Applicability of low-temperature thermochronology to the evolution of young (< ~ 5 Ma) orogenic systems: a case study from the Japanese Islands
Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of orogenic systems over timescales of 10 6 –10 8 years. This research employed simple numerical modeling to evaluate the applicability of low-...
Saved in:
Published in | Progress in earth and planetary science Vol. 12; no. 1; pp. 59 - 20 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 2197-4284 2197-4284 |
DOI | 10.1186/s40645-025-00735-1 |
Cover
Loading…
Abstract | Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of orogenic systems over timescales of 10
6
–10
8
years. This research employed simple numerical modeling to evaluate the applicability of low-temperature thermochronometry to young orogenic systems uplifted in geologically recent periods such as the Pliocene and Quaternary, such as those in the Japanese Islands. Such orogenic systems are at the younger limit of the applicability because this time scale corresponds to the younger limit of applicability of the major low-temperature thermochronometers and also corresponds to the minimum period required for an orogenic system to be denuded by more than ~ 2–3 km after the start of uplift, which is the lower limit detectable by the major low-temperature thermochronometers. Time‒temperature paths were generated for varying uplift rates, uplift onsets, and model onsets (equivalent to the rock formation age). These paths were then converted into cooling ages for four thermochronometers: apatite and zircon FT and (U–Th–Sm)/He dating. The calculations were conducted using two models: a constant-elevation model and an increasing-elevation model. The modeling results are summarized in look-up tables, illustrating relationships between uplift rates, uplift onsets, rock formation ages and ratios of cooling age and rock formation age. The results indicate that differences in formation age and elevation change minimally impact cooling ages. The modeled dates generally align with measured cooling ages in regions where the rate and timing of uplift are well constrained, supporting the reliability of the modeling approach. Consequently, the derived relationships between uplift rates and cooling ages provide a practical method for roughly classifying mountain uplift rates based on cooling ages, without requiring complex simulations. Finally, these relationships were applied to previously reported cooling ages to visualize the distribution of uplift rates across the Japanese Islands over the past few million years. These results provide a benchmark for the low-temperature thermochronological studies, not only in the Japanese Islands, but also in mobile belts around the world that have begun to uplift in the past few million years. |
---|---|
AbstractList | Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of orogenic systems over timescales of 10 6 –10 8 years. This research employed simple numerical modeling to evaluate the applicability of low-temperature thermochronometry to young orogenic systems uplifted in geologically recent periods such as the Pliocene and Quaternary, such as those in the Japanese Islands. Such orogenic systems are at the younger limit of the applicability because this time scale corresponds to the younger limit of applicability of the major low-temperature thermochronometers and also corresponds to the minimum period required for an orogenic system to be denuded by more than ~ 2–3 km after the start of uplift, which is the lower limit detectable by the major low-temperature thermochronometers. Time‒temperature paths were generated for varying uplift rates, uplift onsets, and model onsets (equivalent to the rock formation age). These paths were then converted into cooling ages for four thermochronometers: apatite and zircon FT and (U–Th–Sm)/He dating. The calculations were conducted using two models: a constant-elevation model and an increasing-elevation model. The modeling results are summarized in look-up tables, illustrating relationships between uplift rates, uplift onsets, rock formation ages and ratios of cooling age and rock formation age. The results indicate that differences in formation age and elevation change minimally impact cooling ages. The modeled dates generally align with measured cooling ages in regions where the rate and timing of uplift are well constrained, supporting the reliability of the modeling approach. Consequently, the derived relationships between uplift rates and cooling ages provide a practical method for roughly classifying mountain uplift rates based on cooling ages, without requiring complex simulations. Finally, these relationships were applied to previously reported cooling ages to visualize the distribution of uplift rates across the Japanese Islands over the past few million years. These results provide a benchmark for the low-temperature thermochronological studies, not only in the Japanese Islands, but also in mobile belts around the world that have begun to uplift in the past few million years. Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of orogenic systems over timescales of 106–108 years. This research employed simple numerical modeling to evaluate the applicability of low-temperature thermochronometry to young orogenic systems uplifted in geologically recent periods such as the Pliocene and Quaternary, such as those in the Japanese Islands. Such orogenic systems are at the younger limit of the applicability because this time scale corresponds to the younger limit of applicability of the major low-temperature thermochronometers and also corresponds to the minimum period required for an orogenic system to be denuded by more than ~ 2–3 km after the start of uplift, which is the lower limit detectable by the major low-temperature thermochronometers. Time‒temperature paths were generated for varying uplift rates, uplift onsets, and model onsets (equivalent to the rock formation age). These paths were then converted into cooling ages for four thermochronometers: apatite and zircon FT and (U–Th–Sm)/He dating. The calculations were conducted using two models: a constant-elevation model and an increasing-elevation model. The modeling results are summarized in look-up tables, illustrating relationships between uplift rates, uplift onsets, rock formation ages and ratios of cooling age and rock formation age. The results indicate that differences in formation age and elevation change minimally impact cooling ages. The modeled dates generally align with measured cooling ages in regions where the rate and timing of uplift are well constrained, supporting the reliability of the modeling approach. Consequently, the derived relationships between uplift rates and cooling ages provide a practical method for roughly classifying mountain uplift rates based on cooling ages, without requiring complex simulations. Finally, these relationships were applied to previously reported cooling ages to visualize the distribution of uplift rates across the Japanese Islands over the past few million years. These results provide a benchmark for the low-temperature thermochronological studies, not only in the Japanese Islands, but also in mobile belts around the world that have begun to uplift in the past few million years. Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of orogenic systems over timescales of 10 6 –10 8 years. This research employed simple numerical modeling to evaluate the applicability of low-temperature thermochronometry to young orogenic systems uplifted in geologically recent periods such as the Pliocene and Quaternary, such as those in the Japanese Islands. Such orogenic systems are at the younger limit of the applicability because this time scale corresponds to the younger limit of applicability of the major low-temperature thermochronometers and also corresponds to the minimum period required for an orogenic system to be denuded by more than ~ 2–3 km after the start of uplift, which is the lower limit detectable by the major low-temperature thermochronometers. Time‒temperature paths were generated for varying uplift rates, uplift onsets, and model onsets (equivalent to the rock formation age). These paths were then converted into cooling ages for four thermochronometers: apatite and zircon FT and (U–Th–Sm)/He dating. The calculations were conducted using two models: a constant-elevation model and an increasing-elevation model. The modeling results are summarized in look-up tables, illustrating relationships between uplift rates, uplift onsets, rock formation ages and ratios of cooling age and rock formation age. The results indicate that differences in formation age and elevation change minimally impact cooling ages. The modeled dates generally align with measured cooling ages in regions where the rate and timing of uplift are well constrained, supporting the reliability of the modeling approach. Consequently, the derived relationships between uplift rates and cooling ages provide a practical method for roughly classifying mountain uplift rates based on cooling ages, without requiring complex simulations. Finally, these relationships were applied to previously reported cooling ages to visualize the distribution of uplift rates across the Japanese Islands over the past few million years. These results provide a benchmark for the low-temperature thermochronological studies, not only in the Japanese Islands, but also in mobile belts around the world that have begun to uplift in the past few million years. Abstract Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of orogenic systems over timescales of 106–108 years. This research employed simple numerical modeling to evaluate the applicability of low-temperature thermochronometry to young orogenic systems uplifted in geologically recent periods such as the Pliocene and Quaternary, such as those in the Japanese Islands. Such orogenic systems are at the younger limit of the applicability because this time scale corresponds to the younger limit of applicability of the major low-temperature thermochronometers and also corresponds to the minimum period required for an orogenic system to be denuded by more than ~ 2–3 km after the start of uplift, which is the lower limit detectable by the major low-temperature thermochronometers. Time‒temperature paths were generated for varying uplift rates, uplift onsets, and model onsets (equivalent to the rock formation age). These paths were then converted into cooling ages for four thermochronometers: apatite and zircon FT and (U–Th–Sm)/He dating. The calculations were conducted using two models: a constant-elevation model and an increasing-elevation model. The modeling results are summarized in look-up tables, illustrating relationships between uplift rates, uplift onsets, rock formation ages and ratios of cooling age and rock formation age. The results indicate that differences in formation age and elevation change minimally impact cooling ages. The modeled dates generally align with measured cooling ages in regions where the rate and timing of uplift are well constrained, supporting the reliability of the modeling approach. Consequently, the derived relationships between uplift rates and cooling ages provide a practical method for roughly classifying mountain uplift rates based on cooling ages, without requiring complex simulations. Finally, these relationships were applied to previously reported cooling ages to visualize the distribution of uplift rates across the Japanese Islands over the past few million years. These results provide a benchmark for the low-temperature thermochronological studies, not only in the Japanese Islands, but also in mobile belts around the world that have begun to uplift in the past few million years. |
ArticleNumber | 59 |
Author | Tagami, Takahiro Sueoka, Shigeru |
Author_xml | – sequence: 1 givenname: Shigeru orcidid: 0000-0002-5264-2713 surname: Sueoka fullname: Sueoka, Shigeru email: sueoka.shigeru@jaea.go.jp organization: Tono Geoscience Center, Japan Atomic Energy Agency – sequence: 2 givenname: Takahiro surname: Tagami fullname: Tagami, Takahiro organization: Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University |
BookMark | eNp9kbGO1DAURSO0SCzL_gCVJRooArbjeBxEs1qxMGgRDdSW4zxnM8r4BdsBpUHb0vMBfAufwpfgmSCgoniydXXvebbu_eLEo4eieMjoU8aUfBYFlaIuKc9DN1VdsjvFKWfNphRciZN_7veK8xh3lFJOhayb-rT4djFN42BNO4xDWgg6MuLnMsF-gmDSHICkGwh7tDcBPY7YLyThQSPwCcc5DegPoQVn35PHL37efv2Sp_7x_a15QjBgD36wJC4xI-NzYog1EUhMc7cQF3B_RL0xk_GQ9W0cje_ig-KuM2OE89_nWfHh6uX7y9fl9btX28uL69IKzlJpqpa5_GFJXU0NVVYA3zjaUidr6jqhWrAG2o5xJWXnbAuyVUZCLetKVJZXZ8V25XZodnoKw96ERaMZ9FHA0GsT0mBH0IozIbumaZXtRGONUq5VXWMEqKoSQmTWo5U1Bfw4Q0x6h3Pw-fm64hVvGJdik118ddmAMQZwf7Yyqg9l6rVMncvUxzI1y6FqDcVs9j2Ev-j_pH4BD86oUg |
Cites_doi | 10.1029/2018TC005132 10.1007/978-3-642-67161-6_14 10.1016/j.gca.2013.05.041 10.1029/2018GC007595 10.2138/rmg.2005.58.3 10.4294/zisin1948.43.1_137 10.1007/978-94-011-2478-2 10.1029/96JB02565 10.5194/gchron-5-35-2023 10.1130/G30526.1 10.1016/S0009-2541(98)00024-2 10.1007/978-3-319-89421-8_3 10.2138/rmg.2002.47.18 10.1016/S0016-7037(97)00302-5 10.1111/iar.12361 10.5026/jgeography.104.6_809 10.1016/0168-9622(87)90057-1 10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2 10.1029/2012GC004279 10.1130/G30013A.1 10.2138/am-2003-5-610 10.1016/0012-821X(95)00197-K 10.2138/am.2007.2281 10.2138/am-1999-0903 10.1029/2004GL020211 10.2138/am-1999-0901 10.1016/S0377-0273(02)00297-4 10.4157/grj.37.627 10.4294/zisin1948.57.2_209 10.1016/j.tecto.2011.12.035 10.1016/1359-0189(90)90036-W 10.1111/iar.12305 10.1016/0012-821X(94)00068-9 10.1144/SP318.1 10.1016/0169-555X(93)90023-U 10.1186/s40623-021-01556-4 10.1016/j.gca.2003.10.021 10.5194/esurf-2-47-2014 10.1029/2011JB008825 10.5194/egusphere-egu24-16512 10.15083/00036373 10.1130/0016-7606(1998)110%3C0985:LCEOTC%3E2.3.CO;2 10.1029/2002GL015679 10.2138/rmg.2005.58.1 10.1016/j.pce.2021.103048 10.1029/95JB02885 10.15080/agcjchikyukagaku.24.1_35 10.1016/0016-7037(87)90164-5 10.17605/osf.io/wq2U5 10.1046/j.1365-2117.1999.00084.x 10.1016/j.lithos.2018.03.018 10.4157/grj.77.55 10.1111/j.1440-1738.2004.00445.x 10.1016/j.chemgeo.2006.09.002 10.1029/2018TC005312 10.1007/BF00373790 10.1016/0191-278X(81)90039-1 10.1002/2017JB014320 10.1016/S0012-821X(02)01069-5 10.1038/nature12877 10.2138/rmg.2005.58.11 10.1029/2018TC005451 10.2138/rmg.2005.58.22 10.2475/ajs.268.3.243 10.1146/annurev.earth.34.031405.125202 10.4116/jaqua.16.255 10.2138/am-2015-5167 10.5575/geosoc.2018.0024 10.4157/grj.52.169 10.1016/0040-1951(90)90418-8 10.4157/grj1984a.57.10_691 10.1029/2021JB023630 10.1007/BF00311955 10.1007/978-94-015-9133-1_8 10.5026/jgeography.112.3_360 10.3327/jnuce.11.113 10.1111/iar.12219 10.15080/agcjchikyukagaku.69.1_47 10.1029/1999JB900348 10.1016/j.tecto.2022.229231 10.1007/978-3-319-89421-8_6 10.1029/2008TC002367 10.5026/jgeography.119.84 10.1046/j.1440-1738.2000.00262.x 10.2343/geochemj.33.59 10.2138/rmg.2005.58.6 10.1130/G111A.1 10.1029/2022GL100028 10.1016/j.gca.2009.01.015 10.1130/B37245.1 10.2475/03.2013.01 10.4157/grj1984a.62.10_691 10.1016/j.gsf.2015.06.005 10.2113/2023/lithosphere_2024_220 10.1038/srep01306 10.1016/S0040-1951(96)00279-X 10.4116/jaqua.7.182 10.1016/S0012-821X(02)00725-2 10.1029/2023GL104392 10.1306/102501720386 10.1051/bsgf/2021031 10.1016/j.quascirev.2014.03.010 10.1186/s40645-017-0156-3 10.20630/chirikagaku.41.3_150 10.1016/j.geomorph.2015.01.012 10.5026/jgeography.127.795 10.3769/radioisotopes.70.173 10.1016/0168-9622(89)90018-3 10.4157/grj1984a.63.12_793(inJapanesewithEnglishabstract) 10.1038/s41598-023-35776-3 10.1016/0168-9622(89)90035-3 10.1111/j.1440-1738.2011.00789.x 10.1016/0012-821X(91)90203-T 10.5194/gchron-5-91-2023 10.5575/geosoc.2020.0052 10.1029/2011JF002043 10.5571/syntheng.1.73 10.4116/jaqua.30.175 10.1186/s40623-023-01921-5 10.4116/jaqua.44.229 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7TG ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ KL. PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.1186/s40645-025-00735-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea SciTech Collection (ProQuest) Meteorological & Geoastrophysical Abstracts - Academic Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2197-4284 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_82146d99b8cd49ca88fb8d9a4e833444 10_1186_s40645_025_00735_1 |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 21K03730 funderid: http://dx.doi.org/10.13039/501100001691 |
GroupedDBID | 0R~ 5VS 8FE 8FH AAFWJ AAJSJ AAKKN AASML ABEEZ ACACY ACGFS ACULB ADBBV AEUYN AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG BCNDV BENPR BHPHI BKSAR C24 C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ IAO IEP IGS ISR ITC KQ8 LK5 M7R M~E OK1 PCBAR PHGZM PHGZT PIMPY PROAC SOJ AAYXX CITATION 7TG ABUWG AZQEC DWQXO KL. PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c421t-a3b1f07360f50a08c4e27f0b0f650fd48becaebd12866dfcbe6b8a6e565343c23 |
IEDL.DBID | BENPR |
ISSN | 2197-4284 |
IngestDate | Wed Aug 27 01:28:39 EDT 2025 Fri Jul 25 05:11:40 EDT 2025 Wed Jul 30 23:50:27 EDT 2025 Fri Jul 25 01:20:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Low-temperature thermochronology Mountain formation Exhumation (U–Th–Sm)/He method Fission-track method Uplift Japanese Islands |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-a3b1f07360f50a08c4e27f0b0f650fd48becaebd12866dfcbe6b8a6e565343c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5264-2713 |
OpenAccessLink | https://www.proquest.com/docview/3232912647?pq-origsite=%requestingapplication% |
PQID | 3232912647 |
PQPubID | 2034674 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_82146d99b8cd49ca88fb8d9a4e833444 proquest_journals_3232912647 crossref_primary_10_1186_s40645_025_00735_1 springer_journals_10_1186_s40645_025_00735_1 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Progress in earth and planetary science |
PublicationTitleAbbrev | Prog Earth Planet Sci |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | GM Laslett (735_CR57) 1987; 65 S Sueoka (735_CR96) 2019; 28 PW Reiners (735_CR88) 2005; 58 Y Ota (735_CR80) 1979; 52 K Tani (735_CR115) 2010; 38 K Kano (735_CR48) 2002; 77 RF Galbraith (735_CR31) 1990; 17 A Tanaka (735_CR114) 1999; 50 RM Flowers (735_CR23) 2009; 73 TA Ehlers (735_CR19) 2005; 58 PW Reiners (735_CR86) 2004; 68 H Ohmori (735_CR75) 1978; 10 KE Murray (735_CR71) 2018; 19 735_CR62 S Fukuda (735_CR30) 2021; 70 WD Carlson (735_CR10) 1999; 84 RA Ketcham (735_CR54) 2007; 92 F Herman (735_CR42) 2013; 504 PE Martin (735_CR61) 2023; 5 SC Boone (735_CR6) 2023; 13 Y Ota (735_CR81) 1991; 30 Research Group for Quaternary Tectonic Map (735_CR90) 1968; 7 RA Ketcham (735_CR55) 2015; 100 TA Ehlers (735_CR18) 2003; 206 F Herman (735_CR41) 2009; 28 K Stüwe (735_CR95) 1994; 124 E Bertel (735_CR5) 1983; 9 WB Ouimet (735_CR83) 2009; 37 M Fox (735_CR25) 2014; 2 735_CR74 JC Ringenbach (735_CR91) 1990; 183 O Fujiwara (735_CR26) 1999; 5 S Sueoka (735_CR99) 2015; 69 KA Farley (735_CR22) 2002; 47 MT Brandon (735_CR8) 1998; 110 F Ahnert (735_CR1) 1970; 268 M Tajikara (735_CR112) 2005; 44 SJ Vincent (735_CR121) 2020; 39 AC Warnock (735_CR128) 1997; 61 H Hecht (735_CR40) 2017; 4 K Mokudai (735_CR65) 2004; 77 Y Oka (735_CR78) 1986; 41 J Okuno (735_CR79) 2014; 91 Y Sawaki (735_CR93) 2020; 29 P van den Beek (735_CR119) 2023; 5 (735_CR59) 2019 AJW Gleadow (735_CR34) 1981; 5 T Tagami (735_CR110) 1996; 101 T Yuguchi (735_CR139) 2017; 26 735_CR89 RA Wolf (735_CR131) 1998; 148 S Sueoka (735_CR105) 2023; 75 M Yuhara (735_CR140) 2000; 9 T Yoshikawa (735_CR136) 1984; 57A RA DiBiase (735_CR14) 2023; 50 K Umeda (735_CR116) 1999; 2 MH Dodson (735_CR15) 1973; 40 P England (735_CR20) 1990; 18 735_CR500 735_CR107 735_CR16 PW Reiners (735_CR85) 2005; 58 M Utada (735_CR117) 2003; 112 M Murakami (735_CR68) 2004; 31 S Sugihara (735_CR109) 1978; 16 T Nakajima (735_CR72) 2018; 124 GA Wagner (735_CR124) 1992 735_CR13 N Hasebe (735_CR38) 2004; 13 EW Portenga (735_CR84) 2011; 21 735_CR12 H Ito (735_CR47) 2013; 3 RA Ketcham (735_CR52) 1999; 84 A Moriyama (735_CR67) 1989; 62A K Gallagher (735_CR33) 2012; 117 RA Donelick (735_CR17) 2005; 58 GA Wagner (735_CR123) 1989; 79 WR Guenthner (735_CR37) 2013; 313 S Sueoka (735_CR104) 2022; 828 735_CR27 HS Carslaw (735_CR11) 1959 NS Mancktelow (735_CR60) 1997; 270 S Sueoka (735_CR100) 2016; 7 TP Goswami (735_CR35) 2021; 124 S Sueoka (735_CR101) 2017; 122 H Ohmori (735_CR76) 1985; 17 Y Ikeda (735_CR46) 1990; 43 735_CR3 AK Ault (735_CR4) 2019 735_CR126 R Yamada (735_CR132) 1999; 33 PK Zeitler (735_CR141) 1987; 51 735_CR134 T Nakajima (735_CR73) 2022; 127 735_CR135 P Vermeesch (735_CR120) 2019 PF Green (735_CR36) 1989; 79 RB Anderson (735_CR2) 2018; 37 J Braun (735_CR7) 2012; 524–525 S Sueoka (735_CR98) 2012; 21 RA Ketcham (735_CR53) 2003; 88 C Hasegawa (735_CR39) 1970; 24 SD Willett (735_CR130) 2013; 14 M Murakami (735_CR69) 2002; 29 M Shirai (735_CR94) 2002; 72 Y Ota (735_CR82) 2010 Y Wang (735_CR127) 2023; 50 RW Brown (735_CR9) 2013; 122 TM Lutz (735_CR58) 1991; 104 H Ohmori (735_CR77) 1993; 8 PW Reiners (735_CR87) 2006; 34 735_CR49 T Tagami (735_CR111) 1998 R Murakami (735_CR70) 2004; 57 K Gallagher (735_CR32) 1995; 136 R Yamada (735_CR133) 2007; 236 735_CR44 735_CR43 735_CR45 S Minami (735_CR64) 2021; 73 T Matsu’ura (735_CR63) 2015; 234 Y Sano (735_CR92) 2002; 117 PG Valla (735_CR118) 2012; 117 KA Farley (735_CR21) 2000; 105 T Sugai (735_CR108) 1999; 11 GA Wagner (735_CR125) 1997; 102 T Sugai (735_CR106) 1990; 63A O Fujiwara (735_CR28) 2005; 11 DR Montgomery (735_CR66) 2002; 201 GA Wagner (735_CR122) 1977; 30 RA Ketcham (735_CR51) 2019 S Sueoka (735_CR102) 2018; 127 RA Ketcham (735_CR50) 2005; 58 BP Kohn (735_CR56) 2024; 136 S Sueoka (735_CR97) 2010; 119 S Sueoka (735_CR103) 2021; 127 A Yoshiyama (735_CR138) 1995; 104 K Takatsuka (735_CR113) 2018; 308–309 T Yoshikawa (735_CR137) 1964; 37 |
References_xml | – volume: 37 start-page: 3577 year: 2018 ident: 735_CR2 publication-title: Tectonics doi: 10.1029/2018TC005132 – ident: 735_CR27 – ident: 735_CR16 doi: 10.1007/978-3-642-67161-6_14 – volume: 122 start-page: 478 year: 2013 ident: 735_CR9 publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2013.05.041 – volume: 19 start-page: 3739 year: 2018 ident: 735_CR71 publication-title: Geochem Geophyst Geosys doi: 10.1029/2018GC007595 – volume: 58 start-page: 49 year: 2005 ident: 735_CR17 publication-title: Rev Min Geochem doi: 10.2138/rmg.2005.58.3 – volume: 43 start-page: 137 year: 1990 ident: 735_CR46 publication-title: J Ser Soc Jpn 2nd Ser (Zisin) doi: 10.4294/zisin1948.43.1_137 – volume-title: Fission-track dating year: 1992 ident: 735_CR124 doi: 10.1007/978-94-011-2478-2 – volume: 102 start-page: 18221 year: 1997 ident: 735_CR125 publication-title: J Geophys Res doi: 10.1029/96JB02565 – volume: 5 start-page: 35 year: 2023 ident: 735_CR119 publication-title: Geochronology doi: 10.5194/gchron-5-35-2023 – volume: 38 start-page: 215 year: 2010 ident: 735_CR115 publication-title: Geology doi: 10.1130/G30526.1 – volume: 148 start-page: 105 year: 1998 ident: 735_CR131 publication-title: Chem Geol doi: 10.1016/S0009-2541(98)00024-2 – ident: 735_CR13 – start-page: 49 volume-title: Fission-track thermochronology and its application to geology year: 2019 ident: 735_CR51 doi: 10.1007/978-3-319-89421-8_3 – volume: 47 start-page: 819 year: 2002 ident: 735_CR22 publication-title: Rev Min Geochem doi: 10.2138/rmg.2002.47.18 – volume: 61 start-page: 5371 year: 1997 ident: 735_CR128 publication-title: Geochim Cosmochim Acta doi: 10.1016/S0016-7037(97)00302-5 – volume: 29 year: 2020 ident: 735_CR93 publication-title: Isl Arc doi: 10.1111/iar.12361 – ident: 735_CR135 – volume: 104 start-page: 809 year: 1995 ident: 735_CR138 publication-title: J Geogr (Chigaku Zasshi) doi: 10.5026/jgeography.104.6_809 – volume: 17 start-page: 19 year: 1985 ident: 735_CR76 publication-title: Bull Dept Geogr Univ Tokyo – volume: 65 start-page: 1 year: 1987 ident: 735_CR57 publication-title: Chem Geol (Isot Geosci Sect) doi: 10.1016/0168-9622(87)90057-1 – volume: 30 start-page: 1 year: 1977 ident: 735_CR122 publication-title: Mem Inst Geol Min Univ Padova – volume: 18 start-page: 1173 year: 1990 ident: 735_CR20 publication-title: Geology doi: 10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2 – volume: 14 start-page: 209 year: 2013 ident: 735_CR130 publication-title: Geochem Geophys Geosyst doi: 10.1029/2012GC004279 – volume: 37 start-page: 579 year: 2009 ident: 735_CR83 publication-title: Geology doi: 10.1130/G30013A.1 – volume: 88 start-page: 929 year: 2003 ident: 735_CR53 publication-title: Amer Min doi: 10.2138/am-2003-5-610 – ident: 735_CR74 – volume: 136 start-page: 421 year: 1995 ident: 735_CR32 publication-title: Earth Planet Sci Lett doi: 10.1016/0012-821X(95)00197-K – volume: 92 start-page: 799 year: 2007 ident: 735_CR54 publication-title: Am Min doi: 10.2138/am.2007.2281 – volume: 84 start-page: 1235 year: 1999 ident: 735_CR52 publication-title: Am Min doi: 10.2138/am-1999-0903 – volume: 31 start-page: L12604 year: 2004 ident: 735_CR68 publication-title: Geophys Res Lett doi: 10.1029/2004GL020211 – volume: 84 start-page: 1213 year: 1999 ident: 735_CR10 publication-title: Am Min doi: 10.2138/am-1999-0901 – volume: 117 start-page: 285 year: 2002 ident: 735_CR92 publication-title: J Volc Geotherm Res doi: 10.1016/S0377-0273(02)00297-4 – volume: 37 start-page: 627 year: 1964 ident: 735_CR137 publication-title: Geogr Rev Jpn doi: 10.4157/grj.37.627 – volume: 5 start-page: 85 year: 1999 ident: 735_CR26 publication-title: JNC Tech Rev – volume: 57 start-page: 209 year: 2004 ident: 735_CR70 publication-title: Zisin (j Seis Soc Jpn 2nd Ser) doi: 10.4294/zisin1948.57.2_209 – volume: 524–525 start-page: 1 year: 2012 ident: 735_CR7 publication-title: Tectonophysics doi: 10.1016/j.tecto.2011.12.035 – volume: 17 start-page: 207 year: 1990 ident: 735_CR31 publication-title: Nucl Tracks Radiat Meas Int J Radiat Appl Instrum Part D doi: 10.1016/1359-0189(90)90036-W – volume: 28 year: 2019 ident: 735_CR96 publication-title: Isl Arc doi: 10.1111/iar.12305 – volume: 124 start-page: 63 year: 1994 ident: 735_CR95 publication-title: Earth Planet Sci Lett doi: 10.1016/0012-821X(94)00068-9 – ident: 735_CR12 doi: 10.1144/SP318.1 – volume: 8 start-page: 263 year: 1993 ident: 735_CR77 publication-title: Geomorphology doi: 10.1016/0169-555X(93)90023-U – volume: 73 start-page: 231 year: 2021 ident: 735_CR64 publication-title: Earth Planets Space doi: 10.1186/s40623-021-01556-4 – volume: 68 start-page: 1857 year: 2004 ident: 735_CR86 publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2003.10.021 – volume: 2 start-page: 47 year: 2014 ident: 735_CR25 publication-title: Earth Surf Dyn doi: 10.5194/esurf-2-47-2014 – volume: 117 start-page: B02408 year: 2012 ident: 735_CR33 publication-title: J Geophys Res doi: 10.1029/2011JB008825 – ident: 735_CR500 doi: 10.5194/egusphere-egu24-16512 – ident: 735_CR107 doi: 10.15083/00036373 – volume: 110 start-page: 985 year: 1998 ident: 735_CR8 publication-title: Geol Soc Am Bull doi: 10.1130/0016-7606(1998)110%3C0985:LCEOTC%3E2.3.CO;2 – volume: 29 start-page: 2123 year: 2002 ident: 735_CR69 publication-title: Geophys Res Lett doi: 10.1029/2002GL015679 – ident: 735_CR44 – volume: 58 start-page: 1 year: 2005 ident: 735_CR88 publication-title: Rev Min Geochem doi: 10.2138/rmg.2005.58.1 – volume: 124 year: 2021 ident: 735_CR35 publication-title: Phys Chem Eearth Parts a/b/c doi: 10.1016/j.pce.2021.103048 – volume: 101 start-page: 8245 year: 1996 ident: 735_CR110 publication-title: J Geophys Res doi: 10.1029/95JB02885 – volume: 77 start-page: 231 year: 2002 ident: 735_CR48 publication-title: Bull Earthq Res Inst Univ Tokyo – volume: 24 start-page: 35 year: 1970 ident: 735_CR39 publication-title: Earth Sci (Chikyu Kagaku) doi: 10.15080/agcjchikyukagaku.24.1_35 – volume: 51 start-page: 2865 year: 1987 ident: 735_CR141 publication-title: Geochim Cosmochim Acta doi: 10.1016/0016-7037(87)90164-5 – ident: 735_CR49 doi: 10.17605/osf.io/wq2U5 – volume: 11 start-page: 43 year: 1999 ident: 735_CR108 publication-title: Basin Res doi: 10.1046/j.1365-2117.1999.00084.x – volume: 308–309 start-page: 428 year: 2018 ident: 735_CR113 publication-title: Lithos doi: 10.1016/j.lithos.2018.03.018 – volume: 77 start-page: 55 year: 2004 ident: 735_CR65 publication-title: Geogr Rev Jpn doi: 10.4157/grj.77.55 – volume: 13 start-page: 533 year: 2004 ident: 735_CR38 publication-title: Isl Arc doi: 10.1111/j.1440-1738.2004.00445.x – volume: 236 start-page: 75 year: 2007 ident: 735_CR133 publication-title: Chem Geol doi: 10.1016/j.chemgeo.2006.09.002 – year: 2019 ident: 735_CR4 publication-title: Tectonics doi: 10.1029/2018TC005312 – volume: 40 start-page: 259 year: 1973 ident: 735_CR15 publication-title: Contr Min Petrol doi: 10.1007/BF00373790 – volume: 5 start-page: 169 year: 1981 ident: 735_CR34 publication-title: Nucl Tracks doi: 10.1016/0191-278X(81)90039-1 – volume: 122 start-page: 6787 year: 2017 ident: 735_CR101 publication-title: J Geophys Res Solid Earth doi: 10.1002/2017JB014320 – volume: 206 start-page: 1 year: 2003 ident: 735_CR18 publication-title: Earth Planet Sci Lett doi: 10.1016/S0012-821X(02)01069-5 – volume: 504 start-page: 423 year: 2013 ident: 735_CR42 publication-title: Nature doi: 10.1038/nature12877 – volume: 58 start-page: 275 year: 2005 ident: 735_CR50 publication-title: Rev Min Geochem doi: 10.2138/rmg.2005.58.11 – volume: 39 start-page: e2018TC005451 year: 2020 ident: 735_CR121 publication-title: Tectonics doi: 10.1029/2018TC005451 – volume: 58 start-page: 589 year: 2005 ident: 735_CR19 publication-title: Rev Min Geochem doi: 10.2138/rmg.2005.58.22 – volume: 268 start-page: 248 year: 1970 ident: 735_CR1 publication-title: Am J Sci doi: 10.2475/ajs.268.3.243 – volume: 34 start-page: 419 year: 2006 ident: 735_CR87 publication-title: Ann Rev Earth Planet Sci doi: 10.1146/annurev.earth.34.031405.125202 – volume: 10 start-page: 31 year: 1978 ident: 735_CR75 publication-title: Bull Dept Geogr Univ Tokyo – volume: 16 start-page: 255 year: 1978 ident: 735_CR109 publication-title: Quat Res (Daiyonki-Kenkyu) doi: 10.4116/jaqua.16.255 – volume: 100 start-page: 1452 year: 2015 ident: 735_CR55 publication-title: Am Min doi: 10.2138/am-2015-5167 – volume: 124 start-page: 603 year: 2018 ident: 735_CR72 publication-title: J Geol Soc Jpn doi: 10.5575/geosoc.2018.0024 – volume: 52 start-page: 169 year: 1979 ident: 735_CR80 publication-title: Geogr Rev Jpn doi: 10.4157/grj.52.169 – volume: 183 start-page: 225 year: 1990 ident: 735_CR91 publication-title: Tectonophysics doi: 10.1016/0040-1951(90)90418-8 – volume: 57A start-page: 691 year: 1984 ident: 735_CR136 publication-title: Geogr Rev Jpn doi: 10.4157/grj1984a.57.10_691 – volume: 127 start-page: e2021JB023630 year: 2022 ident: 735_CR73 publication-title: J Geophys Res Solid Earth doi: 10.1029/2021JB023630 – volume: 9 start-page: 197 year: 1983 ident: 735_CR5 publication-title: Phys Chem Min doi: 10.1007/BF00311955 – start-page: 99 volume-title: Advances in fission-track geochronology year: 1998 ident: 735_CR111 doi: 10.1007/978-94-015-9133-1_8 – volume: 112 start-page: 360 year: 2003 ident: 735_CR117 publication-title: J Geogr Chigaku Zasshi doi: 10.5026/jgeography.112.3_360 – volume: 11 start-page: 113 year: 2005 ident: 735_CR28 publication-title: J Nucl Fuel Cycle Environ doi: 10.3327/jnuce.11.113 – volume: 26 year: 2017 ident: 735_CR139 publication-title: Isl Arc doi: 10.1111/iar.12219 – volume: 69 start-page: 47 year: 2015 ident: 735_CR99 publication-title: Earth Sci (Chikyu Kagaku) doi: 10.15080/agcjchikyukagaku.69.1_47 – volume: 105 start-page: 2903 year: 2000 ident: 735_CR21 publication-title: J Geophys Res doi: 10.1029/1999JB900348 – volume: 828 year: 2022 ident: 735_CR104 publication-title: Tectonophysics doi: 10.1016/j.tecto.2022.229231 – start-page: 109 volume-title: Fission-track thermochronology and its application to geology year: 2019 ident: 735_CR120 doi: 10.1007/978-3-319-89421-8_6 – volume: 28 start-page: TC5011 year: 2009 ident: 735_CR41 publication-title: Tectonics doi: 10.1029/2008TC002367 – volume: 119 start-page: 84 year: 2010 ident: 735_CR97 publication-title: J Geogr (Chigaku Zasshi) doi: 10.5026/jgeography.119.84 – volume: 9 start-page: 64 year: 2000 ident: 735_CR140 publication-title: Isl Arc doi: 10.1046/j.1440-1738.2000.00262.x – ident: 735_CR89 – volume: 33 start-page: 59 year: 1999 ident: 735_CR132 publication-title: Geochem Jour doi: 10.2343/geochemj.33.59 – volume: 58 start-page: 151 year: 2005 ident: 735_CR85 publication-title: Rev Min Geochem doi: 10.2138/rmg.2005.58.6 – volume: 21 start-page: 4 year: 2011 ident: 735_CR84 publication-title: Geol Soc Am Today doi: 10.1130/G111A.1 – ident: 735_CR43 – volume: 50 start-page: e2022GL100028 year: 2023 ident: 735_CR127 publication-title: Geophys Res Lett doi: 10.1029/2022GL100028 – volume: 73 start-page: 2347 year: 2009 ident: 735_CR23 publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2009.01.015 – volume: 136 start-page: 3891 year: 2024 ident: 735_CR56 publication-title: Geol Soc Amer Bull doi: 10.1130/B37245.1 – volume: 50 start-page: 457 year: 1999 ident: 735_CR114 publication-title: Bull Geol Surv Japan – volume: 313 start-page: 145 year: 2013 ident: 735_CR37 publication-title: Am J Sci doi: 10.2475/03.2013.01 – volume: 62A start-page: 691 year: 1989 ident: 735_CR67 publication-title: Geogr Rev Jpn doi: 10.4157/grj1984a.62.10_691 – volume: 7 start-page: 197 year: 2016 ident: 735_CR100 publication-title: Geosci Front doi: 10.1016/j.gsf.2015.06.005 – start-page: 522p volume-title: Conduction of heat in solids year: 1959 ident: 735_CR11 – ident: 735_CR134 doi: 10.2113/2023/lithosphere_2024_220 – volume: 3 start-page: 1306 year: 2013 ident: 735_CR47 publication-title: Sci Rep doi: 10.1038/srep01306 – volume: 270 start-page: 167 year: 1997 ident: 735_CR60 publication-title: Tectonophysics doi: 10.1016/S0040-1951(96)00279-X – volume: 7 start-page: 182 year: 1968 ident: 735_CR90 publication-title: Quat Res (Daiyonki Kenkyu) doi: 10.4116/jaqua.7.182 – volume: 201 start-page: 481 year: 2002 ident: 735_CR66 publication-title: Earth Planet Sci Lett doi: 10.1016/S0012-821X(02)00725-2 – volume: 50 start-page: e2023GL104392 year: 2023 ident: 735_CR14 publication-title: Geophys Res Lett doi: 10.1029/2023GL104392 – volume: 72 start-page: 386 year: 2002 ident: 735_CR94 publication-title: Jour Sed Res doi: 10.1306/102501720386 – ident: 735_CR3 doi: 10.1051/bsgf/2021031 – volume: 91 start-page: 42 year: 2014 ident: 735_CR79 publication-title: Quat Sci Rev doi: 10.1016/j.quascirev.2014.03.010 – volume: 4 start-page: 40 year: 2017 ident: 735_CR40 publication-title: Prog Earth Planet Sci doi: 10.1186/s40645-017-0156-3 – volume: 41 start-page: 150 year: 1986 ident: 735_CR78 publication-title: Geogr Sci doi: 10.20630/chirikagaku.41.3_150 – volume: 234 start-page: 133 year: 2015 ident: 735_CR63 publication-title: Geomorph doi: 10.1016/j.geomorph.2015.01.012 – volume: 127 start-page: 795 year: 2018 ident: 735_CR102 publication-title: J Geogr (Chigaku Zasshi) doi: 10.5026/jgeography.127.795 – volume: 70 start-page: 173 year: 2021 ident: 735_CR30 publication-title: Radioisotopes doi: 10.3769/radioisotopes.70.173 – volume: 79 start-page: 155 year: 1989 ident: 735_CR36 publication-title: Chem Geol (Isot Geosci Sect) doi: 10.1016/0168-9622(89)90018-3 – volume: 63A start-page: 193 year: 1990 ident: 735_CR106 publication-title: Geogr Rev Jpn doi: 10.4157/grj1984a.63.12_793(inJapanesewithEnglishabstract) – volume: 2 start-page: 29 year: 1999 ident: 735_CR116 publication-title: JNC Tech Rev – volume-title: Fission-track thermochronology and its application to geology year: 2019 ident: 735_CR59 – volume: 13 start-page: 8581 year: 2023 ident: 735_CR6 publication-title: Big Data Sci Rep doi: 10.1038/s41598-023-35776-3 – volume: 79 start-page: 295 year: 1989 ident: 735_CR123 publication-title: Chem Geol Isot Geosci Sect doi: 10.1016/0168-9622(89)90035-3 – volume: 21 start-page: 32 year: 2012 ident: 735_CR98 publication-title: Isl Arc doi: 10.1111/j.1440-1738.2011.00789.x – volume: 104 start-page: 181 year: 1991 ident: 735_CR58 publication-title: Earth Planet Sci Lett doi: 10.1016/0012-821X(91)90203-T – volume: 5 start-page: 91 year: 2023 ident: 735_CR61 publication-title: Geochronology doi: 10.5194/gchron-5-91-2023 – ident: 735_CR62 – volume-title: Geomorphology of the Japanese Islands year: 2010 ident: 735_CR82 – volume: 127 start-page: 25 year: 2021 ident: 735_CR103 publication-title: J Geol Soc Jpn doi: 10.5575/geosoc.2020.0052 – ident: 735_CR45 – volume: 117 start-page: F01004 year: 2012 ident: 735_CR118 publication-title: Jour Geophys Res doi: 10.1029/2011JF002043 – ident: 735_CR126 doi: 10.5571/syntheng.1.73 – volume: 30 start-page: 175 year: 1991 ident: 735_CR81 publication-title: Quat Res (Daiyonki Kenkyu) doi: 10.4116/jaqua.30.175 – volume: 75 start-page: 177 year: 2023 ident: 735_CR105 publication-title: Earth Planets Space doi: 10.1186/s40623-023-01921-5 – volume: 44 start-page: 229 year: 2005 ident: 735_CR112 publication-title: Quat Res (Daiyonki-Kenkyu) doi: 10.4116/jaqua.44.229 |
SSID | ssj0002046595 |
Score | 2.31054 |
Snippet | Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of... Abstract Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 59 |
SubjectTerms | (U–Th–Sm)/He method 4. Solid earth sciences Atmospheric Sciences Biogeosciences Cooling Earth and Environmental Science Earth Sciences Elevation Exhumation Fault lines Fission-track method Geophysics/Geodesy Hydrogeology Islands Low temperature Low-temperature thermochronology Modelling Mountain formation Mountains Planetology Pliocene Quaternary Research Article Rocks Temperature Uplift |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSh0xFA5FKHQjtla8_pQsXFg0mJlkcjPuVKoi2JWCu5BfUPSOeK_K3ZRuu_cBfBYfxSfpOZm59QfETRezyUyGkHPC-Q4n5_sIWbGpdjZVCpIcHpkMqWZOVAULvPKQBXHhFfYOH_5U-8fy4KQ6eSb1hXfCWnrgduM2NCpPh7p2qLJTe6t1cjrUVkYthJSZCRRi3rNk6iyX1yQS5U26ZLTaGEpkZmOo3orVqYoVLyJRJux_gTJfFUZzvNmdIdMdUKRb7QI_kw9x8IV83MtCvONZcrfVVp7z3dYxbRI9b24ZEk11LMkUkd1F45H8Ns-howbHaLzpvA0njfGw01X6-PvPL3iqh_tD-502Vw341amnLc_zcJNa6iHc0UxGS7ElJf_qACItKlhSdKxBGH4lx7s_jnb2WaewwLwsixGzwhUJdkPxVHHLtZex7CfueALgloLUYGEbXYAgplRI3kXltFURUKCQwpdijkwNmkGcJzQ5Z6uAMuvey9SHvKtQtrQJm1sDr0OPrE1221y2RBomJyBamdY2Bmxjsm1M0SPbaJB_XyIJdh4A1zCda5j3XKNHlibmNN3JHBoBELIuAAb2e2R9YuKn128vaeF_LGmRfCrRBfN9mCUyNbq6jsuAakbuW3bgv-959sU priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYqqkq9IOiP2AKVDz20aq06seN1EBeKShESnEDiZvm3KoJNtVlAe0FcufMAfRYepU_SGSdpRUUPPeTi2EnkbyYzo_F8Q8gbm2pnU6UgyOGRyZBq5kRVsMArD1EQF15h7fD-gdo9knvH1XFfFNYOp92HlGT-U2e11upjK5FajWH7VUwvVQxinsfwhhLleruvcTjJqTWJJHlDhcyDS-9ZoUzWf8_D_Cspmm3NzhJZ7J1EutWhukwexckz8uRLbsI7f05ut7qscz7XOqdNoqfNJUOSqZ4hmaJXd9Z4JL7Na-iswTEaL3pJw0VzVHT6dvPn9c0VXNXdj337jjbTBmTqm6cdx3O7QS31YOpoJqKlWI6SH7UHVha7V1IUqkloX5Cjnc-H27us767AvCyLGbPCFQl2Q_FUccu1l7EcJ-54AqctBakBXRtdAAOmVEjeReW0VRE8QCGFL8VLsjBpJnGF0OScrQK2WPdepjHEXIWypU1Y2Bp4HUbk_bDb5ntHomFy8KGV6bAxgI3J2JhiRD4hIL9nIgF2HmimX02vT0ZjQ_JQ1w6bL9Xeap2cDrWVUQshpRyRtQFO02tlawS4j3UBLuB4RD4MEP-5_e9PevV_01fJ0xKFLZ96WSMLs-l5XAffZeZeZ1H9BU2D6yY priority: 102 providerName: Springer Nature |
Title | Applicability of low-temperature thermochronology to the evolution of young (< ~ 5 Ma) orogenic systems: a case study from the Japanese Islands |
URI | https://link.springer.com/article/10.1186/s40645-025-00735-1 https://www.proquest.com/docview/3232912647 https://doaj.org/article/82146d99b8cd49ca88fb8d9a4e833444 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxQxFA-2i-BF_MTVuuTgQdHQ-UiyGRFku7SWhRZRC72FfIqgO3VnVfYiXj37H_qX-F4m01JBDzOHmUkY8l7yvpLfj5BHJjbWRCEhyCkC4z42zNaiZL4QDqKgonYSzw4fHcvDE744Fac54dblbZXDmpgWat86zJHv1mD6mxLM9_Tl2WeGrFFYXc0UGltkBEuwguBrtLd__PrNeZalgvBPNGI4LaPkbscRoY0hiytWqQQrL1mkBNx_ydv8q0Ca7M7BDXI9O4x01kv4JrkSlrfI1VeJkHdzm_ya9RXotMd1Q9tIP7bfGAJOZbRkih7ep9YhCG5qQ9ctPqPha9Y6bLTBSU8fv_j94-d3uAQ9Mk9ou2pBvT442sM9d8-poQ6sHk2YtBRPpqSeFmBwkciSon4tfXeHnBzsv5sfsky0wByvyjUztS0jDIYsoihMoRwP1TQWtojgv0XPFQjaBOthiKX00dkgrTIygDNY89pV9V2yvWyX4R6h0VojPLKtO8fjFMKvUprKRDzj6ovGj8nTYbD1WY-noVMcoqTuRaNBNDqJRpdjsofyOP8SsbDTg3b1XueppRVyk_umscjD1DijVLTKN4YHVdec8zHZGaSp8wTt9IU6jcmzQcIXr__9S_f_39sDcq1C3UobXnbI9nr1JTwEt2VtJ2Q0my3eLiZZRydka15xvMv5JKUC_gB2S_K1 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JaxRBFC5CguhFXHE0ah0UFC3SS1VNtSiS1ckyg0gCuVVqFUGn48xomIt49ez_8Ef5S3yvujshgt5y6EsvRXe_r9_SVe_7CHlkYmVNFBKKnCww7mPFbCly5jPhoArKSiexd3g4koMDvnMoDhfIr64XBpdVdj4xOWpfO_xHvlJC6K9yCN_918efGapG4exqJ6HRwGI3zE-gZJu-2t4A-z4uiq3N_fUBa1UFmONFPmOmtHkEYMssisxkyvFQ9GNmswjJSvRcwVOZYD04bil9dDZIq4wMkPmUvHRIdAAuf4nDAOAIltY2R2_fnf7VKaDcFJXounOUXJlyZIRjqBqLs2KC5eciYBIKOJfd_jUhm-Lc1jVytU1Q6WqDqOtkIYxvkEtvkgDw_Cb5udrMeKc1tXNaR_qxPmFIcNWyM1PMKD_VDkl30zV0VuM-Gr62KMeL5uhk6JOXv7__-AaboEPzlNaTGuD8wdGGXnr6ghrqIMrSxIFLsRMmjbQDAR6FMynieeynt8jBhZjgNlkc1-Nwh9BorREe1d2d47EP5V4uTWEi9tT6rPI98qx72fq44e_Qqe5RUjem0WAanUyj8x5ZQ3ucnonc22lHPXmv209ZK9RC91VlUfepckapaJWvDA-qLDnnPbLcWVO3DmGqz-DbI887C58d_vct3f3_aA_J5cH-cE_vbY9275ErBeIsLbZZJouzyZdwH1KmmX3Q4pSSo4v-NP4A59IsjQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqqUBsEE8xUMALkEBgjZPYngSBUEs79EFHFaJSd66fCAkmZWagmg1iy5q_4XP4Eu51klZFgl0X2eSlJPf4PmLfcwh5YGJlTZQKihwemPCxYraQGfNcOqiCeOEU9g7vjtXmvtg-kAdL5FfXC4PLKjufmBy1rx3-Ix8UEPqrDML3cBDbZRF766OXR58ZKkjhTGsnp9FAZCcsjqF8m73YWgdbP8zz0ca7V5usVRhgTuTZnJnCZhFArniU3PDSiZAPI7c8QuISvSjhDU2wHpy4Uj46G5QtjQqQBRWicEh6AO5_eQhVEe-R5bWN8d7bkz88OZSespJdp06pBjOB7HAMFWRxhkyy7Ew0TKIBZzLdvyZnU8wbXSGX22SVrjboukqWwuQaufA6iQEvrpOfq83sd1pfu6B1pB_rY4ZkVy1TM8Xs8lPtkIA3XUPnNe6j4WuLeLxogQ6HPnr--_uPb7BJumse03paA7Q_ONpQTc-eUUMdRFya-HApdsWkO21DsEcRTYrYnvjZDbJ_Lia4SXqTehJuERqtNdKj0rtzIg6h9MuUyU3E_lrPK98nT7qPrY8aLg-daqBS6cY0Gkyjk2l01idraI-TM5GHO-2op-91O6x1ibrovqosakBVzpRltKWvjAhlUQgh-mSls6ZuncNMn0K5T552Fj49_O9Huv3_u90nF2FI6Ddb45075FKOMEvrblZIbz79Eu5C9jS391qYUnJ43iPjD5rrMMI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applicability+of+low-temperature+thermochronology+to+the+evolution+of+young+%28%3C%E2%80%89%7E%E2%80%895+Ma%29+orogenic+systems%3A+a+case+study+from+the+Japanese+Islands&rft.jtitle=Progress+in+earth+and+planetary+science&rft.au=Sueoka%2C+Shigeru&rft.au=Tagami%2C+Takahiro&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=2197-4284&rft.volume=12&rft.issue=1&rft.spage=59&rft_id=info:doi/10.1186%2Fs40645-025-00735-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-4284&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-4284&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-4284&client=summon |