Viable offspring derived from single unfertilized mammalian oocytes
In mammals, a new life starts with the fusion of an oocyte and asperm cell. Parthenogenesis, a way of generating offspring solelyfrom female gametes, is limited because of problems arising fromgenomic imprinting. Here, we report live mammalian offspringderived from single unfertilized oocytes, which...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 12; p. e2115248119 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
22.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In mammals, a new life starts with the fusion of an oocyte and asperm cell. Parthenogenesis, a way of generating offspring solelyfrom female gametes, is limited because of problems arising fromgenomic imprinting. Here, we report live mammalian offspringderived from single unfertilized oocytes, which was achieved by tar-geted DNA methylation rewriting of seven imprinting control regions.Oocyte coinjection of catalytically inactive Cas9 (dCas9)-Dnmt3a ordCpf1-Tet1 messenger RNA (mRNA) with single-guide RNAs (sgRNAs)targeting specific regions induced de novo methylation or demethyla-tion, respectively, of the targeted region. Following parthenogeneticactivation, these edited regions showed maintenance of methylationas naturally established regions during early preimplantation develop-ment. The transfer of modified parthenogenetic embryos into fostermothers resulted in significantly extended development andfinally inthe generation of viable full-term offspring. These data demonstratethat parthenogenesis can be achieved by targeted epigenetic rewrit-ing of multiple critical imprinting control regions. |
---|---|
AbstractList | In mammals, a new life starts with the fusion of an oocyte and a sperm cell. Parthenogenesis, a way of generating offspring solely from female gametes, is limited because of problems arising from genomic imprinting. Here, we report live mammalian offspring derived from single unfertilized oocytes, which was achieved by targeted DNA methylation rewriting of seven imprinting control regions. Oocyte coinjection of catalytically inactive Cas9 (dCas9)-Dnmt3a or dCpf1-Tet1 messenger RNA (mRNA) with single-guide RNAs (sgRNAs) targeting specific regions induced de novo methylation or demethylation, respectively, of the targeted region. Following parthenogenetic activation, these edited regions showed maintenance of methylation as naturally established regions during early preimplantation development. The transfer of modified parthenogenetic embryos into foster mothers resulted in significantly extended development and finally in the generation of viable full-term offspring. These data demonstrate that parthenogenesis can be achieved by targeted epigenetic rewriting of multiple critical imprinting control regions. Significance In mammals, parthenogenesis is limited because of problems arising from genomic imprinting. Here, we report live mammalian offspring derived from single unfertilized eggs. This was achieved by the targeted DNA methylation rewriting of seven imprinting control regions. By designing guide RNAs with protospacer adjacent motif (PAM) sequences matching one allele but not the other, dCas9-Dnmt3a or dCpf1-Tet1 enables targeted DNA methylation editing in an allele-specific manner. The success of parthenogenesis in mammals opens many opportunities in agriculture, research, and medicine. In mammals, a new life starts with the fusion of an oocyte and a sperm cell. Parthenogenesis, a way of generating offspring solely from female gametes, is limited because of problems arising from genomic imprinting. Here, we report live mammalian offspring derived from single unfertilized oocytes, which was achieved by targeted DNA methylation rewriting of seven imprinting control regions. Oocyte coinjection of catalytically inactive Cas9 (dCas9)-Dnmt3a or dCpf1-Tet1 messenger RNA (mRNA) with single-guide RNAs (sgRNAs) targeting specific regions induced de novo methylation or demethylation, respectively, of the targeted region. Following parthenogenetic activation, these edited regions showed maintenance of methylation as naturally established regions during early preimplantation development. The transfer of modified parthenogenetic embryos into foster mothers resulted in significantly extended development and finally in the generation of viable full-term offspring. These data demonstrate that parthenogenesis can be achieved by targeted epigenetic rewriting of multiple critical imprinting control regions. In mammals, a new life starts with the fusion of an oocyte and asperm cell. Parthenogenesis, a way of generating offspring solelyfrom female gametes, is limited because of problems arising fromgenomic imprinting. Here, we report live mammalian offspringderived from single unfertilized oocytes, which was achieved by tar-geted DNA methylation rewriting of seven imprinting control regions.Oocyte coinjection of catalytically inactive Cas9 (dCas9)-Dnmt3a ordCpf1-Tet1 messenger RNA (mRNA) with single-guide RNAs (sgRNAs)targeting specific regions induced de novo methylation or demethyla-tion, respectively, of the targeted region. Following parthenogeneticactivation, these edited regions showed maintenance of methylationas naturally established regions during early preimplantation develop-ment. The transfer of modified parthenogenetic embryos into fostermothers resulted in significantly extended development andfinally inthe generation of viable full-term offspring. These data demonstratethat parthenogenesis can be achieved by targeted epigenetic rewrit-ing of multiple critical imprinting control regions. In mammals, parthenogenesis is limited because of problems arising from genomic imprinting. Here, we report live mammalian offspring derived from single unfertilized eggs. This was achieved by the targeted DNA methylation rewriting of seven imprinting control regions. By designing guide RNAs with protospacer adjacent motif (PAM) sequences matching one allele but not the other, dCas9-Dnmt3a or dCpf1-Tet1 enables targeted DNA methylation editing in an allele-specific manner. The success of parthenogenesis in mammals opens many opportunities in agriculture, research, and medicine. In mammals, a new life starts with the fusion of an oocyte and a sperm cell. Parthenogenesis, a way of generating offspring solely from female gametes, is limited because of problems arising from genomic imprinting. Here, we report live mammalian offspring derived from single unfertilized oocytes, which was achieved by targeted DNA methylation rewriting of seven imprinting control regions. Oocyte coinjection of catalytically inactive Cas9 (dCas9)-Dnmt3a or dCpf1-Tet1 messenger RNA (mRNA) with single-guide RNAs (sgRNAs) targeting specific regions induced de novo methylation or demethylation, respectively, of the targeted region. Following parthenogenetic activation, these edited regions showed maintenance of methylation as naturally established regions during early preimplantation development. The transfer of modified parthenogenetic embryos into foster mothers resulted in significantly extended development and finally in the generation of viable full-term offspring. These data demonstrate that parthenogenesis can be achieved by targeted epigenetic rewriting of multiple critical imprinting control regions. |
Author | Wei, Yanchang Yang, Cai-Rong Zhao, Zhen-Ao |
Author_xml | – sequence: 1 givenname: Yanchang orcidid: 0000-0003-4810-9761 surname: Wei fullname: Wei, Yanchang organization: Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China – sequence: 2 givenname: Cai-Rong surname: Yang fullname: Yang, Cai-Rong organization: Center for Reproductive Sciences, University of California, San Francisco, CA 94143 – sequence: 3 givenname: Zhen-Ao orcidid: 0000-0002-9868-2534 surname: Zhao fullname: Zhao, Zhen-Ao organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35254875$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtr3TAQhUVJaG4e6-6CoZtunMzIkmVvAuXSNoFANm22QpZHqYIt3Uh2IP318W2e7WpgzjeHM5x9thNiIMY-IZwgqOp0E0w-4YiSiwax_cBWCC2WtWhhh60AuCobwcUe28_5FgBa2cBHtldJLkWj5Iqtr73pBiqic3mTfLgpekr-nvrCpTgWedks6hwcpckP_s8ijGYczeBNKGK0DxPlQ7brzJDp6HkesF_fv_1cn5eXVz8u1l8vSys4TmXHa2WAKi7Q1CiRiEQH1lCjAIVCZbkFyVF0tgenODeqRxBOmrZCJ3h1wM6efDdzN1JvKUzJDHqJPZr0oKPx-l8l-N_6Jt7rphWi5XIx-PJskOLdTHnSo8-WhsEEinPWvK5UxRHqLfr5P_Q2ziks7y2U4K0A9TfR6RNlU8w5kXsNg6C3BeltQfqtoOXi-P0Pr_xLI9Ujl66Ocw |
CitedBy_id | crossref_primary_10_1016_j_cub_2023_07_006 crossref_primary_10_14405_kjvr_20230003 crossref_primary_10_1146_annurev_animal_071423_093523 crossref_primary_10_1016_j_cub_2023_07_055 crossref_primary_10_1242_dev_201087 crossref_primary_10_1007_s00299_023_03071_0 crossref_primary_10_1093_molehr_gaae009 crossref_primary_10_1016_j_anireprosci_2024_107499 crossref_primary_10_1093_gigascience_giac084 crossref_primary_10_12750_JARB_37_1_48 crossref_primary_10_1101_gad_351216_123 crossref_primary_10_1038_d41586_023_02404_z crossref_primary_10_1186_s12964_024_01516_x crossref_primary_10_5325_jpoststud_7_1_0007 crossref_primary_10_1016_j_celrep_2023_112023 crossref_primary_10_1136_jme_2023_109609 crossref_primary_10_1038_s41392_022_01184_8 crossref_primary_10_3389_fcell_2022_964045 |
Cites_doi | 10.1038/cr.2015.151 10.1038/ng1731 10.1101/gad.9.24.3097 10.1073/pnas.1817703116 10.1007/s00335-002-2258-4 10.1101/gr.233049.117 10.1038/35047554 10.1038/ng1699 10.1038/ng1233 10.1101/gr.3.4.S48 10.1038/308548a0 10.1093/nar/gkw1112 10.1038/39631 10.1038/ng0994-52 10.1016/j.cell.2015.09.038 10.1101/gad.12.23.3693 10.1038/35013100 10.1016/j.stem.2018.09.004 10.1038/nature02402 10.1038/ng988 10.1038/nprot.2007.132 10.1073/pnas.0904111106 10.1146/annurev-genet-110410-132459 10.1101/pdb.prot5279 10.1016/0168-9525(91)90040-W 10.1016/0092-8674(84)90313-1 10.1073/pnas.1321195111 10.1126/science.1203919 10.1038/nbt1331 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Mar 22, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright National Academy of Sciences Mar 22, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2115248119 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | e2115248119 |
ExternalDocumentID | 10_1073_pnas_2115248119 35254875 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CGR CS3 CUY CVF D0L DIK DU5 E3Z EBS ECM EIF F5P FRP GX1 H13 HH5 HYE JLS JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c421t-b267a0e3241a6151eee4b0cae87014717c2c05214bcd0f722a7d104f5a931f423 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:06:43 EDT 2024 Fri Aug 16 21:12:27 EDT 2024 Thu Oct 10 17:07:22 EDT 2024 Fri Aug 23 01:32:09 EDT 2024 Sat Sep 28 08:24:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | offspring oocyte genomic imprinting early embryo mammal |
Language | English |
License | This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-b267a0e3241a6151eee4b0cae87014717c2c05214bcd0f722a7d104f5a931f423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Elizabeth Robertson, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom; received August 18, 2021; accepted January 19, 2022 Author contributions: Y.W. designed research; Y.W., C.-R.Y., and Z.-A.Z. performed research; Y.W., C.-R.Y., and Z.-A.Z. contributed new reagents/analytic tools; Y.W., C.-R.Y., and Z.-A.Z. analyzed data; and Y.W. and C.-R.Y. wrote the paper. |
ORCID | 0000-0002-9868-2534 0000-0003-4810-9761 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944925/ |
PMID | 35254875 |
PQID | 2642940742 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8944925 proquest_miscellaneous_2637321065 proquest_journals_2642940742 crossref_primary_10_1073_pnas_2115248119 pubmed_primary_35254875 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-22 |
PublicationDateYYYYMMDD | 2022-03-22 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 Hogan B. (e_1_3_4_29_2) 1994 e_1_3_4_30_2 e_1_3_4_11_2 Williamson C. M. B. A. (e_1_3_4_22_2) 2013 e_1_3_4_12_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_14_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_17_2 doi: 10.1038/cr.2015.151 – ident: e_1_3_4_14_2 doi: 10.1038/ng1731 – ident: e_1_3_4_20_2 doi: 10.1101/gad.9.24.3097 – ident: e_1_3_4_18_2 doi: 10.1073/pnas.1817703116 – ident: e_1_3_4_24_2 doi: 10.1007/s00335-002-2258-4 – ident: e_1_3_4_27_2 doi: 10.1101/gr.233049.117 – ident: e_1_3_4_5_2 doi: 10.1038/35047554 – ident: e_1_3_4_15_2 doi: 10.1038/ng1699 – ident: e_1_3_4_10_2 doi: 10.1038/ng1233 – ident: e_1_3_4_19_2 doi: 10.1101/gr.3.4.S48 – ident: e_1_3_4_2_2 doi: 10.1038/308548a0 – ident: e_1_3_4_26_2 doi: 10.1093/nar/gkw1112 – ident: e_1_3_4_11_2 doi: 10.1038/39631 – ident: e_1_3_4_12_2 doi: 10.1038/ng0994-52 – ident: e_1_3_4_23_2 doi: 10.1016/j.cell.2015.09.038 – ident: e_1_3_4_9_2 doi: 10.1101/gad.12.23.3693 – ident: e_1_3_4_21_2 doi: 10.1038/35013100 – ident: e_1_3_4_16_2 doi: 10.1016/j.stem.2018.09.004 – ident: e_1_3_4_3_2 doi: 10.1038/nature02402 – ident: e_1_3_4_13_2 doi: 10.1038/ng988 – ident: e_1_3_4_28_2 doi: 10.1038/nprot.2007.132 – ident: e_1_3_4_6_2 doi: 10.1073/pnas.0904111106 – volume-title: Manipulating the Mouse Embryo: A Laboratory Manual year: 1994 ident: e_1_3_4_29_2 contributor: fullname: Hogan B. – ident: e_1_3_4_8_2 doi: 10.1146/annurev-genet-110410-132459 – ident: e_1_3_4_31_2 doi: 10.1101/pdb.prot5279 – ident: e_1_3_4_7_2 doi: 10.1016/0168-9525(91)90040-W – ident: e_1_3_4_1_2 doi: 10.1016/0092-8674(84)90313-1 – volume-title: MRC Harwell year: 2013 ident: e_1_3_4_22_2 contributor: fullname: Williamson C. M. B. A. – ident: e_1_3_4_30_2 doi: 10.1073/pnas.1321195111 – ident: e_1_3_4_25_2 doi: 10.1126/science.1203919 – ident: e_1_3_4_4_2 doi: 10.1038/nbt1331 |
SSID | ssj0009580 |
Score | 2.5089693 |
Snippet | In mammals, a new life starts with the fusion of an oocyte and asperm cell. Parthenogenesis, a way of generating offspring solelyfrom female gametes, is... Significance In mammals, parthenogenesis is limited because of problems arising from genomic imprinting. Here, we report live mammalian offspring derived from... In mammals, a new life starts with the fusion of an oocyte and a sperm cell. Parthenogenesis, a way of generating offspring solely from female gametes, is... In mammals, parthenogenesis is limited because of problems arising from genomic imprinting. Here, we report live mammalian offspring derived from single... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | e2115248119 |
SubjectTerms | Animals Biological Sciences Demethylation DNA Methylation Embryos Epigenetics Gametes Gametocytes Genomic Imprinting Mammals Mammals - genetics mRNA Offspring Oocytes Oocytes - metabolism Parthenogenesis |
Title | Viable offspring derived from single unfertilized mammalian oocytes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35254875 https://www.proquest.com/docview/2642940742 https://search.proquest.com/docview/2637321065 https://pubmed.ncbi.nlm.nih.gov/PMC8944925 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7UkxfxbX1RwYMeurtN0yR7lEXxgeJBxVtJ0hQLtl10V9Bf70wf6-vmeVIapjPJfMl8XwEOs0gZkcYq4CFHgBIKSikugzjSwjmJc6_V9a9vxPk9v3yMH-cg7rgwddO-NXmvfC56Zf5U91aOC9vv-sT6t9cjNeSkqdefh3kM0A6iz5R2VcM7Ybj8csY7PR8Z9celfu0h4okZV2FIgqEkBsrrJsPvu9KfUvN3x-S3LehsGZba2tE_aea4AnOuXIWVNjtf_aNWQvp4DUYPOVGi_CrLmotXP8VIe3OpT3QSn84H0Dolst8kf84_0FDooqjPPPyqsu9YgK7D_dnp3eg8aH-XEFjOwklgmJB64LBCCjXVKc45bgZWO0xJdH8oLbNE1eXGpoNMMqZlimAsi_UwCjMsqzZgoaxKtwU-R-CqrFO4kCN0jrXSmRG4cWVcCSOU8eCoc1cyblQxkvo2W0YJOTn5crIHu507kzY90IyoZ8gJlntwMDNjYNNthS5dNaUxkSSCkYg92Gy8P3tX99k8kD--y2wAiWb_tGAs1eLZbexs__vJHVhkRIEYRAFju7AweZm6PSxMJmYfS_KLq_06HD8BQxbilw |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoALpXyGFggSh3JINnEc23usVlQLdCsObdVbZDuOGtEkqzZbif76zuRjacsJzuMojp4nnhfPewH4XCTKiDxVAY85EpRYUEpxGaSJFs5JnHvnrr84EvMT_v0sPduAdNTCdE371pRhfVGFdXne9VYuKzsZ-8QmPxczNeXkqTd5BI8xXyM-kvS1167qlScMX8Cc8dHRRyaTZa2vQuQ8KeMqjskylOxAeddmeHdf-qvYfNgzeWcTOtiC03H6fe_Jr3DVmtDePHB2_Ofnew7PhrLU3-_D27Dh6hewPST-lb83uFN_eQmz05LUVn5TFP2Zrp_jIr52uU9KFZ8-PWB0RTrCtrwobzBQ6arqPqf4TWN_Y237Ck4Ovh7P5sHwJ4bAcha3gWFC6shh8RVrKoGcc9xEVjvMdkQ2lpZZUgFzY_OokIxpmSPPK1I9TeICK7bXsFk3tXsLPkdOrKxTuEcgK0-10oURuCcWXAkjlPFgb8QhW_aGG1l3UC6TjNDL_qDnwe6IUzZkHoaRUE05MX4PPq3DmDN0EKJr16xoTCJJuyRSD970sK7vNa4HD-Q9wNcDyI_7fgRh7Hy5B9je_feVH-HJ_HhxmB1-O_qxA08ZKS2iJGBsFzbby5V7j_VPaz50q_0WFogDrA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61IFW9tEBfaYEGqQd6yMtxbO8RLaxoeYhDqVAvke3YalSSrEq2Uvn1HeexXeDGeRwl1ufxzBfPfAb4ZFOhWJGJgCYUCUrCnEtRHmSpZMZw_PZOXf_snB1f0q9X2dXKVV9d0b5WZVhfV2Fd_uxqK-eVjsY6sejibCom1GnqRfPCRk9hHX02ZiNRX-rtir77hOAmTAkdVX14Gs1reRMi78kIFUniZEOdJCjtSg1XY9ODhPN-3eRKIJq9hB_jFPr6k1_holWhvr2n7vioOW7AiyE99Q_6IZvwxNRbsDlsADf-_qBS_fkVTL-XruvKb6ztz3b9AhfzH1P4rmPFd78g0Lpw_YRteV3eoqGSVdX9VvGbRv_FHPc1XM6Ovk2Pg-FGhkBTkrSBIozL2GASlkiXChljqIq1NOj1iHDCNdGuG5gqXcSWEyJ5gXzPZnKSJhYztzewVje1eQc-RW4stBEYK5CdZ1JIqxjGRksFU0woD_ZHLPJ5L7yRdwfmPM0dgvl_BD3YHrHKBw9EMxKrCXXM34O9pRl9xx2IyNo0Czcm5a6HiWUevO2hXb5rXBMe8DugLwc4Xe67FoSy0-ceoHv_6Cc_wrOLw1l--uX85AM8J67hIk4DQrZhrf29MDuYBrVqt1vw_wBHkAYs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viable+offspring+derived+from+single+unfertilized+mammalian+oocytes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wei%2C+Yanchang&rft.au=Yang%2C+Cai-Rong&rft.au=Zhao%2C+Zhen-Ao&rft.date=2022-03-22&rft.eissn=1091-6490&rft.volume=119&rft.issue=12&rft.spage=e2115248119&rft_id=info:doi/10.1073%2Fpnas.2115248119&rft_id=info%3Apmid%2F35254875&rft.externalDocID=35254875 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |