AUTOMATIC FLOOD DETECTION FROM SENTINEL-1 DATA USING DEEP LEARNING ARCHITECTURES

Floods are the most frequent, costliest natural disasters having devastating consequences on people, infrastructure, and the ecosystem. During flood events near real-time satellite imagery has proven to be an efficient management tool for disaster management authorities. However one of the challenge...

Full description

Saved in:
Bibliographic Details
Published inISPRS annals of the photogrammetry, remote sensing and spatial information sciences Vol. V-3-2022; pp. 201 - 208
Main Authors Ghosh, B., Garg, S., Motagh, M.
Format Journal Article
LanguageEnglish
Published Gottingen Copernicus GmbH 17.05.2022
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Floods are the most frequent, costliest natural disasters having devastating consequences on people, infrastructure, and the ecosystem. During flood events near real-time satellite imagery has proven to be an efficient management tool for disaster management authorities. However one of the challenges is accurate classification and segmentation of flooded water. The generalization ability of binary segmentation using threshold split-based method, is limited due to the effects of backscatter, geographical area, and time of image collection. Recent advancements in deep learning algorithms for image segmentation has demonstrated excellent potential for improving flood detection. However, there have been limited studies in this domain due to the lack of large scale labeled flood event dataset. In this paper, we present two deep learning approaches, first using a UNet and second, using a Feature Pyramid Network (FPN), both based on a backbone of EfficientNet-B7, by leveraging publicly available Sentinel-1 dataset provided jointly by NASA Interagency Implementation and Advanced Concepts Team, and IEEE GRSS Earth Science Informatics Technical Committee. The dataset covers flood events from Nebraska, North Alabama, Bangladesh, Red River North, and Florence. The performances of both networks were evaluated with multiple training, testing, and validation. During testing, the UNet model achieved the meanIOU score of 75.06% and the FPN model achieved the meanIOU score of 75.76%.
AbstractList Floods are the most frequent, costliest natural disasters having devastating consequences on people, infrastructure, and the ecosystem. During flood events near real-time satellite imagery has proven to be an efficient management tool for disaster management authorities. However one of the challenges is accurate classification and segmentation of flooded water. The generalization ability of binary segmentation using threshold split-based method, is limited due to the effects of backscatter, geographical area, and time of image collection. Recent advancements in deep learning algorithms for image segmentation has demonstrated excellent potential for improving flood detection. However, there have been limited studies in this domain due to the lack of large scale labeled flood event dataset. In this paper, we present two deep learning approaches, first using a UNet and second, using a Feature Pyramid Network (FPN), both based on a backbone of EfficientNet-B7, by leveraging publicly available Sentinel-1 dataset provided jointly by NASA Interagency Implementation and Advanced Concepts Team, and IEEE GRSS Earth Science Informatics Technical Committee. The dataset covers flood events from Nebraska, North Alabama, Bangladesh, Red River North, and Florence. The performances of both networks were evaluated with multiple training, testing, and validation. During testing, the UNet model achieved the meanIOU score of 75.06% and the FPN model achieved the meanIOU score of 75.76%.
Author Motagh, M.
Garg, S.
Ghosh, B.
Author_xml – sequence: 1
  givenname: B.
  orcidid: 0000-0001-9842-9056
  surname: Ghosh
  fullname: Ghosh, B.
– sequence: 2
  givenname: S.
  orcidid: 0000-0002-2594-2657
  surname: Garg
  fullname: Garg, S.
– sequence: 3
  givenname: M.
  orcidid: 0000-0001-7434-3696
  surname: Motagh
  fullname: Motagh, M.
BookMark eNpNkVFvgjAUhZvFJXPO_0CyZG_d2lIKvCwhiEqCYBB9bVooi8aJa_Vh_35FlmUvt6c3X09v7nkEo1N3UgC8YPTq4ZC-7c1ZGyhOJ3E0cAddSBAhtuCbuANjYikYIg-N_ukHMDXmgBDCvheGIRmDdbStilVUpbEzz4pi5sySKomrtMideVmsnE2SV2meZBA7s6iKnO0mzRcWStZOlkRl3t-iMl6m_attmWyewH1rZ1LT33MCtvOkipcwKxZpHGWwpgRfYEiEZCRgDQqklMJzWUMaxgLVCBTQECPJ_BYhX0ovaD1FEfGoEl4dWFRQX7gTkA6-TScO_Kz3n0J_807s-a3R6Q8u9GVfHxWnvu8TF0uisEtr2krFWlzjViiKqUTKej0PXmfdfV2VufBDd9X9ajlhzM7mu4hZ6n2gat0Zo1X79ytGvA-F30LhQyh8x13eZ2ELvgn3B-M1ffI
CitedBy_id crossref_primary_10_1007_s12145_023_01205_2
crossref_primary_10_1109_LGRS_2024_3414421
crossref_primary_10_1017_eds_2023_34
crossref_primary_10_3390_rs15184501
crossref_primary_10_1016_j_jag_2024_103991
crossref_primary_10_3390_w15244202
ContentType Journal Article
Copyright 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
COVID
DWQXO
HCIFZ
L6V
M7S
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/isprs-annals-V-3-2022-201-2022
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals at publisher websites
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 2194-9050
EndPage 208
ExternalDocumentID oai_doaj_org_article_4777231b2e134c4fbe6f1c1fae414b0e
10_5194_isprs_annals_V_3_2022_201_2022
GroupedDBID 5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KQ8
L6V
LK5
M7R
M7S
PCBAR
PIMPY
PROAC
PTHSS
RKB
TUS
ABUWG
AZQEC
COVID
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c421t-92ab6286d08bbba536d2d668eda084910b67f007bb58f5e40254ea5c8a53a47a3
IEDL.DBID DOA
ISSN 2194-9050
2194-9042
IngestDate Tue Oct 22 15:15:56 EDT 2024
Thu Oct 10 20:15:03 EDT 2024
Fri Dec 06 02:25:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-92ab6286d08bbba536d2d668eda084910b67f007bb58f5e40254ea5c8a53a47a3
ORCID 0000-0001-9842-9056
0000-0001-7434-3696
0000-0002-2594-2657
OpenAccessLink https://doaj.org/article/4777231b2e134c4fbe6f1c1fae414b0e
PQID 2665367306
PQPubID 2037681
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_4777231b2e134c4fbe6f1c1fae414b0e
proquest_journals_2665367306
crossref_primary_10_5194_isprs_annals_V_3_2022_201_2022
PublicationCentury 2000
PublicationDate 2022-05-17
PublicationDateYYYYMMDD 2022-05-17
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-17
  day: 17
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle ISPRS annals of the photogrammetry, remote sensing and spatial information sciences
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
SSID ssj0001759992
ssib044742267
Score 2.339499
Snippet Floods are the most frequent, costliest natural disasters having devastating consequences on people, infrastructure, and the ecosystem. During flood events...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 201
SubjectTerms Algorithms
Backscattering
Datasets
Deep learning
Disaster management
Emergency preparedness
Flood control
Floods
Image segmentation
Machine learning
Natural disasters
Satellite imagery
Satellites
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgSAgOaONDFMbkA-JmLY5f7PSEwppsRf2YRlrtZtmJPe3Slqb7_3l2UyaEtEvkOM7l975-_nqPkK_ODq03TcJaSIABZDmzohXMWKmsRYLu46Ww6UxeLeDnbXbbL7h1_bHKg0-MjrpdN2GN_BwDSSYk6qP8vvnNQtWosLval9B4Tl7wVMlwpC-vLg_6BKDCPVH1uOaiMuRDYWMB7RTYEBX2JfmGfgNpDJzfd5ttx0zMW8yWTKAC4UQNA2Rs_BO3Ynr__7x3DEnVMXnTc0la7IV_Qp651VvyennfPex7u3fkGvVvPi3q8QWtJvP5iI7KuoznRmh1M5_SX-WsHs_KCeN0VNQFDVU4LnFQeU0nZXEzC29hP2kc_lqgtN6TRVXWF1esL6LAGkj5jg1ThD3NZZvk1lqDGLZpK2XuWpPkgGQBheKRKFib5T5zEG7HO5M1OQ41oIz4QI5W65X7SGiOtuoTjwyoSUG41grFjVTGOpAZTnYHRB0g0pt9rgyNc4wAro7g6j24eqmFDpjig8fGgPwIiP79K-S8jh3r7Z3uTUiDwpmA4DZ1XEAD3jrpecO9ccDBJm5ATg_y0L0hdvpRbT49_fkzeRXlHRKzqlNytNs-uC_IN3b2LCrVH2u-yOo
  priority: 102
  providerName: ProQuest
Title AUTOMATIC FLOOD DETECTION FROM SENTINEL-1 DATA USING DEEP LEARNING ARCHITECTURES
URI https://www.proquest.com/docview/2665367306
https://doaj.org/article/4777231b2e134c4fbe6f1c1fae414b0e
Volume V-3-2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9sgFEZbK03bYWr3Q8vWRj5Mu6Ha5hnI0U1wmymxo8yJekNgY6mXrKrT6_72PXC6ddphl10wRiDbHx_wPQMPQj47O7GdaWLaQgwUIJPUspZRY7mwFgV6FzaFLUt-vYGvN9nNk6O-_JqwwT3wANwFCNR_LLGpSxg00FnHu6RJOuMgARu70PvG6RNjCpkEIPwOUfH7b4vIUAn5KQVsoUAnSNUX5Av2GChg4OK2v7vvqQkei-mWMqQOmmg4NIbIHyNWcOz_V78dBqPihLw-qMgoH97-lDxzuzfk1fa2fxhS-7dkhcyrlnk9n0bFoqpm0UzVKqwYiYp1tYy-qbKel2pBk2iW13nkz9-4wkxqFS1Uvi79nZ9JmvtSG6ynd2RTqHp6TQ_HJ9AG0mRPJykCnkrextJaazLG27TlXLrWxBJQJmB1dCgRrM1klznw--KdyRqJWQ0Iw96To933nftAIomttIs71D5NCsy1lonEcGGsA56hmTsi4hEifTd4ydBoXXhwdQBXD-DqrWbaY4pBEiIjcukR_VXKe7sOCcgBfeCA_hcHRuTssT70oQn2GpUHfjJ2YPzj_3jGJ_IysMI7bhVn5Gh__-DOUY_s7Zg8l8XVmBxfqnK1xuu02s5n40BIDJc_1E8rnNcA
link.rule.ids 314,780,784,864,2102,12765,21388,27924,27925,33373,33744,38516,43600,43805,43895
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagK_E48FxEYYEcEDfvJvHESU8otCkNpOlqSau9WXbirFYrtaVpL_x6xk7CCpA4cIkcx5ZifZ_n4ccMIe-1Gqlali6twAUKEERUsYpRqXioFBrotb0UNs_5bAlfLoPLbsGt6Y5V9jLRCupqU5o18jNUJAHjyEf-cfudmqxRZne1S6FxlxyZLN7BgByNF6t00jMKIDQ3RcPbVZcwQIvIbC3gTAU6QsreIx9QcqAhA2fXzXbXUGkjF9MVZUghdNVQRdrCb5rLBvj_S35bpTR9TEQ_nPYsys3pYa9Oyx9_RHr8__E-IY86e9WJW4I9JXf0-hl5uLpuDm1t85ycI8cX87hIx840WywmziQpEns2xZleLObOtyQv0jzJqOdM4iJ2TKaPz9goOXeyJL7IzZvZs0pNryUy4pgsp0kxntEuUQMtwff2dOQjtH7EKzdSSkn878qvOI90Jd0I0CBB4Gs0RpQKojrQYG7gaxmUETaVEEr2ggzWm7V-SZwI5UHt1mhllT4wXSkWepKHUmngATrUQxL2IIhtG49DoB9j4BMWPtHCJ1aCCYMaPjxbGJJPBrNfvUxcbVux2V2JbpoKCNHbYJ7ytceghFppXnulV0sNHihXD8lJj5boJnsjbqF69e_P78j9WTHPRJbmX1-TB5ZdJhBseEIG-91Bv0H7Zq_ediT-CeHQ8Cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AUTOMATIC+FLOOD+DETECTION+FROM+SENTINEL-1+DATA+USING+DEEP+LEARNING+ARCHITECTURES&rft.jtitle=ISPRS+annals+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences&rft.au=Ghosh%2C+B.&rft.au=Garg%2C+S.&rft.au=Motagh%2C+M.&rft.date=2022-05-17&rft.issn=2194-9050&rft.eissn=2194-9050&rft.volume=V-3-2022&rft.spage=201&rft.epage=208&rft_id=info:doi/10.5194%2Fisprs-annals-V-3-2022-201-2022&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_isprs_annals_V_3_2022_201_2022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9050&client=summon