Review of artificial intelligence-based bridge damage detection
Bridges are often located in harsh environments and are thus extremely susceptible to damage. If the initial damage is not detected in time, it can develop further causing safety hazards. Therefore, accurate detection of bridge damage is an important topic. In recent years, artificial intelligence t...
Saved in:
Published in | Advances in mechanical engineering Vol. 14; no. 9 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.09.2022
Sage Publications Ltd SAGE Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bridges are often located in harsh environments and are thus extremely susceptible to damage. If the initial damage is not detected in time, it can develop further causing safety hazards. Therefore, accurate detection of bridge damage is an important topic. In recent years, artificial intelligence technology has been developed rapidly, especially machine learning algorithms, which have shown amazing results in various fields while it also received attention in bridge inspection. This paper summarizes the progress of bridge damage detection research related to artificial intelligence techniques between 2015 and 2021. For structural health monitoring, sensing data is the basis for various data processing methods. The strength and weakness of the sensing data itself directly affect the effectiveness of subsequent processing methods. As a result, this paper classifies bridge damage detection studies into six categories from the types of sensing data: visual image, point cloud, infrared thermal imaging, ground-penetrating radar, vibration response, and other types of data. These six types of damage detection methods were reviewed and summarized respectively. Finally, challenges and future trends were discussed. |
---|---|
AbstractList | Bridges are often located in harsh environments and are thus extremely susceptible to damage. If the initial damage is not detected in time, it can develop further causing safety hazards. Therefore, accurate detection of bridge damage is an important topic. In recent years, artificial intelligence technology has been developed rapidly, especially machine learning algorithms, which have shown amazing results in various fields while it also received attention in bridge inspection. This paper summarizes the progress of bridge damage detection research related to artificial intelligence techniques between 2015 and 2021. For structural health monitoring, sensing data is the basis for various data processing methods. The strength and weakness of the sensing data itself directly affect the effectiveness of subsequent processing methods. As a result, this paper classifies bridge damage detection studies into six categories from the types of sensing data: visual image, point cloud, infrared thermal imaging, ground-penetrating radar, vibration response, and other types of data. These six types of damage detection methods were reviewed and summarized respectively. Finally, challenges and future trends were discussed. |
Author | Zhang, Yang Yuen, Ka-Veng |
Author_xml | – sequence: 1 givenname: Yang surname: Zhang fullname: Zhang, Yang – sequence: 2 givenname: Ka-Veng orcidid: 0000-0002-1755-6668 surname: Yuen fullname: Yuen, Ka-Veng email: kvyuen@um.edu.mo |
BookMark | eNp9kMtKxjAQhYMoeH0AdwXX1UzaJM1KRLyBIIiuwySZ_kRqo2lVfHtbfy-g6GqG4XyHM2eTrfapJ8Z2ge8DaH0AqtENVEIIACG05itsY76VDdR89WuvxDrbGYbouOSKc2XMBju8pudIL0VqC8xjbKOP2BWxH6nr4oJ6T6XDgULhcgwLKgLe4zxoJD_G1G-ztRa7gXY-5ha7PT25OT4vL6_OLo6PLktfCxhLF5xyvpFQU62F4wCgpDeBdJDeV5LqSjSGt147MCidbx2KIBX3qnLe82qLXSx9Q8I7-5DjPeZXmzDa90PKCzvn9x1ZaAQGNEE3wtTQGiRdNVJhzVtOPJjJa2_p9ZDT4xMNo71LT7mf4luhwSgpNIdJpZcqn9MwZGqtjyPOP48ZY2eB27l8-6v8iYQf5Gfe_5j9JTNM9X7n-Rt4A2pVk4g |
CitedBy_id | crossref_primary_10_3390_buildings13010055 crossref_primary_10_1016_j_autcon_2023_105141 crossref_primary_10_1016_j_autcon_2025_106116 crossref_primary_10_1016_j_engappai_2023_106721 crossref_primary_10_1177_16878132231169408 crossref_primary_10_3390_buildings12091463 crossref_primary_10_1016_j_measurement_2023_112465 crossref_primary_10_3390_app13010140 crossref_primary_10_1016_j_measurement_2024_116587 crossref_primary_10_1016_j_engstruct_2025_119714 crossref_primary_10_1016_j_engstruct_2023_117413 crossref_primary_10_1016_j_neucom_2025_129907 crossref_primary_10_1007_s13349_025_00920_2 crossref_primary_10_1016_j_autcon_2025_105961 crossref_primary_10_1115_1_4065268 crossref_primary_10_1177_16878132231159523 crossref_primary_10_3390_buildings14103146 crossref_primary_10_1080_15732479_2025_2456979 crossref_primary_10_1016_j_engstruct_2022_115575 crossref_primary_10_3390_w17030299 crossref_primary_10_1002_cepa_2005 crossref_primary_10_1007_s13349_024_00856_z crossref_primary_10_3390_buildings13030800 crossref_primary_10_1016_j_ymssp_2023_110702 crossref_primary_10_1016_j_prostr_2024_09_013 crossref_primary_10_1186_s43251_023_00098_x crossref_primary_10_3390_sym14112384 crossref_primary_10_48084_etasr_5958 crossref_primary_10_1016_j_heliyon_2024_e38104 crossref_primary_10_1007_s00158_023_03668_9 crossref_primary_10_1016_j_jsv_2024_118597 crossref_primary_10_1177_14759217241246953 crossref_primary_10_1177_14759217231166116 crossref_primary_10_1155_2024_3185640 crossref_primary_10_3390_rs16152711 crossref_primary_10_3390_app13010097 crossref_primary_10_1016_j_autcon_2024_105955 crossref_primary_10_1038_s41598_024_82612_3 crossref_primary_10_1155_2023_5687265 crossref_primary_10_3389_fphy_2023_1290880 crossref_primary_10_1016_j_autcon_2023_104937 crossref_primary_10_1016_j_istruc_2024_107048 crossref_primary_10_1109_JSEN_2024_3366346 crossref_primary_10_1016_j_prostr_2024_09_241 crossref_primary_10_3390_su15021509 crossref_primary_10_1016_j_ymssp_2023_111046 crossref_primary_10_1016_j_trgeo_2024_101273 |
Cites_doi | 10.1016/j.autcon.2019.02.013 10.5194/nhess-17-1393-2017 10.1109/ICSAI53574.2021.9664156 10.1088/1742-6596/1626/1/012151 10.1002/stc.2966 10.1007/s13349-020-00427-y 10.1080/15732479.2020.1734632 10.1016/j.ymssp.2019.106294 10.1016/j.engstruct.2018.06.094 10.1061/(ASCE)BE.1943-5592.0001343 10.3390/rs12233852 10.1177/03611981211067978 10.12989/smm.2016.3.1.001 10.1016/j.ndteint.2020.102341 10.3390/app7050510 10.1007/s42421-020-00020-1 10.3389/fbuil.2021.627058 10.1177/1475921718821719 10.1016/j.measurement.2020.108077 10.1109/TITS.2020.2980864 10.1016/j.ssci.2022.105689 10.1109/ISC2.2018.8656971 10.1002/9781119515326.ch4 10.3389/fbuil.2017.00004 10.1061/(ASCE)CF.1943-5509.0001541 10.1177/1475921718757405 10.1007/s13735-017-0141-z 10.1016/j.ymssp.2022.108913 10.1002/stc.2416 10.1111/mice.12804 10.1177/1475921721989407 10.1111/mice.12753 10.1111/mice.12263 10.1016/j.engstruct.2021.113250 10.1016/j.conbuildmat.2015.06.065 10.3390/app11020518 10.7717/peerj-cs.783 10.1002/stc.2296 10.1142/S0219455418500256 10.1061/9780784482445.007 10.1109/CVPR.2015.7298965 10.1016/j.engstruct.2022.114418 10.1007/s13349-015-0108-9 10.1109/5.726791 10.1109/CVPR.2014.81 10.1016/j.jrmge.2014.01.007 10.1007/978-3-319-24574-4_28 10.1016/j.aei.2019.100922 10.3390/su132011359 10.3390/fractalfract5040142 10.3390/rs12223757 10.3390/s19184035 10.1080/15732479.2019.1650077 10.1109/TITS.2019.2929020 10.1201/b12352-320 10.1016/j.compind.2019.08.002 10.3390/rs13091846 10.1016/j.jappgeo.2013.04.009 10.3390/s22134964 10.1111/mice.12635 10.1117/12.2580575 10.1061/(ASCE)CO.1943-7862.0001895 10.1007/s12205-019-2012-z 10.1007/s11042-022-12703-8 10.1007/s13735-020-00195-x 10.1177/0278364911434148 10.1109/ACCESS.2021.3064205 10.1016/j.engstruct.2022.114474 10.1177/1475921720916928 10.1109/CVPR52688.2022.01641 10.1007/978-3-030-81716-9_2 10.3390/s18124206 10.1061/(ASCE)CF.1943-5509.0001712 10.1155/2015/286139 10.1016/j.engstruct.2022.114059 10.1016/j.autcon.2021.103634 10.1186/s43251-020-00006-7 10.1016/j.jii.2021.100224 10.1016/j.autcon.2021.103992 10.1016/j.conbuildmat.2019.07.293 10.1109/ICCV.2017.324 10.1109/CVPR.2016.90 10.1016/j.conbuildmat.2022.126686 10.1007/s10921-018-0546-5 10.1016/j.engappai.2012.01.012 10.1109/CVPR.2016.91 10.1016/j.aei.2019.02.007 10.1016/j.measurement.2020.108048 10.1109/CVPR.2017.195 10.15302/J-SSCAE-2017.06.005 10.1016/j.autcon.2021.103847 10.1177/1475921720924601 10.1061/(ASCE)1084-0680(2004)9:1(16) 10.1109/Confluence51648.2021.9377100 10.2478/heem-2021-0005 10.3390/s21144942 10.1016/j.autcon.2019.102973 10.1109/ACCESS.2021.3105279 10.1016/j.conbuildmat.2019.07.320 10.4203/csets.32.3 10.1002/stc.2663 10.1109/CVPR.2015.7298594 10.1016/j.ymssp.2022.109049 10.1109/TPAMI.2016.2644615 10.1111/mice.12425 10.3390/jmse9060671 10.1002/stc.2991 10.1061/(ASCE)CF.1943-5509.0001530 10.1002/stc.1937 10.31814/stce.nuce2019-13(3)-02 10.1007/978-3-030-81716-9_11 10.3390/drones6030064 10.1177/1748006X20965111 10.1109/TPAMI.2017.2699184 10.1109/ICCV48922.2021.01595 10.1016/j.ymssp.2019.106495 10.1061/(ASCE)ST.1943-541X.0002535 10.1016/j.autcon.2022.104229 10.1002/stc.2591 10.4236/jtts.2020.102007 10.1061/(ASCE)BE.1943-5592.0001302 10.1002/stc.2983 10.1016/j.autcon.2022.104249 10.1260/1369433011502372 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AFRWT AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 H8D HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1177/16878132221122770 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database Aerospace Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-8140 |
ExternalDocumentID | oai_doaj_org_article_182ada9d782941f9ae73856a40f0e0d9 10_1177_16878132221122770 10.1177_16878132221122770 |
GrantInformation_xml | – fundername: Guangdong-Hong Kong-Macau Joint Laboratory Program grantid: 2020B1212030009 – fundername: Science and Technology Development Fund of the Macau SAR grantid: SKL-IOTSC(UM)-2021-2023 – fundername: Science and Technology Project of State Administration for Market Regulation grantid: 2021MK044 |
GroupedDBID | .DC 0R~ 188 23M 2UF 2WC 4.4 54M 5GY 5VS 8FE 8FG 8R4 8R5 AAJPV AASGM ABAWP ABJCF ABQXT ACGFS ACIWK ACROE ADBBV ADOGD AEDFJ AENEX AEUHG AEWDL AFCOW AFKRA AFKRG AFRWT AINHJ AJUZI ALMA_UNASSIGNED_HOLDINGS AUTPY AYAKG BCNDV BDDNI BENPR BGLVJ C1A CAHYU CCPQU CNMHZ E3Z EBS EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IL9 ITC J8X K.F KQ8 L6V M7S O9- OK1 PHGZM PHGZT PIMPY PTHSS Q2X RHU ROL SAUOL SCDPB SCNPE SFC TR2 UGNYK AAYXX ACHEB CITATION 7TB 8FD ABUWG AZQEC DWQXO FR3 H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c421t-bdb6bc8514e472b011165c9de7d5cc35e432890fc7b19a5bcfba2d560c63bcc03 |
IEDL.DBID | BENPR |
ISSN | 1687-8132 |
IngestDate | Wed Aug 27 01:19:36 EDT 2025 Fri Jul 25 12:10:16 EDT 2025 Tue Jul 01 05:26:39 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Tue Jun 17 22:29:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | damage detection sensor data machine learning Bridge artificial intelligence |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-bdb6bc8514e472b011165c9de7d5cc35e432890fc7b19a5bcfba2d560c63bcc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1755-6668 |
OpenAccessLink | https://www.proquest.com/docview/2719652701?pq-origsite=%requestingapplication% |
PQID | 2719652701 |
PQPubID | 237349 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_182ada9d782941f9ae73856a40f0e0d9 proquest_journals_2719652701 crossref_citationtrail_10_1177_16878132221122770 crossref_primary_10_1177_16878132221122770 sage_journals_10_1177_16878132221122770 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220900 2022-09-00 20220901 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 9 year: 2022 text: 20220900 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: New York |
PublicationTitle | Advances in mechanical engineering |
PublicationYear | 2022 |
Publisher | SAGE Publications Sage Publications Ltd SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: SAGE Publishing |
References | Cheng, Shang, Shen 2020; 116 Ghiasi, Moghaddam, Ng 2022; 264 Xue, Shen, Yang 2020; 146 Prendergast, Gavin 2014; 6 Zhang, Lu 2021; 23 Kim, Yoon, Sim 2020; 27 Giordano, Turksezer, Previtali Jang, Kim, An 2019; 18 Mao, Wang, Spencer 2020; 20 Veres, Moussa 2020; 21 Karaaslan, Bagci, Catbas 2021; 125 Ali 2019 Liu, Su, Duan 2022; 2676 Li, Zhu, Huang 2021; 9 Aliyari, Droguett, Ayele 2021; 13 Jiang, Wu, Zhao 2018 Cheng, Liao, Chen 2021; 38 Hu, Li, Cai, Issa 2021 Soleimani-Babakamali, Sepasdar, Nasrollahzadeh 2022; 171 Omar 2018 Lim, Chi 2019; 41 Krizhevsky, Sutskever, Hinton 2012; 25 Deng, Zhang, Feng 2021; 17 Kim, Kim 2020; 12 Sarmadi, Yuen 2022; 173 Yang, Yang 2018; 18 Kumar, Morris, Lopez 2021 1846; 13 Sarmadi, Entezami, Saeedi Razavi 2021; 28 Riggio, Sandak, Franke 2015; 101 Chen, Truong-Hong, Laefer 2018 Lin, Su, Li 2021; 7 Lee, Park, Ryu 2021; 130 Fu, Meng, Li 2021; 9 Rocha, Póvoas, Santos 2019; 38 Li, Liu, Fang 2022; 29 Li, Li 2022; 29 Cha, Choi, Büyüköztürk 2017; 32 Li, Burgueño 2019; 15 Chen, Papandreou, Kokkinos 2018; 40 Hassan Daneshvar, Sarmadi 2022; 256 Lin, Lee, Chang 2021; 21 Hafiz, Bhat 2020; 9 Xia, Yang, Chen 2022; 133 Malekjafarian, Golpayegani, Moloney 2019; 19 Zhang, Yi, Lin 2022; 36 Li, Ren, Jia 2016; 6 Simonyan, Zisserman 2014 Shi, Dang, Cui 2021; 11 Lopez Droguett, Tapia, Yanez 2022; 236 Asadi, Gindy, Alvarez 2019; 23 Dung, Sekiya, Hirano 2019; 102 Zhang, Yuen 2021; 36 Henry, Krainin, Herbst 2012; 31 Janků, Cikrle, Grošek 2019; 225 Baker, Jordan, Pardy 2007; 432 Chen, Ruan, Liu Li, Sun, Zhang 2021; 5 Moughty, Casas 2017; 7 Jang, Jung, An 2022; 137 Sarmadi, Yuen 2021; 36 Zhang, Han, Robinson 2021; 9 Perry, Guo, Atadero 2020; 164 Haghighat, Ravichandra-Mouli, Chakraborty 2020; 2 Bolukbasi, Mohammadi, Arditi 2004; 9 Xin, Cheng, Diender 2020; 1 Bao, Liu 2017; 24 Chen, Laefer, Mangina 2019; 24 Tang, Chen, Bao 2019; 26 Li, Bu, Sun 2018; 31 Zhang, Wang, Yuen 2022; 37 Garrido, Lagüela, Fang Alani, Aboutalebi, Kilic 2013; 97 Liao, Chen, Lu 2021; 7 Li, Cheng 2018; 18 Biondi, Addabbo, Ullo 2020; 12 Pozzer, Rezazadeh Azar, Dalla Rosa 2021; 35 Zhou, Zheng 2017; 19 Chaurasia, Culurciello 2017 Ahmadi-Nedushan 2012; 25 An, Chatzi, Sim 2019; 26 Chen 2021; 2021 Zhang, Yuen, Cury, Ribeiro, Ubertini 2022 Rasol, Pais, Pérez-Gracia 2022; 324 Nguyen, Dinh 2019; 13 Fujino, Siringoringo 2020; 16 Ameli, Aremanda, Friess 2022; 6 Ye, Acikgoz, Pendrigh 2018; 173 Yu, He, Liu 2022; 81 Bull, Rogers, Wickramarachchi 2019; 134 Entezami, Shariatmadar, De Michele Liang 2019; 34 He, Zheng, Liao 2020; 20 Li, Zhao, Zhou 2022; 150 Ren, He, Girshick 2015; 28 Rubio, Kashiwa, Laiteerapong 2019; 112 Wang, Sun, Liu 2019; 38 Guo, Liu, Georgiou 2018; 7 Parisi, Mangini, Fanti 2022; 138 Delgadillo, Casas 2022; 29 Zhang, Yuen, Mousavi 2022; 263 Sarmadi, Karamodin 2020; 140 Badrinarayanan, Kendall, Cipolla 2017; 39 Shakir Ali, Günal 2021; 68 Li, Liu, Zhou Weinstein, Sanayei, Brenner 2018; 23 Xu, Su, Wang 2019 2867; 9 Zheng, Qian, Shen 2020; 10 Entezami, De Michele, Arslan 2022; 22 Akintunde, Eftekhar Azam, Rageh 2021; 249 Ichi, Dorafshan 2021; 19 Malekjafarian, McGetrick, OBrien 2015; 2015 Lv, Zhang, Xiu 2021; 22 Bao, Tang, Li 2019; 18 Li, Li, Ren 2016; 3 Casas, Moughty 2017; 3 Lecun, Bottou, Bengio 1998; 86 Jin Lim, Hwang, Kim 2021; 20 Arangio, Tsompanakis, Iványi, Topping 2013 Ali, Cha 2019; 226 Gao, Yuan, Tong 2020; 164 Moon, Chung, Chi 2020; 34 Wang, Kim 2019; 39 Kim, Jeon, Baek 2018 1881; 18 Rai, Maity, Yadav 2017; 6 Deng, Mou, Kashiwa 2020; 110 Sun, Shang, Xia 2020; 146 Sarmadi, Entezami, Behkamal Wang, Chang, Fan 2001; 4 Qurishee, Wu, Atolagbe 2020; 10 bibr9-16878132221122770 bibr21-16878132221122770 Qi CR (bibr78-16878132221122770) 2017 Sarmadi H (bibr141-16878132221122770) Wang Y (bibr81-16878132221122770) 2019; 38 bibr19-16878132221122770 bibr104-16878132221122770 bibr117-16878132221122770 bibr144-16878132221122770 bibr157-16878132221122770 bibr75-16878132221122770 bibr8-16878132221122770 bibr59-16878132221122770 bibr22-16878132221122770 Ren S (bibr45-16878132221122770) 2015; 28 Li Z (bibr155-16878132221122770) 2019; 15 bibr103-16878132221122770 bibr120-16878132221122770 Li Y (bibr79-16878132221122770) 2018; 31 bibr73-16878132221122770 bibr99-16878132221122770 bibr156-16878132221122770 bibr89-16878132221122770 bibr146-16878132221122770 bibr33-16878132221122770 bibr63-16878132221122770 Song W (bibr51-16878132221122770) 2019 bibr23-16878132221122770 bibr115-16878132221122770 bibr105-16878132221122770 Xu H (bibr43-16878132221122770) 2019; 9 Liu W (bibr46-16878132221122770) bibr64-16878132221122770 bibr74-16878132221122770 bibr101-16878132221122770 bibr29-16878132221122770 bibr85-16878132221122770 bibr121-16878132221122770 bibr52-16878132221122770 bibr65-16878132221122770 bibr72-16878132221122770 bibr69-16878132221122770 Giordano P (bibr152-16878132221122770) bibr12-16878132221122770 bibr60-16878132221122770 Rai M (bibr92-16878132221122770) 2017; 6 bibr123-16878132221122770 bibr113-16878132221122770 bibr133-16878132221122770 bibr143-16878132221122770 bibr30-16878132221122770 Deng J (bibr32-16878132221122770) Chen R. (bibr41-16878132221122770) 2021; 2021 bibr90-16878132221122770 bibr20-16878132221122770 bibr70-16878132221122770 bibr40-16878132221122770 bibr151-16878132221122770 bibr128-16878132221122770 bibr10-16878132221122770 Entezami A (bibr139-16878132221122770) bibr1-16878132221122770 Ali R. (bibr94-16878132221122770) 2019 bibr158-16878132221122770 bibr37-16878132221122770 bibr87-16878132221122770 bibr27-16878132221122770 bibr97-16878132221122770 bibr108-16878132221122770 bibr17-16878132221122770 bibr47-16878132221122770 bibr77-16878132221122770 bibr118-16878132221122770 bibr67-16878132221122770 bibr138-16878132221122770 bibr57-16878132221122770 bibr148-16878132221122770 bibr95-16878132221122770 bibr3-16878132221122770 bibr82-16878132221122770 Jiang M (bibr80-16878132221122770) 2018 bibr137-16878132221122770 bibr26-16878132221122770 bibr111-16878132221122770 bibr13-16878132221122770 bibr124-16878132221122770 bibr39-16878132221122770 bibr55-16878132221122770 bibr42-16878132221122770 bibr109-16878132221122770 bibr153-16878132221122770 Omar T. (bibr106-16878132221122770) 2018 bibr140-16878132221122770 bibr15-16878132221122770 bibr100-16878132221122770 Kim IH (bibr49-16878132221122770) 2018; 18 bibr25-16878132221122770 Baker GS (bibr110-16878132221122770) 2007; 432 bibr93-16878132221122770 bibr126-16878132221122770 bibr136-16878132221122770 Zhou J (bibr6-16878132221122770) 2017; 19 bibr53-16878132221122770 Nasrollahi M (bibr83-16878132221122770) bibr4-16878132221122770 Garrido I (bibr102-16878132221122770) bibr125-16878132221122770 bibr14-16878132221122770 bibr24-16878132221122770 bibr135-16878132221122770 bibr54-16878132221122770 Gal Y (bibr130-16878132221122770) 2016 bibr84-16878132221122770 bibr44-16878132221122770 bibr107-16878132221122770 bibr31-16878132221122770 bibr142-16878132221122770 Chaurasia A (bibr62-16878132221122770) 2017 bibr11-16878132221122770 bibr127-16878132221122770 bibr98-16878132221122770 bibr134-16878132221122770 bibr16-16878132221122770 bibr114-16878132221122770 bibr36-16878132221122770 bibr154-16878132221122770 bibr150-16878132221122770 Ma Z (bibr50-16878132221122770) 2020 bibr5-16878132221122770 Simonyan K (bibr35-16878132221122770) 2014 Krizhevsky A (bibr34-16878132221122770) 2012; 25 bibr28-16878132221122770 Cheng ZG (bibr147-16878132221122770) 2021; 38 bibr2-16878132221122770 bibr149-16878132221122770 bibr38-16878132221122770 bibr76-16878132221122770 bibr86-16878132221122770 bibr18-16878132221122770 bibr96-16878132221122770 bibr58-16878132221122770 bibr66-16878132221122770 bibr129-16878132221122770 bibr48-16878132221122770 bibr56-16878132221122770 bibr68-16878132221122770 Osband I. (bibr131-16878132221122770); 192 Li X (bibr119-16878132221122770) bibr7-16878132221122770 bibr112-16878132221122770 Chen ZW (bibr145-16878132221122770) Hu D (bibr116-16878132221122770) 2021 bibr122-16878132221122770 bibr61-16878132221122770 Chen S (bibr88-16878132221122770) 2018 bibr132-16878132221122770 bibr71-16878132221122770 bibr91-16878132221122770 |
References_xml | – volume: 9 start-page: 114989 year: 2021 end-page: 114997 article-title: A deep learning-based fine crack segmentation network on full-scale steel bridge images with complicated backgrounds publication-title: IEEE Access – volume: 41 start-page: 100922 year: 2019 article-title: Xgboost application on bridge management systems for proactive damage estimation publication-title: Adv Eng Inform – volume: 263 start-page: 114418 year: 2022 article-title: Timber damage identification using dynamic broad network and ultrasonic signals publication-title: Eng Struct – volume: 25 start-page: 1097 year: 2012 end-page: 1105 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – volume: 29 start-page: e2991 year: 2022 article-title: Automatic bridge crack detection using boundary refinement based on real-time segmentation network publication-title: Struct Control Health Monit – volume: 39 start-page: 306 year: 2019 end-page: 319 article-title: Applications of 3D point cloud data in the construction industry: a fifteen-year review from 2004 to 2018 publication-title: Adv Eng Inform – volume: 6 start-page: 138 year: 2014 end-page: 149 article-title: A review of bridge scour monitoring techniques publication-title: J Rock Mech Geotechnical Eng – volume: 164 start-page: 108048 year: 2020 article-title: Streamlined bridge inspection system utilizing unmanned aerial vehicles (UAVs) and machine learning publication-title: Measurement – article-title: Deep learning–based nondestructive evaluation of reinforcement bars using ground-penetrating radar and electromagnetic induction data publication-title: Comput Aided Civ Infrastruct Eng – volume: 225 start-page: 1098 year: 2019 end-page: 1111 article-title: Comparison of infrared thermography, ground-penetrating radar and ultrasonic pulse echo for detecting delaminations in concrete bridges publication-title: Constr Build Mater – volume: 20 start-page: 1392 year: 2020 end-page: 1408 article-title: Damage identification based on convolutional neural network and recurrence graph for beam bridge publication-title: Struct Health Monit – volume: 17 start-page: 233 year: 2021 end-page: 248 article-title: Predicting fatigue damage of highway suspension bridge hangers using weigh-in-motion data and machine learning publication-title: Struct Infrastruct Eng – volume: 38 start-page: 1 year: 2019 end-page: 12 article-title: Dynamic graph cnn for learning on point clouds publication-title: ACM Trans Graph – volume: 2015 start-page: 1 year: 2015 end-page: 16 article-title: A review of indirect bridge monitoring using passing vehicles publication-title: Shock Vib – volume: 6 start-page: 64 year: 2022 article-title: Impact of UAV hardware options on bridge inspection mission capabilities publication-title: Drones – volume: 4 start-page: 75 year: 2001 end-page: 91 article-title: Nondestructive damage detection of bridges: a status review publication-title: Adv Struct Eng – volume: 81 start-page: 18279 year: 2022 end-page: 18304 article-title: Engineering-oriented bridge multiple-damage detection with damage integrity using modified faster region-based convolutional neural network publication-title: Multimed Tools Appl – volume: 36 start-page: 04022011 year: 2022 article-title: Automatic corrosive environment detection of RC bridge decks from ground-penetrating radar data based on deep learning publication-title: J Perform Constr Facil – volume: 36 start-page: 1568 year: 2021 end-page: 1584 article-title: Crack detection using fusion features-based broad learning system and image processing publication-title: Comput Aided Civ Infrastruct Eng – volume: 21 start-page: 4942 year: 2021 article-title: The artificial intelligence of things sensing system of real-time bridge scour monitoring for early warning during floods publication-title: Sensors – volume: 432 start-page: 1 year: 2007 article-title: An introduction to ground penetrating radar (GPR) publication-title: Geol Soc Am Spec Pap – volume: 173 start-page: 109049 year: 2022 article-title: Structural health monitoring by a novel probabilistic machine learning method based on extreme value theory and mixture quantile modeling publication-title: Mech Syst Signal Process – volume: 20 start-page: 3424 year: 2021 end-page: 3435 article-title: Steel bridge corrosion inspection with combined vision and thermographic images publication-title: Struct Health Monit – volume: 5 start-page: 142 year: 2021 article-title: Surface cracking and fractal characteristics of bending fractured polypropylene fiber-reinforced geopolymer mortar publication-title: Fractal and Fractional – volume: 26 start-page: e2416 year: 2019 article-title: Recent progress and future trends on damage identification methods for bridge structures publication-title: Struct Control Health Monit – volume: 38 start-page: 1 year: 2019 end-page: 12 article-title: Detection of delaminations in sunlight-unexposed concrete elements of bridges using infrared thermography publication-title: J Nondestruct Eval – volume: 9 start-page: 171 year: 2020 end-page: 189 article-title: A survey on instance segmentation: state of the art publication-title: Int J Multimed Inf Retr – volume: 6 start-page: 3 year: 2016 end-page: 16 article-title: State-of-the-art in structural health monitoring of large and complex civil infrastructures publication-title: J Civ Struct Health Monit – volume: 2676 start-page: 460 year: 2022 end-page: 479 article-title: Recommendations for refined preventive maintenance management of concrete bridges in China based on environmental risk zoning publication-title: Transp Res Rec: J Trans Res Board – volume: 138 start-page: 104249 year: 2022 article-title: Automated location of steel truss bridge damage using machine learning and raw strain sensor data publication-title: Autom Constr – volume: 20 start-page: 1609 year: 2020 end-page: 1626 article-title: Toward data anomaly detection for automated structural health monitoring: exploiting generative adversarial nets and autoencoders publication-title: Struct Health Monit – volume: 36 start-page: 1150 year: 2021 end-page: 1167 article-title: Early damage detection by an innovative unsupervised learning method based on kernel null space and peak-over-threshold publication-title: Comput Aided Civ Infrastruct Eng – volume: 171 start-page: 108913 year: 2022 article-title: A system reliability approach to real-time unsupervised structural health monitoring without prior information publication-title: Mech Syst Signal Process – volume: 110 start-page: 102973 year: 2020 article-title: Vision based pixel-level bridge structural damage detection using a link ASPP network publication-title: Autom Constr – volume: 26 start-page: e2296 year: 2019 article-title: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring publication-title: Struct Control Health Monit – year: 2014 article-title: Very deep convolutional networks for large-scale visual recognition publication-title: arXiv preprint arXiv:1409.1556 – volume: 31 start-page: 1 year: 2018 end-page: 11 article-title: Pointcnn: convolution on X-transformed points publication-title: Adv Neural Inf Process Syst – article-title: Introduction of the combination of thermal fundamentals and deep learning for the automatic thermographic inspection of thermal bridges and water-related problems in infrastructures publication-title: Quant InfraRed Thermogr J – volume: 25 start-page: 1073 year: 2012 end-page: 1081 article-title: An optimized instance based learning algorithm for estimation of compressive strength of concrete publication-title: Eng Appl Artif Intell – volume: 38 start-page: 230 year: 2021 end-page: 246 article-title: A vibration recognition method based on deep learning and signal processing publication-title: Engineering mechanics – volume: 22 start-page: 4281 year: 2021 end-page: 4290 article-title: Solving the security problem of intelligent transportation system with deep learning publication-title: IEEE Trans Intell Transp Syst – volume: 256 start-page: 114059 year: 2022 article-title: Unsupervised learning-based damage assessment of full-scale civil structures under long-term and short-term monitoring publication-title: Eng Struct – volume: 19 start-page: 4035 year: 2019 article-title: A machine learning approach to bridge-damage detection using responses measured on a passing vehicle publication-title: Sensors – volume: 24 start-page: e1937 year: 2017 article-title: Vibration-based bridge scour detection: a review publication-title: Struct Control Health Monit – volume: 97 start-page: 45 year: 2013 end-page: 54 article-title: Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment publication-title: J Appl Geophy – volume: 249 start-page: 113250 year: 2021 article-title: Unsupervised machine learning for robust bridge damage detection: full-scale experimental validation publication-title: Eng Struct – volume: 29 start-page: e2966 year: 2022 article-title: Bridge damage detection via improved completed ensemble empirical mode decomposition with adaptive noise and machine learning algorithms publication-title: Struct Control Health Monit – volume: 16 start-page: 3 year: 2020 end-page: 25 article-title: Recent research and development programs for infrastructures maintenance, renovation and management in Japan publication-title: Struct Infrastruct Eng – volume: 34 start-page: 04020119 year: 2020 article-title: Bridge damage recognition from inspection reports using NER based on recurrent neural network with active learning publication-title: J Perform Constr Facil – volume: 164 start-page: 108077 year: 2020 article-title: Autonomous pavement distress detection using ground penetrating radar and region-based deep learning publication-title: Measurement – volume: 18 start-page: 1850025 year: 2018 article-title: State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles publication-title: Int J Struct Stab Dyn – start-page: 1 year: 2017 end-page: 4 article-title: Linknet: exploiting encoder representations for efficient semantic segmentation publication-title: 2017 IEEE visual communications and image processing (VCIP) – start-page: 74 year: 2021 end-page: 82 article-title: A machine learning-based framework for automatic bridge deck condition assessment using ground penetrating radar publication-title: Computing in civil engineering – volume: 18 start-page: 1722 year: 2019 end-page: 1737 article-title: Deep learning–based autonomous concrete crack evaluation through hybrid image scanning publication-title: Struct Health Monit – volume: 130 start-page: 103847 year: 2021 article-title: Semantic segmentation of bridge components based on hierarchical point cloud model publication-title: Autom Constr – article-title: Fully automated natural frequency identification based on deep-learning-enhanced computer vision and power spectral density transmissibility publication-title: Adv Struct Eng – volume: 29 start-page: e2983 year: 2022 article-title: A high-frequency feature enhancement network for the surface defect detection of welded rebar publication-title: Struct Control Health Monit – volume: 125 start-page: 103634 year: 2021 article-title: Attention-guided analysis of infrastructure damage with semi-supervised deep learning publication-title: Autom Constr – volume: 27 start-page: e2591 year: 2020 article-title: Automated bridge component recognition from point clouds using deep learning publication-title: Struct Control Health Monit – volume: 146 start-page: 04020073 year: 2020 article-title: Review of bridge structural health monitoring aided by big data and artificial intelligence: from condition assessment to damage detection publication-title: J Struct Eng – volume: 10 start-page: 957 year: 2020 end-page: 972 article-title: Mitigating effects of temperature variations through probabilistic-based machine learning for vibration-based bridge scour detection publication-title: J Civ Struct Health Monit – volume: 23 start-page: 100224 year: 2021 article-title: Study on artificial intelligence: the state of the art and future prospects publication-title: J Ind Inf Integr – volume: 10 start-page: 110 year: 2020 end-page: 127 article-title: Bridge girder crack assessment using faster RCNN inception V2 and infrared thermography publication-title: J Transport Technol – volume: 140 start-page: 106495 year: 2020 article-title: A novel anomaly detection method based on adaptive mahalanobis-squared distance and one-class kNN rule for structural health monitoring under environmental effects publication-title: Mech Syst Signal Process – volume: 18 start-page: 401 year: 2019 end-page: 421 article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring publication-title: Struct Health Monit – volume: 264 start-page: 114474 year: 2022 article-title: Damage classification of in-service steel railway bridges using a novel vibration-based convolutional neural network publication-title: Eng Struct – volume: 34 start-page: 415 year: 2019 end-page: 430 article-title: Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization publication-title: Comput Aided Civ Infrastruct Eng – year: 2018 article-title: Pointsift: a sift-like network module for 3D point cloud semantic segmentation publication-title: arXiv preprint arXiv:1807.00652 – year: 2019 publication-title: Deep learning-and infrared thermography-based subsurface damage detection in a steel bridge – volume: 9 start-page: 16 year: 2004 end-page: 25 article-title: Estimating the future condition of highway bridge components using national bridge inventory data publication-title: Pract Period Struct Design Constr – volume: 21 start-page: 3152 year: 2020 end-page: 3168 article-title: Deep learning for intelligent transportation systems: a survey of emerging trends publication-title: IEEE Trans Intell Transp Syst – volume: 134 start-page: 106294 year: 2019 article-title: Probabilistic active learning: an online framework for structural health monitoring publication-title: Mech Syst Signal Process – volume: 3 start-page: 1 year: 2016 end-page: 32 article-title: Structural health monitoring of innovative civil engineering structures in Mainland China publication-title: Struct Monit Maint – volume: 101 start-page: 1241 year: 2015 end-page: 1252 article-title: Application of imaging techniques for detection of defects, damage and decay in timber structures on-site publication-title: Constr Build Mater – volume: 35 start-page: 04020131 year: 2021 article-title: Semantic segmentation of defects in infrared thermographic images of highly damaged concrete structures publication-title: J Perform Constr Facil – volume: 18 year: 2018 1881 article-title: Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle publication-title: Sensors – volume: 23 start-page: 2618 year: 2019 end-page: 2627 article-title: A machine learning based approach for automatic rebar detection and quantification of deterioration in concrete bridge deck ground penetrating radar B-scan images publication-title: KSCE J Civil Eng – volume: 23 start-page: 04018084 year: 2018 article-title: Bridge damage identification using artificial neural networks publication-title: J Bridge Eng – volume: 7 start-page: 10 year: 2021 article-title: Deep transfer learning and time-frequency characteristics-based identification method for structural seismic response publication-title: Front Built Environ – volume: 19 start-page: 27 year: 2017 end-page: 37 article-title: Strategic thinking on ensuring bridge safety in China publication-title: Strategic Study CAE – volume: 68 start-page: 87 year: 2021 end-page: 101 article-title: Artificial neural network for estimation of local scour depth around bridge piers publication-title: Arch Hydro-Eng Environ Mech – start-page: 254 year: 2018 publication-title: Condition assessment of concrete bridge decks using ground and airborne infrared thermography – volume: 226 start-page: 376 year: 2019 end-page: 387 article-title: Subsurface damage detection of a steel bridge using deep learning and uncooled micro-bolometer publication-title: Constr Build Mater – volume: 7 start-page: e783 year: 2021 article-title: PlaneNet: an efficient local feature extraction network publication-title: PeerJ Comput Sci – volume: 1 start-page: 1 year: 2020 end-page: 16 article-title: Fracture acoustic emission signals identification of stay cables in bridge engineering application using deep transfer learning and wavelet analysis publication-title: Advances in Bridge Engineering – volume: 137 start-page: 104229 year: 2022 article-title: Automated bridge crack evaluation through deep super resolution network-based hybrid image matching publication-title: Autom Constr – volume: 31 start-page: 647 year: 2012 end-page: 663 article-title: RGB-D mapping: using Kinect-style depth cameras for dense 3D modeling of indoor environments publication-title: Int J Rob Res – volume: 40 start-page: 834 year: 2018 end-page: 848 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 13 year: 2021 1846 article-title: Identifying spatial and temporal variations in concrete bridges with ground penetrating radar attributes publication-title: Remote Sens – start-page: 735 year: 2018 end-page: 740 article-title: Automated bridge deck evaluation through UAV derived point cloud publication-title: CERI-ITRN2018 – volume: 2021 start-page: 1 year: 2021 end-page: 10 article-title: Migration Learning-based bridge structure damage detection algorithm publication-title: Sci Program – start-page: 227 year: 2022 end-page: 245 article-title: Applications of deep learning in intelligent construction publication-title: Structural health monitoring based on data science techniques – article-title: Damage detection on a historic iron bridge using satellite DInSAR data publication-title: Struct Health Monit – volume: 39 start-page: 2481 year: 2017 end-page: 2495 article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 7 start-page: 510 year: 2017 article-title: A state of the art review of modal-based damage detection in bridges: development, challenges, and solutions publication-title: Appl Sci – volume: 24 start-page: 05019001 year: 2019 article-title: UAV bridge inspection through evaluated 3D reconstructions publication-title: J Bridge Eng – volume: 13 start-page: 11359 year: 2021 article-title: UAV-based bridge inspection via transfer learning publication-title: Sustainability – volume: 3 start-page: 4 year: 2017 article-title: Bridge damage detection based on vibration data: past and new developments publication-title: Front Built Environ – volume: 2 start-page: 115 year: 2020 end-page: 145 article-title: Applications of deep learning in intelligent transportation systems publication-title: J Big Data Anal Transp – volume: 37 start-page: 1450 year: 2022 end-page: 1467 article-title: Construction site information decentralized management using blockchain and smart contracts publication-title: Comput Aided Civ Infrastruct Eng – volume: 9 start-page: 671 year: 2021 article-title: Bridge crack semantic segmentation based on improved Deeplabv3+ publication-title: J Mar Sci Eng – volume: 102 start-page: 217 year: 2019 end-page: 229 article-title: A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks publication-title: Autom Constr – volume: 18 start-page: 4206 year: 2018 article-title: Comparison of different feature sets for tls point cloud classification publication-title: Sensors – volume: 22 start-page: 4964 year: 2022 article-title: Detection of partially structural collapse using long-term small displacement data from satellite images publication-title: Sensors – volume: 7 start-page: 87 year: 2018 end-page: 93 article-title: A review of semantic segmentation using deep neural networks publication-title: Int J Multimed Inf Retr – volume: 150 start-page: 105689 year: 2022 article-title: Standardized use inspection of workers’ personal protective equipment based on deep learning publication-title: Saf Sci – volume: 324 start-page: 126686 year: 2022 article-title: GPR monitoring for road transport infrastructure: a systematic review and machine learning insights publication-title: Constr Build Mater – volume: 112 start-page: 103121 year: 2019 article-title: Multi-class structural damage segmentation using fully convolutional networks publication-title: Comput Ind – volume: 28 start-page: e2663 year: 2021 article-title: Ensemble learning-based structural health monitoring by Mahalanobis distance metrics publication-title: Struct Control Health Monit – article-title: Partially online damage detection using long-term modal data under severe environmental effects by unsupervised feature selection and local metric learning publication-title: J Civ Struct Health Monit – volume: 173 start-page: 530 year: 2018 end-page: 545 article-title: Mapping deformations and inferring movements of masonry arch bridges using point cloud data publication-title: Eng Struct – volume: 12 start-page: 3757 year: 2020 article-title: Deep-Learning-based classification of point clouds for bridge inspection publication-title: Remote Sens – volume: 116 start-page: 102341 year: 2020 article-title: Automatic delamination segmentation for bridge deck based on encoder-decoder deep learning through UAV-based thermography publication-title: NDT E Int – start-page: 37 year: 2013 end-page: 60 article-title: Neural network-based techniques for damage identification of bridges: a review of recent advances publication-title: Civil and structural engineering computational methods – volume: 9 year: 2019 2867 article-title: Automatic bridge crack detection using a convolutional neural network publication-title: Appl Sci – volume: 28 start-page: 1 year: 2015 end-page: 9 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: Adv Neural Inf Process Syst – volume: 11 start-page: 518 year: 2021 article-title: Improvement of damage segmentation based on pixel-level data balance using VGG-Unet publication-title: Appl Sci – volume: 86 start-page: 2278 year: 1998 end-page: 2324 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE – volume: 133 start-page: 103992 year: 2022 article-title: Automated semantic segmentation of bridge point cloud based on local descriptor and machine learning publication-title: Autom Constr – volume: 32 start-page: 361 year: 2017 end-page: 378 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput Aided Civ Infrastruct Eng – volume: 13 start-page: 15 year: 2019 end-page: 25 article-title: Prediction of bridge deck condition rating based on artificial neural networks publication-title: J Sci Technol Civil Eng (STCE)-HUCE – volume: 6 start-page: 290 year: 2017 end-page: 303 article-title: Thermal imaging system and its real time applications: a survey publication-title: J Eng Technol – volume: 19 year: 2021 article-title: SDNET2021: annotated NDE dataset for structural defects. Datasets – volume: 12 start-page: 3852 year: 2020 article-title: Perspectives on the structural health monitoring of bridges by synthetic aperture radar publication-title: Remote Sens – article-title: Non-parametric empirical machine learning for short-term and long-term structural health monitoring publication-title: Struct Health Monit – volume: 9 start-page: 39009 year: 2021 end-page: 39018 article-title: A GANs-based deep learning framework for automatic subsurface object recognition from ground penetrating radar data publication-title: IEEE Access – volume: 15 start-page: 174 year: 2019 end-page: 182 article-title: Structural information integration for predicting damages in bridges publication-title: J Ind Inf Integr – volume: 146 start-page: 04020103 year: 2020 article-title: Dynamic network analysis of stakeholder conflicts in megaprojects: sixteen-year case of Hong Kong-Zhuhai-Macao bridge publication-title: J Constr Eng Manag – volume: 236 start-page: 570 year: 2022 end-page: 583 article-title: Semantic segmentation model for crack images from concrete bridges for mobile devices publication-title: Proc IMechE, Part O: J Risk and Reliability – ident: bibr39-16878132221122770 doi: 10.1016/j.autcon.2019.02.013 – ident: bibr65-16878132221122770 doi: 10.5194/nhess-17-1393-2017 – ident: bibr53-16878132221122770 doi: 10.1109/ICSAI53574.2021.9664156 – ident: bibr54-16878132221122770 doi: 10.1088/1742-6596/1626/1/012151 – ident: bibr124-16878132221122770 doi: 10.1002/stc.2966 – ident: bibr128-16878132221122770 doi: 10.1007/s13349-020-00427-y – ident: bibr125-16878132221122770 doi: 10.1080/15732479.2020.1734632 – ident: bibr137-16878132221122770 doi: 10.1016/j.ymssp.2019.106294 – ident: bibr91-16878132221122770 doi: 10.1016/j.engstruct.2018.06.094 – ident: bibr109-16878132221122770 – ident: bibr89-16878132221122770 doi: 10.1061/(ASCE)BE.1943-5592.0001343 – ident: bibr150-16878132221122770 doi: 10.3390/rs12233852 – ident: bibr1-16878132221122770 doi: 10.1177/03611981211067978 – ident: bibr8-16878132221122770 doi: 10.12989/smm.2016.3.1.001 – ident: bibr101-16878132221122770 doi: 10.1016/j.ndteint.2020.102341 – ident: bibr27-16878132221122770 doi: 10.3390/app7050510 – ident: bibr11-16878132221122770 doi: 10.1007/s42421-020-00020-1 – ident: bibr148-16878132221122770 doi: 10.3389/fbuil.2021.627058 – ident: bibr103-16878132221122770 doi: 10.1177/1475921718821719 – ident: bibr117-16878132221122770 doi: 10.1016/j.measurement.2020.108077 – ident: bibr10-16878132221122770 doi: 10.1109/TITS.2020.2980864 – ident: bibr13-16878132221122770 doi: 10.1016/j.ssci.2022.105689 – ident: bibr96-16878132221122770 doi: 10.1109/ISC2.2018.8656971 – ident: bibr19-16878132221122770 doi: 10.1002/9781119515326.ch4 – ident: bibr28-16878132221122770 doi: 10.3389/fbuil.2017.00004 – ident: bibr98-16878132221122770 doi: 10.1061/(ASCE)CF.1943-5509.0001541 – start-page: 1050 volume-title: International conference on machine learning year: 2016 ident: bibr130-16878132221122770 – ident: bibr143-16878132221122770 doi: 10.1177/1475921718757405 – ident: bibr152-16878132221122770 publication-title: Struct Health Monit – ident: bibr55-16878132221122770 doi: 10.1007/s13735-017-0141-z – ident: bibr133-16878132221122770 doi: 10.1016/j.ymssp.2022.108913 – ident: bibr29-16878132221122770 doi: 10.1002/stc.2416 – ident: bibr14-16878132221122770 doi: 10.1111/mice.12804 – ident: bibr100-16878132221122770 doi: 10.1177/1475921721989407 – ident: bibr21-16878132221122770 doi: 10.1111/mice.12753 – start-page: 1 volume-title: 17th world conference on earthquake engineering, Earthquake Engineering Association year: 2020 ident: bibr50-16878132221122770 – start-page: 21 volume-title: European conference on computer vision ident: bibr46-16878132221122770 – start-page: 735 year: 2018 ident: bibr88-16878132221122770 publication-title: CERI-ITRN2018 – ident: bibr40-16878132221122770 doi: 10.1111/mice.12263 – ident: bibr123-16878132221122770 doi: 10.1016/j.engstruct.2021.113250 – ident: bibr93-16878132221122770 doi: 10.1016/j.conbuildmat.2015.06.065 – ident: bibr64-16878132221122770 doi: 10.3390/app11020518 – year: 2019 ident: bibr94-16878132221122770 publication-title: Deep learning-and infrared thermography-based subsurface damage detection in a steel bridge – ident: bibr31-16878132221122770 doi: 10.7717/peerj-cs.783 – ident: bibr144-16878132221122770 doi: 10.1002/stc.2296 – ident: bibr26-16878132221122770 doi: 10.1142/S0219455418500256 – ident: bibr105-16878132221122770 doi: 10.1061/9780784482445.007 – ident: bibr58-16878132221122770 doi: 10.1109/CVPR.2015.7298965 – ident: bibr17-16878132221122770 doi: 10.1016/j.engstruct.2022.114418 – ident: bibr7-16878132221122770 doi: 10.1007/s13349-015-0108-9 – ident: bibr33-16878132221122770 doi: 10.1109/5.726791 – ident: bibr44-16878132221122770 doi: 10.1109/CVPR.2014.81 – ident: bibr3-16878132221122770 – ident: bibr66-16878132221122770 doi: 10.1016/j.jrmge.2014.01.007 – year: 2018 ident: bibr80-16878132221122770 publication-title: arXiv preprint arXiv:1807.00652 – ident: bibr59-16878132221122770 doi: 10.1007/978-3-319-24574-4_28 – volume: 432 start-page: 1 year: 2007 ident: bibr110-16878132221122770 publication-title: Geol Soc Am Spec Pap – volume: 192 volume-title: NIPS workshop on bayesian deep learning ident: bibr131-16878132221122770 – ident: bibr154-16878132221122770 doi: 10.1016/j.aei.2019.100922 – ident: bibr42-16878132221122770 doi: 10.3390/su132011359 – ident: bibr16-16878132221122770 doi: 10.3390/fractalfract5040142 – volume: 38 start-page: 1 year: 2019 ident: bibr81-16878132221122770 publication-title: ACM Trans Graph – ident: bibr90-16878132221122770 doi: 10.3390/rs12223757 – ident: bibr126-16878132221122770 doi: 10.3390/s19184035 – volume: 18 year: 2018 ident: bibr49-16878132221122770 publication-title: Sensors – volume: 6 start-page: 290 year: 2017 ident: bibr92-16878132221122770 publication-title: J Eng Technol – ident: bibr5-16878132221122770 doi: 10.1080/15732479.2019.1650077 – ident: bibr9-16878132221122770 doi: 10.1109/TITS.2019.2929020 – start-page: 652 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2017 ident: bibr78-16878132221122770 – ident: bibr20-16878132221122770 doi: 10.1201/b12352-320 – ident: bibr63-16878132221122770 doi: 10.1016/j.compind.2019.08.002 – ident: bibr114-16878132221122770 doi: 10.3390/rs13091846 – ident: bibr111-16878132221122770 doi: 10.1016/j.jappgeo.2013.04.009 – ident: bibr151-16878132221122770 doi: 10.3390/s22134964 – ident: bibr135-16878132221122770 doi: 10.1111/mice.12635 – volume: 28 start-page: 1 year: 2015 ident: bibr45-16878132221122770 publication-title: Adv Neural Inf Process Syst – ident: bibr113-16878132221122770 doi: 10.1117/12.2580575 – ident: bibr2-16878132221122770 doi: 10.1061/(ASCE)CO.1943-7862.0001895 – ident: bibr115-16878132221122770 doi: 10.1007/s12205-019-2012-z – year: 2014 ident: bibr35-16878132221122770 publication-title: arXiv preprint arXiv:1409.1556 – ident: bibr52-16878132221122770 doi: 10.1007/s11042-022-12703-8 – ident: bibr56-16878132221122770 doi: 10.1007/s13735-020-00195-x – ident: bibr76-16878132221122770 doi: 10.1177/0278364911434148 – ident: bibr120-16878132221122770 doi: 10.1109/ACCESS.2021.3064205 – ident: bibr121-16878132221122770 doi: 10.1016/j.engstruct.2022.114474 – ident: bibr142-16878132221122770 doi: 10.1177/1475921720916928 – ident: bibr57-16878132221122770 doi: 10.1109/CVPR52688.2022.01641 – start-page: 248 volume-title: 2009 IEEE conference on computer vision and pattern recognition ident: bibr32-16878132221122770 – ident: bibr129-16878132221122770 doi: 10.1007/978-3-030-81716-9_2 – ident: bibr75-16878132221122770 doi: 10.3390/s18124206 – ident: bibr118-16878132221122770 doi: 10.1061/(ASCE)CF.1943-5509.0001712 – ident: bibr25-16878132221122770 doi: 10.1155/2015/286139 – ident: bibr140-16878132221122770 doi: 10.1016/j.engstruct.2022.114059 – volume: 31 start-page: 1 year: 2018 ident: bibr79-16878132221122770 publication-title: Adv Neural Inf Process Syst – start-page: 12 volume-title: Proceedings of the CSCE annual conference ident: bibr83-16878132221122770 – ident: bibr71-16878132221122770 doi: 10.1016/j.autcon.2021.103634 – ident: bibr149-16878132221122770 doi: 10.1186/s43251-020-00006-7 – ident: bibr18-16878132221122770 doi: 10.1016/j.jii.2021.100224 – ident: bibr86-16878132221122770 doi: 10.1016/j.autcon.2021.103992 – ident: bibr95-16878132221122770 doi: 10.1016/j.conbuildmat.2019.07.293 – ident: bibr48-16878132221122770 doi: 10.1109/ICCV.2017.324 – ident: bibr37-16878132221122770 doi: 10.1109/CVPR.2016.90 – start-page: 475 volume-title: Fuzzy systems and data mining V year: 2019 ident: bibr51-16878132221122770 – ident: bibr112-16878132221122770 doi: 10.1016/j.conbuildmat.2022.126686 – ident: bibr107-16878132221122770 doi: 10.1007/s10921-018-0546-5 – ident: bibr22-16878132221122770 doi: 10.1016/j.engappai.2012.01.012 – ident: bibr47-16878132221122770 doi: 10.1109/CVPR.2016.91 – ident: bibr77-16878132221122770 doi: 10.1016/j.aei.2019.02.007 – ident: bibr87-16878132221122770 doi: 10.1016/j.measurement.2020.108048 – ident: bibr38-16878132221122770 doi: 10.1109/CVPR.2017.195 – volume: 9 year: 2019 ident: bibr43-16878132221122770 publication-title: Appl Sci – ident: bibr102-16878132221122770 publication-title: Quant InfraRed Thermogr J – volume: 19 start-page: 27 year: 2017 ident: bibr6-16878132221122770 publication-title: Strategic Study CAE doi: 10.15302/J-SSCAE-2017.06.005 – ident: bibr85-16878132221122770 doi: 10.1016/j.autcon.2021.103847 – ident: bibr146-16878132221122770 doi: 10.1177/1475921720924601 – ident: bibr4-16878132221122770 doi: 10.1061/(ASCE)1084-0680(2004)9:1(16) – ident: bibr141-16878132221122770 publication-title: J Civ Struct Health Monit – ident: bibr157-16878132221122770 doi: 10.1109/Confluence51648.2021.9377100 – start-page: 254 year: 2018 ident: bibr106-16878132221122770 publication-title: Condition assessment of concrete bridge decks using ground and airborne infrared thermography – ident: bibr145-16878132221122770 publication-title: Adv Struct Eng – ident: bibr156-16878132221122770 doi: 10.2478/heem-2021-0005 – ident: bibr67-16878132221122770 doi: 10.3390/s21144942 – ident: bibr68-16878132221122770 doi: 10.1016/j.autcon.2019.102973 – ident: bibr70-16878132221122770 doi: 10.1109/ACCESS.2021.3105279 – ident: bibr108-16878132221122770 doi: 10.1016/j.conbuildmat.2019.07.320 – volume: 25 start-page: 1097 year: 2012 ident: bibr34-16878132221122770 publication-title: Adv Neural Inf Process Syst – volume: 2021 start-page: 1 year: 2021 ident: bibr41-16878132221122770 publication-title: Sci Program – ident: bibr24-16878132221122770 doi: 10.4203/csets.32.3 – ident: bibr134-16878132221122770 doi: 10.1002/stc.2663 – ident: bibr36-16878132221122770 doi: 10.1109/CVPR.2015.7298594 – ident: bibr136-16878132221122770 doi: 10.1016/j.ymssp.2022.109049 – ident: bibr60-16878132221122770 doi: 10.1109/TPAMI.2016.2644615 – ident: bibr74-16878132221122770 doi: 10.1111/mice.12425 – ident: bibr69-16878132221122770 doi: 10.3390/jmse9060671 – start-page: 1 year: 2017 ident: bibr62-16878132221122770 publication-title: 2017 IEEE visual communications and image processing (VCIP) – ident: bibr73-16878132221122770 doi: 10.1002/stc.2991 – volume: 15 start-page: 174 year: 2019 ident: bibr155-16878132221122770 publication-title: J Ind Inf Integr – ident: bibr158-16878132221122770 doi: 10.1061/(ASCE)CF.1943-5509.0001530 – ident: bibr127-16878132221122770 doi: 10.1002/stc.1937 – ident: bibr153-16878132221122770 doi: 10.31814/stce.nuce2019-13(3)-02 – ident: bibr139-16878132221122770 publication-title: Struct Health Monit – ident: bibr12-16878132221122770 doi: 10.1007/978-3-030-81716-9_11 – ident: bibr97-16878132221122770 doi: 10.3390/drones6030064 – start-page: 74 year: 2021 ident: bibr116-16878132221122770 publication-title: Computing in civil engineering – ident: bibr119-16878132221122770 publication-title: Comput Aided Civ Infrastruct Eng – ident: bibr72-16878132221122770 doi: 10.1177/1748006X20965111 – ident: bibr61-16878132221122770 doi: 10.1109/TPAMI.2017.2699184 – ident: bibr82-16878132221122770 doi: 10.1109/ICCV48922.2021.01595 – ident: bibr138-16878132221122770 doi: 10.1016/j.ymssp.2019.106495 – ident: bibr30-16878132221122770 doi: 10.1061/(ASCE)ST.1943-541X.0002535 – ident: bibr104-16878132221122770 doi: 10.1016/j.autcon.2022.104229 – ident: bibr84-16878132221122770 doi: 10.1002/stc.2591 – ident: bibr99-16878132221122770 doi: 10.4236/jtts.2020.102007 – volume: 38 start-page: 230 year: 2021 ident: bibr147-16878132221122770 publication-title: Engineering mechanics – ident: bibr132-16878132221122770 doi: 10.1061/(ASCE)BE.1943-5592.0001302 – ident: bibr15-16878132221122770 doi: 10.1002/stc.2983 – ident: bibr122-16878132221122770 doi: 10.1016/j.autcon.2022.104249 – ident: bibr23-16878132221122770 doi: 10.1260/1369433011502372 |
SSID | ssib050600699 ssj0000395696 ssib044728254 ssib023771143 |
Score | 2.5141115 |
SecondaryResourceType | review_article |
Snippet | Bridges are often located in harsh environments and are thus extremely susceptible to damage. If the initial damage is not detected in time, it can develop... |
SourceID | doaj proquest crossref sage |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Artificial intelligence Bridge inspection Damage detection Data processing Ground penetrating radar Infrared imagery Infrared imaging Infrared radar Machine learning Radar imaging Structural health monitoring Thermal imaging Vibration response |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT6yu0oMgCMXm0aQ5iYrLIujJhb2VvAqCdkXr_3cm7WpF1IunQjst6UyT-dKZ-YaQY2WZA9zuMuNhNonclpkxzGTBBCnAPWhOsTj59k5OZ-JmXswHrb4wJ6yjB-4Udwb413ijPXgyLWitTUD-FWlEXuch97F0D3zeYDMV12AOuF_LPoyJDEtUlqqMcQVAGExhc-KBI4p8_V9A5iCvK7qayQZZ7zFietGNbZOshGaLrA2YA7fJefdPP13UKb5CRwORPgz4NTP0Tz7tCrJSb54MHkIbU6-aHTKbXN9fTbO-F0LmBKNtZr2V1gE8EkEoZrFDvCyc9kH5wjleBMExZFg7Zak2hXW1NcwDnHGSW-dyvktGzaIJeyQFyGQ0s4Krwgiq4cGmViDPLSx-mpUJyZeKqVxPFI79Kh4r2nODf9NlQk4_bnnuWDJ-E75EbX8IIsF1PAFmr3qzV3-ZPSHjpa2qfta9VkwhPyJTOU3ICdrv89KPo9n_j9EckFWGZREx92xMRu3LWzgEsNLao_hdvgNg-99_ priority: 102 providerName: Directory of Open Access Journals – databaseName: Sage Journals GOLD Open Access 2024 dbid: AFRWT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEB_0fKkPUvuBV63sgyAUUvO1yeVJbOkhBfsglfq25GuL0LsTu_fgf28mm72e1EqfFrLZZZhMkl8yM78BONKO-4TbPbEhzSZJ3YRYyy2JNiqZtgcjGCYnX3xT51fy63V9vQGLIRemaPD3RwyrShLlxRpnN95GnxQn4wlTEz3JToIEF7jW9HTZzZr-unuoqoEt6J9eztC17TEg8p4M6W2bsMW1qvkIts6mlz9WU4ALrdka452UGpM7VyaLdHxUFQSfF3uRDhi5ChjKRFCo4jt9Us5Hu18uEvAI2a4Fk-X9bfoSdgowrc56S9qFjTh_BdtrdIWv4bR3JFSLtkKD67knqps1Uk-Cm2Ko-iywKtiZxUfscrzX_A1cTb98_3xOSgEG4iVnHXHBKecTJpMx6cFhWXpVexOiDrX3oo5SoJ-y9doxY2vnW2d5SBjKK-G8p-ItjOaLedyDKuE0a7iTQtdWMpN-bFud-guXVlzDJ2Ogg2IaX9jJsUjGr4YVQvK_dDmGD6tPbntqjuc6f0Jtrzoiq3ZuWNz9bMokbdJZywZrQkJNRrLW2IhcP8pK2tJIgxnDwTBWzWCoDddIysg1ZWM4xvH78-qf0rz775778IJjwkWOajuAUXe3jO8TDOrcYTHdBxYm918 priority: 102 providerName: SAGE Publications |
Title | Review of artificial intelligence-based bridge damage detection |
URI | https://journals.sagepub.com/doi/full/10.1177/16878132221122770 https://www.proquest.com/docview/2719652701 https://doaj.org/article/182ada9d782941f9ae73856a40f0e0d9 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEB909-XuQTz1uD29pQ8HglBsPto0T6LiKsKJiKJvJV89DnTX0_X_dybNrpXjfCqkaSiTycwvmclvAH4qyx3idpcbj6tJFrbOjeEmDyZUEt2DFowuJ_-6qM5u5PldeZcO3J5TWuXCJkZD7WeOzsj3uSLuO64KdvD4N6eqURRdTSU0VmGIJriuBzA8Orm4vFpoFBdKsR6BnZSK7mouNZDY9YoqAfJouwXuF2JRL1bh6qtxr5ZCocTSRG11jE0gSuGKChz3nFnk_H8HVHu5YdFdTdZhLeHM7LBTjC-wEqYb8LnHPrgJB11cIJu1GelPRyWR_elxdObk43zWXerKvHkw9AjzmL413YKbycn18Vme6inkTnI2z623lXUIsWRAOViqMl-VTvugfOmcKIMUFHZsnbJMm9K61hruERK5SljnCvEVBtPZNHyDDGGX0dxKoUojmcaBTauwv7BoQDWvR1AsBNO4RDZONS_uG5b4xf-R5Qj2lp88dkwbH3U-ImkvOxJJdmyYPf1u0pprcOtkvNEeQZCWrNUmEHVPZWTRFqHwegQ7i7lq0sp9bt70bAS7NH9vr_77N98_HmgbPnG6NBEz03ZgMH96CT8QysztGFbryekYhoeTq9vrcdLecTwYeAXovOiz |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R7aHlgKAPsTxKDq0qVYoaPxKvDwjRx3YpjxNI3FK_gpBgF9hFiD_Fb2TGSSBVVW6cojiOFY3Hnm8ynm8APirLHeJ2lxqPq0lmdpAaw00aTCgkmgctGCUn7x8UoyP5-zg_noO7NheGjlW2e2LcqP3E0T_yr1wR9x1XGdu6uEypahRFV9sSGrVa7IbbG3TZpps7P3B-P3E-_Hn4fZQ2VQVSJzmbpdbbwjoEGjJIxS3VWi9yp31QPndO5EEKCr5VTlmmTW5dZQ33CAxcIaxzmcBxX8BLKdCSU2b68Ferv1woxTp0eRLHJwesvScuv6xo4H-0FAK9k1hCjBW41gfoGTaBV-KEorZBjIQgJuKKyil3TGesMPAXLO6cRIvGcbgICw2qTbZrNVyCuTB-A_MdrsO3sFVHIZJJlZC21sQVyWmHETQli-qTOoUs8ebc0CXM4mGx8Ts4ehY5v4feeDIOy5AgyDOaWylUbiTTOLCpFPYXFrdrzQd9yFrBlK6hNqcKG2cla9jM_5FlH748vHJR83o81fkbSfuhI1Fyx4bJ1UnZrPASHTXjjfYIubRklTaBiIIKI7MqC5nXfVhr56ps9olp-ajVffhM8_f46L9fs_L0QBvwanS4v1fu7RzsrsJrTuka8UzcGvRmV9dhHUHUzH6ImpvAn-deKvc_piHO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB7qKYg-iFd6bK15UAQhNHtJ9uyDFHs59KKHIhb6FveWUtBzejki_jV_nTObTZtS2rc-hSSbTdid2fkmM_sNwDtluUPc7nLjUZtkYUe5MdzkwYRKonnQgtHm5K-TaudQ7h2VRwvwr9sLQ2mV3ZoYF2o_c_SPfI0r4r7jqmBrTUqLONgar5-e5VRBiiKtXTmNVkT2w98_6L5dfNrdwrl-z_l4-_vmTp4qDOROcjbPrbeVdQg6ZJCKW6q7XpVO-6B86ZwogxQUiGucskyb0rrGGu4RJLhKWOcKgf0-gEVFXtEAFje2JwffOmnmQinWI8-T-AZyx7pzYvYrquQMRLsh0FeJBcVYhZo_Qj8xhWGJIYqujWJcBBESV1RcuWdIY72BayC5l5cWTeX4KTxJGDf73ArlM1gI0-fwuMd8-ALW25hENmsykt2WxiI76fGD5mRffdZuKMu8-WXoEOYxdWz6Eg7vZaRfwWA6m4YlyBDyGc2tFKo0kmns2DQK2wuLi7fmoyEU3cDULhGdU72NnzVL3OY3xnIIHy8fOW1ZPu5qvEGjfdmQCLrjhdn5cZ30vUa3zXijPQIwLVmjTSDaoMrIoilC4fUQVrq5qtOqcVFfyfgQPtD8Xd269Wte393RW3iIalJ_2Z3sL8MjTns3YoLcCgzm57_DG0RUc7uaRDeDH_etLf8BSD0nYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+artificial+intelligence-based+bridge+damage+detection&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Zhang%2C+Yang&rft.au=Ka-Veng%2C+Yuen&rft.date=2022-09-01&rft.pub=Sage+Publications+Ltd&rft.issn=1687-8132&rft.eissn=1687-8140&rft.volume=14&rft.issue=9&rft_id=info:doi/10.1177%2F16878132221122770&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon |