A method for distinguishing between propagons, diffusions, and locons

The majority of intuition on phonon transport has been derived from studies of homogenous crystalline solids, where the atomic composition and structure are periodic. For this specific class of materials, the solutions to the equations of motions for the atoms (in the harmonic limit) result in plane...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 120; no. 2
Main Authors Seyf, Hamid Reza, Henry, Asegun
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 14.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The majority of intuition on phonon transport has been derived from studies of homogenous crystalline solids, where the atomic composition and structure are periodic. For this specific class of materials, the solutions to the equations of motions for the atoms (in the harmonic limit) result in plane wave modulated velocity fields for the normal modes of vibration. However, it has been known for several decades that whenever a system lacks periodicity, either compositional or structural, the normal modes of vibration can still be determined (in the harmonic limit), but the solutions take on different characteristics and many modes may not be plane wave modulated. Previous work has classified the types of vibrations into three primary categories, namely, propagons, diffusions, and locons. One can use the participation ratio to distinguish locons, from propagons and diffusons, which measures the extent to which a mode is localized. However, distinguishing between propagons and diffusons has remained a challenge, since both are spatially delocalized. Here, we present a new method that quantifies the extent to which a mode's character corresponds to a propagating mode, e.g., exhibits plane wave modulation. This then allows for clear and quantitative distinctions between propagons and diffusons. By resolving this issue quantitatively, one can now automate the classification of modes for any arbitrary material or structure, subject to a single constraint that the atoms must vibrate stably around their respective equilibrium sites. Several example test cases are studied including crystalline silicon and germanium, crystalline silicon with different defect concentrations, as well as amorphous silicon, germanium, and silica.
AbstractList The majority of intuition on phonon transport has been derived from studies of homogenous crystalline solids, where the atomic composition and structure are periodic. For this specific class of materials, the solutions to the equations of motions for the atoms (in the harmonic limit) result in plane wave modulated velocity fields for the normal modes of vibration. However, it has been known for several decades that whenever a system lacks periodicity, either compositional or structural, the normal modes of vibration can still be determined (in the harmonic limit), but the solutions take on different characteristics and many modes may not be plane wave modulated. Previous work has classified the types of vibrations into three primary categories, namely, propagons, diffusions, and locons. One can use the participation ratio to distinguish locons, from propagons and diffusons, which measures the extent to which a mode is localized. However, distinguishing between propagons and diffusons has remained a challenge, since both are spatially delocalized. Here, we present a new method that quantifies the extent to which a mode's character corresponds to a propagating mode, e.g., exhibits plane wave modulation. This then allows for clear and quantitative distinctions between propagons and diffusons. By resolving this issue quantitatively, one can now automate the classification of modes for any arbitrary material or structure, subject to a single constraint that the atoms must vibrate stably around their respective equilibrium sites. Several example test cases are studied including crystalline silicon and germanium, crystalline silicon with different defect concentrations, as well as amorphous silicon, germanium, and silica.
Author Seyf, Hamid Reza
Henry, Asegun
Author_xml – sequence: 1
  givenname: Hamid Reza
  surname: Seyf
  fullname: Seyf, Hamid Reza
  organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; and Heat Lab, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
– sequence: 2
  givenname: Asegun
  surname: Henry
  fullname: Henry, Asegun
  organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; and Heat Lab, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
BackLink https://www.osti.gov/biblio/22597866$$D View this record in Osti.gov
BookMark eNp9kE9LAzEUxINUsK0e_AYLnhS3zctudpNjKfUPFLzoOWSz2XZLm6xJqvjtjbZaUPE0c_jNMO8NUM9YoxE6BzwCXGRjGOWc0pzgI9QHzHhaUop7qI8xgZTxkp-ggfcrjAFYxvtoNkk2OixtnTTWJXXrQ2sW29YvoySVDq9am6RztpMLa_x1JJpm69tPL02drK2K_hQdN3Lt9dleh-jpZvY4vUvnD7f308k8VTmBkFalVhhIQWXFFVdSFURKDSzXUjMsVVZVNOeqhlyCJGVNCW3qrKJVxgiuM8iG6GLXa-NO4VUbtFrGAUarIAihvGRFcaDi7uet9kGs7NaZOEwQIFBwzDISqfGOUs5673QjYp0M8bTgZLsWgMXHRwWI_Udj4vJHonPtRrq3P9mrHeu_Wr_hF-sOoOjq5j_4d_M7M-OS6Q
CODEN JAPIAU
CitedBy_id crossref_primary_10_1002_aenm_202200717
crossref_primary_10_1103_PhysRevLett_120_125901
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126637
crossref_primary_10_1021_acs_jpclett_3c02367
crossref_primary_10_1021_acs_jpcc_0c06697
crossref_primary_10_1063_5_0219222
crossref_primary_10_1038_s41467_021_22999_z
crossref_primary_10_1002_polb_24365
crossref_primary_10_1063_5_0196613
crossref_primary_10_1063_1_5124821
crossref_primary_10_1088_1361_648X_aabe54
crossref_primary_10_1103_PhysRevMaterials_3_074603
crossref_primary_10_1103_PhysRevMaterials_4_035401
crossref_primary_10_1016_j_mtphys_2020_100324
crossref_primary_10_1021_acs_macromol_4c00230
crossref_primary_10_1063_1_5108651
crossref_primary_10_1103_PhysRevE_108_014601
crossref_primary_10_1016_j_ceramint_2024_04_011
crossref_primary_10_1021_acs_nanolett_7b02867
crossref_primary_10_1063_5_0089247
crossref_primary_10_1126_sciadv_abc0075
crossref_primary_10_1016_j_jnoncrysol_2023_122430
crossref_primary_10_1039_D3MH01681A
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122038
crossref_primary_10_1039_D1CC05486D
crossref_primary_10_1002_adma_201808222
crossref_primary_10_1063_1_5081722
crossref_primary_10_1021_acs_nanolett_9b00984
crossref_primary_10_1088_1361_651X_ac5ebb
crossref_primary_10_1016_j_mtphys_2023_101107
crossref_primary_10_1016_j_scriptamat_2025_116568
crossref_primary_10_1088_1361_648X_aa58bc
crossref_primary_10_1063_5_0055593
crossref_primary_10_1016_j_jeurceramsoc_2023_06_052
crossref_primary_10_1063_5_0195971
crossref_primary_10_1103_PhysRevMaterials_7_094604
crossref_primary_10_1021_acsmaterialslett_2c00846
crossref_primary_10_1002_adfm_201903829
crossref_primary_10_1080_15567265_2018_1519004
crossref_primary_10_1111_jace_18374
crossref_primary_10_1103_PhysRevB_111_094206
crossref_primary_10_1007_s11433_024_2523_4
crossref_primary_10_1088_1742_5468_ad4025
crossref_primary_10_1016_j_mtphys_2018_11_008
crossref_primary_10_1088_1361_648X_ad2ff1
crossref_primary_10_1103_PRXEnergy_1_031002
crossref_primary_10_1002_adfm_202401157
crossref_primary_10_1016_j_actamat_2022_118162
crossref_primary_10_1016_j_polymer_2021_124168
crossref_primary_10_1016_j_xcrp_2021_100431
crossref_primary_10_1016_j_xcrp_2023_101760
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126015
crossref_primary_10_1063_5_0040546
crossref_primary_10_1038_s41524_017_0052_9
crossref_primary_10_1021_acsnano_6b07836
crossref_primary_10_1103_PhysRevMaterials_2_056002
crossref_primary_10_1016_j_mtphys_2021_100344
crossref_primary_10_1063_5_0173675
crossref_primary_10_3390_nano11081982
crossref_primary_10_1063_5_0089340
crossref_primary_10_1007_s10934_019_00836_5
crossref_primary_10_1103_PhysRevB_97_024201
crossref_primary_10_1016_j_nanoen_2021_105903
crossref_primary_10_1039_C7RA03275G
crossref_primary_10_7498_aps_72_20221581
crossref_primary_10_1039_D0NR02657C
crossref_primary_10_1016_j_mtcomm_2024_110964
crossref_primary_10_1021_acsami_9b06196
crossref_primary_10_1063_5_0206859
crossref_primary_10_1002_adma_202414031
crossref_primary_10_1080_21663831_2024_2323026
crossref_primary_10_1088_1402_4896_ace5eb
crossref_primary_10_1038_s41524_022_00776_w
crossref_primary_10_1063_5_0220824
crossref_primary_10_1039_D1NA00557J
crossref_primary_10_1016_j_cemconres_2023_107324
crossref_primary_10_1038_s42005_022_01103_x
crossref_primary_10_1002_adma_201705544
crossref_primary_10_1103_PhysRevMaterials_3_075601
crossref_primary_10_1088_1361_648X_abdd61
crossref_primary_10_1063_5_0043597
crossref_primary_10_1016_j_jallcom_2023_170245
crossref_primary_10_1016_j_jnoncrysol_2021_120644
crossref_primary_10_1063_5_0230354
crossref_primary_10_1063_5_0093441
crossref_primary_10_1063_5_0050159
crossref_primary_10_1016_j_mtcomm_2024_109213
crossref_primary_10_1063_5_0013400
crossref_primary_10_1038_s41598_018_20704_7
crossref_primary_10_1080_15567265_2016_1218576
crossref_primary_10_1021_acsami_1c08131
crossref_primary_10_1103_PhysRevMaterials_3_065601
crossref_primary_10_1021_acs_jpcc_9b09402
crossref_primary_10_1007_s11630_022_1626_5
crossref_primary_10_1063_5_0054039
Cites_doi 10.1103/PhysRevB.48.12581
10.1080/0892702031000104887
10.1615/AnnualRevHeatTransfer.2014006932
10.1115/1.4024356
10.1103/PhysRevB.59.3551
10.1103/PhysRevB.90.235201
10.1103/PhysRevB.39.5566
10.1080/13642819908223054
10.1115/1.4023585
10.1098/rspa.1951.0147
10.1006/jcph.1995.1039
10.1103/PhysRevLett.60.2280
10.1016/j.commatsci.2006.06.010
10.1146/annurev-matsci-070511-155040
10.1103/PhysRevB.46.6131
10.1002/andp.19113401005
10.1088/1367-2630/18/1/013028
10.1103/PhysRevB.89.144303
10.1063/1.4939207
10.1103/PhysRevB.37.6991
ContentType Journal Article
Copyright Author(s)
2016 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2016 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
OTOTI
DOI 10.1063/1.4955420
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 22597866
10_1063_1_4955420
jap
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
0ZJ
ABPTK
AGIHO
OTOTI
TAF
UE8
ID FETCH-LOGICAL-c421t-b7ec01265ab9c9cac62aae184eae80ac3bb549cd14a1a27d525fd3b5b3820d313
ISSN 0021-8979
IngestDate Fri May 19 00:37:09 EDT 2023
Sun Jun 29 16:50:57 EDT 2025
Tue Jul 01 03:50:25 EDT 2025
Thu Apr 24 23:03:00 EDT 2025
Sun Jul 14 11:27:03 EDT 2019
Fri Jun 21 00:14:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Published by AIP Publishing.
0021-8979/2016/120(2)/025101/7/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-b7ec01265ab9c9cac62aae184eae80ac3bb549cd14a1a27d525fd3b5b3820d313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2121690832
PQPubID 2050677
PageCount 7
ParticipantIDs crossref_citationtrail_10_1063_1_4955420
crossref_primary_10_1063_1_4955420
proquest_journals_2121690832
scitation_primary_10_1063_1_4955420
osti_scitechconnect_22597866
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-14
PublicationDateYYYYMMDD 2016-07-14
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-14
  day: 14
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Journal of applied physics
PublicationYear 2016
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Plimpton (c20) 1995
Klemens (c10) 1951
Lv, Henry (c7) 2016
Allen, Feldman, Fabian, Wooten (c12) 1999
Munetoh, Motooka, Moriguchi, Shintani (c19) 2007
Tian, Lee, Chen (c1) 2013
Einstein (c9) 1911
Feldman, Allen, Bickham (c13) 1999
Gale, Rohl (c16) 2003
Gordiz, Henry (c15) 2016
Tian, Chen (c3) 2014
Toberer, Baranowski, Dames (c2) 2012
Allen, Feldman (c6) 1993
Cahill, Watson, Pohl (c8) 1992
Tersoff (c17) 1988
Biswas, Bouchard, Kamitakahara, Grest, Soukoulis (c11) 1988
Parrish, Jain, Larkin, Saidi, McGaughey (c4) 2014
Tersoff (c18) 1989
Larkin, McGaughey (c14) 2014
Wang, Qiu, McGaughey, Ruan, Xu (c5) 2013
(2023062404532260400_c13) 1999; 59
(2023062404532260400_c11) 1988; 60
(2023062404532260400_c3) 2014; 17
(2023062404532260400_c20) 1995; 117
(2023062404532260400_c5) 2013; 135
(2023062404532260400_c12) 1999; 79
(2023062404532260400_c18) 1989; 39
(2023062404532260400_c16) 2003; 29
(2023062404532260400_c7) 2016; 18
(2023062404532260400_c8) 1992; 46
(2023062404532260400_c6) 1993; 48
(2023062404532260400_c1) 2013; 135
(2023062404532260400_c15) 2016; 119
(2023062404532260400_c9) 1911; 340
(2023062404532260400_c4) 2014; 90
(2023062404532260400_c2) 2012; 42
(2023062404532260400_c10) 1951; 208
(2023062404532260400_c19) 2007; 39
(2023062404532260400_c14) 2014; 89
(2023062404532260400_c17) 1988; 37
References_xml – start-page: 5566
  year: 1989
  ident: c18
  publication-title: Phys. Rev. B
– start-page: 898
  year: 1911
  ident: c9
  publication-title: Ann. Phys.
– start-page: 061605
  year: 2013
  ident: c1
  publication-title: J. Heat Transfer
– start-page: 2280
  year: 1988
  ident: c11
  publication-title: Phys. Rev. Lett.
– start-page: 6991
  year: 1988
  ident: c17
  publication-title: Phys. Rev. B
– start-page: 235201
  year: 2014
  ident: c4
  publication-title: Phys. Rev. B
– start-page: 6131
  year: 1992
  ident: c8
  publication-title: Phys. Rev. B
– start-page: 291
  year: 2003
  ident: c16
  publication-title: Mol. Simul.
– start-page: 013028
  year: 2016
  ident: c7
  publication-title: New J. Phys.
– start-page: 425
  year: 2014
  ident: c3
  publication-title: Annu. Rev. Heat Transfer
– start-page: 144303
  year: 2014
  ident: c14
  publication-title: Phys. Rev. B
– start-page: 179
  year: 2012
  ident: c2
  publication-title: Annu. Rev. Mater. Res.
– start-page: 015101
  year: 2016
  ident: c15
  publication-title: J. Appl. Phys.
– start-page: 1
  year: 1995
  ident: c20
  publication-title: J. Comput. Phys.
– start-page: 1715
  year: 1999
  ident: c12
  publication-title: Philos. Mag., Part B
– start-page: 3551
  year: 1999
  ident: c13
  publication-title: Phys. Rev. B
– start-page: 12581
  year: 1993
  ident: c6
  publication-title: Phys. Rev. B
– start-page: 108
  year: 1951
  ident: c10
  publication-title: Proc. R. Soc. London, Ser. A
– start-page: 091102
  year: 2013
  ident: c5
  publication-title: J. Heat Transfer
– start-page: 334
  year: 2007
  ident: c19
  publication-title: Comput. Mater. Sci.
– volume: 48
  start-page: 12581
  year: 1993
  ident: 2023062404532260400_c6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.12581
– volume: 29
  start-page: 291
  year: 2003
  ident: 2023062404532260400_c16
  publication-title: Mol. Simul.
  doi: 10.1080/0892702031000104887
– volume: 17
  start-page: 425
  year: 2014
  ident: 2023062404532260400_c3
  publication-title: Annu. Rev. Heat Transfer
  doi: 10.1615/AnnualRevHeatTransfer.2014006932
– volume: 135
  start-page: 091102
  year: 2013
  ident: 2023062404532260400_c5
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4024356
– volume: 59
  start-page: 3551
  year: 1999
  ident: 2023062404532260400_c13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.3551
– volume: 90
  start-page: 235201
  year: 2014
  ident: 2023062404532260400_c4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.235201
– volume: 39
  start-page: 5566
  year: 1989
  ident: 2023062404532260400_c18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.5566
– volume: 79
  start-page: 1715
  year: 1999
  ident: 2023062404532260400_c12
  publication-title: Philos. Mag., Part B
  doi: 10.1080/13642819908223054
– volume: 135
  start-page: 061605
  year: 2013
  ident: 2023062404532260400_c1
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4023585
– volume: 208
  start-page: 108
  year: 1951
  ident: 2023062404532260400_c10
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1951.0147
– volume: 117
  start-page: 1
  year: 1995
  ident: 2023062404532260400_c20
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 60
  start-page: 2280
  year: 1988
  ident: 2023062404532260400_c11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.60.2280
– volume: 39
  start-page: 334
  year: 2007
  ident: 2023062404532260400_c19
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2006.06.010
– volume: 42
  start-page: 179
  year: 2012
  ident: 2023062404532260400_c2
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070511-155040
– volume: 46
  start-page: 6131
  year: 1992
  ident: 2023062404532260400_c8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6131
– volume: 340
  start-page: 898
  year: 1911
  ident: 2023062404532260400_c9
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19113401005
– volume: 18
  start-page: 013028
  year: 2016
  ident: 2023062404532260400_c7
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/1/013028
– volume: 89
  start-page: 144303
  year: 2014
  ident: 2023062404532260400_c14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.144303
– volume: 119
  start-page: 015101
  year: 2016
  ident: 2023062404532260400_c15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4939207
– volume: 37
  start-page: 6991
  year: 1988
  ident: 2023062404532260400_c17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.6991
SSID ssj0011839
Score 2.515849
Snippet The majority of intuition on phonon transport has been derived from studies of homogenous crystalline solids, where the atomic composition and structure are...
SourceID osti
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms ABUNDANCE
Amorphous silicon
Applied physics
Atomic structure
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CLASSIFICATION
CONCENTRATION RATIO
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Crystal structure
Crystallinity
DEFECTS
DIFFUSION
EQUATIONS OF MOTION
GERMANIUM
LIMITING VALUES
Periodic variations
PERIODICITY
PHONONS
Plane waves
Propagation modes
SILICA
SILICON
Silicon dioxide
TRANSPORT THEORY
Velocity distribution
Vibration mode
WAVE PROPAGATION
Title A method for distinguishing between propagons, diffusions, and locons
URI http://dx.doi.org/10.1063/1.4955420
https://www.proquest.com/docview/2121690832
https://www.osti.gov/biblio/22597866
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB7WLWJ9EK2Kq1UG9UGwWTOTSTbzGLSySCtCW-hbmNuWQt0t3aRg_5__yzOZySTBpaj4EpbsMDuc8-2Zb86cC0Jvec5TqhMZMQlnVSZzEkngBVG20DzObaskYvOdD79m8xP25TQ9HY1-9qKW6kpO1c3GvJJ_0Sq8A73aLNm_0GyYFF7AZ9AvPEHD8PwjHRe-AXQTK6jtv3V5VnunUi8AC2zGytFl2w6ltv6xdRu1CXtZ67D7naIKT1Gd-yOw7yPzoynlOBffz212400w7SHloVibszrgzpf6bKJtKieYYFTsInpFEYOf_lwMAxm6O4Bm_uoCICH6o2GXTGi3EFG9PxDyf0znfSIks85Wl4sachRIlHPXpmZqnGmPcx7NUlfmNth-GvdATjfuKUDirHtjCkfJlPnxwxLdYBPhMJ5ld9AWhdMKHaOt4tPhwVG4zrI01MUauWW1Ja6y5EOYd0CMxiuQyODQcw8YkQvO6PGf44fogUcFLhwKH6GRWe6g-z3N7aC73xxOHqP9AjtkYkAmHiITe2TigMw93OFyDwMgsEPlE3Tyef_44zzyDTsixSipIjkzCghPlgrJFVdCZVQIQ3JmhMljoRIpU8aVJkwQQWc6pekC7EQqE-ChOiHJUzRerpbmGcJaplwprqWJFdMsF5RlnAilZ4QqxuUEvWulVbaCsU1VLsomqiJLSlJ6wU7Q6zD00pVw2TRo14q8tFIGACobZaaqstUsfN2qovQGYF0C67OXzLAnTtCboJ7bfmPDqOvVVTeivNSL57ev5AXa7hC_i8bVVW1eAi-u5CuPul-TmrlQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+distinguishing+between+propagons%2C+diffusions%2C+and+locons&rft.jtitle=Journal+of+applied+physics&rft.au=Seyf%2C+Hamid+Reza&rft.au=Henry%2C+Asegun&rft.au=School+of+Materials+Science+and+Engineering%2C+Georgia+Institute+of+Technology%2C+Atlanta%2C+Georgia+30332&rft.au=Heat+Lab%2C+Georgia+Institute+of+Technology%2C+Atlanta%2C+Georgia+30332&rft.date=2016-07-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=120&rft.issue=2&rft_id=info:doi/10.1063%2F1.4955420&rft.externalDocID=22597866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon