A method for distinguishing between propagons, diffusions, and locons
The majority of intuition on phonon transport has been derived from studies of homogenous crystalline solids, where the atomic composition and structure are periodic. For this specific class of materials, the solutions to the equations of motions for the atoms (in the harmonic limit) result in plane...
Saved in:
Published in | Journal of applied physics Vol. 120; no. 2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
14.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The majority of intuition on phonon transport has been derived from studies of homogenous crystalline solids, where the atomic composition and structure are periodic. For this specific class of materials, the solutions to the equations of motions for the atoms (in the harmonic limit) result in plane wave modulated velocity fields for the normal modes of vibration. However, it has been known for several decades that whenever a system lacks periodicity, either compositional or structural, the normal modes of vibration can still be determined (in the harmonic limit), but the solutions take on different characteristics and many modes may not be plane wave modulated. Previous work has classified the types of vibrations into three primary categories, namely, propagons, diffusions, and locons. One can use the participation ratio to distinguish locons, from propagons and diffusons, which measures the extent to which a mode is localized. However, distinguishing between propagons and diffusons has remained a challenge, since both are spatially delocalized. Here, we present a new method that quantifies the extent to which a mode's character corresponds to a propagating mode, e.g., exhibits plane wave modulation. This then allows for clear and quantitative distinctions between propagons and diffusons. By resolving this issue quantitatively, one can now automate the classification of modes for any arbitrary material or structure, subject to a single constraint that the atoms must vibrate stably around their respective equilibrium sites. Several example test cases are studied including crystalline silicon and germanium, crystalline silicon with different defect concentrations, as well as amorphous silicon, germanium, and silica. |
---|---|
AbstractList | The majority of intuition on phonon transport has been derived from studies of homogenous crystalline solids, where the atomic composition and structure are periodic. For this specific class of materials, the solutions to the equations of motions for the atoms (in the harmonic limit) result in plane wave modulated velocity fields for the normal modes of vibration. However, it has been known for several decades that whenever a system lacks periodicity, either compositional or structural, the normal modes of vibration can still be determined (in the harmonic limit), but the solutions take on different characteristics and many modes may not be plane wave modulated. Previous work has classified the types of vibrations into three primary categories, namely, propagons, diffusions, and locons. One can use the participation ratio to distinguish locons, from propagons and diffusons, which measures the extent to which a mode is localized. However, distinguishing between propagons and diffusons has remained a challenge, since both are spatially delocalized. Here, we present a new method that quantifies the extent to which a mode's character corresponds to a propagating mode, e.g., exhibits plane wave modulation. This then allows for clear and quantitative distinctions between propagons and diffusons. By resolving this issue quantitatively, one can now automate the classification of modes for any arbitrary material or structure, subject to a single constraint that the atoms must vibrate stably around their respective equilibrium sites. Several example test cases are studied including crystalline silicon and germanium, crystalline silicon with different defect concentrations, as well as amorphous silicon, germanium, and silica. |
Author | Seyf, Hamid Reza Henry, Asegun |
Author_xml | – sequence: 1 givenname: Hamid Reza surname: Seyf fullname: Seyf, Hamid Reza organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; and Heat Lab, Georgia Institute of Technology, Atlanta, Georgia 30332, USA – sequence: 2 givenname: Asegun surname: Henry fullname: Henry, Asegun organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; and Heat Lab, Georgia Institute of Technology, Atlanta, Georgia 30332, USA |
BackLink | https://www.osti.gov/biblio/22597866$$D View this record in Osti.gov |
BookMark | eNp9kE9LAzEUxINUsK0e_AYLnhS3zctudpNjKfUPFLzoOWSz2XZLm6xJqvjtjbZaUPE0c_jNMO8NUM9YoxE6BzwCXGRjGOWc0pzgI9QHzHhaUop7qI8xgZTxkp-ggfcrjAFYxvtoNkk2OixtnTTWJXXrQ2sW29YvoySVDq9am6RztpMLa_x1JJpm69tPL02drK2K_hQdN3Lt9dleh-jpZvY4vUvnD7f308k8VTmBkFalVhhIQWXFFVdSFURKDSzXUjMsVVZVNOeqhlyCJGVNCW3qrKJVxgiuM8iG6GLXa-NO4VUbtFrGAUarIAihvGRFcaDi7uet9kGs7NaZOEwQIFBwzDISqfGOUs5673QjYp0M8bTgZLsWgMXHRwWI_Udj4vJHonPtRrq3P9mrHeu_Wr_hF-sOoOjq5j_4d_M7M-OS6Q |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1002_aenm_202200717 crossref_primary_10_1103_PhysRevLett_120_125901 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126637 crossref_primary_10_1021_acs_jpclett_3c02367 crossref_primary_10_1021_acs_jpcc_0c06697 crossref_primary_10_1063_5_0219222 crossref_primary_10_1038_s41467_021_22999_z crossref_primary_10_1002_polb_24365 crossref_primary_10_1063_5_0196613 crossref_primary_10_1063_1_5124821 crossref_primary_10_1088_1361_648X_aabe54 crossref_primary_10_1103_PhysRevMaterials_3_074603 crossref_primary_10_1103_PhysRevMaterials_4_035401 crossref_primary_10_1016_j_mtphys_2020_100324 crossref_primary_10_1021_acs_macromol_4c00230 crossref_primary_10_1063_1_5108651 crossref_primary_10_1103_PhysRevE_108_014601 crossref_primary_10_1016_j_ceramint_2024_04_011 crossref_primary_10_1021_acs_nanolett_7b02867 crossref_primary_10_1063_5_0089247 crossref_primary_10_1126_sciadv_abc0075 crossref_primary_10_1016_j_jnoncrysol_2023_122430 crossref_primary_10_1039_D3MH01681A crossref_primary_10_1016_j_ijheatmasstransfer_2021_122038 crossref_primary_10_1039_D1CC05486D crossref_primary_10_1002_adma_201808222 crossref_primary_10_1063_1_5081722 crossref_primary_10_1021_acs_nanolett_9b00984 crossref_primary_10_1088_1361_651X_ac5ebb crossref_primary_10_1016_j_mtphys_2023_101107 crossref_primary_10_1016_j_scriptamat_2025_116568 crossref_primary_10_1088_1361_648X_aa58bc crossref_primary_10_1063_5_0055593 crossref_primary_10_1016_j_jeurceramsoc_2023_06_052 crossref_primary_10_1063_5_0195971 crossref_primary_10_1103_PhysRevMaterials_7_094604 crossref_primary_10_1021_acsmaterialslett_2c00846 crossref_primary_10_1002_adfm_201903829 crossref_primary_10_1080_15567265_2018_1519004 crossref_primary_10_1111_jace_18374 crossref_primary_10_1103_PhysRevB_111_094206 crossref_primary_10_1007_s11433_024_2523_4 crossref_primary_10_1088_1742_5468_ad4025 crossref_primary_10_1016_j_mtphys_2018_11_008 crossref_primary_10_1088_1361_648X_ad2ff1 crossref_primary_10_1103_PRXEnergy_1_031002 crossref_primary_10_1002_adfm_202401157 crossref_primary_10_1016_j_actamat_2022_118162 crossref_primary_10_1016_j_polymer_2021_124168 crossref_primary_10_1016_j_xcrp_2021_100431 crossref_primary_10_1016_j_xcrp_2023_101760 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126015 crossref_primary_10_1063_5_0040546 crossref_primary_10_1038_s41524_017_0052_9 crossref_primary_10_1021_acsnano_6b07836 crossref_primary_10_1103_PhysRevMaterials_2_056002 crossref_primary_10_1016_j_mtphys_2021_100344 crossref_primary_10_1063_5_0173675 crossref_primary_10_3390_nano11081982 crossref_primary_10_1063_5_0089340 crossref_primary_10_1007_s10934_019_00836_5 crossref_primary_10_1103_PhysRevB_97_024201 crossref_primary_10_1016_j_nanoen_2021_105903 crossref_primary_10_1039_C7RA03275G crossref_primary_10_7498_aps_72_20221581 crossref_primary_10_1039_D0NR02657C crossref_primary_10_1016_j_mtcomm_2024_110964 crossref_primary_10_1021_acsami_9b06196 crossref_primary_10_1063_5_0206859 crossref_primary_10_1002_adma_202414031 crossref_primary_10_1080_21663831_2024_2323026 crossref_primary_10_1088_1402_4896_ace5eb crossref_primary_10_1038_s41524_022_00776_w crossref_primary_10_1063_5_0220824 crossref_primary_10_1039_D1NA00557J crossref_primary_10_1016_j_cemconres_2023_107324 crossref_primary_10_1038_s42005_022_01103_x crossref_primary_10_1002_adma_201705544 crossref_primary_10_1103_PhysRevMaterials_3_075601 crossref_primary_10_1088_1361_648X_abdd61 crossref_primary_10_1063_5_0043597 crossref_primary_10_1016_j_jallcom_2023_170245 crossref_primary_10_1016_j_jnoncrysol_2021_120644 crossref_primary_10_1063_5_0230354 crossref_primary_10_1063_5_0093441 crossref_primary_10_1063_5_0050159 crossref_primary_10_1016_j_mtcomm_2024_109213 crossref_primary_10_1063_5_0013400 crossref_primary_10_1038_s41598_018_20704_7 crossref_primary_10_1080_15567265_2016_1218576 crossref_primary_10_1021_acsami_1c08131 crossref_primary_10_1103_PhysRevMaterials_3_065601 crossref_primary_10_1021_acs_jpcc_9b09402 crossref_primary_10_1007_s11630_022_1626_5 crossref_primary_10_1063_5_0054039 |
Cites_doi | 10.1103/PhysRevB.48.12581 10.1080/0892702031000104887 10.1615/AnnualRevHeatTransfer.2014006932 10.1115/1.4024356 10.1103/PhysRevB.59.3551 10.1103/PhysRevB.90.235201 10.1103/PhysRevB.39.5566 10.1080/13642819908223054 10.1115/1.4023585 10.1098/rspa.1951.0147 10.1006/jcph.1995.1039 10.1103/PhysRevLett.60.2280 10.1016/j.commatsci.2006.06.010 10.1146/annurev-matsci-070511-155040 10.1103/PhysRevB.46.6131 10.1002/andp.19113401005 10.1088/1367-2630/18/1/013028 10.1103/PhysRevB.89.144303 10.1063/1.4939207 10.1103/PhysRevB.37.6991 |
ContentType | Journal Article |
Copyright | Author(s) 2016 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2016 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M OTOTI |
DOI | 10.1063/1.4955420 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 22597866 10_1063_1_4955420 jap |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 0ZJ ABPTK AGIHO OTOTI TAF UE8 |
ID | FETCH-LOGICAL-c421t-b7ec01265ab9c9cac62aae184eae80ac3bb549cd14a1a27d525fd3b5b3820d313 |
ISSN | 0021-8979 |
IngestDate | Fri May 19 00:37:09 EDT 2023 Sun Jun 29 16:50:57 EDT 2025 Tue Jul 01 03:50:25 EDT 2025 Thu Apr 24 23:03:00 EDT 2025 Sun Jul 14 11:27:03 EDT 2019 Fri Jun 21 00:14:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Published by AIP Publishing. 0021-8979/2016/120(2)/025101/7/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c421t-b7ec01265ab9c9cac62aae184eae80ac3bb549cd14a1a27d525fd3b5b3820d313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2121690832 |
PQPubID | 2050677 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1063_1_4955420 crossref_primary_10_1063_1_4955420 proquest_journals_2121690832 scitation_primary_10_1063_1_4955420 osti_scitechconnect_22597866 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-14 |
PublicationDateYYYYMMDD | 2016-07-14 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Journal of applied physics |
PublicationYear | 2016 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Plimpton (c20) 1995 Klemens (c10) 1951 Lv, Henry (c7) 2016 Allen, Feldman, Fabian, Wooten (c12) 1999 Munetoh, Motooka, Moriguchi, Shintani (c19) 2007 Tian, Lee, Chen (c1) 2013 Einstein (c9) 1911 Feldman, Allen, Bickham (c13) 1999 Gale, Rohl (c16) 2003 Gordiz, Henry (c15) 2016 Tian, Chen (c3) 2014 Toberer, Baranowski, Dames (c2) 2012 Allen, Feldman (c6) 1993 Cahill, Watson, Pohl (c8) 1992 Tersoff (c17) 1988 Biswas, Bouchard, Kamitakahara, Grest, Soukoulis (c11) 1988 Parrish, Jain, Larkin, Saidi, McGaughey (c4) 2014 Tersoff (c18) 1989 Larkin, McGaughey (c14) 2014 Wang, Qiu, McGaughey, Ruan, Xu (c5) 2013 (2023062404532260400_c13) 1999; 59 (2023062404532260400_c11) 1988; 60 (2023062404532260400_c3) 2014; 17 (2023062404532260400_c20) 1995; 117 (2023062404532260400_c5) 2013; 135 (2023062404532260400_c12) 1999; 79 (2023062404532260400_c18) 1989; 39 (2023062404532260400_c16) 2003; 29 (2023062404532260400_c7) 2016; 18 (2023062404532260400_c8) 1992; 46 (2023062404532260400_c6) 1993; 48 (2023062404532260400_c1) 2013; 135 (2023062404532260400_c15) 2016; 119 (2023062404532260400_c9) 1911; 340 (2023062404532260400_c4) 2014; 90 (2023062404532260400_c2) 2012; 42 (2023062404532260400_c10) 1951; 208 (2023062404532260400_c19) 2007; 39 (2023062404532260400_c14) 2014; 89 (2023062404532260400_c17) 1988; 37 |
References_xml | – start-page: 5566 year: 1989 ident: c18 publication-title: Phys. Rev. B – start-page: 898 year: 1911 ident: c9 publication-title: Ann. Phys. – start-page: 061605 year: 2013 ident: c1 publication-title: J. Heat Transfer – start-page: 2280 year: 1988 ident: c11 publication-title: Phys. Rev. Lett. – start-page: 6991 year: 1988 ident: c17 publication-title: Phys. Rev. B – start-page: 235201 year: 2014 ident: c4 publication-title: Phys. Rev. B – start-page: 6131 year: 1992 ident: c8 publication-title: Phys. Rev. B – start-page: 291 year: 2003 ident: c16 publication-title: Mol. Simul. – start-page: 013028 year: 2016 ident: c7 publication-title: New J. Phys. – start-page: 425 year: 2014 ident: c3 publication-title: Annu. Rev. Heat Transfer – start-page: 144303 year: 2014 ident: c14 publication-title: Phys. Rev. B – start-page: 179 year: 2012 ident: c2 publication-title: Annu. Rev. Mater. Res. – start-page: 015101 year: 2016 ident: c15 publication-title: J. Appl. Phys. – start-page: 1 year: 1995 ident: c20 publication-title: J. Comput. Phys. – start-page: 1715 year: 1999 ident: c12 publication-title: Philos. Mag., Part B – start-page: 3551 year: 1999 ident: c13 publication-title: Phys. Rev. B – start-page: 12581 year: 1993 ident: c6 publication-title: Phys. Rev. B – start-page: 108 year: 1951 ident: c10 publication-title: Proc. R. Soc. London, Ser. A – start-page: 091102 year: 2013 ident: c5 publication-title: J. Heat Transfer – start-page: 334 year: 2007 ident: c19 publication-title: Comput. Mater. Sci. – volume: 48 start-page: 12581 year: 1993 ident: 2023062404532260400_c6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.12581 – volume: 29 start-page: 291 year: 2003 ident: 2023062404532260400_c16 publication-title: Mol. Simul. doi: 10.1080/0892702031000104887 – volume: 17 start-page: 425 year: 2014 ident: 2023062404532260400_c3 publication-title: Annu. Rev. Heat Transfer doi: 10.1615/AnnualRevHeatTransfer.2014006932 – volume: 135 start-page: 091102 year: 2013 ident: 2023062404532260400_c5 publication-title: J. Heat Transfer doi: 10.1115/1.4024356 – volume: 59 start-page: 3551 year: 1999 ident: 2023062404532260400_c13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.3551 – volume: 90 start-page: 235201 year: 2014 ident: 2023062404532260400_c4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.235201 – volume: 39 start-page: 5566 year: 1989 ident: 2023062404532260400_c18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.5566 – volume: 79 start-page: 1715 year: 1999 ident: 2023062404532260400_c12 publication-title: Philos. Mag., Part B doi: 10.1080/13642819908223054 – volume: 135 start-page: 061605 year: 2013 ident: 2023062404532260400_c1 publication-title: J. Heat Transfer doi: 10.1115/1.4023585 – volume: 208 start-page: 108 year: 1951 ident: 2023062404532260400_c10 publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1951.0147 – volume: 117 start-page: 1 year: 1995 ident: 2023062404532260400_c20 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 60 start-page: 2280 year: 1988 ident: 2023062404532260400_c11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.2280 – volume: 39 start-page: 334 year: 2007 ident: 2023062404532260400_c19 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2006.06.010 – volume: 42 start-page: 179 year: 2012 ident: 2023062404532260400_c2 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070511-155040 – volume: 46 start-page: 6131 year: 1992 ident: 2023062404532260400_c8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6131 – volume: 340 start-page: 898 year: 1911 ident: 2023062404532260400_c9 publication-title: Ann. Phys. doi: 10.1002/andp.19113401005 – volume: 18 start-page: 013028 year: 2016 ident: 2023062404532260400_c7 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/1/013028 – volume: 89 start-page: 144303 year: 2014 ident: 2023062404532260400_c14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.144303 – volume: 119 start-page: 015101 year: 2016 ident: 2023062404532260400_c15 publication-title: J. Appl. Phys. doi: 10.1063/1.4939207 – volume: 37 start-page: 6991 year: 1988 ident: 2023062404532260400_c17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.6991 |
SSID | ssj0011839 |
Score | 2.515849 |
Snippet | The majority of intuition on phonon transport has been derived from studies of homogenous crystalline solids, where the atomic composition and structure are... |
SourceID | osti proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | ABUNDANCE Amorphous silicon Applied physics Atomic structure CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CLASSIFICATION CONCENTRATION RATIO CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Crystal structure Crystallinity DEFECTS DIFFUSION EQUATIONS OF MOTION GERMANIUM LIMITING VALUES Periodic variations PERIODICITY PHONONS Plane waves Propagation modes SILICA SILICON Silicon dioxide TRANSPORT THEORY Velocity distribution Vibration mode WAVE PROPAGATION |
Title | A method for distinguishing between propagons, diffusions, and locons |
URI | http://dx.doi.org/10.1063/1.4955420 https://www.proquest.com/docview/2121690832 https://www.osti.gov/biblio/22597866 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB7WLWJ9EK2Kq1UG9UGwWTOTSTbzGLSySCtCW-hbmNuWQt0t3aRg_5__yzOZySTBpaj4EpbsMDuc8-2Zb86cC0Jvec5TqhMZMQlnVSZzEkngBVG20DzObaskYvOdD79m8xP25TQ9HY1-9qKW6kpO1c3GvJJ_0Sq8A73aLNm_0GyYFF7AZ9AvPEHD8PwjHRe-AXQTK6jtv3V5VnunUi8AC2zGytFl2w6ltv6xdRu1CXtZ67D7naIKT1Gd-yOw7yPzoynlOBffz212400w7SHloVibszrgzpf6bKJtKieYYFTsInpFEYOf_lwMAxm6O4Bm_uoCICH6o2GXTGi3EFG9PxDyf0znfSIks85Wl4sachRIlHPXpmZqnGmPcx7NUlfmNth-GvdATjfuKUDirHtjCkfJlPnxwxLdYBPhMJ5ld9AWhdMKHaOt4tPhwVG4zrI01MUauWW1Ja6y5EOYd0CMxiuQyODQcw8YkQvO6PGf44fogUcFLhwKH6GRWe6g-z3N7aC73xxOHqP9AjtkYkAmHiITe2TigMw93OFyDwMgsEPlE3Tyef_44zzyDTsixSipIjkzCghPlgrJFVdCZVQIQ3JmhMljoRIpU8aVJkwQQWc6pekC7EQqE-ChOiHJUzRerpbmGcJaplwprqWJFdMsF5RlnAilZ4QqxuUEvWulVbaCsU1VLsomqiJLSlJ6wU7Q6zD00pVw2TRo14q8tFIGACobZaaqstUsfN2qovQGYF0C67OXzLAnTtCboJ7bfmPDqOvVVTeivNSL57ev5AXa7hC_i8bVVW1eAi-u5CuPul-TmrlQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+distinguishing+between+propagons%2C+diffusions%2C+and+locons&rft.jtitle=Journal+of+applied+physics&rft.au=Seyf%2C+Hamid+Reza&rft.au=Henry%2C+Asegun&rft.au=School+of+Materials+Science+and+Engineering%2C+Georgia+Institute+of+Technology%2C+Atlanta%2C+Georgia+30332&rft.au=Heat+Lab%2C+Georgia+Institute+of+Technology%2C+Atlanta%2C+Georgia+30332&rft.date=2016-07-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=120&rft.issue=2&rft_id=info:doi/10.1063%2F1.4955420&rft.externalDocID=22597866 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |