Investigation of magnetic silica with thermoresponsive chitosan coating for drug controlled release and magnetic hyperthermia application

In this study, a drug delivery system for chemo-hyperthermia applications is proposed and fabricated. The delivery system consists of magnetic-silica (MagSi) particles being encapsulated within a pH/thermo-responsive chitosan‑g‑N‑isopropylacrylamide (Chi-g-NIPAAm) polymer matrix. The as-prepared Mag...

Full description

Saved in:
Bibliographic Details
Published inMaterials Science & Engineering C Vol. 97; pp. 23 - 30
Main Authors Pon-On, Weeraphat, Tithito, Tanatsaparn, Maneeprakorn, Weerakanya, Phenrat, Tanapon, Tang, I-Ming
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0928-4931
1873-0191
1873-0191
DOI10.1016/j.msec.2018.11.076

Cover

Loading…
Abstract In this study, a drug delivery system for chemo-hyperthermia applications is proposed and fabricated. The delivery system consists of magnetic-silica (MagSi) particles being encapsulated within a pH/thermo-responsive chitosan‑g‑N‑isopropylacrylamide (Chi-g-NIPAAm) polymer matrix. The as-prepared MagSi@Chi-g-NIPAAm particles exhibit superparamagnetic behavior with a saturation magnetization (Ms) of 20.14 emu/g. In addition, the MagSi@Chi-g-NIPAAm particles can act as a heat source when subject to an alternating magnetic field (AMF) and have a specific absorptions rate (SAR) of 8.36 Wg−1. The release of the drug DOX from the synthesized particles is sensitive to both the pH and temperature of its environment. We have compared the drug release when the solution is externally heated up and when it is heated up by the AMF (internal heating). For external heating (when the pH/temperature is 4.0/45 °C), 83.30 ± 2.92% of the DOX were released within the first 5 h. The release of the DOX by the particles in pH 7.4 (temperature of 37 °C) was much slower (around 25.87 ± 1.30% after 25 h). The release of the DOX was much higher (under an acidic condition pH = 4.0) around 57.13 ± 2.36% within 1 h in the presence of AMF heating. The in vitro cytotoxicity tests of the of DOX-loaded MagSi@Chi-g-NIPAAm particles towards HeLa cancer cells. In general, the toxicities of the drug DOX as part of a MagSi@Chi-g-NIPAAm particles were less than those of the standalone DOX until the concentration of DOX-loaded particles reached 250 μg/mL, after which the toxicity of DOX in both forms were the same. [Display omitted] •Synthesis of the core/shell system of MagSi@Chi-g-NIPAAm particles as an effective carrier•The release of the drug DOX from the synthesized particles is sensitive to both the pH and temperature of its environment.•The MagSi@Chi-g-NIPAAm particles can act as a heat source when subject to an alternating magnetic field (AMF).•In vitro biological activity revealed that the synthesized nanoparticles demonstrating the dose-dependent cytotoxicity.
AbstractList In this study, a drug delivery system for chemo-hyperthermia applications is proposed and fabricated. The delivery system consists of magnetic-silica (MagSi) particles being encapsulated within a pH/thermo-responsive chitosan‑g‑N‑isopropylacrylamide (Chi-g-NIPAAm) polymer matrix. The as-prepared MagSi@Chi-g-NIPAAm particles exhibit superparamagnetic behavior with a saturation magnetization (Ms) of 20.14 emu/g. In addition, the MagSi@Chi-g-NIPAAm particles can act as a heat source when subject to an alternating magnetic field (AMF) and have a specific absorptions rate (SAR) of 8.36 Wg-1. The release of the drug DOX from the synthesized particles is sensitive to both the pH and temperature of its environment. We have compared the drug release when the solution is externally heated up and when it is heated up by the AMF (internal heating). For external heating (when the pH/temperature is 4.0/45 °C), 83.30 ± 2.92% of the DOX were released within the first 5 h. The release of the DOX by the particles in pH 7.4 (temperature of 37 °C) was much slower (around 25.87 ± 1.30% after 25 h). The release of the DOX was much higher (under an acidic condition pH = 4.0) around 57.13 ± 2.36% within 1 h in the presence of AMF heating. The in vitro cytotoxicity tests of the of DOX-loaded MagSi@Chi-g-NIPAAm particles towards HeLa cancer cells. In general, the toxicities of the drug DOX as part of a MagSi@Chi-g-NIPAAm particles were less than those of the standalone DOX until the concentration of DOX-loaded particles reached 250 μg/mL, after which the toxicity of DOX in both forms were the same.In this study, a drug delivery system for chemo-hyperthermia applications is proposed and fabricated. The delivery system consists of magnetic-silica (MagSi) particles being encapsulated within a pH/thermo-responsive chitosan‑g‑N‑isopropylacrylamide (Chi-g-NIPAAm) polymer matrix. The as-prepared MagSi@Chi-g-NIPAAm particles exhibit superparamagnetic behavior with a saturation magnetization (Ms) of 20.14 emu/g. In addition, the MagSi@Chi-g-NIPAAm particles can act as a heat source when subject to an alternating magnetic field (AMF) and have a specific absorptions rate (SAR) of 8.36 Wg-1. The release of the drug DOX from the synthesized particles is sensitive to both the pH and temperature of its environment. We have compared the drug release when the solution is externally heated up and when it is heated up by the AMF (internal heating). For external heating (when the pH/temperature is 4.0/45 °C), 83.30 ± 2.92% of the DOX were released within the first 5 h. The release of the DOX by the particles in pH 7.4 (temperature of 37 °C) was much slower (around 25.87 ± 1.30% after 25 h). The release of the DOX was much higher (under an acidic condition pH = 4.0) around 57.13 ± 2.36% within 1 h in the presence of AMF heating. The in vitro cytotoxicity tests of the of DOX-loaded MagSi@Chi-g-NIPAAm particles towards HeLa cancer cells. In general, the toxicities of the drug DOX as part of a MagSi@Chi-g-NIPAAm particles were less than those of the standalone DOX until the concentration of DOX-loaded particles reached 250 μg/mL, after which the toxicity of DOX in both forms were the same.
In this study, a drug delivery system for chemo-hyperthermia applications is proposed and fabricated. The delivery system consists of magnetic-silica (MagSi) particles being encapsulated within a pH/thermo-responsive chitosan‑g‑N‑isopropylacrylamide (Chi-g-NIPAAm) polymer matrix. The as-prepared MagSi@Chi-g-NIPAAm particles exhibit superparamagnetic behavior with a saturation magnetization (Ms) of 20.14 emu/g. In addition, the MagSi@Chi-g-NIPAAm particles can act as a heat source when subject to an alternating magnetic field (AMF) and have a specific absorptions rate (SAR) of 8.36 Wg . The release of the drug DOX from the synthesized particles is sensitive to both the pH and temperature of its environment. We have compared the drug release when the solution is externally heated up and when it is heated up by the AMF (internal heating). For external heating (when the pH/temperature is 4.0/45 °C), 83.30 ± 2.92% of the DOX were released within the first 5 h. The release of the DOX by the particles in pH 7.4 (temperature of 37 °C) was much slower (around 25.87 ± 1.30% after 25 h). The release of the DOX was much higher (under an acidic condition pH = 4.0) around 57.13 ± 2.36% within 1 h in the presence of AMF heating. The in vitro cytotoxicity tests of the of DOX-loaded MagSi@Chi-g-NIPAAm particles towards HeLa cancer cells. In general, the toxicities of the drug DOX as part of a MagSi@Chi-g-NIPAAm particles were less than those of the standalone DOX until the concentration of DOX-loaded particles reached 250 μg/mL, after which the toxicity of DOX in both forms were the same.
In this study, a drug delivery system for chemo-hyperthermia applications is proposed and fabricated. The delivery system consists of magnetic-silica (MagSi) particles being encapsulated within a pH/thermo-responsive chitosan‑g‑N‑isopropylacrylamide (Chi-g-NIPAAm) polymer matrix. The as-prepared MagSi@Chi-g-NIPAAm particles exhibit superparamagnetic behavior with a saturation magnetization (Ms) of 20.14 emu/g. In addition, the MagSi@Chi-g-NIPAAm particles can act as a heat source when subject to an alternating magnetic field (AMF) and have a specific absorptions rate (SAR) of 8.36 Wg−1. The release of the drug DOX from the synthesized particles is sensitive to both the pH and temperature of its environment. We have compared the drug release when the solution is externally heated up and when it is heated up by the AMF (internal heating). For external heating (when the pH/temperature is 4.0/45 °C), 83.30 ± 2.92% of the DOX were released within the first 5 h. The release of the DOX by the particles in pH 7.4 (temperature of 37 °C) was much slower (around 25.87 ± 1.30% after 25 h). The release of the DOX was much higher (under an acidic condition pH = 4.0) around 57.13 ± 2.36% within 1 h in the presence of AMF heating. The in vitro cytotoxicity tests of the of DOX-loaded MagSi@Chi-g-NIPAAm particles towards HeLa cancer cells. In general, the toxicities of the drug DOX as part of a MagSi@Chi-g-NIPAAm particles were less than those of the standalone DOX until the concentration of DOX-loaded particles reached 250 μg/mL, after which the toxicity of DOX in both forms were the same.
In this study, a drug delivery system for chemo-hyperthermia applications is proposed and fabricated. The delivery system consists of magnetic-silica (MagSi) particles being encapsulated within a pH/thermo-responsive chitosan‑g‑N‑isopropylacrylamide (Chi-g-NIPAAm) polymer matrix. The as-prepared MagSi@Chi-g-NIPAAm particles exhibit superparamagnetic behavior with a saturation magnetization (Ms) of 20.14 emu/g. In addition, the MagSi@Chi-g-NIPAAm particles can act as a heat source when subject to an alternating magnetic field (AMF) and have a specific absorptions rate (SAR) of 8.36 Wg−1. The release of the drug DOX from the synthesized particles is sensitive to both the pH and temperature of its environment. We have compared the drug release when the solution is externally heated up and when it is heated up by the AMF (internal heating). For external heating (when the pH/temperature is 4.0/45 °C), 83.30 ± 2.92% of the DOX were released within the first 5 h. The release of the DOX by the particles in pH 7.4 (temperature of 37 °C) was much slower (around 25.87 ± 1.30% after 25 h). The release of the DOX was much higher (under an acidic condition pH = 4.0) around 57.13 ± 2.36% within 1 h in the presence of AMF heating. The in vitro cytotoxicity tests of the of DOX-loaded MagSi@Chi-g-NIPAAm particles towards HeLa cancer cells. In general, the toxicities of the drug DOX as part of a MagSi@Chi-g-NIPAAm particles were less than those of the standalone DOX until the concentration of DOX-loaded particles reached 250 μg/mL, after which the toxicity of DOX in both forms were the same. [Display omitted] •Synthesis of the core/shell system of MagSi@Chi-g-NIPAAm particles as an effective carrier•The release of the drug DOX from the synthesized particles is sensitive to both the pH and temperature of its environment.•The MagSi@Chi-g-NIPAAm particles can act as a heat source when subject to an alternating magnetic field (AMF).•In vitro biological activity revealed that the synthesized nanoparticles demonstrating the dose-dependent cytotoxicity.
Author Tithito, Tanatsaparn
Phenrat, Tanapon
Pon-On, Weeraphat
Maneeprakorn, Weerakanya
Tang, I-Ming
Author_xml – sequence: 1
  givenname: Weeraphat
  surname: Pon-On
  fullname: Pon-On, Weeraphat
  email: fsciwpp@ku.ac.th
  organization: Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
– sequence: 2
  givenname: Tanatsaparn
  surname: Tithito
  fullname: Tithito, Tanatsaparn
  organization: Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
– sequence: 3
  givenname: Weerakanya
  surname: Maneeprakorn
  fullname: Maneeprakorn, Weerakanya
  organization: National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
– sequence: 4
  givenname: Tanapon
  surname: Phenrat
  fullname: Phenrat, Tanapon
  organization: Department of Civil Engineering, Environment Engineering Program, Faculty of Engineering, Naresuan University, Thailand
– sequence: 5
  givenname: I-Ming
  surname: Tang
  fullname: Tang, I-Ming
  organization: Computational and Applied Science for Smart Innovation Cluster (CLASSIC) Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi, Bangkok 10140, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30678907$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFr3DAQhUVISTZp_0APRdBLL3Y1tteSoZcS0iQQ6KU9C6003tViS64kb8lP6L-OnE0o5JCTYPjeG817F-TUeYeEfARWAoP2674cI-qyYiBKgJLx9oSsQPC6YNDBKVmxrhJF09VwTi5i3DPWippXZ-S8Zi0XHeMr8u_OHTAmu1XJekd9T0e1dZisptEOViv616YdTTsMow8YJ--iPSDVO5t8VI5qn5VuS3sfqAnzNg9cCn4Y0NCAA6qIVDnz33b3MGF48rOKqmlaliy735N3vRoifnh-L8nvH9e_rm6L-583d1ff7wvdVJAKhUy3Ys2x2SAIZvqmQmNqxXrkWndCqKYyoFoldK9EKxhwBrpVPYoNqxHrS_Ll6DsF_2fOt8vRRo3DoBz6OcoKeNdwvq54Rj-_Qvd-Di7_LlM51jVrmcjUp2dq3oxo5BTsqMKDfAk5A-II6OBjDNhLbdPTzSkoO0hgculT7uXSp1z6lAAy95ml1Svpi_ubom9HEeYYDxaDjNqi02hsQJ2k8fYt-SO0VL1c
CitedBy_id crossref_primary_10_1016_j_jmrt_2020_08_096
crossref_primary_10_1016_j_jddst_2022_104092
crossref_primary_10_1016_j_jddst_2023_105140
crossref_primary_10_3390_nano13081342
crossref_primary_10_3390_polym12123061
crossref_primary_10_3390_polym15040968
crossref_primary_10_1039_D4NR02058H
crossref_primary_10_1016_j_ijbiomac_2019_08_031
crossref_primary_10_3390_magnetochemistry5040064
crossref_primary_10_1016_j_ijbiomac_2024_132047
crossref_primary_10_1021_acs_langmuir_4c03228
crossref_primary_10_1016_j_matchemphys_2020_122857
crossref_primary_10_1016_j_jphotobiol_2019_111716
crossref_primary_10_1016_j_colsurfa_2021_126706
crossref_primary_10_1021_acsbiomaterials_9b00790
crossref_primary_10_1016_j_heliyon_2024_e24792
crossref_primary_10_1039_D3TB01712E
crossref_primary_10_3390_pharmaceutics11050212
crossref_primary_10_1016_j_ijpharm_2021_121173
crossref_primary_10_2147_IJN_S375964
crossref_primary_10_1515_ntrev_2022_0027
crossref_primary_10_1007_s11696_020_01331_x
crossref_primary_10_1007_s12668_021_00923_5
crossref_primary_10_1002_jssc_202201055
crossref_primary_10_1016_j_ijbiomac_2022_01_162
crossref_primary_10_1016_j_carpta_2024_100481
crossref_primary_10_1016_j_ijbiomac_2020_07_279
crossref_primary_10_1016_j_reactfunctpolym_2019_104431
crossref_primary_10_2217_nnm_2019_0187
crossref_primary_10_1016_j_heliyon_2020_e03784
crossref_primary_10_1016_j_ijbiomac_2021_06_108
crossref_primary_10_1016_j_nantod_2020_101057
crossref_primary_10_1002_advs_202004951
crossref_primary_10_1016_j_matchemphys_2020_123076
crossref_primary_10_3390_app11146637
crossref_primary_10_1016_j_jddst_2020_101711
crossref_primary_10_1016_j_jddst_2023_104447
crossref_primary_10_1557_s43578_022_00819_4
Cites_doi 10.1002/anie.201403036
10.1038/s41598-017-13320-4
10.1021/nl1033733
10.1016/j.colsurfb.2017.04.035
10.1021/nn404501g
10.1021/ar9000026
10.1038/sj.clpt.6100400
10.1016/j.addr.2012.10.008
10.1039/C5NJ02504D
10.1016/j.bbagen.2017.02.022
10.1016/j.eurpolymj.2015.03.023
10.1002/adfm.201400279
10.1039/C7NR02327H
10.1039/C5NR07773G
10.1021/nn102324e
10.1021/nn900002m
10.7150/thno.5289
10.1039/C4CC10413G
10.1038/nrc1566
10.1021/acsanm.8b01131
10.1002/adma.200601817
10.1016/j.msec.2015.09.098
10.1016/j.drudis.2012.03.010
10.3390/ma10040411
10.1016/j.colsurfb.2013.08.015
10.1016/j.micromeso.2016.12.007
10.1039/C8SM00560E
10.1126/scitranslmed.3005872
10.1002/chem.201302097
10.1021/nn202073m
10.1039/C4CC03984J
10.3390/gels3040036
10.1016/j.drudis.2010.08.006
10.1016/j.carbpol.2017.05.034
10.1016/j.jconrel.2004.10.021
10.1039/C4CC01429D
10.1002/adma.201000260
10.1016/j.colsurfb.2014.01.044
10.1039/C3RA43919D
10.1016/j.ejpb.2016.11.038
10.1016/j.biotechadv.2013.11.009
10.1021/acsami.5b01786
10.1038/nbt876
10.1038/nmat3776
10.1039/c3nr00338h
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier B.V.
Copyright Elsevier BV Apr 2019
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier B.V.
– notice: Copyright Elsevier BV Apr 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.msec.2018.11.076
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
EISSN 1873-0191
EndPage 30
ExternalDocumentID 30678907
10_1016_j_msec_2018_11_076
S0928493118324950
Genre Journal Article
GroupedDBID --M
.~1
1~.
457
4G.
7-5
8P~
9JN
ABXDB
ADEZE
AEKER
AFTJW
ALMA_UNASSIGNED_HOLDINGS
BLXMC
EO8
EO9
EP2
EP3
FDB
FNPLU
G-Q
J1W
MO0
OAUVE
PC.
Q38
SDF
SDP
SMS
SPC
SPD
T5K
~G-
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c421t-ae0c6857e4be180df42edd3a0fe7cc988a42d1a6a8cfa86801701c6afe8b03ee3
IEDL.DBID .~1
ISSN 0928-4931
1873-0191
IngestDate Thu Jul 10 17:42:17 EDT 2025
Mon Jun 30 12:03:16 EDT 2025
Wed Feb 19 02:34:33 EST 2025
Thu Apr 24 22:57:24 EDT 2025
Tue Jul 01 01:40:51 EDT 2025
Sat Apr 29 23:54:22 EDT 2023
IsPeerReviewed false
IsScholarly false
Keywords Drug delivery systems
Magnetic particles
pH and temperature responsive
Controlled release
Language English
License Copyright © 2018. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-ae0c6857e4be180df42edd3a0fe7cc988a42d1a6a8cfa86801701c6afe8b03ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30678907
PQID 2193150608
PQPubID 2045430
PageCount 8
ParticipantIDs proquest_miscellaneous_2179477527
proquest_journals_2193150608
pubmed_primary_30678907
crossref_citationtrail_10_1016_j_msec_2018_11_076
crossref_primary_10_1016_j_msec_2018_11_076
elsevier_sciencedirect_doi_10_1016_j_msec_2018_11_076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Lausanne
PublicationTitle Materials Science & Engineering C
PublicationTitleAlternate Mater Sci Eng C Mater Biol Appl
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhang, Guo, Yang, Jiang, Liu (bb0090) 2007; 19
Hao, Xing, Xu, Hou, Gao, Sun (bb0120) 2010; 22
Menon, Kuriakose, Lyer, Hernandez, Gandee, Zhang, Takahashi, Zhang, Saha, Nguyen (bb0160) 2017; 7
Park (bb0035) 2013; 7
Lai, Luo (bb0225) 2017; 113
Hu, Sun, Wu (bb0205) 2013; 5
Angelakeris (bb0230) 2017; 1861
Zhang, Gu, Chan, Wang, Langer, Farokhzad (bb0010) 2008; 83
Patra, Roy, Karfa, Kumar, Madhuri, Sharma (bb0180) 2015; 7
Chen, Shukoor, Wang, Zhao, Yuan, Bamrungsap, Xiong, Tan (bb0060) 2011; 5
Gao, Gu, Xu (bb0105) 2009; 42
Sun, Zhu, Zhang, Ye, Liu (bb0165) 2015; 66
Montha, Maneeprakorn, Buatong, Tang, Pon-On (bb0220) 2016; 59
Li, Zhao, Zhang (bb0110) 2013; 3
Alvarez-Lorenzo, Concheiro (bb0080) 2014; 50
Bhattacharya, Behera, Sahu, Ananthakrishnan, Maiti, Pramanik (bb0195) 2016; 40
Ahmed, Fessi, Elaissari (bb0100) 2012; 17
Wang, Shim, Levinson, Hsing-Wen, Xia (bb0085) 2014; 24
LaVan, McGuire, Langer (bb0045) 2003; 21
Gui, Wang, Sun (bb0140) 2014; 116
Gui, Jin (bb0145) 2014; 4
Ferrari (bb0005) 2005; 5
Jalili, Jaiswal, Peak, Cross, Gaharwar (bb0155) 2017; 9
Xi-Long, Qing-Lan, Zhou, Xiao-Yu, Ai-Di, Ying-Wei (bb0070) 2015; 51
Xu, Sun (bb0125) 2013; 65
Tanjim, Rahman, Rahman, Minami, Hoque, Sharafat, Gafur, Ahmad (bb0185) 2018; 14
Misra, Acharya, Sahoo (bb0050) 2010; 15
Liu, Huang, Kumar, Tan, Jin, Mozhi, Xing-Jie (bb0075) 2014; 32
Indulekha, Arunkumar, Bahadur, Srivastava (bb0200) 2017; 155
Adair, Parette, Altınoğlu, Kester (bb0025) 2010; 4
Kong, Zhang, Lee, Brammer, Lal, Karin, Jin (bb0095) 2010; 10
Gui, Wang, Sun (bb0135) 2014; 113
Sinn Aw, Kurian, Losic (bb0040) 2013; 19
Shin, Seo, Kundu, Kim, Eltohamy (bb0170) 2017; 243
Zhao, Zeng, Zheng, He, Xie, Fu (bb0190) 2017; 10
Farokhzad, Langer (bb0030) 2009; 3
Almeida, Bellettini, Garcia, Farinácio, Nakamura, Rubira, Martins, Muniz (bb0130) 2017; 171
Li, Zhang, Zhang, Xu, Xu, Whittaker (bb0150) 2018; 1
Lanzalaco, Armelin (bb0210) 2017; 3
Hervault, Dunn, Lim, Boyer, Mott, Maenosono, Thanh (bb0175) 2016; 8
Mura, Nicolas, Couvreur (bb0055) 2013; 12
Sumit Arora (bb0115) 2012; 7
Yu, Chu, Hou (bb0065) 2014; 50
Kai-Hua Chow, Ho (bb0015) 2013; 5
Alvarez-Lorenzo, Concheiro, Dubovik, Grinberg, Burova, Grinberg (bb0215) 2005; 102
Sun, Zhang, Pang, Hyun, Yang, Xia (bb0020) 2014; 53
Xu (10.1016/j.msec.2018.11.076_bb0125) 2013; 65
Hervault (10.1016/j.msec.2018.11.076_bb0175) 2016; 8
Zhang (10.1016/j.msec.2018.11.076_bb0010) 2008; 83
Kai-Hua Chow (10.1016/j.msec.2018.11.076_bb0015) 2013; 5
Adair (10.1016/j.msec.2018.11.076_bb0025) 2010; 4
Lai (10.1016/j.msec.2018.11.076_bb0225) 2017; 113
Gui (10.1016/j.msec.2018.11.076_bb0135) 2014; 113
Li (10.1016/j.msec.2018.11.076_bb0110) 2013; 3
Menon (10.1016/j.msec.2018.11.076_bb0160) 2017; 7
Xi-Long (10.1016/j.msec.2018.11.076_bb0070) 2015; 51
Kong (10.1016/j.msec.2018.11.076_bb0095) 2010; 10
Mura (10.1016/j.msec.2018.11.076_bb0055) 2013; 12
Ahmed (10.1016/j.msec.2018.11.076_bb0100) 2012; 17
Lanzalaco (10.1016/j.msec.2018.11.076_bb0210) 2017; 3
Chen (10.1016/j.msec.2018.11.076_bb0060) 2011; 5
Patra (10.1016/j.msec.2018.11.076_bb0180) 2015; 7
Yu (10.1016/j.msec.2018.11.076_bb0065) 2014; 50
Sun (10.1016/j.msec.2018.11.076_bb0165) 2015; 66
Li (10.1016/j.msec.2018.11.076_bb0150) 2018; 1
Hu (10.1016/j.msec.2018.11.076_bb0205) 2013; 5
Farokhzad (10.1016/j.msec.2018.11.076_bb0030) 2009; 3
Wang (10.1016/j.msec.2018.11.076_bb0085) 2014; 24
Shin (10.1016/j.msec.2018.11.076_bb0170) 2017; 243
Gui (10.1016/j.msec.2018.11.076_bb0140) 2014; 116
Jalili (10.1016/j.msec.2018.11.076_bb0155) 2017; 9
Alvarez-Lorenzo (10.1016/j.msec.2018.11.076_bb0080) 2014; 50
Gui (10.1016/j.msec.2018.11.076_bb0145) 2014; 4
Bhattacharya (10.1016/j.msec.2018.11.076_bb0195) 2016; 40
Hao (10.1016/j.msec.2018.11.076_bb0120) 2010; 22
Montha (10.1016/j.msec.2018.11.076_bb0220) 2016; 59
Gao (10.1016/j.msec.2018.11.076_bb0105) 2009; 42
Sinn Aw (10.1016/j.msec.2018.11.076_bb0040) 2013; 19
Zhang (10.1016/j.msec.2018.11.076_bb0090) 2007; 19
Tanjim (10.1016/j.msec.2018.11.076_bb0185) 2018; 14
Ferrari (10.1016/j.msec.2018.11.076_bb0005) 2005; 5
Sun (10.1016/j.msec.2018.11.076_bb0020) 2014; 53
Almeida (10.1016/j.msec.2018.11.076_bb0130) 2017; 171
Zhao (10.1016/j.msec.2018.11.076_bb0190) 2017; 10
Park (10.1016/j.msec.2018.11.076_bb0035) 2013; 7
Liu (10.1016/j.msec.2018.11.076_bb0075) 2014; 32
Indulekha (10.1016/j.msec.2018.11.076_bb0200) 2017; 155
LaVan (10.1016/j.msec.2018.11.076_bb0045) 2003; 21
Angelakeris (10.1016/j.msec.2018.11.076_bb0230) 2017; 1861
Sumit Arora (10.1016/j.msec.2018.11.076_bb0115) 2012; 7
Misra (10.1016/j.msec.2018.11.076_bb0050) 2010; 15
Alvarez-Lorenzo (10.1016/j.msec.2018.11.076_bb0215) 2005; 102
References_xml – volume: 113
  start-page: 140
  year: 2017
  end-page: 148
  ident: bb0225
  article-title: Chitosan‑g‑poly(
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 19
  start-page: 12586
  year: 2013
  end-page: 12601
  ident: bb0040
  article-title: Polymeric micelles for multidrug delivery and combination therapy
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 991
  year: 2013
  end-page: 1003
  ident: bb0055
  article-title: Stimuli-responsive nanocarriers for drug delivery
  publication-title: Nat. Mater.
– volume: 113
  start-page: 1
  year: 2014
  end-page: 9
  ident: bb0135
  article-title: Encapsulating magnetic and fluorescent mesoporous silica into thermoresponsive chitosan microspheres for cell imaging and controlled drug release in vitro
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 24
  start-page: 4206
  year: 2014
  end-page: 4220
  ident: bb0085
  article-title: Stimuli-responsive materials for controlled release of theranostic agents
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 411
  year: 2017
  ident: bb0190
  article-title: Preparation and characterization of thermoresposive poly(
  publication-title: Materials
– volume: 51
  start-page: 4237
  year: 2015
  end-page: 4240
  ident: bb0070
  article-title: Sugar and pH dual-responsive snap-top nanocarriers based on mesoporous silica-coated Fe
  publication-title: Chem. Commun.
– volume: 4
  start-page: 2797
  year: 2014
  end-page: 2806
  ident: bb0145
  article-title: Temperature-regulated polymerization and swelling/collapsing/flocculation properties of hybrid nanospheres with magnetic cores and thermo/pH-sensitive nanogel shells
  publication-title: RSC Adv.
– volume: 7
  year: 2017
  ident: bb0160
  article-title: Dual-drug containing core-shell nanoparticles for lung cancer therapy
  publication-title: Sci. Rep.
– volume: 17
  start-page: 928
  year: 2012
  end-page: 934
  ident: bb0100
  article-title: Theranostic applications of nanoparticles in cancer
  publication-title: Drug Discov. Today
– volume: 102
  start-page: 629
  year: 2005
  end-page: 641
  ident: bb0215
  article-title: Temperature-sensitive chitosan‑poly(
  publication-title: J. Control. Release
– volume: 7
  start-page: 3445
  year: 2012
  end-page: 3471
  ident: bb0115
  article-title: Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers
  publication-title: Int. J. Nanomedicine
– volume: 171
  start-page: 259
  year: 2017
  end-page: 266
  ident: bb0130
  article-title: Curcumin-loaded dual pH-and thermo-responsive magnetic microcarriers based on pectin maleate for drug delivery
  publication-title: Carbohydr. Polym.
– volume: 19
  start-page: 2988
  year: 2007
  end-page: 2992
  ident: bb0090
  article-title: Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery
  publication-title: Adv. Mater.
– volume: 42
  start-page: 1097
  year: 2009
  end-page: 1107
  ident: bb0105
  article-title: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications
  publication-title: Acc. Chem. Res.
– volume: 21
  start-page: 1184
  year: 2003
  end-page: 1191
  ident: bb0045
  article-title: Small-scale systems for
  publication-title: Nat. Biotechnol.
– volume: 155
  start-page: 304
  year: 2017
  end-page: 313
  ident: bb0200
  article-title: Dual resposive magnetic composite nanogels for thermo-chemotherapy
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 9
  start-page: 15379
  year: 2017
  end-page: 15389
  ident: bb0155
  article-title: Injectable nanoengineered stimuli-responsive hydrogels for on-demand and localized therapeutic delivery
  publication-title: Nanoscale
– volume: 5
  start-page: 216rv4
  year: 2013
  ident: bb0015
  article-title: Cancer nanomedicine: from drug delivery to imaging
  publication-title: Sci. Transl. Med.
– volume: 14
  start-page: 5469
  year: 2018
  end-page: 5479
  ident: bb0185
  article-title: Mesoporous magnetic silica particles modified with stimuli-responsive P(NIPAM-DMA) valve for controlled loading and release of biologically active molecules
  publication-title: Soft Matter
– volume: 5
  start-page: 161
  year: 2005
  end-page: 171
  ident: bb0005
  article-title: Cancer nanotechnology: opportunities and challenges
  publication-title: Nat. Rev. Cancer
– volume: 83
  start-page: 761
  year: 2008
  end-page: 769
  ident: bb0010
  article-title: Nanoparticles in medicine: therapeutic applications and developments
  publication-title: Clin. Pharmacol. Ther.
– volume: 5
  start-page: 3103
  year: 2013
  end-page: 3111
  ident: bb0205
  article-title: Advances in chitosan-based drug delivery vehicles
  publication-title: Nanoscale
– volume: 50
  start-page: 7743
  year: 2014
  end-page: 7765
  ident: bb0080
  article-title: Smart drug delivery systems: from fundamentals to the clinic
  publication-title: Chem. Commun.
– volume: 116
  start-page: 518
  year: 2014
  end-page: 525
  ident: bb0140
  article-title: Embedding fluorescent mesoporous silica nanoparticles into biocompatible nanogels for tumor cell imaging and thermo/pH-sensitive in vitro drug release
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 4
  start-page: 4967
  year: 2010
  end-page: 4970
  ident: bb0025
  article-title: Nanoparticulate alternatives for drug delivery
  publication-title: ACS Nano
– volume: 3
  start-page: 292
  year: 2013
  end-page: 305
  ident: bb0110
  article-title: Multifunctional upconversion-magnetic hybrid nanostructured materials: synthesis and bioapplications
  publication-title: Theranostics
– volume: 1861
  start-page: 1642
  year: 2017
  end-page: 1651
  ident: bb0230
  article-title: Magnetic nanoparticles: a multifunctional vehicle for modern theranostics
  publication-title: Biochim. Biophys. Acta
– volume: 7
  start-page: 9235
  year: 2015
  end-page: 9246
  ident: bb0180
  article-title: Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 2729
  year: 2010
  end-page: 2742
  ident: bb0120
  article-title: Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles
  publication-title: Adv. Mater.
– volume: 66
  start-page: 569
  year: 2015
  end-page: 576
  ident: bb0165
  article-title: Smart shape-controlled synthesis of poly(
  publication-title: Eur. Polym. J.
– volume: 8
  start-page: 12152
  year: 2016
  end-page: 12161
  ident: bb0175
  article-title: Doxorubicin loaded dual pH-and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications
  publication-title: Nanoscale
– volume: 65
  start-page: 732
  year: 2013
  end-page: 743
  ident: bb0125
  article-title: New forms of superparamagnetic nanoparticles for biomedical applications
  publication-title: Adv. Drug Deliv. Rev.
– volume: 3
  start-page: 16
  year: 2009
  end-page: 20
  ident: bb0030
  article-title: Impact of nanotechnology on drug delivery
  publication-title: ACS Nano
– volume: 10
  start-page: 5088
  year: 2010
  end-page: 5092
  ident: bb0095
  article-title: Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release
  publication-title: Nano Lett.
– volume: 1
  start-page: 5027
  year: 2018
  end-page: 5034
  ident: bb0150
  article-title: Multifunctional magnetized porous silica covered with poly(2‑dimethylaminoethyl methacrylate) for pH controllable drug release and magnetic resonance imaging
  publication-title: ACS Appl. Nano Mater.
– volume: 32
  start-page: 693
  year: 2014
  end-page: 710
  ident: bb0075
  article-title: pH-Sensitive nano-systems for drug delivery in cancer therapy
  publication-title: Biotechnol. Adv.
– volume: 5
  start-page: 7866
  year: 2011
  end-page: 7873
  ident: bb0060
  article-title: Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging
  publication-title: ACS Nano
– volume: 50
  start-page: 11614
  year: 2014
  end-page: 11630
  ident: bb0065
  article-title: Stimuli-responsive cancer therapy based on nanoparticles
  publication-title: Chem. Commun.
– volume: 15
  start-page: 842
  year: 2010
  end-page: 849
  ident: bb0050
  article-title: Cancer nanotechnology: application of nanotechnology in cancer therapy
  publication-title: Drug Discov. Today
– volume: 40
  start-page: 545
  year: 2016
  end-page: 557
  ident: bb0195
  article-title: Design of dual stimuli responsive polymer modified magnetic nanoparticles for targeted anti-cancer drug delivery and enhanced MR imaging
  publication-title: New J. Chem.
– volume: 3
  start-page: 36
  year: 2017
  ident: bb0210
  article-title: Poly(
  publication-title: Gels
– volume: 7
  start-page: 7442
  year: 2013
  end-page: 7447
  ident: bb0035
  article-title: Facing the truth about nanotechnology in drug delivery
  publication-title: ACS Nano
– volume: 243
  start-page: 206
  year: 2017
  end-page: 213
  ident: bb0170
  article-title: Super-magnetic smart hybrid doxorubicin loaded nanoparticles effectively target breast adenocarcinoma cells
  publication-title: Microporous Mesoporous Mater.
– volume: 53
  start-page: 12320
  year: 2014
  end-page: 12364
  ident: bb0020
  article-title: Engineered nanoparticles for drug delivery in Cancer therapy
  publication-title: Angew. Chem. Int. Ed.
– volume: 59
  start-page: 235
  year: 2016
  end-page: 240
  ident: bb0220
  article-title: Synthesis of doxorubicin-PLGA loading on chitosan stabilized (Mn,Zn)Fe
  publication-title: Mater. Sci. Eng. C
– volume: 53
  start-page: 12320
  year: 2014
  ident: 10.1016/j.msec.2018.11.076_bb0020
  article-title: Engineered nanoparticles for drug delivery in Cancer therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201403036
– volume: 7
  year: 2017
  ident: 10.1016/j.msec.2018.11.076_bb0160
  article-title: Dual-drug containing core-shell nanoparticles for lung cancer therapy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13320-4
– volume: 10
  start-page: 5088
  year: 2010
  ident: 10.1016/j.msec.2018.11.076_bb0095
  article-title: Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release
  publication-title: Nano Lett.
  doi: 10.1021/nl1033733
– volume: 7
  start-page: 3445
  year: 2012
  ident: 10.1016/j.msec.2018.11.076_bb0115
  article-title: Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers
  publication-title: Int. J. Nanomedicine
– volume: 155
  start-page: 304
  year: 2017
  ident: 10.1016/j.msec.2018.11.076_bb0200
  article-title: Dual resposive magnetic composite nanogels for thermo-chemotherapy
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2017.04.035
– volume: 7
  start-page: 7442
  issue: 9
  year: 2013
  ident: 10.1016/j.msec.2018.11.076_bb0035
  article-title: Facing the truth about nanotechnology in drug delivery
  publication-title: ACS Nano
  doi: 10.1021/nn404501g
– volume: 42
  start-page: 1097
  issue: 8
  year: 2009
  ident: 10.1016/j.msec.2018.11.076_bb0105
  article-title: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar9000026
– volume: 83
  start-page: 761
  year: 2008
  ident: 10.1016/j.msec.2018.11.076_bb0010
  article-title: Nanoparticles in medicine: therapeutic applications and developments
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1038/sj.clpt.6100400
– volume: 65
  start-page: 732
  year: 2013
  ident: 10.1016/j.msec.2018.11.076_bb0125
  article-title: New forms of superparamagnetic nanoparticles for biomedical applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.10.008
– volume: 40
  start-page: 545
  year: 2016
  ident: 10.1016/j.msec.2018.11.076_bb0195
  article-title: Design of dual stimuli responsive polymer modified magnetic nanoparticles for targeted anti-cancer drug delivery and enhanced MR imaging
  publication-title: New J. Chem.
  doi: 10.1039/C5NJ02504D
– volume: 1861
  start-page: 1642
  year: 2017
  ident: 10.1016/j.msec.2018.11.076_bb0230
  article-title: Magnetic nanoparticles: a multifunctional vehicle for modern theranostics
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2017.02.022
– volume: 66
  start-page: 569
  year: 2015
  ident: 10.1016/j.msec.2018.11.076_bb0165
  article-title: Smart shape-controlled synthesis of poly(N‑isopropylacrylamide)/chitosan/Fe3O4 microgels
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2015.03.023
– volume: 24
  start-page: 4206
  year: 2014
  ident: 10.1016/j.msec.2018.11.076_bb0085
  article-title: Stimuli-responsive materials for controlled release of theranostic agents
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400279
– volume: 9
  start-page: 15379
  year: 2017
  ident: 10.1016/j.msec.2018.11.076_bb0155
  article-title: Injectable nanoengineered stimuli-responsive hydrogels for on-demand and localized therapeutic delivery
  publication-title: Nanoscale
  doi: 10.1039/C7NR02327H
– volume: 8
  start-page: 12152
  year: 2016
  ident: 10.1016/j.msec.2018.11.076_bb0175
  article-title: Doxorubicin loaded dual pH-and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications
  publication-title: Nanoscale
  doi: 10.1039/C5NR07773G
– volume: 4
  start-page: 4967
  issue: 9
  year: 2010
  ident: 10.1016/j.msec.2018.11.076_bb0025
  article-title: Nanoparticulate alternatives for drug delivery
  publication-title: ACS Nano
  doi: 10.1021/nn102324e
– volume: 3
  start-page: 16
  issue: 1
  year: 2009
  ident: 10.1016/j.msec.2018.11.076_bb0030
  article-title: Impact of nanotechnology on drug delivery
  publication-title: ACS Nano
  doi: 10.1021/nn900002m
– volume: 3
  start-page: 292
  issue: 5
  year: 2013
  ident: 10.1016/j.msec.2018.11.076_bb0110
  article-title: Multifunctional upconversion-magnetic hybrid nanostructured materials: synthesis and bioapplications
  publication-title: Theranostics
  doi: 10.7150/thno.5289
– volume: 51
  start-page: 4237
  year: 2015
  ident: 10.1016/j.msec.2018.11.076_bb0070
  article-title: Sugar and pH dual-responsive snap-top nanocarriers based on mesoporous silica-coated Fe3O4 magnetic nanoparticles for cargo delivery
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC10413G
– volume: 5
  start-page: 161
  year: 2005
  ident: 10.1016/j.msec.2018.11.076_bb0005
  article-title: Cancer nanotechnology: opportunities and challenges
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1566
– volume: 1
  start-page: 5027
  year: 2018
  ident: 10.1016/j.msec.2018.11.076_bb0150
  article-title: Multifunctional magnetized porous silica covered with poly(2‑dimethylaminoethyl methacrylate) for pH controllable drug release and magnetic resonance imaging
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b01131
– volume: 19
  start-page: 2988
  year: 2007
  ident: 10.1016/j.msec.2018.11.076_bb0090
  article-title: Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200601817
– volume: 59
  start-page: 235
  year: 2016
  ident: 10.1016/j.msec.2018.11.076_bb0220
  article-title: Synthesis of doxorubicin-PLGA loading on chitosan stabilized (Mn,Zn)Fe2O4 nanoparticles: biological activity and pH-responsive drug release studies
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.09.098
– volume: 17
  start-page: 928
  issue: 17/18
  year: 2012
  ident: 10.1016/j.msec.2018.11.076_bb0100
  article-title: Theranostic applications of nanoparticles in cancer
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2012.03.010
– volume: 10
  start-page: 411
  year: 2017
  ident: 10.1016/j.msec.2018.11.076_bb0190
  article-title: Preparation and characterization of thermoresposive poly(N‑isopropylacrylamide‑co‑acrylic acid)‑grafted hollow Fe3O4/SiO2 microspheres with surface holes for BSA release
  publication-title: Materials
  doi: 10.3390/ma10040411
– volume: 113
  start-page: 1
  year: 2014
  ident: 10.1016/j.msec.2018.11.076_bb0135
  article-title: Encapsulating magnetic and fluorescent mesoporous silica into thermoresponsive chitosan microspheres for cell imaging and controlled drug release in vitro
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2013.08.015
– volume: 243
  start-page: 206
  year: 2017
  ident: 10.1016/j.msec.2018.11.076_bb0170
  article-title: Super-magnetic smart hybrid doxorubicin loaded nanoparticles effectively target breast adenocarcinoma cells
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2016.12.007
– volume: 14
  start-page: 5469
  year: 2018
  ident: 10.1016/j.msec.2018.11.076_bb0185
  article-title: Mesoporous magnetic silica particles modified with stimuli-responsive P(NIPAM-DMA) valve for controlled loading and release of biologically active molecules
  publication-title: Soft Matter
  doi: 10.1039/C8SM00560E
– volume: 5
  start-page: 216rv4
  issue: 216
  year: 2013
  ident: 10.1016/j.msec.2018.11.076_bb0015
  article-title: Cancer nanomedicine: from drug delivery to imaging
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3005872
– volume: 19
  start-page: 12586
  year: 2013
  ident: 10.1016/j.msec.2018.11.076_bb0040
  article-title: Polymeric micelles for multidrug delivery and combination therapy
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201302097
– volume: 5
  start-page: 7866
  issue: 10
  year: 2011
  ident: 10.1016/j.msec.2018.11.076_bb0060
  article-title: Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging
  publication-title: ACS Nano
  doi: 10.1021/nn202073m
– volume: 50
  start-page: 11614
  year: 2014
  ident: 10.1016/j.msec.2018.11.076_bb0065
  article-title: Stimuli-responsive cancer therapy based on nanoparticles
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC03984J
– volume: 3
  start-page: 36
  year: 2017
  ident: 10.1016/j.msec.2018.11.076_bb0210
  article-title: Poly(N‑isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications
  publication-title: Gels
  doi: 10.3390/gels3040036
– volume: 15
  start-page: 842
  issue: 19/20
  year: 2010
  ident: 10.1016/j.msec.2018.11.076_bb0050
  article-title: Cancer nanotechnology: application of nanotechnology in cancer therapy
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2010.08.006
– volume: 171
  start-page: 259
  year: 2017
  ident: 10.1016/j.msec.2018.11.076_bb0130
  article-title: Curcumin-loaded dual pH-and thermo-responsive magnetic microcarriers based on pectin maleate for drug delivery
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.05.034
– volume: 102
  start-page: 629
  year: 2005
  ident: 10.1016/j.msec.2018.11.076_bb0215
  article-title: Temperature-sensitive chitosan‑poly(N‑isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2004.10.021
– volume: 50
  start-page: 7743
  year: 2014
  ident: 10.1016/j.msec.2018.11.076_bb0080
  article-title: Smart drug delivery systems: from fundamentals to the clinic
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01429D
– volume: 22
  start-page: 2729
  year: 2010
  ident: 10.1016/j.msec.2018.11.076_bb0120
  article-title: Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000260
– volume: 116
  start-page: 518
  year: 2014
  ident: 10.1016/j.msec.2018.11.076_bb0140
  article-title: Embedding fluorescent mesoporous silica nanoparticles into biocompatible nanogels for tumor cell imaging and thermo/pH-sensitive in vitro drug release
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2014.01.044
– volume: 4
  start-page: 2797
  year: 2014
  ident: 10.1016/j.msec.2018.11.076_bb0145
  article-title: Temperature-regulated polymerization and swelling/collapsing/flocculation properties of hybrid nanospheres with magnetic cores and thermo/pH-sensitive nanogel shells
  publication-title: RSC Adv.
  doi: 10.1039/C3RA43919D
– volume: 113
  start-page: 140
  year: 2017
  ident: 10.1016/j.msec.2018.11.076_bb0225
  article-title: Chitosan‑g‑poly(N‑isopropylacrylamide) copolymers as delivery carriers for intracameral pilocarpine administration
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2016.11.038
– volume: 32
  start-page: 693
  year: 2014
  ident: 10.1016/j.msec.2018.11.076_bb0075
  article-title: pH-Sensitive nano-systems for drug delivery in cancer therapy
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.11.009
– volume: 7
  start-page: 9235
  year: 2015
  ident: 10.1016/j.msec.2018.11.076_bb0180
  article-title: Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01786
– volume: 21
  start-page: 1184
  year: 2003
  ident: 10.1016/j.msec.2018.11.076_bb0045
  article-title: Small-scale systems for in vivo drug delivery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt876
– volume: 12
  start-page: 991
  year: 2013
  ident: 10.1016/j.msec.2018.11.076_bb0055
  article-title: Stimuli-responsive nanocarriers for drug delivery
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3776
– volume: 5
  start-page: 3103
  year: 2013
  ident: 10.1016/j.msec.2018.11.076_bb0205
  article-title: Advances in chitosan-based drug delivery vehicles
  publication-title: Nanoscale
  doi: 10.1039/c3nr00338h
SSID ssj0068372
ssj0047218
ssj0001906
Score 2.0800948
Snippet In this study, a drug delivery system for chemo-hyperthermia applications is proposed and fabricated. The delivery system consists of magnetic-silica (MagSi)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23
SubjectTerms Acrylamides - chemistry
Cancer
Chitosan
Chitosan - chemistry
Controlled release
Cytotoxicity
Delayed-Action Preparations - chemistry
Doxorubicin - administration & dosage
Doxorubicin - pharmacokinetics
Drug delivery
Drug delivery systems
Drug Delivery Systems - methods
Drug Liberation
Heating
HeLa Cells
Humans
Hydrogen-Ion Concentration
Hyperthermia
Isopropylacrylamide
Magnetic Fields
Magnetic particles
Magnetic saturation
Magnetics
Materials science
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Nanoparticles - toxicity
pH and temperature responsive
pH effects
Polymers
Silica
Silicon dioxide
Silicon Dioxide - chemistry
Spectroscopy, Fourier Transform Infrared
Temperature
Temperature effects
Toxicity
Title Investigation of magnetic silica with thermoresponsive chitosan coating for drug controlled release and magnetic hyperthermia application
URI https://dx.doi.org/10.1016/j.msec.2018.11.076
https://www.ncbi.nlm.nih.gov/pubmed/30678907
https://www.proquest.com/docview/2193150608
https://www.proquest.com/docview/2179477527
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaqcoEDgpZlaKmMhLigdBLHsZ3jqKIaQPQClXqLHOelTNVxqlmQuPTOv-Y9x5kOEvTA0YltWV7e-vkzY28hV8YJ0Emr6iIhjZfUaFUkqWicQQO5VI4uOH85U9Nz-emiuNhhJ8NdGIJVRtnfy_QgreOXcZzN8c1sNv6alihayzyjTYlmPvntUmrizz--vYN5ZIHOvC9IdHc2OQaFrlnIMZQUX8J-4pWaHv01XwIRHGbmmDg-iZHk72rrX2ZpUE-nT9jjaFfyST_0p2wH_B7bn3j0qec_-TsekJ4hhL7HHm2REO6zX1tUG53nXcvn9tLT3Ua-nFFIj1OslpOhSKDcHlL7AzglILql9dx1lrDTHM1f3izWlzzC36-h4fQkC-pJbn1z1-139H0Xob-Z5VsZ9Gfs_PTDt5NpEh9oSJwU2SqxkDplCg2yhsykTSsFNE1u0xa0c6UxVooms8oa11qjDHH1ZE7ZFkyd5gD5c7brOw8vGUf5D4XWrS0EeuytLq0Aq4QjvhwlrByxbJj_ykX2cnpE47oaYGpXFa1ZRWuGbk2FazZi7zdtbnrujntrF8OyVn_swAqVy73tDoc9UMXzv6xQD-SBu9GM2JvNbzy5lI6xHro11UFZqHUh9Ii96PfOZpjkyJky1a_-c1AH7CGWyh5idMh2V4s1vEbraVUfheNxxB5MPn6env0GLBkZpQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCFoeCwWMhLigdBMnsZ1jVVEt0PZCK_VmOc6kLOo61T6QuHDnXzPjONtFgh44Jn7Issfz8Hz-zNhbyKV2AlTSyrpMyOIlNXoVSSoap9FBrqSjC84np3JyXny6KC-22OFwF4ZglVH39zo9aOv4Zxxnc3w9nY6_pBWq1irPSCjRzce4_U5R5opEe__nDc4jC3zm_UeB8c46ySAxNgtJhooOmLCjeKemh3_NFkAMh5neJ5JPoiT5u936l18a7NPRQ_YgOpb8oB_7I7YFfoftHngMqmc_-DseoJ7hDH2H3d9gIdxlvza4NjrPu5bP7KWny418MaUzPU6HtZw8RULl9pja78ApA9EtrOeuswSe5uj_8ma-uuQR_34FDac3WdBQcuubm26_YvA7D_1NLd9IoT9m50cfzg4nSXyhIXGFyJaJhdRJXSooash02rSFgKbJbdqCcq7S2haiyay02rVWS01kPZmTtgVdpzlA_oRt-87DM8bRAECpVGtLgSF7qyorwErhiDBHCluMWDbMv3GRvpxe0bgyA07tm6E1M7RmGNcYXLMRe79uc92Td9xauxyW1fwhggaty63t9gYZMFEBLAwagjyQN-oRe7Muxq1L-RjroVtRHVSGSpVCjdjTXnbWw6RITlepev6fg3rN7k7OTo7N8cfTzy_YPSyperzRHttezlfwEl2pZf0qbJXfhSAbOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+magnetic+silica+with+thermoresponsive+chitosan+coating+for+drug+controlled+release+and+magnetic+hyperthermia+application&rft.jtitle=Materials+Science+%26+Engineering.+C%2C+Biomimetic+Materials%2C+Sensors+and+Systems&rft.au=Pon-On%2C+Weeraphat&rft.au=Tithito%2C+Tanatsaparn&rft.au=Maneeprakorn%2C+Weerakanya&rft.au=Phenrat%2C+Tanapon&rft.date=2019-04-01&rft.pub=Elsevier+BV&rft.issn=0928-4931&rft.eissn=1873-0191&rft.volume=97&rft.spage=23&rft_id=info:doi/10.1016%2Fj.msec.2018.11.076&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-4931&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-4931&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-4931&client=summon