc. Eng. doi: 10.1155/2021/3927551 – volume: 61 start-page: 85 year: 2015 ident: ref_35 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 2018 start-page: 4304376 year: 2018 ident: ref_23 article-title: Application of Machine Learning Techniques for Clinical Predictive Modeling: A Cross-Sectional Study on Nonalcoholic Fatty Liver Disease in China publication-title: Biomed. Res. Int. doi: 10.1155/2018/4304376 – volume: 19 start-page: 8459 year: 2013 ident: ref_26 article-title: Liver physiology and liver diseases in the elderly publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v19.i46.8459 – volume: 34 start-page: 126 year: 1955 ident: ref_17 article-title: Transaminase activity in human blood publication-title: J. Clin. Investig. doi: 10.1172/JCI103055 – volume: 7 start-page: 1255 year: 2019 ident: ref_19 article-title: A predictive model for liver disease progression based on logistic regression algorithm publication-title: Period. Eng. Nat. Sci. (PEN) – volume: 11 start-page: 913 year: 2020 ident: ref_9 article-title: Investment and Financing Analysis: An Investigation of the Automotive Industry of China publication-title: Syst. Rev. Pharm. – volume: 60 start-page: 2099 year: 2014 ident: ref_24 article-title: The global burden of liver disease: The major impact of China publication-title: Hepatology doi: 10.1002/hep.27406 – volume: 18 start-page: 6 year: 2019 ident: ref_33 article-title: Alcohol and the Liver: The Return of the Prodigal Son publication-title: Ann. Hepatol. doi: 10.5604/01.3001.0012.7854 – ident: ref_10 doi: 10.3390/ijerph182413062 – volume: 26 start-page: 148 year: 2014 ident: ref_13 article-title: Liver damage in automotive and industrial workers of the glass publication-title: Ann. Ig. – volume: 31 start-page: 576 year: 2021 ident: ref_34 article-title: Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver publication-title: Genome Res. doi: 10.1101/gr.267013.120 – ident: ref_36 doi: 10.1186/s12902-021-00878-4 – volume: 70 start-page: 93 year: 2020 ident: ref_30 article-title: Early Obesity: Risk Factor for Fatty Liver Disease publication-title: J. Pediatr. Gastroenterol. Nutr. doi: 10.1097/MPG.0000000000002523 – volume: 1 start-page: 7 year: 2009 ident: ref_8 article-title: Globalisation of the automotive industry: Main features and trends publication-title: Int. J. Technol. Learn. Innov. Dev. – volume: 27 start-page: R1147 year: 2017 ident: ref_1 article-title: The liver publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.09.019 – volume: 35 start-page: 517 year: 2020 ident: ref_5 article-title: Effect of occupational exposure to petrol and gasoline components on liver and renal biochemical parameters among gas station attendants, a review and meta-analysis publication-title: Rev. Environ. Health doi: 10.1515/reveh-2019-0107 – volume: 12 start-page: 30 year: 2013 ident: ref_6 article-title: Interaction of occupational manganese exposure and alcohol drinking aggravates the increase of liver enzyme concentrations from a cross-sectional study in China publication-title: Environ. Health doi: 10.1186/1476-069X-12-30 – volume: 36 start-page: 445 year: 2018 ident: ref_11 article-title: Analysis on characteristics of hearing loss in occupational noise-exposed workers in automotive manufacturing industry publication-title: Chin. J. Ind. Hyg. Occup. Dis. – volume: 17 start-page: e12829 year: 2018 ident: ref_25 article-title: Effects of aging on liver microcirculatory function and sinusoidal phenotype publication-title: Aging Cell doi: 10.1111/acel.12829 – volume: 13 start-page: 12704 year: 2021 ident: ref_21 article-title: A predictive model for the diagnosis of non-alcoholic fatty liver disease based on an integrated machine learning method publication-title: Am. J. Transl. Res. |
SSID | ssj0038469 |
Score | 2.3414721 |
Snippet | To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 14300 |
SubjectTerms | Automobile industry Automobile production Blood pressure China - epidemiology Cross-Sectional Studies Data collection Deep Learning Enzymes Female Hearing loss Humans Laboratories Liver Diseases Machine learning Male Manufacturing Manufacturing Industry Occupational health Population Regulation VOCs Volatile organic compounds Workers |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXJAQonwGWjRIHDhguo4TO-6lCgurClGEVCrtLYpjp120ym63m0r9P_xQZpxsaIvgFslOYmvsmTf2zBvG3lpfW-UqjU6OdTypUQ9aUSY8RtcA7YsUVaBdPPqmDk-SL9N02h-4XfRhlRudGBS1W1R0Rr5HNCwKnW8zOliec6oaRberfQmNu-weUZdRSJeeDg6XRNtK8FegDeJoCXVH7SPRzd-b_fQ4DyIDQ8BA6W3XrdJfUPN2xOQ1EzR5xB722BHyTtjb7I5vHrMH3cEbdPlET9ivHD55v4SeOPWUf0Q75YBqns0BESp8X9HdDEU7Q24bgqxz-ErRGTBBG0dyglkDdIiOyJAeESJC3q5D2N6lh6OyaSkdIuQ3Ql_642ofchjT3PhxCO6igR63q0t_RZ8Yny2a03Ps_x5Cwe6n7GTy-cf4kPelGHiVxGLNKwRatTDGO-2ypDKp16glpRZVWdYZ6gll49okzjlENManTjljK2Wpvq40spbP2FazaPwLBkqWJiuFLUeE5WprM4uS8_EosVZ76yL2YSOKoup5yqlcxrxAf4VkV9ySXcTeDS8sO4qOf3fd2ci26PfqRfFnZUXszdCMu4yuTsrGL9rQJ81QGUoZsefdUhj-JZVUQugsYvrGIhk6EIP3zZZmdhaYvI1KU63Fy_8P6xW7H1PSRciA3GFb61XrdxEKre3rsN5_AySHCzg priority: 102 providerName: ProQuest |
Title | A Deep Learning-Based Model for Predicting Abnormal Liver Function in Workers in the Automotive Manufacturing Industry: A Cross-Sectional Survey in Chongqing, China |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36361178 https://www.proquest.com/docview/2734633090 https://www.proquest.com/docview/2735873033 https://pubmed.ncbi.nlm.nih.gov/PMC9655771 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk9AkhMZtFLbqIPHAAxl1nNgxEpqysjIhOk2MSn2L4tjZiqp0K81E_w8_lHOSNLswXniJItlJnJxjf9-Jz4WxN8blRtpMoZFjrBfkuA4angaej6YB4ovgWZV2cXgkD0fBl3E4vioH1HzAn3eadlRPajSf7v66WO7hhP9IFiea7O8nPxyOiRJ7Ifj30H5fR1hSNEuHQbulIBBoiQtzBCQPYVHVeX7uusEGeyCkkJxT7bXraPUXBb3tSXkNmgab7FHDKSGuleAxu-eKJ-xh_UMO6jijp-x3DJ-cO4cmoeqpt4_4ZYFqoU0BmSscz2nPhrygITYFUdkpfCWvDRgg9pH8YFIA_VxHxkinSB0hLheVO9-lg2FalBQmUcU9QlMSZPkBYujTu3knldMXDfSknF-6Jd2ifzYrTi-w_zuoCnk_Y6PBwff-odeUaPCywOcLL0MClnOtnVU2CjIdOoWrp1A8S9M8wvVDGj_XgbUWmY52oZVWm0waqrsrtMjFc7ZWzAr3goEUqY5SbtIecbzcmMjoMHJ-LzBGOWM7bHcliiRr8pdTGY1pgnYMiTG5JcYOe9tecF6n7vh31-2VbJOVCiaU-EcK0dPY_LptxtlHWypp4WZl1SeMcJEUosO2alVon7XSoQ5TN5Sk7UCZvW-2FJOzKsO3lmGoFH_531e-Yhs-xWlUQZPbbG0xL90OsqeF6bL7aqzwGPU5HQefu2x9_-Do-Fu3mi9_AK8pIHY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOYCEKt6kFDASSBwITeLEjpEQCltWW7pbIbWV9hbi2GkXrbLb7aZo_w9nfiMzzoO2CG69RYrznPF839jzIOSVMoXiOhfg5CjthgXYQeVnoRuAawD4wvzcll0c7fPBUfhlHI3XyK82FwbDKlubaA21nuW4Rr6NZVg4ON_S-zg_dbFrFO6uti00arXYM6sf4LKdfdjdAfm-DoL-58PewG26Crh5GPhLNwfOUPhSGi10HOYyMgImPBN-nmVFDCrPVVDIUGsN4CxNpLmWKucKW8UyyQoG971BbgLwejijxLhz8BhgOdJtHzDPBeQVdSkhxqS3Pflu4L9h8TEgKJhOdxEF_6K2VyM0L0Be_y7ZaLgqTWrlukfWTHmf3KkX-midv_SA_EzojjFz2hRqPXY_AS5qij3WphQYMf26wL0gjK6miSqRIk_pEKNBaB8wFfWCTkqKi_bARPEQKClNqqUNEzw3dJSVFaZf2HxK2rQaWb2nCe3ht7kHNpgMX_SgWpybFd6idzIrj09h_FtqG4Q_JEfXIqRHZL2cleYJoZxlMs58lXnIHQulYiWj2AReqJQwSjvkXSuKNG_qomN7jmkK_hHKLr0iO4e86S6Y1yVB_j10q5Vt2tiGs_SPJjvkZXcaZjVu1WSlmVV2TBSD8WXMIY9rVeiexTjjvi9ih4hLStINwIrhl8-UkxNbOVzyKBLC3_z_a70gtwaHo2E63N3fe0puB5jwYbMvt8j6clGZZ0DDluq51X1Kvl33ZPsNRxhHyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBASmriTMcBIIPFAWB0ndoyEUGipNnbRpDGpbyGOna2oSruuGer_4Vfw6zjHubANwdveItlJnJzbd-xzIeSVtoUWJpfg5GjjhwXoQc2y0A_ANQD7wlnuyi7u7Yuto_DLKBqtkF9tLgyGVbY60SlqM81xj3wTy7AIcL5Vb7NowiIOBsOPs1MfO0jhSWvbTqNmkR27_AHu29mH7QHQ-nUQDD9_7W_5TYcBPw8DtvBzwA8FU8oaaeIwV5GVIPxcsjzLihjYX-igUKExBgy1spERRulcaGwbyxUvODz3BrkpecRQxuSoc_Y42HWE3gzsnw9WWNZlhTiH9Y-_W_iHWIgMwAqm1l20iH_B3KvRmhfM3_AuWWtwK01qRrtHVmx5n9ypN_1oncv0gPxM6MDaGW2Kth77n8BGGor91iYU0DE9mOO5EEZa00SXCJcndBcjQ-gQ7CvyCB2XFDfwAZXiJcBTmlQLFzJ4buleVlaYiuFyK2nTdmT5nia0j9_mH7rAMlzoYTU_t0t8RP9kWh6fwvy31DULf0iOroVIj8hqOS3tE0IFz1ScMZ31EEcWWsdaRbENeqHW0mrjkXctKdK8qZGOrTomKfhKSLv0Cu088qa7YVaXB_n31I2WtmmjJ87SP1ztkZfdMEg4HttkpZ1Wbk4UgyLm3COPa1bo3sUFF4zJ2CPyEpN0E7B6-OWRcnziqogrEUVSsvX_L-sFuQVilu5u7-88JbcDzP1wiZgbZHUxr-wzQGQL_dyxPiXfrlvWfgNV-EwB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning-Based+Model+for+Predicting+Abnormal+Liver+Function+in+Workers+in+the+Automotive+Manufacturing+Industry%3A+A+Cross-Sectional+Survey+in+Chongqing%2C+China&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Ni%2C+Linghao&rft.au=Chen%2C+Fengqiong&rft.au=Ran%2C+Ruihong&rft.au=Li%2C+Xiaoping&rft.date=2022-11-01&rft.pub=MDPI&rft.issn=1661-7827&rft.eissn=1660-4601&rft.volume=19&rft.issue=21&rft_id=info:doi/10.3390%2Fijerph192114300&rft_id=info%3Apmid%2F36361178&rft.externalDocID=PMC9655771 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon |