Applicability of low-temperature thermochronology to the evolution of young (< ~ 5 Ma) orogenic systems: a case study from the Japanese Islands

Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of orogenic systems over timescales of 10 6 –10 8  years. This research employed simple numerical modeling to evaluate the applicability of low-...

Full description

Saved in:
Bibliographic Details
Published inProgress in earth and planetary science Vol. 12; no. 1; pp. 59 - 20
Main Authors Sueoka, Shigeru, Tagami, Takahiro
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2197-4284
2197-4284
DOI10.1186/s40645-025-00735-1

Cover

Loading…
Abstract Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of orogenic systems over timescales of 10 6 –10 8  years. This research employed simple numerical modeling to evaluate the applicability of low-temperature thermochronometry to young orogenic systems uplifted in geologically recent periods such as the Pliocene and Quaternary, such as those in the Japanese Islands. Such orogenic systems are at the younger limit of the applicability because this time scale corresponds to the younger limit of applicability of the major low-temperature thermochronometers and also corresponds to the minimum period required for an orogenic system to be denuded by more than ~ 2–3 km after the start of uplift, which is the lower limit detectable by the major low-temperature thermochronometers. Time‒temperature paths were generated for varying uplift rates, uplift onsets, and model onsets (equivalent to the rock formation age). These paths were then converted into cooling ages for four thermochronometers: apatite and zircon FT and (U–Th–Sm)/He dating. The calculations were conducted using two models: a constant-elevation model and an increasing-elevation model. The modeling results are summarized in look-up tables, illustrating relationships between uplift rates, uplift onsets, rock formation ages and ratios of cooling age and rock formation age. The results indicate that differences in formation age and elevation change minimally impact cooling ages. The modeled dates generally align with measured cooling ages in regions where the rate and timing of uplift are well constrained, supporting the reliability of the modeling approach. Consequently, the derived relationships between uplift rates and cooling ages provide a practical method for roughly classifying mountain uplift rates based on cooling ages, without requiring complex simulations. Finally, these relationships were applied to previously reported cooling ages to visualize the distribution of uplift rates across the Japanese Islands over the past few million years. These results provide a benchmark for the low-temperature thermochronological studies, not only in the Japanese Islands, but also in mobile belts around the world that have begun to uplift in the past few million years.
AbstractList Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of orogenic systems over timescales of 10 6 –10 8  years. This research employed simple numerical modeling to evaluate the applicability of low-temperature thermochronometry to young orogenic systems uplifted in geologically recent periods such as the Pliocene and Quaternary, such as those in the Japanese Islands. Such orogenic systems are at the younger limit of the applicability because this time scale corresponds to the younger limit of applicability of the major low-temperature thermochronometers and also corresponds to the minimum period required for an orogenic system to be denuded by more than ~ 2–3 km after the start of uplift, which is the lower limit detectable by the major low-temperature thermochronometers. Time‒temperature paths were generated for varying uplift rates, uplift onsets, and model onsets (equivalent to the rock formation age). These paths were then converted into cooling ages for four thermochronometers: apatite and zircon FT and (U–Th–Sm)/He dating. The calculations were conducted using two models: a constant-elevation model and an increasing-elevation model. The modeling results are summarized in look-up tables, illustrating relationships between uplift rates, uplift onsets, rock formation ages and ratios of cooling age and rock formation age. The results indicate that differences in formation age and elevation change minimally impact cooling ages. The modeled dates generally align with measured cooling ages in regions where the rate and timing of uplift are well constrained, supporting the reliability of the modeling approach. Consequently, the derived relationships between uplift rates and cooling ages provide a practical method for roughly classifying mountain uplift rates based on cooling ages, without requiring complex simulations. Finally, these relationships were applied to previously reported cooling ages to visualize the distribution of uplift rates across the Japanese Islands over the past few million years. These results provide a benchmark for the low-temperature thermochronological studies, not only in the Japanese Islands, but also in mobile belts around the world that have begun to uplift in the past few million years.
Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of orogenic systems over timescales of 106–108 years. This research employed simple numerical modeling to evaluate the applicability of low-temperature thermochronometry to young orogenic systems uplifted in geologically recent periods such as the Pliocene and Quaternary, such as those in the Japanese Islands. Such orogenic systems are at the younger limit of the applicability because this time scale corresponds to the younger limit of applicability of the major low-temperature thermochronometers and also corresponds to the minimum period required for an orogenic system to be denuded by more than ~ 2–3 km after the start of uplift, which is the lower limit detectable by the major low-temperature thermochronometers. Time‒temperature paths were generated for varying uplift rates, uplift onsets, and model onsets (equivalent to the rock formation age). These paths were then converted into cooling ages for four thermochronometers: apatite and zircon FT and (U–Th–Sm)/He dating. The calculations were conducted using two models: a constant-elevation model and an increasing-elevation model. The modeling results are summarized in look-up tables, illustrating relationships between uplift rates, uplift onsets, rock formation ages and ratios of cooling age and rock formation age. The results indicate that differences in formation age and elevation change minimally impact cooling ages. The modeled dates generally align with measured cooling ages in regions where the rate and timing of uplift are well constrained, supporting the reliability of the modeling approach. Consequently, the derived relationships between uplift rates and cooling ages provide a practical method for roughly classifying mountain uplift rates based on cooling ages, without requiring complex simulations. Finally, these relationships were applied to previously reported cooling ages to visualize the distribution of uplift rates across the Japanese Islands over the past few million years. These results provide a benchmark for the low-temperature thermochronological studies, not only in the Japanese Islands, but also in mobile belts around the world that have begun to uplift in the past few million years.
Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of orogenic systems over timescales of 10 6 –10 8  years. This research employed simple numerical modeling to evaluate the applicability of low-temperature thermochronometry to young orogenic systems uplifted in geologically recent periods such as the Pliocene and Quaternary, such as those in the Japanese Islands. Such orogenic systems are at the younger limit of the applicability because this time scale corresponds to the younger limit of applicability of the major low-temperature thermochronometers and also corresponds to the minimum period required for an orogenic system to be denuded by more than ~ 2–3 km after the start of uplift, which is the lower limit detectable by the major low-temperature thermochronometers. Time‒temperature paths were generated for varying uplift rates, uplift onsets, and model onsets (equivalent to the rock formation age). These paths were then converted into cooling ages for four thermochronometers: apatite and zircon FT and (U–Th–Sm)/He dating. The calculations were conducted using two models: a constant-elevation model and an increasing-elevation model. The modeling results are summarized in look-up tables, illustrating relationships between uplift rates, uplift onsets, rock formation ages and ratios of cooling age and rock formation age. The results indicate that differences in formation age and elevation change minimally impact cooling ages. The modeled dates generally align with measured cooling ages in regions where the rate and timing of uplift are well constrained, supporting the reliability of the modeling approach. Consequently, the derived relationships between uplift rates and cooling ages provide a practical method for roughly classifying mountain uplift rates based on cooling ages, without requiring complex simulations. Finally, these relationships were applied to previously reported cooling ages to visualize the distribution of uplift rates across the Japanese Islands over the past few million years. These results provide a benchmark for the low-temperature thermochronological studies, not only in the Japanese Islands, but also in mobile belts around the world that have begun to uplift in the past few million years.
Abstract Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of orogenic systems over timescales of 106–108 years. This research employed simple numerical modeling to evaluate the applicability of low-temperature thermochronometry to young orogenic systems uplifted in geologically recent periods such as the Pliocene and Quaternary, such as those in the Japanese Islands. Such orogenic systems are at the younger limit of the applicability because this time scale corresponds to the younger limit of applicability of the major low-temperature thermochronometers and also corresponds to the minimum period required for an orogenic system to be denuded by more than ~ 2–3 km after the start of uplift, which is the lower limit detectable by the major low-temperature thermochronometers. Time‒temperature paths were generated for varying uplift rates, uplift onsets, and model onsets (equivalent to the rock formation age). These paths were then converted into cooling ages for four thermochronometers: apatite and zircon FT and (U–Th–Sm)/He dating. The calculations were conducted using two models: a constant-elevation model and an increasing-elevation model. The modeling results are summarized in look-up tables, illustrating relationships between uplift rates, uplift onsets, rock formation ages and ratios of cooling age and rock formation age. The results indicate that differences in formation age and elevation change minimally impact cooling ages. The modeled dates generally align with measured cooling ages in regions where the rate and timing of uplift are well constrained, supporting the reliability of the modeling approach. Consequently, the derived relationships between uplift rates and cooling ages provide a practical method for roughly classifying mountain uplift rates based on cooling ages, without requiring complex simulations. Finally, these relationships were applied to previously reported cooling ages to visualize the distribution of uplift rates across the Japanese Islands over the past few million years. These results provide a benchmark for the low-temperature thermochronological studies, not only in the Japanese Islands, but also in mobile belts around the world that have begun to uplift in the past few million years.
ArticleNumber 59
Author Tagami, Takahiro
Sueoka, Shigeru
Author_xml – sequence: 1
  givenname: Shigeru
  orcidid: 0000-0002-5264-2713
  surname: Sueoka
  fullname: Sueoka, Shigeru
  email: sueoka.shigeru@jaea.go.jp
  organization: Tono Geoscience Center, Japan Atomic Energy Agency
– sequence: 2
  givenname: Takahiro
  surname: Tagami
  fullname: Tagami, Takahiro
  organization: Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University
BookMark eNp9kbGO1DAURSO0SCzL_gCVJRooArbjeBxEs1qxMGgRDdSW4zxnM8r4BdsBpUHb0vMBfAufwpfgmSCgoniydXXvebbu_eLEo4eieMjoU8aUfBYFlaIuKc9DN1VdsjvFKWfNphRciZN_7veK8xh3lFJOhayb-rT4djFN42BNO4xDWgg6MuLnMsF-gmDSHICkGwh7tDcBPY7YLyThQSPwCcc5DegPoQVn35PHL37efv2Sp_7x_a15QjBgD36wJC4xI-NzYog1EUhMc7cQF3B_RL0xk_GQ9W0cje_ig-KuM2OE89_nWfHh6uX7y9fl9btX28uL69IKzlJpqpa5_GFJXU0NVVYA3zjaUidr6jqhWrAG2o5xJWXnbAuyVUZCLetKVJZXZ8V25XZodnoKw96ERaMZ9FHA0GsT0mBH0IozIbumaZXtRGONUq5VXWMEqKoSQmTWo5U1Bfw4Q0x6h3Pw-fm64hVvGJdik118ddmAMQZwf7Yyqg9l6rVMncvUxzI1y6FqDcVs9j2Ev-j_pH4BD86oUg
Cites_doi 10.1029/2018TC005132
10.1007/978-3-642-67161-6_14
10.1016/j.gca.2013.05.041
10.1029/2018GC007595
10.2138/rmg.2005.58.3
10.4294/zisin1948.43.1_137
10.1007/978-94-011-2478-2
10.1029/96JB02565
10.5194/gchron-5-35-2023
10.1130/G30526.1
10.1016/S0009-2541(98)00024-2
10.1007/978-3-319-89421-8_3
10.2138/rmg.2002.47.18
10.1016/S0016-7037(97)00302-5
10.1111/iar.12361
10.5026/jgeography.104.6_809
10.1016/0168-9622(87)90057-1
10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2
10.1029/2012GC004279
10.1130/G30013A.1
10.2138/am-2003-5-610
10.1016/0012-821X(95)00197-K
10.2138/am.2007.2281
10.2138/am-1999-0903
10.1029/2004GL020211
10.2138/am-1999-0901
10.1016/S0377-0273(02)00297-4
10.4157/grj.37.627
10.4294/zisin1948.57.2_209
10.1016/j.tecto.2011.12.035
10.1016/1359-0189(90)90036-W
10.1111/iar.12305
10.1016/0012-821X(94)00068-9
10.1144/SP318.1
10.1016/0169-555X(93)90023-U
10.1186/s40623-021-01556-4
10.1016/j.gca.2003.10.021
10.5194/esurf-2-47-2014
10.1029/2011JB008825
10.5194/egusphere-egu24-16512
10.15083/00036373
10.1130/0016-7606(1998)110%3C0985:LCEOTC%3E2.3.CO;2
10.1029/2002GL015679
10.2138/rmg.2005.58.1
10.1016/j.pce.2021.103048
10.1029/95JB02885
10.15080/agcjchikyukagaku.24.1_35
10.1016/0016-7037(87)90164-5
10.17605/osf.io/wq2U5
10.1046/j.1365-2117.1999.00084.x
10.1016/j.lithos.2018.03.018
10.4157/grj.77.55
10.1111/j.1440-1738.2004.00445.x
10.1016/j.chemgeo.2006.09.002
10.1029/2018TC005312
10.1007/BF00373790
10.1016/0191-278X(81)90039-1
10.1002/2017JB014320
10.1016/S0012-821X(02)01069-5
10.1038/nature12877
10.2138/rmg.2005.58.11
10.1029/2018TC005451
10.2138/rmg.2005.58.22
10.2475/ajs.268.3.243
10.1146/annurev.earth.34.031405.125202
10.4116/jaqua.16.255
10.2138/am-2015-5167
10.5575/geosoc.2018.0024
10.4157/grj.52.169
10.1016/0040-1951(90)90418-8
10.4157/grj1984a.57.10_691
10.1029/2021JB023630
10.1007/BF00311955
10.1007/978-94-015-9133-1_8
10.5026/jgeography.112.3_360
10.3327/jnuce.11.113
10.1111/iar.12219
10.15080/agcjchikyukagaku.69.1_47
10.1029/1999JB900348
10.1016/j.tecto.2022.229231
10.1007/978-3-319-89421-8_6
10.1029/2008TC002367
10.5026/jgeography.119.84
10.1046/j.1440-1738.2000.00262.x
10.2343/geochemj.33.59
10.2138/rmg.2005.58.6
10.1130/G111A.1
10.1029/2022GL100028
10.1016/j.gca.2009.01.015
10.1130/B37245.1
10.2475/03.2013.01
10.4157/grj1984a.62.10_691
10.1016/j.gsf.2015.06.005
10.2113/2023/lithosphere_2024_220
10.1038/srep01306
10.1016/S0040-1951(96)00279-X
10.4116/jaqua.7.182
10.1016/S0012-821X(02)00725-2
10.1029/2023GL104392
10.1306/102501720386
10.1051/bsgf/2021031
10.1016/j.quascirev.2014.03.010
10.1186/s40645-017-0156-3
10.20630/chirikagaku.41.3_150
10.1016/j.geomorph.2015.01.012
10.5026/jgeography.127.795
10.3769/radioisotopes.70.173
10.1016/0168-9622(89)90018-3
10.4157/grj1984a.63.12_793(inJapanesewithEnglishabstract)
10.1038/s41598-023-35776-3
10.1016/0168-9622(89)90035-3
10.1111/j.1440-1738.2011.00789.x
10.1016/0012-821X(91)90203-T
10.5194/gchron-5-91-2023
10.5575/geosoc.2020.0052
10.1029/2011JF002043
10.5571/syntheng.1.73
10.4116/jaqua.30.175
10.1186/s40623-023-01921-5
10.4116/jaqua.44.229
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TG
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
KL.
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1186/s40645-025-00735-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Collection (ProQuest)
Meteorological & Geoastrophysical Abstracts - Academic
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2197-4284
EndPage 20
ExternalDocumentID oai_doaj_org_article_82146d99b8cd49ca88fb8d9a4e833444
10_1186_s40645_025_00735_1
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 21K03730
  funderid: http://dx.doi.org/10.13039/501100001691
GroupedDBID 0R~
5VS
8FE
8FH
AAFWJ
AAJSJ
AAKKN
AASML
ABEEZ
ACACY
ACGFS
ACULB
ADBBV
AEUYN
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
BCNDV
BENPR
BHPHI
BKSAR
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
IAO
IEP
IGS
ISR
ITC
KQ8
LK5
M7R
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
SOJ
AAYXX
CITATION
7TG
ABUWG
AZQEC
DWQXO
KL.
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c421t-a3b1f07360f50a08c4e27f0b0f650fd48becaebd12866dfcbe6b8a6e565343c23
IEDL.DBID BENPR
ISSN 2197-4284
IngestDate Wed Aug 27 01:28:39 EDT 2025
Fri Jul 25 05:11:40 EDT 2025
Wed Jul 30 23:50:27 EDT 2025
Fri Jul 25 01:20:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Low-temperature thermochronology
Mountain formation
Exhumation
(U–Th–Sm)/He method
Fission-track method
Uplift
Japanese Islands
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-a3b1f07360f50a08c4e27f0b0f650fd48becaebd12866dfcbe6b8a6e565343c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5264-2713
OpenAccessLink https://www.proquest.com/docview/3232912647?pq-origsite=%requestingapplication%
PQID 3232912647
PQPubID 2034674
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_82146d99b8cd49ca88fb8d9a4e833444
proquest_journals_3232912647
crossref_primary_10_1186_s40645_025_00735_1
springer_journals_10_1186_s40645_025_00735_1
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Progress in earth and planetary science
PublicationTitleAbbrev Prog Earth Planet Sci
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References GM Laslett (735_CR57) 1987; 65
S Sueoka (735_CR96) 2019; 28
PW Reiners (735_CR88) 2005; 58
Y Ota (735_CR80) 1979; 52
K Tani (735_CR115) 2010; 38
K Kano (735_CR48) 2002; 77
RF Galbraith (735_CR31) 1990; 17
A Tanaka (735_CR114) 1999; 50
RM Flowers (735_CR23) 2009; 73
TA Ehlers (735_CR19) 2005; 58
PW Reiners (735_CR86) 2004; 68
H Ohmori (735_CR75) 1978; 10
KE Murray (735_CR71) 2018; 19
735_CR62
S Fukuda (735_CR30) 2021; 70
WD Carlson (735_CR10) 1999; 84
RA Ketcham (735_CR54) 2007; 92
F Herman (735_CR42) 2013; 504
PE Martin (735_CR61) 2023; 5
SC Boone (735_CR6) 2023; 13
Y Ota (735_CR81) 1991; 30
Research Group for Quaternary Tectonic Map (735_CR90) 1968; 7
RA Ketcham (735_CR55) 2015; 100
TA Ehlers (735_CR18) 2003; 206
F Herman (735_CR41) 2009; 28
K Stüwe (735_CR95) 1994; 124
E Bertel (735_CR5) 1983; 9
WB Ouimet (735_CR83) 2009; 37
M Fox (735_CR25) 2014; 2
735_CR74
JC Ringenbach (735_CR91) 1990; 183
O Fujiwara (735_CR26) 1999; 5
S Sueoka (735_CR99) 2015; 69
KA Farley (735_CR22) 2002; 47
MT Brandon (735_CR8) 1998; 110
F Ahnert (735_CR1) 1970; 268
M Tajikara (735_CR112) 2005; 44
SJ Vincent (735_CR121) 2020; 39
AC Warnock (735_CR128) 1997; 61
H Hecht (735_CR40) 2017; 4
K Mokudai (735_CR65) 2004; 77
Y Oka (735_CR78) 1986; 41
J Okuno (735_CR79) 2014; 91
Y Sawaki (735_CR93) 2020; 29
P van den Beek (735_CR119) 2023; 5
(735_CR59) 2019
AJW Gleadow (735_CR34) 1981; 5
T Tagami (735_CR110) 1996; 101
T Yuguchi (735_CR139) 2017; 26
735_CR89
RA Wolf (735_CR131) 1998; 148
S Sueoka (735_CR105) 2023; 75
M Yuhara (735_CR140) 2000; 9
T Yoshikawa (735_CR136) 1984; 57A
RA DiBiase (735_CR14) 2023; 50
K Umeda (735_CR116) 1999; 2
MH Dodson (735_CR15) 1973; 40
P England (735_CR20) 1990; 18
735_CR500
735_CR107
735_CR16
PW Reiners (735_CR85) 2005; 58
M Utada (735_CR117) 2003; 112
M Murakami (735_CR68) 2004; 31
S Sugihara (735_CR109) 1978; 16
T Nakajima (735_CR72) 2018; 124
GA Wagner (735_CR124) 1992
735_CR13
N Hasebe (735_CR38) 2004; 13
EW Portenga (735_CR84) 2011; 21
735_CR12
H Ito (735_CR47) 2013; 3
RA Ketcham (735_CR52) 1999; 84
A Moriyama (735_CR67) 1989; 62A
K Gallagher (735_CR33) 2012; 117
RA Donelick (735_CR17) 2005; 58
GA Wagner (735_CR123) 1989; 79
WR Guenthner (735_CR37) 2013; 313
S Sueoka (735_CR104) 2022; 828
735_CR27
HS Carslaw (735_CR11) 1959
NS Mancktelow (735_CR60) 1997; 270
S Sueoka (735_CR100) 2016; 7
TP Goswami (735_CR35) 2021; 124
S Sueoka (735_CR101) 2017; 122
H Ohmori (735_CR76) 1985; 17
Y Ikeda (735_CR46) 1990; 43
735_CR3
AK Ault (735_CR4) 2019
735_CR126
R Yamada (735_CR132) 1999; 33
PK Zeitler (735_CR141) 1987; 51
735_CR134
T Nakajima (735_CR73) 2022; 127
735_CR135
P Vermeesch (735_CR120) 2019
PF Green (735_CR36) 1989; 79
RB Anderson (735_CR2) 2018; 37
J Braun (735_CR7) 2012; 524–525
S Sueoka (735_CR98) 2012; 21
RA Ketcham (735_CR53) 2003; 88
C Hasegawa (735_CR39) 1970; 24
SD Willett (735_CR130) 2013; 14
M Murakami (735_CR69) 2002; 29
M Shirai (735_CR94) 2002; 72
Y Ota (735_CR82) 2010
Y Wang (735_CR127) 2023; 50
RW Brown (735_CR9) 2013; 122
TM Lutz (735_CR58) 1991; 104
H Ohmori (735_CR77) 1993; 8
PW Reiners (735_CR87) 2006; 34
735_CR49
T Tagami (735_CR111) 1998
R Murakami (735_CR70) 2004; 57
K Gallagher (735_CR32) 1995; 136
R Yamada (735_CR133) 2007; 236
735_CR44
735_CR43
735_CR45
S Minami (735_CR64) 2021; 73
T Matsu’ura (735_CR63) 2015; 234
Y Sano (735_CR92) 2002; 117
PG Valla (735_CR118) 2012; 117
KA Farley (735_CR21) 2000; 105
T Sugai (735_CR108) 1999; 11
GA Wagner (735_CR125) 1997; 102
T Sugai (735_CR106) 1990; 63A
O Fujiwara (735_CR28) 2005; 11
DR Montgomery (735_CR66) 2002; 201
GA Wagner (735_CR122) 1977; 30
RA Ketcham (735_CR51) 2019
S Sueoka (735_CR102) 2018; 127
RA Ketcham (735_CR50) 2005; 58
BP Kohn (735_CR56) 2024; 136
S Sueoka (735_CR97) 2010; 119
S Sueoka (735_CR103) 2021; 127
A Yoshiyama (735_CR138) 1995; 104
K Takatsuka (735_CR113) 2018; 308–309
T Yoshikawa (735_CR137) 1964; 37
References_xml – volume: 37
  start-page: 3577
  year: 2018
  ident: 735_CR2
  publication-title: Tectonics
  doi: 10.1029/2018TC005132
– ident: 735_CR27
– ident: 735_CR16
  doi: 10.1007/978-3-642-67161-6_14
– volume: 122
  start-page: 478
  year: 2013
  ident: 735_CR9
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2013.05.041
– volume: 19
  start-page: 3739
  year: 2018
  ident: 735_CR71
  publication-title: Geochem Geophyst Geosys
  doi: 10.1029/2018GC007595
– volume: 58
  start-page: 49
  year: 2005
  ident: 735_CR17
  publication-title: Rev Min Geochem
  doi: 10.2138/rmg.2005.58.3
– volume: 43
  start-page: 137
  year: 1990
  ident: 735_CR46
  publication-title: J Ser Soc Jpn 2nd Ser (Zisin)
  doi: 10.4294/zisin1948.43.1_137
– volume-title: Fission-track dating
  year: 1992
  ident: 735_CR124
  doi: 10.1007/978-94-011-2478-2
– volume: 102
  start-page: 18221
  year: 1997
  ident: 735_CR125
  publication-title: J Geophys Res
  doi: 10.1029/96JB02565
– volume: 5
  start-page: 35
  year: 2023
  ident: 735_CR119
  publication-title: Geochronology
  doi: 10.5194/gchron-5-35-2023
– volume: 38
  start-page: 215
  year: 2010
  ident: 735_CR115
  publication-title: Geology
  doi: 10.1130/G30526.1
– volume: 148
  start-page: 105
  year: 1998
  ident: 735_CR131
  publication-title: Chem Geol
  doi: 10.1016/S0009-2541(98)00024-2
– ident: 735_CR13
– start-page: 49
  volume-title: Fission-track thermochronology and its application to geology
  year: 2019
  ident: 735_CR51
  doi: 10.1007/978-3-319-89421-8_3
– volume: 47
  start-page: 819
  year: 2002
  ident: 735_CR22
  publication-title: Rev Min Geochem
  doi: 10.2138/rmg.2002.47.18
– volume: 61
  start-page: 5371
  year: 1997
  ident: 735_CR128
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/S0016-7037(97)00302-5
– volume: 29
  year: 2020
  ident: 735_CR93
  publication-title: Isl Arc
  doi: 10.1111/iar.12361
– ident: 735_CR135
– volume: 104
  start-page: 809
  year: 1995
  ident: 735_CR138
  publication-title: J Geogr (Chigaku Zasshi)
  doi: 10.5026/jgeography.104.6_809
– volume: 17
  start-page: 19
  year: 1985
  ident: 735_CR76
  publication-title: Bull Dept Geogr Univ Tokyo
– volume: 65
  start-page: 1
  year: 1987
  ident: 735_CR57
  publication-title: Chem Geol (Isot Geosci Sect)
  doi: 10.1016/0168-9622(87)90057-1
– volume: 30
  start-page: 1
  year: 1977
  ident: 735_CR122
  publication-title: Mem Inst Geol Min Univ Padova
– volume: 18
  start-page: 1173
  year: 1990
  ident: 735_CR20
  publication-title: Geology
  doi: 10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2
– volume: 14
  start-page: 209
  year: 2013
  ident: 735_CR130
  publication-title: Geochem Geophys Geosyst
  doi: 10.1029/2012GC004279
– volume: 37
  start-page: 579
  year: 2009
  ident: 735_CR83
  publication-title: Geology
  doi: 10.1130/G30013A.1
– volume: 88
  start-page: 929
  year: 2003
  ident: 735_CR53
  publication-title: Amer Min
  doi: 10.2138/am-2003-5-610
– ident: 735_CR74
– volume: 136
  start-page: 421
  year: 1995
  ident: 735_CR32
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/0012-821X(95)00197-K
– volume: 92
  start-page: 799
  year: 2007
  ident: 735_CR54
  publication-title: Am Min
  doi: 10.2138/am.2007.2281
– volume: 84
  start-page: 1235
  year: 1999
  ident: 735_CR52
  publication-title: Am Min
  doi: 10.2138/am-1999-0903
– volume: 31
  start-page: L12604
  year: 2004
  ident: 735_CR68
  publication-title: Geophys Res Lett
  doi: 10.1029/2004GL020211
– volume: 84
  start-page: 1213
  year: 1999
  ident: 735_CR10
  publication-title: Am Min
  doi: 10.2138/am-1999-0901
– volume: 117
  start-page: 285
  year: 2002
  ident: 735_CR92
  publication-title: J Volc Geotherm Res
  doi: 10.1016/S0377-0273(02)00297-4
– volume: 37
  start-page: 627
  year: 1964
  ident: 735_CR137
  publication-title: Geogr Rev Jpn
  doi: 10.4157/grj.37.627
– volume: 5
  start-page: 85
  year: 1999
  ident: 735_CR26
  publication-title: JNC Tech Rev
– volume: 57
  start-page: 209
  year: 2004
  ident: 735_CR70
  publication-title: Zisin (j Seis Soc Jpn 2nd Ser)
  doi: 10.4294/zisin1948.57.2_209
– volume: 524–525
  start-page: 1
  year: 2012
  ident: 735_CR7
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2011.12.035
– volume: 17
  start-page: 207
  year: 1990
  ident: 735_CR31
  publication-title: Nucl Tracks Radiat Meas Int J Radiat Appl Instrum Part D
  doi: 10.1016/1359-0189(90)90036-W
– volume: 28
  year: 2019
  ident: 735_CR96
  publication-title: Isl Arc
  doi: 10.1111/iar.12305
– volume: 124
  start-page: 63
  year: 1994
  ident: 735_CR95
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/0012-821X(94)00068-9
– ident: 735_CR12
  doi: 10.1144/SP318.1
– volume: 8
  start-page: 263
  year: 1993
  ident: 735_CR77
  publication-title: Geomorphology
  doi: 10.1016/0169-555X(93)90023-U
– volume: 73
  start-page: 231
  year: 2021
  ident: 735_CR64
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-021-01556-4
– volume: 68
  start-page: 1857
  year: 2004
  ident: 735_CR86
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2003.10.021
– volume: 2
  start-page: 47
  year: 2014
  ident: 735_CR25
  publication-title: Earth Surf Dyn
  doi: 10.5194/esurf-2-47-2014
– volume: 117
  start-page: B02408
  year: 2012
  ident: 735_CR33
  publication-title: J Geophys Res
  doi: 10.1029/2011JB008825
– ident: 735_CR500
  doi: 10.5194/egusphere-egu24-16512
– ident: 735_CR107
  doi: 10.15083/00036373
– volume: 110
  start-page: 985
  year: 1998
  ident: 735_CR8
  publication-title: Geol Soc Am Bull
  doi: 10.1130/0016-7606(1998)110%3C0985:LCEOTC%3E2.3.CO;2
– volume: 29
  start-page: 2123
  year: 2002
  ident: 735_CR69
  publication-title: Geophys Res Lett
  doi: 10.1029/2002GL015679
– ident: 735_CR44
– volume: 58
  start-page: 1
  year: 2005
  ident: 735_CR88
  publication-title: Rev Min Geochem
  doi: 10.2138/rmg.2005.58.1
– volume: 124
  year: 2021
  ident: 735_CR35
  publication-title: Phys Chem Eearth Parts a/b/c
  doi: 10.1016/j.pce.2021.103048
– volume: 101
  start-page: 8245
  year: 1996
  ident: 735_CR110
  publication-title: J Geophys Res
  doi: 10.1029/95JB02885
– volume: 77
  start-page: 231
  year: 2002
  ident: 735_CR48
  publication-title: Bull Earthq Res Inst Univ Tokyo
– volume: 24
  start-page: 35
  year: 1970
  ident: 735_CR39
  publication-title: Earth Sci (Chikyu Kagaku)
  doi: 10.15080/agcjchikyukagaku.24.1_35
– volume: 51
  start-page: 2865
  year: 1987
  ident: 735_CR141
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/0016-7037(87)90164-5
– ident: 735_CR49
  doi: 10.17605/osf.io/wq2U5
– volume: 11
  start-page: 43
  year: 1999
  ident: 735_CR108
  publication-title: Basin Res
  doi: 10.1046/j.1365-2117.1999.00084.x
– volume: 308–309
  start-page: 428
  year: 2018
  ident: 735_CR113
  publication-title: Lithos
  doi: 10.1016/j.lithos.2018.03.018
– volume: 77
  start-page: 55
  year: 2004
  ident: 735_CR65
  publication-title: Geogr Rev Jpn
  doi: 10.4157/grj.77.55
– volume: 13
  start-page: 533
  year: 2004
  ident: 735_CR38
  publication-title: Isl Arc
  doi: 10.1111/j.1440-1738.2004.00445.x
– volume: 236
  start-page: 75
  year: 2007
  ident: 735_CR133
  publication-title: Chem Geol
  doi: 10.1016/j.chemgeo.2006.09.002
– year: 2019
  ident: 735_CR4
  publication-title: Tectonics
  doi: 10.1029/2018TC005312
– volume: 40
  start-page: 259
  year: 1973
  ident: 735_CR15
  publication-title: Contr Min Petrol
  doi: 10.1007/BF00373790
– volume: 5
  start-page: 169
  year: 1981
  ident: 735_CR34
  publication-title: Nucl Tracks
  doi: 10.1016/0191-278X(81)90039-1
– volume: 122
  start-page: 6787
  year: 2017
  ident: 735_CR101
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2017JB014320
– volume: 206
  start-page: 1
  year: 2003
  ident: 735_CR18
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/S0012-821X(02)01069-5
– volume: 504
  start-page: 423
  year: 2013
  ident: 735_CR42
  publication-title: Nature
  doi: 10.1038/nature12877
– volume: 58
  start-page: 275
  year: 2005
  ident: 735_CR50
  publication-title: Rev Min Geochem
  doi: 10.2138/rmg.2005.58.11
– volume: 39
  start-page: e2018TC005451
  year: 2020
  ident: 735_CR121
  publication-title: Tectonics
  doi: 10.1029/2018TC005451
– volume: 58
  start-page: 589
  year: 2005
  ident: 735_CR19
  publication-title: Rev Min Geochem
  doi: 10.2138/rmg.2005.58.22
– volume: 268
  start-page: 248
  year: 1970
  ident: 735_CR1
  publication-title: Am J Sci
  doi: 10.2475/ajs.268.3.243
– volume: 34
  start-page: 419
  year: 2006
  ident: 735_CR87
  publication-title: Ann Rev Earth Planet Sci
  doi: 10.1146/annurev.earth.34.031405.125202
– volume: 10
  start-page: 31
  year: 1978
  ident: 735_CR75
  publication-title: Bull Dept Geogr Univ Tokyo
– volume: 16
  start-page: 255
  year: 1978
  ident: 735_CR109
  publication-title: Quat Res (Daiyonki-Kenkyu)
  doi: 10.4116/jaqua.16.255
– volume: 100
  start-page: 1452
  year: 2015
  ident: 735_CR55
  publication-title: Am Min
  doi: 10.2138/am-2015-5167
– volume: 124
  start-page: 603
  year: 2018
  ident: 735_CR72
  publication-title: J Geol Soc Jpn
  doi: 10.5575/geosoc.2018.0024
– volume: 52
  start-page: 169
  year: 1979
  ident: 735_CR80
  publication-title: Geogr Rev Jpn
  doi: 10.4157/grj.52.169
– volume: 183
  start-page: 225
  year: 1990
  ident: 735_CR91
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(90)90418-8
– volume: 57A
  start-page: 691
  year: 1984
  ident: 735_CR136
  publication-title: Geogr Rev Jpn
  doi: 10.4157/grj1984a.57.10_691
– volume: 127
  start-page: e2021JB023630
  year: 2022
  ident: 735_CR73
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2021JB023630
– volume: 9
  start-page: 197
  year: 1983
  ident: 735_CR5
  publication-title: Phys Chem Min
  doi: 10.1007/BF00311955
– start-page: 99
  volume-title: Advances in fission-track geochronology
  year: 1998
  ident: 735_CR111
  doi: 10.1007/978-94-015-9133-1_8
– volume: 112
  start-page: 360
  year: 2003
  ident: 735_CR117
  publication-title: J Geogr Chigaku Zasshi
  doi: 10.5026/jgeography.112.3_360
– volume: 11
  start-page: 113
  year: 2005
  ident: 735_CR28
  publication-title: J Nucl Fuel Cycle Environ
  doi: 10.3327/jnuce.11.113
– volume: 26
  year: 2017
  ident: 735_CR139
  publication-title: Isl Arc
  doi: 10.1111/iar.12219
– volume: 69
  start-page: 47
  year: 2015
  ident: 735_CR99
  publication-title: Earth Sci (Chikyu Kagaku)
  doi: 10.15080/agcjchikyukagaku.69.1_47
– volume: 105
  start-page: 2903
  year: 2000
  ident: 735_CR21
  publication-title: J Geophys Res
  doi: 10.1029/1999JB900348
– volume: 828
  year: 2022
  ident: 735_CR104
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2022.229231
– start-page: 109
  volume-title: Fission-track thermochronology and its application to geology
  year: 2019
  ident: 735_CR120
  doi: 10.1007/978-3-319-89421-8_6
– volume: 28
  start-page: TC5011
  year: 2009
  ident: 735_CR41
  publication-title: Tectonics
  doi: 10.1029/2008TC002367
– volume: 119
  start-page: 84
  year: 2010
  ident: 735_CR97
  publication-title: J Geogr (Chigaku Zasshi)
  doi: 10.5026/jgeography.119.84
– volume: 9
  start-page: 64
  year: 2000
  ident: 735_CR140
  publication-title: Isl Arc
  doi: 10.1046/j.1440-1738.2000.00262.x
– ident: 735_CR89
– volume: 33
  start-page: 59
  year: 1999
  ident: 735_CR132
  publication-title: Geochem Jour
  doi: 10.2343/geochemj.33.59
– volume: 58
  start-page: 151
  year: 2005
  ident: 735_CR85
  publication-title: Rev Min Geochem
  doi: 10.2138/rmg.2005.58.6
– volume: 21
  start-page: 4
  year: 2011
  ident: 735_CR84
  publication-title: Geol Soc Am Today
  doi: 10.1130/G111A.1
– ident: 735_CR43
– volume: 50
  start-page: e2022GL100028
  year: 2023
  ident: 735_CR127
  publication-title: Geophys Res Lett
  doi: 10.1029/2022GL100028
– volume: 73
  start-page: 2347
  year: 2009
  ident: 735_CR23
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2009.01.015
– volume: 136
  start-page: 3891
  year: 2024
  ident: 735_CR56
  publication-title: Geol Soc Amer Bull
  doi: 10.1130/B37245.1
– volume: 50
  start-page: 457
  year: 1999
  ident: 735_CR114
  publication-title: Bull Geol Surv Japan
– volume: 313
  start-page: 145
  year: 2013
  ident: 735_CR37
  publication-title: Am J Sci
  doi: 10.2475/03.2013.01
– volume: 62A
  start-page: 691
  year: 1989
  ident: 735_CR67
  publication-title: Geogr Rev Jpn
  doi: 10.4157/grj1984a.62.10_691
– volume: 7
  start-page: 197
  year: 2016
  ident: 735_CR100
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2015.06.005
– start-page: 522p
  volume-title: Conduction of heat in solids
  year: 1959
  ident: 735_CR11
– ident: 735_CR134
  doi: 10.2113/2023/lithosphere_2024_220
– volume: 3
  start-page: 1306
  year: 2013
  ident: 735_CR47
  publication-title: Sci Rep
  doi: 10.1038/srep01306
– volume: 270
  start-page: 167
  year: 1997
  ident: 735_CR60
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(96)00279-X
– volume: 7
  start-page: 182
  year: 1968
  ident: 735_CR90
  publication-title: Quat Res (Daiyonki Kenkyu)
  doi: 10.4116/jaqua.7.182
– volume: 201
  start-page: 481
  year: 2002
  ident: 735_CR66
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/S0012-821X(02)00725-2
– volume: 50
  start-page: e2023GL104392
  year: 2023
  ident: 735_CR14
  publication-title: Geophys Res Lett
  doi: 10.1029/2023GL104392
– volume: 72
  start-page: 386
  year: 2002
  ident: 735_CR94
  publication-title: Jour Sed Res
  doi: 10.1306/102501720386
– ident: 735_CR3
  doi: 10.1051/bsgf/2021031
– volume: 91
  start-page: 42
  year: 2014
  ident: 735_CR79
  publication-title: Quat Sci Rev
  doi: 10.1016/j.quascirev.2014.03.010
– volume: 4
  start-page: 40
  year: 2017
  ident: 735_CR40
  publication-title: Prog Earth Planet Sci
  doi: 10.1186/s40645-017-0156-3
– volume: 41
  start-page: 150
  year: 1986
  ident: 735_CR78
  publication-title: Geogr Sci
  doi: 10.20630/chirikagaku.41.3_150
– volume: 234
  start-page: 133
  year: 2015
  ident: 735_CR63
  publication-title: Geomorph
  doi: 10.1016/j.geomorph.2015.01.012
– volume: 127
  start-page: 795
  year: 2018
  ident: 735_CR102
  publication-title: J Geogr (Chigaku Zasshi)
  doi: 10.5026/jgeography.127.795
– volume: 70
  start-page: 173
  year: 2021
  ident: 735_CR30
  publication-title: Radioisotopes
  doi: 10.3769/radioisotopes.70.173
– volume: 79
  start-page: 155
  year: 1989
  ident: 735_CR36
  publication-title: Chem Geol (Isot Geosci Sect)
  doi: 10.1016/0168-9622(89)90018-3
– volume: 63A
  start-page: 193
  year: 1990
  ident: 735_CR106
  publication-title: Geogr Rev Jpn
  doi: 10.4157/grj1984a.63.12_793(inJapanesewithEnglishabstract)
– volume: 2
  start-page: 29
  year: 1999
  ident: 735_CR116
  publication-title: JNC Tech Rev
– volume-title: Fission-track thermochronology and its application to geology
  year: 2019
  ident: 735_CR59
– volume: 13
  start-page: 8581
  year: 2023
  ident: 735_CR6
  publication-title: Big Data Sci Rep
  doi: 10.1038/s41598-023-35776-3
– volume: 79
  start-page: 295
  year: 1989
  ident: 735_CR123
  publication-title: Chem Geol Isot Geosci Sect
  doi: 10.1016/0168-9622(89)90035-3
– volume: 21
  start-page: 32
  year: 2012
  ident: 735_CR98
  publication-title: Isl Arc
  doi: 10.1111/j.1440-1738.2011.00789.x
– volume: 104
  start-page: 181
  year: 1991
  ident: 735_CR58
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/0012-821X(91)90203-T
– volume: 5
  start-page: 91
  year: 2023
  ident: 735_CR61
  publication-title: Geochronology
  doi: 10.5194/gchron-5-91-2023
– ident: 735_CR62
– volume-title: Geomorphology of the Japanese Islands
  year: 2010
  ident: 735_CR82
– volume: 127
  start-page: 25
  year: 2021
  ident: 735_CR103
  publication-title: J Geol Soc Jpn
  doi: 10.5575/geosoc.2020.0052
– ident: 735_CR45
– volume: 117
  start-page: F01004
  year: 2012
  ident: 735_CR118
  publication-title: Jour Geophys Res
  doi: 10.1029/2011JF002043
– ident: 735_CR126
  doi: 10.5571/syntheng.1.73
– volume: 30
  start-page: 175
  year: 1991
  ident: 735_CR81
  publication-title: Quat Res (Daiyonki Kenkyu)
  doi: 10.4116/jaqua.30.175
– volume: 75
  start-page: 177
  year: 2023
  ident: 735_CR105
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-023-01921-5
– volume: 44
  start-page: 229
  year: 2005
  ident: 735_CR112
  publication-title: Quat Res (Daiyonki-Kenkyu)
  doi: 10.4116/jaqua.44.229
SSID ssj0002046595
Score 2.31054
Snippet Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation history of...
Abstract Low-temperature thermochronology, including fission track (FT) and (U–Th–Sm)/He thermochronometry, has been widely used to constrain the exhumation...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 59
SubjectTerms (U–Th–Sm)/He method
4. Solid earth sciences
Atmospheric Sciences
Biogeosciences
Cooling
Earth and Environmental Science
Earth Sciences
Elevation
Exhumation
Fault lines
Fission-track method
Geophysics/Geodesy
Hydrogeology
Islands
Low temperature
Low-temperature thermochronology
Modelling
Mountain formation
Mountains
Planetology
Pliocene
Quaternary
Research Article
Rocks
Temperature
Uplift
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSh0xFA5FKHQjtla8_pQsXFg0mJlkcjPuVKoi2JWCu5BfUPSOeK_K3ZRuu_cBfBYfxSfpOZm59QfETRezyUyGkHPC-Q4n5_sIWbGpdjZVCpIcHpkMqWZOVAULvPKQBXHhFfYOH_5U-8fy4KQ6eSb1hXfCWnrgduM2NCpPh7p2qLJTe6t1cjrUVkYthJSZCRRi3rNk6iyX1yQS5U26ZLTaGEpkZmOo3orVqYoVLyJRJux_gTJfFUZzvNmdIdMdUKRb7QI_kw9x8IV83MtCvONZcrfVVp7z3dYxbRI9b24ZEk11LMkUkd1F45H8Ns-howbHaLzpvA0njfGw01X6-PvPL3iqh_tD-502Vw341amnLc_zcJNa6iHc0UxGS7ElJf_qACItKlhSdKxBGH4lx7s_jnb2WaewwLwsixGzwhUJdkPxVHHLtZex7CfueALgloLUYGEbXYAgplRI3kXltFURUKCQwpdijkwNmkGcJzQ5Z6uAMuvey9SHvKtQtrQJm1sDr0OPrE1221y2RBomJyBamdY2Bmxjsm1M0SPbaJB_XyIJdh4A1zCda5j3XKNHlibmNN3JHBoBELIuAAb2e2R9YuKn128vaeF_LGmRfCrRBfN9mCUyNbq6jsuAakbuW3bgv-959sU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYqqkq9IOiP2AKVDz20aq06seN1EBeKShESnEDiZvm3KoJNtVlAe0FcufMAfRYepU_SGSdpRUUPPeTi2EnkbyYzo_F8Q8gbm2pnU6UgyOGRyZBq5kRVsMArD1EQF15h7fD-gdo9knvH1XFfFNYOp92HlGT-U2e11upjK5FajWH7VUwvVQxinsfwhhLleruvcTjJqTWJJHlDhcyDS-9ZoUzWf8_D_Cspmm3NzhJZ7J1EutWhukwexckz8uRLbsI7f05ut7qscz7XOqdNoqfNJUOSqZ4hmaJXd9Z4JL7Na-iswTEaL3pJw0VzVHT6dvPn9c0VXNXdj337jjbTBmTqm6cdx3O7QS31YOpoJqKlWI6SH7UHVha7V1IUqkloX5Cjnc-H27us767AvCyLGbPCFQl2Q_FUccu1l7EcJ-54AqctBakBXRtdAAOmVEjeReW0VRE8QCGFL8VLsjBpJnGF0OScrQK2WPdepjHEXIWypU1Y2Bp4HUbk_bDb5ntHomFy8KGV6bAxgI3J2JhiRD4hIL9nIgF2HmimX02vT0ZjQ_JQ1w6bL9Xeap2cDrWVUQshpRyRtQFO02tlawS4j3UBLuB4RD4MEP-5_e9PevV_01fJ0xKFLZ96WSMLs-l5XAffZeZeZ1H9BU2D6yY
  priority: 102
  providerName: Springer Nature
Title Applicability of low-temperature thermochronology to the evolution of young (< ~ 5 Ma) orogenic systems: a case study from the Japanese Islands
URI https://link.springer.com/article/10.1186/s40645-025-00735-1
https://www.proquest.com/docview/3232912647
https://doaj.org/article/82146d99b8cd49ca88fb8d9a4e833444
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxQxFA-2i-BF_MTVuuTgQdHQ-UiyGRFku7SWhRZRC72FfIqgO3VnVfYiXj37H_qX-F4m01JBDzOHmUkY8l7yvpLfj5BHJjbWRCEhyCkC4z42zNaiZL4QDqKgonYSzw4fHcvDE744Fac54dblbZXDmpgWat86zJHv1mD6mxLM9_Tl2WeGrFFYXc0UGltkBEuwguBrtLd__PrNeZalgvBPNGI4LaPkbscRoY0hiytWqQQrL1mkBNx_ydv8q0Ca7M7BDXI9O4x01kv4JrkSlrfI1VeJkHdzm_ya9RXotMd1Q9tIP7bfGAJOZbRkih7ep9YhCG5qQ9ctPqPha9Y6bLTBSU8fv_j94-d3uAQ9Mk9ou2pBvT442sM9d8-poQ6sHk2YtBRPpqSeFmBwkciSon4tfXeHnBzsv5sfsky0wByvyjUztS0jDIYsoihMoRwP1TQWtojgv0XPFQjaBOthiKX00dkgrTIygDNY89pV9V2yvWyX4R6h0VojPLKtO8fjFMKvUprKRDzj6ovGj8nTYbD1WY-noVMcoqTuRaNBNDqJRpdjsofyOP8SsbDTg3b1XueppRVyk_umscjD1DijVLTKN4YHVdec8zHZGaSp8wTt9IU6jcmzQcIXr__9S_f_39sDcq1C3UobXnbI9nr1JTwEt2VtJ2Q0my3eLiZZRydka15xvMv5JKUC_gB2S_K1
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JaxRBFC5CguhFXHE0ah0UFC3SS1VNtSiS1ckyg0gCuVVqFUGn48xomIt49ez_8Ef5S3yvujshgt5y6EsvRXe_r9_SVe_7CHlkYmVNFBKKnCww7mPFbCly5jPhoArKSiexd3g4koMDvnMoDhfIr64XBpdVdj4xOWpfO_xHvlJC6K9yCN_918efGapG4exqJ6HRwGI3zE-gZJu-2t4A-z4uiq3N_fUBa1UFmONFPmOmtHkEYMssisxkyvFQ9GNmswjJSvRcwVOZYD04bil9dDZIq4wMkPmUvHRIdAAuf4nDAOAIltY2R2_fnf7VKaDcFJXounOUXJlyZIRjqBqLs2KC5eciYBIKOJfd_jUhm-Lc1jVytU1Q6WqDqOtkIYxvkEtvkgDw_Cb5udrMeKc1tXNaR_qxPmFIcNWyM1PMKD_VDkl30zV0VuM-Gr62KMeL5uhk6JOXv7__-AaboEPzlNaTGuD8wdGGXnr6ghrqIMrSxIFLsRMmjbQDAR6FMynieeynt8jBhZjgNlkc1-Nwh9BorREe1d2d47EP5V4uTWEi9tT6rPI98qx72fq44e_Qqe5RUjem0WAanUyj8x5ZQ3ucnonc22lHPXmv209ZK9RC91VlUfepckapaJWvDA-qLDnnPbLcWVO3DmGqz-DbI887C58d_vct3f3_aA_J5cH-cE_vbY9275ErBeIsLbZZJouzyZdwH1KmmX3Q4pSSo4v-NP4A59IsjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqqUBsEE8xUMALkEBgjZPYngSBUEs79EFHFaJSd66fCAkmZWagmg1iy5q_4XP4Eu51klZFgl0X2eSlJPf4PmLfcwh5YGJlTZQKihwemPCxYraQGfNcOqiCeOEU9g7vjtXmvtg-kAdL5FfXC4PLKjufmBy1rx3-Ix8UEPqrDML3cBDbZRF766OXR58ZKkjhTGsnp9FAZCcsjqF8m73YWgdbP8zz0ca7V5usVRhgTuTZnJnCZhFArniU3PDSiZAPI7c8QuISvSjhDU2wHpy4Uj46G5QtjQqQBRWicEh6AO5_eQhVEe-R5bWN8d7bkz88OZSespJdp06pBjOB7HAMFWRxhkyy7Ew0TKIBZzLdvyZnU8wbXSGX22SVrjboukqWwuQaufA6iQEvrpOfq83sd1pfu6B1pB_rY4ZkVy1TM8Xs8lPtkIA3XUPnNe6j4WuLeLxogQ6HPnr--_uPb7BJumse03paA7Q_ONpQTc-eUUMdRFya-HApdsWkO21DsEcRTYrYnvjZDbJ_Lia4SXqTehJuERqtNdKj0rtzIg6h9MuUyU3E_lrPK98nT7qPrY8aLg-daqBS6cY0Gkyjk2l01idraI-TM5GHO-2op-91O6x1ibrovqosakBVzpRltKWvjAhlUQgh-mSls6ZuncNMn0K5T552Fj49_O9Huv3_u90nF2FI6Ddb45075FKOMEvrblZIbz79Eu5C9jS391qYUnJ43iPjD5rrMMI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applicability+of+low-temperature+thermochronology+to+the+evolution+of+young+%28%3C%E2%80%89%7E%E2%80%895+Ma%29+orogenic+systems%3A+a+case+study+from+the+Japanese+Islands&rft.jtitle=Progress+in+earth+and+planetary+science&rft.au=Sueoka%2C+Shigeru&rft.au=Tagami%2C+Takahiro&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=2197-4284&rft.volume=12&rft.issue=1&rft.spage=59&rft_id=info:doi/10.1186%2Fs40645-025-00735-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-4284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-4284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-4284&client=summon