Expectation Maximization method for multivariate change point detection in presence of unknown and changing covariance

•Developed simultaneous detection of multiple change points.•Handled change point detection in presence of unknown and varying covariance.•Solved change detection problem under Expectation Maximization framework. Data analysis plays an important role in system modeling, monitoring and optimization....

Full description

Saved in:
Bibliographic Details
Published inComputers & chemical engineering Vol. 69; pp. 128 - 146
Main Authors Keshavarz, Marziyeh, Huang, Biao
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 03.10.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Developed simultaneous detection of multiple change points.•Handled change point detection in presence of unknown and varying covariance.•Solved change detection problem under Expectation Maximization framework. Data analysis plays an important role in system modeling, monitoring and optimization. Among those data analysis techniques, change point detection has been widely applied in various areas including chemical process, climate monitoring, examination of gene expressions and quality control in the manufacturing industry, etc. In this paper, an Expectation Maximization (EM) algorithm is proposed to detect the time instants at which data properties are subject to change. The problem is solved in the presence of unknown and changing mean and covariance in process data. Performance of the proposed algorithm is evaluated through simulated and experimental study. The results demonstrate satisfactory detection of single and multiple changes using EM approach.
AbstractList Data analysis plays an important role in system modeling, monitoring and optimization. Among those data analysis techniques, change point detection has been widely applied in various areas including chemical process, climate monitoring, examination of gene expressions and quality control in the manufacturing industry, etc. In this paper, an Expectation Maximization (EM) algorithm is proposed to detect the time instants at which data properties are subject to change. The problem is solved in the presence of unknown and changing mean and covariance in process data. Performance of the proposed algorithm is evaluated through simulated and experimental study. The results demonstrate satisfactory detection of single and multiple changes using EM approach.
•Developed simultaneous detection of multiple change points.•Handled change point detection in presence of unknown and varying covariance.•Solved change detection problem under Expectation Maximization framework. Data analysis plays an important role in system modeling, monitoring and optimization. Among those data analysis techniques, change point detection has been widely applied in various areas including chemical process, climate monitoring, examination of gene expressions and quality control in the manufacturing industry, etc. In this paper, an Expectation Maximization (EM) algorithm is proposed to detect the time instants at which data properties are subject to change. The problem is solved in the presence of unknown and changing mean and covariance in process data. Performance of the proposed algorithm is evaluated through simulated and experimental study. The results demonstrate satisfactory detection of single and multiple changes using EM approach.
Author Huang, Biao
Keshavarz, Marziyeh
Author_xml – sequence: 1
  givenname: Marziyeh
  surname: Keshavarz
  fullname: Keshavarz, Marziyeh
– sequence: 2
  givenname: Biao
  surname: Huang
  fullname: Huang, Biao
  email: biao.huang@ualberta.ca
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28744916$$DView record in Pascal Francis
BookMark eNqNkc1u3CAYRVGVSpn8vANdROrGDmAG41VUjdK0UqJs0jXC-GOGqQ0OMNO0Tx9PHFVRVlkhxLlH6N4TdOSDB4S-UFJSQsXltjRhGM0GBvDrkhHKSyLK6eUTWlBZVwWv6uURWhDSyIJWS36MTlLaEkIYl3KB9tdPI5isswse3-knN7h_82WAvAkdtiHiYddnt9fR6QzYbLRfAx6D8xl3kKf0AXcejxESeAM4WLzzv33447H23Zxwfo1NeJFMyBn6bHWf4Pz1PEW_vl8_rH4Ut_c3P1ffbgvDGc2FprWUmnJq2rrtmqYz0Moamo5Iyy2rjRGMUt4KkFWrrbBcS9ESWRFeCaZtdYq-zt4xhscdpKwGlwz0vfYQdklRwVnF2LIhE3rxiupkdG_j9E-X1BjdoONfxWTNeUPFxDUzZ2JIKYL9j1CiDpuorXqziTpsoohQ5CV79S5r3Nx9jtr1HzKsZgNMre0dRJWMO5TeuTgtobrgPmB5BneSta4
CODEN CCENDW
CitedBy_id crossref_primary_10_1007_s00521_017_3200_8
crossref_primary_10_1002_aic_14937
crossref_primary_10_3390_su15086579
crossref_primary_10_61186_jss_18_2_11
crossref_primary_10_1016_j_asoc_2018_04_046
crossref_primary_10_1016_j_cam_2016_06_006
Cites_doi 10.1016/j.compchemeng.2013.09.012
10.1080/03610920701827581
10.1093/biomet/62.2.407
10.1016/0167-7152(88)90118-6
10.1016/j.jprocont.2007.09.003
10.1080/01621459.1993.10594323
10.1016/S0167-9473(00)00068-2
10.1016/j.csda.2009.09.003
10.1007/BF00054787
10.1080/01621459.1997.10473616
10.1007/s004770000051
10.1016/j.jprocont.2007.06.002
10.1111/j.2517-6161.1977.tb01600.x
10.1080/01621459.1986.10478260
10.1016/j.jprocont.2010.11.008
10.1198/004017006000000291
10.1016/0167-9473(96)00007-2
10.1214/aoms/1177700517
10.1007/s10986-006-0028-9
10.1080/10618600.2012.674653
10.1214/aos/1176343001
10.1016/j.cor.2006.02.018
10.1111/j.1467-9876.2004.05155.x
10.1016/S0022-1694(00)00270-5
10.1016/j.csda.2004.03.003
10.1016/S0167-9473(02)00177-9
10.1093/biomet/57.1.1
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compchemeng.2014.06.016
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Applied Sciences
Statistics
EISSN 1873-4375
EndPage 146
ExternalDocumentID 28744916
10_1016_j_compchemeng_2014_06_016
S0098135414002063
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SST
SSZ
T5K
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HLZ
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
ZY4
ABTAH
IQODW
7SC
7U5
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c421t-a1788a141cb7bd99dceb87e9d08f4f27cc62114b6e83baf6f4a86b08304362af3
IEDL.DBID .~1
ISSN 0098-1354
IngestDate Tue Aug 05 10:02:14 EDT 2025
Wed Apr 02 07:18:31 EDT 2025
Tue Jul 01 03:20:43 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Fri Feb 23 02:26:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bayesian inference
Change point detection
Expectation Maximization
Bayes estimation
Data analysis
Event detection
Time series
Change point
Experimental study
Modeling
Optimization
Data acquisition system
Covariance
regime switching model
EM algorithm
System monitoring
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-a1788a141cb7bd99dceb87e9d08f4f27cc62114b6e83baf6f4a86b08304362af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1642322590
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1642322590
pascalfrancis_primary_28744916
crossref_primary_10_1016_j_compchemeng_2014_06_016
crossref_citationtrail_10_1016_j_compchemeng_2014_06_016
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2014_06_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-03
PublicationDateYYYYMMDD 2014-10-03
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-03
  day: 03
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Computers & chemical engineering
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Narasimhan, Jordache (bib0115) 2000
Caussinus, Mestre (bib0015) 2004; 53
Perreault, Parent, Bernier, Bobee, Slivitzky (bib0125) 2000; 235
Keshavarz, Huang (bib0090) 2014; 60
Keshavarz, Huang (bib0085) 2013
Jin, Huang, Shook (bib0070) 2011; 21
Sen, Srivastava (bib0130) 1975; 3
Yao (bib0155) 1988; 6
Chernoff, Zacks (bib0025) 1964; 35
MacLachlan, Krishnan (bib0110) 1997
Son, Kim (bib0140) 2005; 39
Yildirim, Singh, Doucet (bib0160) 2014; 22
Bansal, Du, Hamedani (bib0005) 2008; 37
Du (bib0045) 2010
Venter, Steel (bib0150) 1996; 22
Cheon, Kim (bib0020) 2010; 54
Loschi, Cruz, Takahashi, Iglesias, Arellano, MacGregor Smith (bib0105) 2008; 35
Yu, Qin (bib0165) 2008; 18
Hawkins (bib0055) 2001; 37
Dempster (bib0035) 1977; 39
Srivastava, Worsley (bib0145) 1986; 81
Smith (bib0135) 1975; 62
Perreault, Parent, Bernier, Bobee, Slivitzky (bib0120) 2000; 14
Zambadouglas, Hawkins (bib0175) 2006; 48
Karunamuni, Zhang (bib0080) 1996; 48
Hinkley (bib0065) 1970; 57
Lavielle (bib0095) 2006; 46
Karlis, Xekalaki (bib0075) 2003; 41
Hawkins (bib0060) 2001; 37
Djafari, Feron (bib0040) 2007; vol. 16
Gelman, Carlin, Stern, Rubin (bib0050) 2004
Crowley (bib0030) 1997; 92
Yu, Qin (bib0170) 2008; 18
Barry, Hartigan (bib0010) 1993; 88
Loschi, Cruz (bib0100) 2005; 48
Hawkins (10.1016/j.compchemeng.2014.06.016_bib0060) 2001; 37
Karunamuni (10.1016/j.compchemeng.2014.06.016_bib0080) 1996; 48
Perreault (10.1016/j.compchemeng.2014.06.016_bib0120) 2000; 14
Loschi (10.1016/j.compchemeng.2014.06.016_bib0100) 2005; 48
MacLachlan (10.1016/j.compchemeng.2014.06.016_bib0110) 1997
Hinkley (10.1016/j.compchemeng.2014.06.016_bib0065) 1970; 57
Narasimhan (10.1016/j.compchemeng.2014.06.016_bib0115) 2000
Yildirim (10.1016/j.compchemeng.2014.06.016_bib0160) 2014; 22
Caussinus (10.1016/j.compchemeng.2014.06.016_bib0015) 2004; 53
Loschi (10.1016/j.compchemeng.2014.06.016_bib0105) 2008; 35
Yao (10.1016/j.compchemeng.2014.06.016_bib0155) 1988; 6
Jin (10.1016/j.compchemeng.2014.06.016_bib0070) 2011; 21
Du (10.1016/j.compchemeng.2014.06.016_bib0045) 2010
Keshavarz (10.1016/j.compchemeng.2014.06.016_bib0090) 2014; 60
Crowley (10.1016/j.compchemeng.2014.06.016_bib0030) 1997; 92
Lavielle (10.1016/j.compchemeng.2014.06.016_bib0095) 2006; 46
Bansal (10.1016/j.compchemeng.2014.06.016_bib0005) 2008; 37
Zambadouglas (10.1016/j.compchemeng.2014.06.016_bib0175) 2006; 48
Karlis (10.1016/j.compchemeng.2014.06.016_bib0075) 2003; 41
Yu (10.1016/j.compchemeng.2014.06.016_bib0165) 2008; 18
Hawkins (10.1016/j.compchemeng.2014.06.016_bib0055) 2001; 37
Gelman (10.1016/j.compchemeng.2014.06.016_bib0050) 2004
Yu (10.1016/j.compchemeng.2014.06.016_bib0170) 2008; 18
Dempster (10.1016/j.compchemeng.2014.06.016_bib0035) 1977; 39
Chernoff (10.1016/j.compchemeng.2014.06.016_bib0025) 1964; 35
Keshavarz (10.1016/j.compchemeng.2014.06.016_bib0085) 2013
Smith (10.1016/j.compchemeng.2014.06.016_bib0135) 1975; 62
Venter (10.1016/j.compchemeng.2014.06.016_bib0150) 1996; 22
Cheon (10.1016/j.compchemeng.2014.06.016_bib0020) 2010; 54
Perreault (10.1016/j.compchemeng.2014.06.016_bib0125) 2000; 235
Djafari (10.1016/j.compchemeng.2014.06.016_bib0040) 2007; vol. 16
Srivastava (10.1016/j.compchemeng.2014.06.016_bib0145) 1986; 81
Sen (10.1016/j.compchemeng.2014.06.016_bib0130) 1975; 3
Barry (10.1016/j.compchemeng.2014.06.016_bib0010) 1993; 88
Son (10.1016/j.compchemeng.2014.06.016_bib0140) 2005; 39
References_xml – volume: 37
  start-page: 2010
  year: 2008
  end-page: 2021
  ident: bib0005
  article-title: An application of EM algorithm to change point problem
  publication-title: Commun Stat Theory Methods
– volume: 48
  start-page: 229
  year: 1996
  end-page: 246
  ident: bib0080
  article-title: Empirical Bayes detection of a change in distribution
  publication-title: Ann Inst Stat Math
– volume: 46
  start-page: 287
  year: 2006
  end-page: 306
  ident: bib0095
  article-title: Detection of multiple change-points in multivariate time series
  publication-title: Lithuanian Math J
– year: 2000
  ident: bib0115
  article-title: Data reconciliation and gross error detection: an intelligent use of process data
– volume: 57
  start-page: 1
  year: 1970
  end-page: 17
  ident: bib0065
  article-title: Inference about the change point in a sequence of random variables
  publication-title: Biometrika
– volume: 18
  start-page: 297
  year: 2008
  end-page: 319
  ident: bib0170
  article-title: Statistical MIMO controller performance monitoring. Part II: performance diagnosis
  publication-title: J Process Control
– volume: 53
  start-page: 405
  year: 2004
  end-page: 425
  ident: bib0015
  article-title: Trafford publishing detection and correction of artificial shifts in climate series
  publication-title: J R Stat Soc Ser C (Appl Stat)
– volume: 37
  start-page: 323
  year: 2001
  end-page: 341
  ident: bib0055
  article-title: Fitting multiple change-point models to data
  publication-title: Comput Stat Data Anal
– volume: 88
  start-page: 309
  year: 1993
  end-page: 319
  ident: bib0010
  article-title: A Bayesian analysis for change point problems
  publication-title: J Am Stat Assoc
– volume: 6
  start-page: 181
  year: 1988
  end-page: 189
  ident: bib0155
  article-title: Estimating the number of change-points via schwarz criterion
  publication-title: Stat Prob Lett
– year: 2010
  ident: bib0045
  article-title: Comparison of change point detection algorithms for vector time series, master thesis in statistics, data analysis and knowledge discovery
– volume: 18
  start-page: 277
  year: 2008
  end-page: 296
  ident: bib0165
  article-title: Statistical MIMO controller performance monitoring. Part I: data-driven covariance benchmark
  publication-title: J Process Control
– volume: 41
  start-page: 577
  year: 2003
  end-page: 590
  ident: bib0075
  article-title: Choosing initial values for the EM algorithm for finite mixtures
  publication-title: Comput Stat Data Anal
– volume: vol. 16
  start-page: 215
  year: 2007
  end-page: 221
  ident: bib0040
  publication-title: Bayesian approach to change point detection in time series
– volume: 48
  start-page: 255
  year: 2005
  end-page: 268
  ident: bib0100
  article-title: Extension to the product partition model: computing the probability of a change
  publication-title: Comput Stat Data Anal
– volume: 235
  start-page: 221
  year: 2000
  end-page: 241
  ident: bib0125
  article-title: Bayesian change-point analysis in hydrometeorological time series. Part 1. The normal model revisited
  publication-title: J Hydrol
– volume: 22
  start-page: 906
  year: 2014
  end-page: 926
  ident: bib0160
  article-title: An online expectation-maximization algorithm for change point models
  publication-title: J Comput Graph Stat
– volume: 3
  start-page: 98
  year: 1975
  end-page: 108
  ident: bib0130
  article-title: On tests for detecting change in mean
  publication-title: Ann Stat
– volume: 92
  start-page: 192
  year: 1997
  end-page: 198
  ident: bib0030
  article-title: Product Partition Models for Normal Means
  publication-title: J Am Stat Assoc
– volume: 35
  start-page: 999
  year: 1964
  end-page: 1018
  ident: bib0025
  article-title: Estimating the current mean of a normal distribution which is subjected to changes in time
  publication-title: Ann Math Stat
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bib0035
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc
– volume: 81
  start-page: 199
  year: 1986
  end-page: 204
  ident: bib0145
  article-title: Likelihood ratio tests for a change in the multivariate normal mean
  publication-title: J Am Stat Assoc
– volume: 22
  start-page: 481
  year: 1996
  end-page: 504
  ident: bib0150
  article-title: Finding multiple abrupt change points
  publication-title: Comput Stat Data Anal
– year: 2013
  ident: bib0085
  article-title: Expectation Maximization approach to gross error and change point detection
  publication-title: 10th IEEE international conference on control and automation
– volume: 54
  start-page: 406
  year: 2010
  end-page: 415
  ident: bib0020
  article-title: Multiple change-point detection of multivariate mean vectors with the Bayesian approach
  publication-title: Comput Stat Data Anal
– volume: 39
  start-page: 373
  year: 2005
  end-page: 387
  ident: bib0140
  article-title: Bayesian single change point detection in a sequence of multivariate normal observations
  publication-title: Stat J Theor Appl Stat
– volume: 21
  start-page: 182
  year: 2011
  end-page: 193
  ident: bib0070
  article-title: Multiple model LPV approach to nonlinear process identification with EM algorithm
  publication-title: J Process Control
– volume: 14
  start-page: 243
  year: 2000
  end-page: 261
  ident: bib0120
  article-title: Retrospective multivariate bayesian change-point analysis: a simultaneous single change in the mean of several hydrological sequences
  publication-title: Stoch Environ Res Risk Assess
– volume: 62
  start-page: 407
  year: 1975
  end-page: 416
  ident: bib0135
  article-title: A Bayesian approach to inference about a change-point in a sequence of random variables
  publication-title: Biometrika
– volume: 37
  start-page: 323
  year: 2001
  end-page: 341
  ident: bib0060
  article-title: Finding multiple change point models to data
  publication-title: Comput Stat Data Anal
– volume: 48
  start-page: 539
  year: 2006
  end-page: 549
  ident: bib0175
  article-title: A multivariate change point model for statistical process control
  publication-title: Technometrics
– year: 1997
  ident: bib0110
  article-title: The EM algorithm and extensions
– volume: 60
  start-page: 339
  year: 2014
  end-page: 353
  ident: bib0090
  article-title: Bayesian and Expectation Maximization methods for multivariate change point detection
  publication-title: Comput Chem Eng
– year: 2004
  ident: bib0050
  article-title: Bayesian data analysis
– volume: 35
  start-page: 156
  year: 2008
  end-page: 170
  ident: bib0105
  article-title: A note on Bayesian identification of change points in data sequence
  publication-title: Comput Operat Res
– volume: 60
  start-page: 339
  year: 2014
  ident: 10.1016/j.compchemeng.2014.06.016_bib0090
  article-title: Bayesian and Expectation Maximization methods for multivariate change point detection
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2013.09.012
– volume: 37
  start-page: 2010
  year: 2008
  ident: 10.1016/j.compchemeng.2014.06.016_bib0005
  article-title: An application of EM algorithm to change point problem
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610920701827581
– volume: 62
  start-page: 407
  year: 1975
  ident: 10.1016/j.compchemeng.2014.06.016_bib0135
  article-title: A Bayesian approach to inference about a change-point in a sequence of random variables
  publication-title: Biometrika
  doi: 10.1093/biomet/62.2.407
– volume: 6
  start-page: 181
  year: 1988
  ident: 10.1016/j.compchemeng.2014.06.016_bib0155
  article-title: Estimating the number of change-points via schwarz criterion
  publication-title: Stat Prob Lett
  doi: 10.1016/0167-7152(88)90118-6
– volume: 18
  start-page: 297
  year: 2008
  ident: 10.1016/j.compchemeng.2014.06.016_bib0170
  article-title: Statistical MIMO controller performance monitoring. Part II: performance diagnosis
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2007.09.003
– volume: 88
  start-page: 309
  year: 1993
  ident: 10.1016/j.compchemeng.2014.06.016_bib0010
  article-title: A Bayesian analysis for change point problems
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1993.10594323
– volume: 37
  start-page: 323
  issue: 3
  year: 2001
  ident: 10.1016/j.compchemeng.2014.06.016_bib0055
  article-title: Fitting multiple change-point models to data
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(00)00068-2
– volume: 54
  start-page: 406
  year: 2010
  ident: 10.1016/j.compchemeng.2014.06.016_bib0020
  article-title: Multiple change-point detection of multivariate mean vectors with the Bayesian approach
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.09.003
– volume: 48
  start-page: 229
  issue: 2
  year: 1996
  ident: 10.1016/j.compchemeng.2014.06.016_bib0080
  article-title: Empirical Bayes detection of a change in distribution
  publication-title: Ann Inst Stat Math
  doi: 10.1007/BF00054787
– volume: 92
  start-page: 192
  year: 1997
  ident: 10.1016/j.compchemeng.2014.06.016_bib0030
  article-title: Product Partition Models for Normal Means
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1997.10473616
– volume: 14
  start-page: 243
  year: 2000
  ident: 10.1016/j.compchemeng.2014.06.016_bib0120
  article-title: Retrospective multivariate bayesian change-point analysis: a simultaneous single change in the mean of several hydrological sequences
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s004770000051
– volume: 37
  start-page: 323
  year: 2001
  ident: 10.1016/j.compchemeng.2014.06.016_bib0060
  article-title: Finding multiple change point models to data
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(00)00068-2
– volume: 18
  start-page: 277
  year: 2008
  ident: 10.1016/j.compchemeng.2014.06.016_bib0165
  article-title: Statistical MIMO controller performance monitoring. Part I: data-driven covariance benchmark
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2007.06.002
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.compchemeng.2014.06.016_bib0035
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 39
  start-page: 373
  issue: 5
  year: 2005
  ident: 10.1016/j.compchemeng.2014.06.016_bib0140
  article-title: Bayesian single change point detection in a sequence of multivariate normal observations
  publication-title: Stat J Theor Appl Stat
– volume: 81
  start-page: 199
  issue: 393
  year: 1986
  ident: 10.1016/j.compchemeng.2014.06.016_bib0145
  article-title: Likelihood ratio tests for a change in the multivariate normal mean
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1986.10478260
– volume: 21
  start-page: 182
  issue: 1
  year: 2011
  ident: 10.1016/j.compchemeng.2014.06.016_bib0070
  article-title: Multiple model LPV approach to nonlinear process identification with EM algorithm
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2010.11.008
– volume: 48
  start-page: 539
  issue: 4
  year: 2006
  ident: 10.1016/j.compchemeng.2014.06.016_bib0175
  article-title: A multivariate change point model for statistical process control
  publication-title: Technometrics
  doi: 10.1198/004017006000000291
– year: 1997
  ident: 10.1016/j.compchemeng.2014.06.016_bib0110
– volume: 22
  start-page: 481
  year: 1996
  ident: 10.1016/j.compchemeng.2014.06.016_bib0150
  article-title: Finding multiple abrupt change points
  publication-title: Comput Stat Data Anal
  doi: 10.1016/0167-9473(96)00007-2
– volume: 35
  start-page: 999
  issue: 3
  year: 1964
  ident: 10.1016/j.compchemeng.2014.06.016_bib0025
  article-title: Estimating the current mean of a normal distribution which is subjected to changes in time
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177700517
– volume: 46
  start-page: 287
  issue: 3
  year: 2006
  ident: 10.1016/j.compchemeng.2014.06.016_bib0095
  article-title: Detection of multiple change-points in multivariate time series
  publication-title: Lithuanian Math J
  doi: 10.1007/s10986-006-0028-9
– year: 2004
  ident: 10.1016/j.compchemeng.2014.06.016_bib0050
– volume: 22
  start-page: 906
  issue: 4
  year: 2014
  ident: 10.1016/j.compchemeng.2014.06.016_bib0160
  article-title: An online expectation-maximization algorithm for change point models
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2012.674653
– year: 2000
  ident: 10.1016/j.compchemeng.2014.06.016_bib0115
– volume: 3
  start-page: 98
  year: 1975
  ident: 10.1016/j.compchemeng.2014.06.016_bib0130
  article-title: On tests for detecting change in mean
  publication-title: Ann Stat
  doi: 10.1214/aos/1176343001
– year: 2013
  ident: 10.1016/j.compchemeng.2014.06.016_bib0085
  article-title: Expectation Maximization approach to gross error and change point detection
– volume: 35
  start-page: 156
  year: 2008
  ident: 10.1016/j.compchemeng.2014.06.016_bib0105
  article-title: A note on Bayesian identification of change points in data sequence
  publication-title: Comput Operat Res
  doi: 10.1016/j.cor.2006.02.018
– volume: 53
  start-page: 405
  issue: 3
  year: 2004
  ident: 10.1016/j.compchemeng.2014.06.016_bib0015
  article-title: Trafford publishing detection and correction of artificial shifts in climate series
  publication-title: J R Stat Soc Ser C (Appl Stat)
  doi: 10.1111/j.1467-9876.2004.05155.x
– volume: 235
  start-page: 221
  year: 2000
  ident: 10.1016/j.compchemeng.2014.06.016_bib0125
  article-title: Bayesian change-point analysis in hydrometeorological time series. Part 1. The normal model revisited
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00270-5
– volume: 48
  start-page: 255
  year: 2005
  ident: 10.1016/j.compchemeng.2014.06.016_bib0100
  article-title: Extension to the product partition model: computing the probability of a change
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2004.03.003
– volume: 41
  start-page: 577
  year: 2003
  ident: 10.1016/j.compchemeng.2014.06.016_bib0075
  article-title: Choosing initial values for the EM algorithm for finite mixtures
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(02)00177-9
– volume: vol. 16
  start-page: 215
  year: 2007
  ident: 10.1016/j.compchemeng.2014.06.016_bib0040
– year: 2010
  ident: 10.1016/j.compchemeng.2014.06.016_bib0045
– volume: 57
  start-page: 1
  year: 1970
  ident: 10.1016/j.compchemeng.2014.06.016_bib0065
  article-title: Inference about the change point in a sequence of random variables
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.1
SSID ssj0002488
Score 2.1309829
Snippet •Developed simultaneous detection of multiple change points.•Handled change point detection in presence of unknown and varying covariance.•Solved change...
Data analysis plays an important role in system modeling, monitoring and optimization. Among those data analysis techniques, change point detection has been...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 128
SubjectTerms Algorithms
Applied sciences
Bayesian inference
Change point detection
Chemical engineering
Computer science; control theory; systems
Computer simulation
Control system analysis
Control theory. Systems
Covariance
Data processing
Exact sciences and technology
Expectation Maximization
Mathematics
Maximization
Monitoring
Optimization
Parametric inference
Probability and statistics
Sciences and techniques of general use
Statistics
Title Expectation Maximization method for multivariate change point detection in presence of unknown and changing covariance
URI https://dx.doi.org/10.1016/j.compchemeng.2014.06.016
https://www.proquest.com/docview/1642322590
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-UwEA-iIC4ifi266iOC1-prG9MEvIgoT0VPCt5Ckk6ky5oW7ZM97d--mbT1Az0IHlsySUjSyUznN78hZI_JQgsASJCaJEH2l0SKHJJcOltwlwN3mDt8dc0nt-zi7vBuhpwMuTAIq-x1f6fTo7bu3xz0q3nQVBXm-EqR5ljGGm0ejoyfjBV4yvf_vcI8MibEwJuJrefJ7ivGC2HbYW0ewN8jyotFKk8sff75HbXY6Kewcq4refFBe8cr6WyZLPW2JD3uprtCZsCvkh9vGAbXyDNSGdsu3E6v9N_qoc-7pF3paBpsVhpBhc_BaQ52J-0ygWlTV76lJbQRquVp5WkTM5Us0NrRqcefcZ5qX3YSYTRq69hJaLJObs9Ob04mSV9qIbEsS9tEp8EV1ilLrSlMKWVpwYgCZDkWjrmssJYHT5EZDiI32nHHtOAmmG_IYJ9pl_8ks772sEGow1BjGfoCDiyzY4OhVynG0mjGTZpuEjEsrrI9DzmWw_ijBsDZb_VmXxTui0LwXco3SfYi2nRkHF8ROhp2UL07WSpcGl8RH73b9ZeBY-EAiQ12h2OgwqeJ8RbtoZ4-qeCJZqgv5fjX9-awRRbwKWII820y2z5OYSfYQq0ZxcM-InPH55eT6__8gg3P
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwELVKkXgIIR6tKI_iSrAMvXGMY0uwQEB1S3u7aqXujO3YKKh1Im5ugQ0_xQ8y4yR9CBaVULdJbEceZzwTnzmHkBdclUZ67zOkJsmQ_SVTsvBZoYIrRSi8CFg7PNsT0wP-6fD14RL5PdbCIKxy8P29T0_eeriyOczmZlvXWOOrZF6gjDXGPGJUsN7xP79D3jZ_u_0BjPySsa2P---n2SAtkDnO8i4zOaR-Jue5s6WtlKqct7L0qprIwAMrnROQGXErvCysCSJwI4WFcAUZ25kJBfR7jVzn4C5QNuHVrzNcCeNSjkSd-Ho3yMYZqAxx4mCMYx-_IKyMJ-5Q1Fr_96Z4pzVzMFXoNTb-2i7SHrh1j9wdglf6rp-f-2TJxwfk9jlKw4fkBLmTXX--T2fmR308FHrSXquaQpBME4rxBLJ0CHRpX3pM26aOHa18l7BhkdaRtqk0ynnaBLqI-PcvUhOrvgWMRl2TOoFHVsjBlRhglSzHJvpHhAY826ygLy88Z25i8axXyYmyhgub52tEjpOr3UB8jvobR3pEuH3V5-yi0S4a0X65WCPstGnbs39cptGb0YL6wlLWsEtdpvn6BaufDpyUChQ-sDEuAw2-AA94TPTNYq4h9WXooNXk8f-9w3Nyc7o_29W723s7T8gtvJMAjMVTstx9W_hnEIh1dj0tfEo-X_WX9gfBfkn3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation+Maximization+method+for+multivariate+change+point+detection+in+presence+of+unknown+and+changing+covariance&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Keshavarz%2C+Marziyeh&rft.au=Huang%2C+Biao&rft.date=2014-10-03&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=69&rft.spage=128&rft.epage=146&rft_id=info:doi/10.1016%2Fj.compchemeng.2014.06.016&rft.externalDocID=S0098135414002063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon