Expectation Maximization method for multivariate change point detection in presence of unknown and changing covariance
•Developed simultaneous detection of multiple change points.•Handled change point detection in presence of unknown and varying covariance.•Solved change detection problem under Expectation Maximization framework. Data analysis plays an important role in system modeling, monitoring and optimization....
Saved in:
Published in | Computers & chemical engineering Vol. 69; pp. 128 - 146 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
03.10.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Developed simultaneous detection of multiple change points.•Handled change point detection in presence of unknown and varying covariance.•Solved change detection problem under Expectation Maximization framework.
Data analysis plays an important role in system modeling, monitoring and optimization. Among those data analysis techniques, change point detection has been widely applied in various areas including chemical process, climate monitoring, examination of gene expressions and quality control in the manufacturing industry, etc. In this paper, an Expectation Maximization (EM) algorithm is proposed to detect the time instants at which data properties are subject to change. The problem is solved in the presence of unknown and changing mean and covariance in process data. Performance of the proposed algorithm is evaluated through simulated and experimental study. The results demonstrate satisfactory detection of single and multiple changes using EM approach. |
---|---|
AbstractList | Data analysis plays an important role in system modeling, monitoring and optimization. Among those data analysis techniques, change point detection has been widely applied in various areas including chemical process, climate monitoring, examination of gene expressions and quality control in the manufacturing industry, etc. In this paper, an Expectation Maximization (EM) algorithm is proposed to detect the time instants at which data properties are subject to change. The problem is solved in the presence of unknown and changing mean and covariance in process data. Performance of the proposed algorithm is evaluated through simulated and experimental study. The results demonstrate satisfactory detection of single and multiple changes using EM approach. •Developed simultaneous detection of multiple change points.•Handled change point detection in presence of unknown and varying covariance.•Solved change detection problem under Expectation Maximization framework. Data analysis plays an important role in system modeling, monitoring and optimization. Among those data analysis techniques, change point detection has been widely applied in various areas including chemical process, climate monitoring, examination of gene expressions and quality control in the manufacturing industry, etc. In this paper, an Expectation Maximization (EM) algorithm is proposed to detect the time instants at which data properties are subject to change. The problem is solved in the presence of unknown and changing mean and covariance in process data. Performance of the proposed algorithm is evaluated through simulated and experimental study. The results demonstrate satisfactory detection of single and multiple changes using EM approach. |
Author | Huang, Biao Keshavarz, Marziyeh |
Author_xml | – sequence: 1 givenname: Marziyeh surname: Keshavarz fullname: Keshavarz, Marziyeh – sequence: 2 givenname: Biao surname: Huang fullname: Huang, Biao email: biao.huang@ualberta.ca |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28744916$$DView record in Pascal Francis |
BookMark | eNqNkc1u3CAYRVGVSpn8vANdROrGDmAG41VUjdK0UqJs0jXC-GOGqQ0OMNO0Tx9PHFVRVlkhxLlH6N4TdOSDB4S-UFJSQsXltjRhGM0GBvDrkhHKSyLK6eUTWlBZVwWv6uURWhDSyIJWS36MTlLaEkIYl3KB9tdPI5isswse3-knN7h_82WAvAkdtiHiYddnt9fR6QzYbLRfAx6D8xl3kKf0AXcejxESeAM4WLzzv33447H23Zxwfo1NeJFMyBn6bHWf4Pz1PEW_vl8_rH4Ut_c3P1ffbgvDGc2FprWUmnJq2rrtmqYz0Moamo5Iyy2rjRGMUt4KkFWrrbBcS9ESWRFeCaZtdYq-zt4xhscdpKwGlwz0vfYQdklRwVnF2LIhE3rxiupkdG_j9E-X1BjdoONfxWTNeUPFxDUzZ2JIKYL9j1CiDpuorXqziTpsoohQ5CV79S5r3Nx9jtr1HzKsZgNMre0dRJWMO5TeuTgtobrgPmB5BneSta4 |
CODEN | CCENDW |
CitedBy_id | crossref_primary_10_1007_s00521_017_3200_8 crossref_primary_10_1002_aic_14937 crossref_primary_10_3390_su15086579 crossref_primary_10_61186_jss_18_2_11 crossref_primary_10_1016_j_asoc_2018_04_046 crossref_primary_10_1016_j_cam_2016_06_006 |
Cites_doi | 10.1016/j.compchemeng.2013.09.012 10.1080/03610920701827581 10.1093/biomet/62.2.407 10.1016/0167-7152(88)90118-6 10.1016/j.jprocont.2007.09.003 10.1080/01621459.1993.10594323 10.1016/S0167-9473(00)00068-2 10.1016/j.csda.2009.09.003 10.1007/BF00054787 10.1080/01621459.1997.10473616 10.1007/s004770000051 10.1016/j.jprocont.2007.06.002 10.1111/j.2517-6161.1977.tb01600.x 10.1080/01621459.1986.10478260 10.1016/j.jprocont.2010.11.008 10.1198/004017006000000291 10.1016/0167-9473(96)00007-2 10.1214/aoms/1177700517 10.1007/s10986-006-0028-9 10.1080/10618600.2012.674653 10.1214/aos/1176343001 10.1016/j.cor.2006.02.018 10.1111/j.1467-9876.2004.05155.x 10.1016/S0022-1694(00)00270-5 10.1016/j.csda.2004.03.003 10.1016/S0167-9473(02)00177-9 10.1093/biomet/57.1.1 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7U5 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.compchemeng.2014.06.016 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Applied Sciences Statistics |
EISSN | 1873-4375 |
EndPage | 146 |
ExternalDocumentID | 28744916 10_1016_j_compchemeng_2014_06_016 S0098135414002063 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SBC SDF SDG SDP SES SPC SPCBC SSG SST SSZ T5K ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HLZ HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ ZY4 ABTAH IQODW 7SC 7U5 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c421t-a1788a141cb7bd99dceb87e9d08f4f27cc62114b6e83baf6f4a86b08304362af3 |
IEDL.DBID | .~1 |
ISSN | 0098-1354 |
IngestDate | Tue Aug 05 10:02:14 EDT 2025 Wed Apr 02 07:18:31 EDT 2025 Tue Jul 01 03:20:43 EDT 2025 Thu Apr 24 23:06:19 EDT 2025 Fri Feb 23 02:26:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bayesian inference Change point detection Expectation Maximization Bayes estimation Data analysis Event detection Time series Change point Experimental study Modeling Optimization Data acquisition system Covariance regime switching model EM algorithm System monitoring |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-a1788a141cb7bd99dceb87e9d08f4f27cc62114b6e83baf6f4a86b08304362af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1642322590 |
PQPubID | 23500 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1642322590 pascalfrancis_primary_28744916 crossref_primary_10_1016_j_compchemeng_2014_06_016 crossref_citationtrail_10_1016_j_compchemeng_2014_06_016 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2014_06_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-03 |
PublicationDateYYYYMMDD | 2014-10-03 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Computers & chemical engineering |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Narasimhan, Jordache (bib0115) 2000 Caussinus, Mestre (bib0015) 2004; 53 Perreault, Parent, Bernier, Bobee, Slivitzky (bib0125) 2000; 235 Keshavarz, Huang (bib0090) 2014; 60 Keshavarz, Huang (bib0085) 2013 Jin, Huang, Shook (bib0070) 2011; 21 Sen, Srivastava (bib0130) 1975; 3 Yao (bib0155) 1988; 6 Chernoff, Zacks (bib0025) 1964; 35 MacLachlan, Krishnan (bib0110) 1997 Son, Kim (bib0140) 2005; 39 Yildirim, Singh, Doucet (bib0160) 2014; 22 Bansal, Du, Hamedani (bib0005) 2008; 37 Du (bib0045) 2010 Venter, Steel (bib0150) 1996; 22 Cheon, Kim (bib0020) 2010; 54 Loschi, Cruz, Takahashi, Iglesias, Arellano, MacGregor Smith (bib0105) 2008; 35 Yu, Qin (bib0165) 2008; 18 Hawkins (bib0055) 2001; 37 Dempster (bib0035) 1977; 39 Srivastava, Worsley (bib0145) 1986; 81 Smith (bib0135) 1975; 62 Perreault, Parent, Bernier, Bobee, Slivitzky (bib0120) 2000; 14 Zambadouglas, Hawkins (bib0175) 2006; 48 Karunamuni, Zhang (bib0080) 1996; 48 Hinkley (bib0065) 1970; 57 Lavielle (bib0095) 2006; 46 Karlis, Xekalaki (bib0075) 2003; 41 Hawkins (bib0060) 2001; 37 Djafari, Feron (bib0040) 2007; vol. 16 Gelman, Carlin, Stern, Rubin (bib0050) 2004 Crowley (bib0030) 1997; 92 Yu, Qin (bib0170) 2008; 18 Barry, Hartigan (bib0010) 1993; 88 Loschi, Cruz (bib0100) 2005; 48 Hawkins (10.1016/j.compchemeng.2014.06.016_bib0060) 2001; 37 Karunamuni (10.1016/j.compchemeng.2014.06.016_bib0080) 1996; 48 Perreault (10.1016/j.compchemeng.2014.06.016_bib0120) 2000; 14 Loschi (10.1016/j.compchemeng.2014.06.016_bib0100) 2005; 48 MacLachlan (10.1016/j.compchemeng.2014.06.016_bib0110) 1997 Hinkley (10.1016/j.compchemeng.2014.06.016_bib0065) 1970; 57 Narasimhan (10.1016/j.compchemeng.2014.06.016_bib0115) 2000 Yildirim (10.1016/j.compchemeng.2014.06.016_bib0160) 2014; 22 Caussinus (10.1016/j.compchemeng.2014.06.016_bib0015) 2004; 53 Loschi (10.1016/j.compchemeng.2014.06.016_bib0105) 2008; 35 Yao (10.1016/j.compchemeng.2014.06.016_bib0155) 1988; 6 Jin (10.1016/j.compchemeng.2014.06.016_bib0070) 2011; 21 Du (10.1016/j.compchemeng.2014.06.016_bib0045) 2010 Keshavarz (10.1016/j.compchemeng.2014.06.016_bib0090) 2014; 60 Crowley (10.1016/j.compchemeng.2014.06.016_bib0030) 1997; 92 Lavielle (10.1016/j.compchemeng.2014.06.016_bib0095) 2006; 46 Bansal (10.1016/j.compchemeng.2014.06.016_bib0005) 2008; 37 Zambadouglas (10.1016/j.compchemeng.2014.06.016_bib0175) 2006; 48 Karlis (10.1016/j.compchemeng.2014.06.016_bib0075) 2003; 41 Yu (10.1016/j.compchemeng.2014.06.016_bib0165) 2008; 18 Hawkins (10.1016/j.compchemeng.2014.06.016_bib0055) 2001; 37 Gelman (10.1016/j.compchemeng.2014.06.016_bib0050) 2004 Yu (10.1016/j.compchemeng.2014.06.016_bib0170) 2008; 18 Dempster (10.1016/j.compchemeng.2014.06.016_bib0035) 1977; 39 Chernoff (10.1016/j.compchemeng.2014.06.016_bib0025) 1964; 35 Keshavarz (10.1016/j.compchemeng.2014.06.016_bib0085) 2013 Smith (10.1016/j.compchemeng.2014.06.016_bib0135) 1975; 62 Venter (10.1016/j.compchemeng.2014.06.016_bib0150) 1996; 22 Cheon (10.1016/j.compchemeng.2014.06.016_bib0020) 2010; 54 Perreault (10.1016/j.compchemeng.2014.06.016_bib0125) 2000; 235 Djafari (10.1016/j.compchemeng.2014.06.016_bib0040) 2007; vol. 16 Srivastava (10.1016/j.compchemeng.2014.06.016_bib0145) 1986; 81 Sen (10.1016/j.compchemeng.2014.06.016_bib0130) 1975; 3 Barry (10.1016/j.compchemeng.2014.06.016_bib0010) 1993; 88 Son (10.1016/j.compchemeng.2014.06.016_bib0140) 2005; 39 |
References_xml | – volume: 37 start-page: 2010 year: 2008 end-page: 2021 ident: bib0005 article-title: An application of EM algorithm to change point problem publication-title: Commun Stat Theory Methods – volume: 48 start-page: 229 year: 1996 end-page: 246 ident: bib0080 article-title: Empirical Bayes detection of a change in distribution publication-title: Ann Inst Stat Math – volume: 46 start-page: 287 year: 2006 end-page: 306 ident: bib0095 article-title: Detection of multiple change-points in multivariate time series publication-title: Lithuanian Math J – year: 2000 ident: bib0115 article-title: Data reconciliation and gross error detection: an intelligent use of process data – volume: 57 start-page: 1 year: 1970 end-page: 17 ident: bib0065 article-title: Inference about the change point in a sequence of random variables publication-title: Biometrika – volume: 18 start-page: 297 year: 2008 end-page: 319 ident: bib0170 article-title: Statistical MIMO controller performance monitoring. Part II: performance diagnosis publication-title: J Process Control – volume: 53 start-page: 405 year: 2004 end-page: 425 ident: bib0015 article-title: Trafford publishing detection and correction of artificial shifts in climate series publication-title: J R Stat Soc Ser C (Appl Stat) – volume: 37 start-page: 323 year: 2001 end-page: 341 ident: bib0055 article-title: Fitting multiple change-point models to data publication-title: Comput Stat Data Anal – volume: 88 start-page: 309 year: 1993 end-page: 319 ident: bib0010 article-title: A Bayesian analysis for change point problems publication-title: J Am Stat Assoc – volume: 6 start-page: 181 year: 1988 end-page: 189 ident: bib0155 article-title: Estimating the number of change-points via schwarz criterion publication-title: Stat Prob Lett – year: 2010 ident: bib0045 article-title: Comparison of change point detection algorithms for vector time series, master thesis in statistics, data analysis and knowledge discovery – volume: 18 start-page: 277 year: 2008 end-page: 296 ident: bib0165 article-title: Statistical MIMO controller performance monitoring. Part I: data-driven covariance benchmark publication-title: J Process Control – volume: 41 start-page: 577 year: 2003 end-page: 590 ident: bib0075 article-title: Choosing initial values for the EM algorithm for finite mixtures publication-title: Comput Stat Data Anal – volume: vol. 16 start-page: 215 year: 2007 end-page: 221 ident: bib0040 publication-title: Bayesian approach to change point detection in time series – volume: 48 start-page: 255 year: 2005 end-page: 268 ident: bib0100 article-title: Extension to the product partition model: computing the probability of a change publication-title: Comput Stat Data Anal – volume: 235 start-page: 221 year: 2000 end-page: 241 ident: bib0125 article-title: Bayesian change-point analysis in hydrometeorological time series. Part 1. The normal model revisited publication-title: J Hydrol – volume: 22 start-page: 906 year: 2014 end-page: 926 ident: bib0160 article-title: An online expectation-maximization algorithm for change point models publication-title: J Comput Graph Stat – volume: 3 start-page: 98 year: 1975 end-page: 108 ident: bib0130 article-title: On tests for detecting change in mean publication-title: Ann Stat – volume: 92 start-page: 192 year: 1997 end-page: 198 ident: bib0030 article-title: Product Partition Models for Normal Means publication-title: J Am Stat Assoc – volume: 35 start-page: 999 year: 1964 end-page: 1018 ident: bib0025 article-title: Estimating the current mean of a normal distribution which is subjected to changes in time publication-title: Ann Math Stat – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: bib0035 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc – volume: 81 start-page: 199 year: 1986 end-page: 204 ident: bib0145 article-title: Likelihood ratio tests for a change in the multivariate normal mean publication-title: J Am Stat Assoc – volume: 22 start-page: 481 year: 1996 end-page: 504 ident: bib0150 article-title: Finding multiple abrupt change points publication-title: Comput Stat Data Anal – year: 2013 ident: bib0085 article-title: Expectation Maximization approach to gross error and change point detection publication-title: 10th IEEE international conference on control and automation – volume: 54 start-page: 406 year: 2010 end-page: 415 ident: bib0020 article-title: Multiple change-point detection of multivariate mean vectors with the Bayesian approach publication-title: Comput Stat Data Anal – volume: 39 start-page: 373 year: 2005 end-page: 387 ident: bib0140 article-title: Bayesian single change point detection in a sequence of multivariate normal observations publication-title: Stat J Theor Appl Stat – volume: 21 start-page: 182 year: 2011 end-page: 193 ident: bib0070 article-title: Multiple model LPV approach to nonlinear process identification with EM algorithm publication-title: J Process Control – volume: 14 start-page: 243 year: 2000 end-page: 261 ident: bib0120 article-title: Retrospective multivariate bayesian change-point analysis: a simultaneous single change in the mean of several hydrological sequences publication-title: Stoch Environ Res Risk Assess – volume: 62 start-page: 407 year: 1975 end-page: 416 ident: bib0135 article-title: A Bayesian approach to inference about a change-point in a sequence of random variables publication-title: Biometrika – volume: 37 start-page: 323 year: 2001 end-page: 341 ident: bib0060 article-title: Finding multiple change point models to data publication-title: Comput Stat Data Anal – volume: 48 start-page: 539 year: 2006 end-page: 549 ident: bib0175 article-title: A multivariate change point model for statistical process control publication-title: Technometrics – year: 1997 ident: bib0110 article-title: The EM algorithm and extensions – volume: 60 start-page: 339 year: 2014 end-page: 353 ident: bib0090 article-title: Bayesian and Expectation Maximization methods for multivariate change point detection publication-title: Comput Chem Eng – year: 2004 ident: bib0050 article-title: Bayesian data analysis – volume: 35 start-page: 156 year: 2008 end-page: 170 ident: bib0105 article-title: A note on Bayesian identification of change points in data sequence publication-title: Comput Operat Res – volume: 60 start-page: 339 year: 2014 ident: 10.1016/j.compchemeng.2014.06.016_bib0090 article-title: Bayesian and Expectation Maximization methods for multivariate change point detection publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2013.09.012 – volume: 37 start-page: 2010 year: 2008 ident: 10.1016/j.compchemeng.2014.06.016_bib0005 article-title: An application of EM algorithm to change point problem publication-title: Commun Stat Theory Methods doi: 10.1080/03610920701827581 – volume: 62 start-page: 407 year: 1975 ident: 10.1016/j.compchemeng.2014.06.016_bib0135 article-title: A Bayesian approach to inference about a change-point in a sequence of random variables publication-title: Biometrika doi: 10.1093/biomet/62.2.407 – volume: 6 start-page: 181 year: 1988 ident: 10.1016/j.compchemeng.2014.06.016_bib0155 article-title: Estimating the number of change-points via schwarz criterion publication-title: Stat Prob Lett doi: 10.1016/0167-7152(88)90118-6 – volume: 18 start-page: 297 year: 2008 ident: 10.1016/j.compchemeng.2014.06.016_bib0170 article-title: Statistical MIMO controller performance monitoring. Part II: performance diagnosis publication-title: J Process Control doi: 10.1016/j.jprocont.2007.09.003 – volume: 88 start-page: 309 year: 1993 ident: 10.1016/j.compchemeng.2014.06.016_bib0010 article-title: A Bayesian analysis for change point problems publication-title: J Am Stat Assoc doi: 10.1080/01621459.1993.10594323 – volume: 37 start-page: 323 issue: 3 year: 2001 ident: 10.1016/j.compchemeng.2014.06.016_bib0055 article-title: Fitting multiple change-point models to data publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(00)00068-2 – volume: 54 start-page: 406 year: 2010 ident: 10.1016/j.compchemeng.2014.06.016_bib0020 article-title: Multiple change-point detection of multivariate mean vectors with the Bayesian approach publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.09.003 – volume: 48 start-page: 229 issue: 2 year: 1996 ident: 10.1016/j.compchemeng.2014.06.016_bib0080 article-title: Empirical Bayes detection of a change in distribution publication-title: Ann Inst Stat Math doi: 10.1007/BF00054787 – volume: 92 start-page: 192 year: 1997 ident: 10.1016/j.compchemeng.2014.06.016_bib0030 article-title: Product Partition Models for Normal Means publication-title: J Am Stat Assoc doi: 10.1080/01621459.1997.10473616 – volume: 14 start-page: 243 year: 2000 ident: 10.1016/j.compchemeng.2014.06.016_bib0120 article-title: Retrospective multivariate bayesian change-point analysis: a simultaneous single change in the mean of several hydrological sequences publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s004770000051 – volume: 37 start-page: 323 year: 2001 ident: 10.1016/j.compchemeng.2014.06.016_bib0060 article-title: Finding multiple change point models to data publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(00)00068-2 – volume: 18 start-page: 277 year: 2008 ident: 10.1016/j.compchemeng.2014.06.016_bib0165 article-title: Statistical MIMO controller performance monitoring. Part I: data-driven covariance benchmark publication-title: J Process Control doi: 10.1016/j.jprocont.2007.06.002 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.compchemeng.2014.06.016_bib0035 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 39 start-page: 373 issue: 5 year: 2005 ident: 10.1016/j.compchemeng.2014.06.016_bib0140 article-title: Bayesian single change point detection in a sequence of multivariate normal observations publication-title: Stat J Theor Appl Stat – volume: 81 start-page: 199 issue: 393 year: 1986 ident: 10.1016/j.compchemeng.2014.06.016_bib0145 article-title: Likelihood ratio tests for a change in the multivariate normal mean publication-title: J Am Stat Assoc doi: 10.1080/01621459.1986.10478260 – volume: 21 start-page: 182 issue: 1 year: 2011 ident: 10.1016/j.compchemeng.2014.06.016_bib0070 article-title: Multiple model LPV approach to nonlinear process identification with EM algorithm publication-title: J Process Control doi: 10.1016/j.jprocont.2010.11.008 – volume: 48 start-page: 539 issue: 4 year: 2006 ident: 10.1016/j.compchemeng.2014.06.016_bib0175 article-title: A multivariate change point model for statistical process control publication-title: Technometrics doi: 10.1198/004017006000000291 – year: 1997 ident: 10.1016/j.compchemeng.2014.06.016_bib0110 – volume: 22 start-page: 481 year: 1996 ident: 10.1016/j.compchemeng.2014.06.016_bib0150 article-title: Finding multiple abrupt change points publication-title: Comput Stat Data Anal doi: 10.1016/0167-9473(96)00007-2 – volume: 35 start-page: 999 issue: 3 year: 1964 ident: 10.1016/j.compchemeng.2014.06.016_bib0025 article-title: Estimating the current mean of a normal distribution which is subjected to changes in time publication-title: Ann Math Stat doi: 10.1214/aoms/1177700517 – volume: 46 start-page: 287 issue: 3 year: 2006 ident: 10.1016/j.compchemeng.2014.06.016_bib0095 article-title: Detection of multiple change-points in multivariate time series publication-title: Lithuanian Math J doi: 10.1007/s10986-006-0028-9 – year: 2004 ident: 10.1016/j.compchemeng.2014.06.016_bib0050 – volume: 22 start-page: 906 issue: 4 year: 2014 ident: 10.1016/j.compchemeng.2014.06.016_bib0160 article-title: An online expectation-maximization algorithm for change point models publication-title: J Comput Graph Stat doi: 10.1080/10618600.2012.674653 – year: 2000 ident: 10.1016/j.compchemeng.2014.06.016_bib0115 – volume: 3 start-page: 98 year: 1975 ident: 10.1016/j.compchemeng.2014.06.016_bib0130 article-title: On tests for detecting change in mean publication-title: Ann Stat doi: 10.1214/aos/1176343001 – year: 2013 ident: 10.1016/j.compchemeng.2014.06.016_bib0085 article-title: Expectation Maximization approach to gross error and change point detection – volume: 35 start-page: 156 year: 2008 ident: 10.1016/j.compchemeng.2014.06.016_bib0105 article-title: A note on Bayesian identification of change points in data sequence publication-title: Comput Operat Res doi: 10.1016/j.cor.2006.02.018 – volume: 53 start-page: 405 issue: 3 year: 2004 ident: 10.1016/j.compchemeng.2014.06.016_bib0015 article-title: Trafford publishing detection and correction of artificial shifts in climate series publication-title: J R Stat Soc Ser C (Appl Stat) doi: 10.1111/j.1467-9876.2004.05155.x – volume: 235 start-page: 221 year: 2000 ident: 10.1016/j.compchemeng.2014.06.016_bib0125 article-title: Bayesian change-point analysis in hydrometeorological time series. Part 1. The normal model revisited publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00270-5 – volume: 48 start-page: 255 year: 2005 ident: 10.1016/j.compchemeng.2014.06.016_bib0100 article-title: Extension to the product partition model: computing the probability of a change publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2004.03.003 – volume: 41 start-page: 577 year: 2003 ident: 10.1016/j.compchemeng.2014.06.016_bib0075 article-title: Choosing initial values for the EM algorithm for finite mixtures publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(02)00177-9 – volume: vol. 16 start-page: 215 year: 2007 ident: 10.1016/j.compchemeng.2014.06.016_bib0040 – year: 2010 ident: 10.1016/j.compchemeng.2014.06.016_bib0045 – volume: 57 start-page: 1 year: 1970 ident: 10.1016/j.compchemeng.2014.06.016_bib0065 article-title: Inference about the change point in a sequence of random variables publication-title: Biometrika doi: 10.1093/biomet/57.1.1 |
SSID | ssj0002488 |
Score | 2.1309829 |
Snippet | •Developed simultaneous detection of multiple change points.•Handled change point detection in presence of unknown and varying covariance.•Solved change... Data analysis plays an important role in system modeling, monitoring and optimization. Among those data analysis techniques, change point detection has been... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 128 |
SubjectTerms | Algorithms Applied sciences Bayesian inference Change point detection Chemical engineering Computer science; control theory; systems Computer simulation Control system analysis Control theory. Systems Covariance Data processing Exact sciences and technology Expectation Maximization Mathematics Maximization Monitoring Optimization Parametric inference Probability and statistics Sciences and techniques of general use Statistics |
Title | Expectation Maximization method for multivariate change point detection in presence of unknown and changing covariance |
URI | https://dx.doi.org/10.1016/j.compchemeng.2014.06.016 https://www.proquest.com/docview/1642322590 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-UwEA-iIC4ifi266iOC1-prG9MEvIgoT0VPCt5Ckk6ky5oW7ZM97d--mbT1Az0IHlsySUjSyUznN78hZI_JQgsASJCaJEH2l0SKHJJcOltwlwN3mDt8dc0nt-zi7vBuhpwMuTAIq-x1f6fTo7bu3xz0q3nQVBXm-EqR5ljGGm0ejoyfjBV4yvf_vcI8MibEwJuJrefJ7ivGC2HbYW0ewN8jyotFKk8sff75HbXY6Kewcq4refFBe8cr6WyZLPW2JD3uprtCZsCvkh9vGAbXyDNSGdsu3E6v9N_qoc-7pF3paBpsVhpBhc_BaQ52J-0ygWlTV76lJbQRquVp5WkTM5Us0NrRqcefcZ5qX3YSYTRq69hJaLJObs9Ob04mSV9qIbEsS9tEp8EV1ilLrSlMKWVpwYgCZDkWjrmssJYHT5EZDiI32nHHtOAmmG_IYJ9pl_8ks772sEGow1BjGfoCDiyzY4OhVynG0mjGTZpuEjEsrrI9DzmWw_ijBsDZb_VmXxTui0LwXco3SfYi2nRkHF8ROhp2UL07WSpcGl8RH73b9ZeBY-EAiQ12h2OgwqeJ8RbtoZ4-qeCJZqgv5fjX9-awRRbwKWII820y2z5OYSfYQq0ZxcM-InPH55eT6__8gg3P |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwELVKkXgIIR6tKI_iSrAMvXGMY0uwQEB1S3u7aqXujO3YKKh1Im5ugQ0_xQ8y4yR9CBaVULdJbEceZzwTnzmHkBdclUZ67zOkJsmQ_SVTsvBZoYIrRSi8CFg7PNsT0wP-6fD14RL5PdbCIKxy8P29T0_eeriyOczmZlvXWOOrZF6gjDXGPGJUsN7xP79D3jZ_u_0BjPySsa2P---n2SAtkDnO8i4zOaR-Jue5s6WtlKqct7L0qprIwAMrnROQGXErvCysCSJwI4WFcAUZ25kJBfR7jVzn4C5QNuHVrzNcCeNSjkSd-Ho3yMYZqAxx4mCMYx-_IKyMJ-5Q1Fr_96Z4pzVzMFXoNTb-2i7SHrh1j9wdglf6rp-f-2TJxwfk9jlKw4fkBLmTXX--T2fmR308FHrSXquaQpBME4rxBLJ0CHRpX3pM26aOHa18l7BhkdaRtqk0ynnaBLqI-PcvUhOrvgWMRl2TOoFHVsjBlRhglSzHJvpHhAY826ygLy88Z25i8axXyYmyhgub52tEjpOr3UB8jvobR3pEuH3V5-yi0S4a0X65WCPstGnbs39cptGb0YL6wlLWsEtdpvn6BaufDpyUChQ-sDEuAw2-AA94TPTNYq4h9WXooNXk8f-9w3Nyc7o_29W723s7T8gtvJMAjMVTstx9W_hnEIh1dj0tfEo-X_WX9gfBfkn3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation+Maximization+method+for+multivariate+change+point+detection+in+presence+of+unknown+and+changing+covariance&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Keshavarz%2C+Marziyeh&rft.au=Huang%2C+Biao&rft.date=2014-10-03&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=69&rft.spage=128&rft.epage=146&rft_id=info:doi/10.1016%2Fj.compchemeng.2014.06.016&rft.externalDocID=S0098135414002063 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |