AUTOMATIC FLOOD DETECTION FROM SENTINEL-1 DATA USING DEEP LEARNING ARCHITECTURES
Floods are the most frequent, costliest natural disasters having devastating consequences on people, infrastructure, and the ecosystem. During flood events near real-time satellite imagery has proven to be an efficient management tool for disaster management authorities. However one of the challenge...
Saved in:
Published in | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences Vol. V-3-2022; pp. 201 - 208 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Gottingen
Copernicus GmbH
17.05.2022
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Floods are the most frequent, costliest natural disasters having devastating consequences on people, infrastructure, and the ecosystem. During flood events near real-time satellite imagery has proven to be an efficient management tool for disaster management authorities. However one of the challenges is accurate classification and segmentation of flooded water. The generalization ability of binary segmentation using threshold split-based method, is limited due to the effects of backscatter, geographical area, and time of image collection. Recent advancements in deep learning algorithms for image segmentation has demonstrated excellent potential for improving flood detection. However, there have been limited studies in this domain due to the lack of large scale labeled flood event dataset. In this paper, we present two deep learning approaches, first using a UNet and second, using a Feature Pyramid Network (FPN), both based on a backbone of EfficientNet-B7, by leveraging publicly available Sentinel-1 dataset provided jointly by NASA Interagency Implementation and Advanced Concepts Team, and IEEE GRSS Earth Science Informatics Technical Committee. The dataset covers flood events from Nebraska, North Alabama, Bangladesh, Red River North, and Florence. The performances of both networks were evaluated with multiple training, testing, and validation. During testing, the UNet model achieved the meanIOU score of 75.06% and the FPN model achieved the meanIOU score of 75.76%. |
---|---|
AbstractList | Floods are the most frequent, costliest natural disasters having devastating consequences on people, infrastructure, and the ecosystem. During flood events near real-time satellite imagery has proven to be an efficient management tool for disaster management authorities. However one of the challenges is accurate classification and segmentation of flooded water. The generalization ability of binary segmentation using threshold split-based method, is limited due to the effects of backscatter, geographical area, and time of image collection. Recent advancements in deep learning algorithms for image segmentation has demonstrated excellent potential for improving flood detection. However, there have been limited studies in this domain due to the lack of large scale labeled flood event dataset. In this paper, we present two deep learning approaches, first using a UNet and second, using a Feature Pyramid Network (FPN), both based on a backbone of EfficientNet-B7, by leveraging publicly available Sentinel-1 dataset provided jointly by NASA Interagency Implementation and Advanced Concepts Team, and IEEE GRSS Earth Science Informatics Technical Committee. The dataset covers flood events from Nebraska, North Alabama, Bangladesh, Red River North, and Florence. The performances of both networks were evaluated with multiple training, testing, and validation. During testing, the UNet model achieved the meanIOU score of 75.06% and the FPN model achieved the meanIOU score of 75.76%. |
Author | Motagh, M. Garg, S. Ghosh, B. |
Author_xml | – sequence: 1 givenname: B. orcidid: 0000-0001-9842-9056 surname: Ghosh fullname: Ghosh, B. – sequence: 2 givenname: S. orcidid: 0000-0002-2594-2657 surname: Garg fullname: Garg, S. – sequence: 3 givenname: M. orcidid: 0000-0001-7434-3696 surname: Motagh fullname: Motagh, M. |
BookMark | eNpNkVFvgjAUhZvFJXPO_0CyZG_d2lIKvCwhiEqCYBB9bVooi8aJa_Vh_35FlmUvt6c3X09v7nkEo1N3UgC8YPTq4ZC-7c1ZGyhOJ3E0cAddSBAhtuCbuANjYikYIg-N_ukHMDXmgBDCvheGIRmDdbStilVUpbEzz4pi5sySKomrtMideVmsnE2SV2meZBA7s6iKnO0mzRcWStZOlkRl3t-iMl6m_attmWyewH1rZ1LT33MCtvOkipcwKxZpHGWwpgRfYEiEZCRgDQqklMJzWUMaxgLVCBTQECPJ_BYhX0ovaD1FEfGoEl4dWFRQX7gTkA6-TScO_Kz3n0J_807s-a3R6Q8u9GVfHxWnvu8TF0uisEtr2krFWlzjViiKqUTKej0PXmfdfV2VufBDd9X9ajlhzM7mu4hZ6n2gat0Zo1X79ytGvA-F30LhQyh8x13eZ2ELvgn3B-M1ffI |
CitedBy_id | crossref_primary_10_1007_s12145_023_01205_2 crossref_primary_10_1109_LGRS_2024_3414421 crossref_primary_10_1017_eds_2023_34 crossref_primary_10_3390_rs15184501 crossref_primary_10_1016_j_jag_2024_103991 crossref_primary_10_3390_w15244202 |
ContentType | Journal Article |
Copyright | 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU COVID DWQXO HCIFZ L6V M7S PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.5194/isprs-annals-V-3-2022-201-2022 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals at publisher websites url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 2194-9050 |
EndPage | 208 |
ExternalDocumentID | oai_doaj_org_article_4777231b2e134c4fbe6f1c1fae414b0e 10_5194_isprs_annals_V_3_2022_201_2022 |
GroupedDBID | 5VS 8FE 8FG 8FH AAFWJ AAYXX ABJCF ACIWK ADBBV AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ KQ8 L6V LK5 M7R M7S PCBAR PIMPY PROAC PTHSS RKB TUS ABUWG AZQEC COVID DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c421t-92ab6286d08bbba536d2d668eda084910b67f007bb58f5e40254ea5c8a53a47a3 |
IEDL.DBID | DOA |
ISSN | 2194-9050 2194-9042 |
IngestDate | Tue Oct 22 15:15:56 EDT 2024 Thu Oct 10 20:15:03 EDT 2024 Fri Dec 06 02:25:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-92ab6286d08bbba536d2d668eda084910b67f007bb58f5e40254ea5c8a53a47a3 |
ORCID | 0000-0001-9842-9056 0000-0001-7434-3696 0000-0002-2594-2657 |
OpenAccessLink | https://doaj.org/article/4777231b2e134c4fbe6f1c1fae414b0e |
PQID | 2665367306 |
PQPubID | 2037681 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4777231b2e134c4fbe6f1c1fae414b0e proquest_journals_2665367306 crossref_primary_10_5194_isprs_annals_V_3_2022_201_2022 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-17 |
PublicationDateYYYYMMDD | 2022-05-17 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Gottingen |
PublicationPlace_xml | – name: Gottingen |
PublicationTitle | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
PublicationYear | 2022 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
SSID | ssj0001759992 ssib044742267 |
Score | 2.339499 |
Snippet | Floods are the most frequent, costliest natural disasters having devastating consequences on people, infrastructure, and the ecosystem. During flood events... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 201 |
SubjectTerms | Algorithms Backscattering Datasets Deep learning Disaster management Emergency preparedness Flood control Floods Image segmentation Machine learning Natural disasters Satellite imagery Satellites |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgSAgOaONDFMbkA-JmLY5f7PSEwppsRf2YRlrtZtmJPe3Slqb7_3l2UyaEtEvkOM7l975-_nqPkK_ODq03TcJaSIABZDmzohXMWKmsRYLu46Ww6UxeLeDnbXbbL7h1_bHKg0-MjrpdN2GN_BwDSSYk6qP8vvnNQtWosLval9B4Tl7wVMlwpC-vLg_6BKDCPVH1uOaiMuRDYWMB7RTYEBX2JfmGfgNpDJzfd5ttx0zMW8yWTKAC4UQNA2Rs_BO3Ynr__7x3DEnVMXnTc0la7IV_Qp651VvyennfPex7u3fkGvVvPi3q8QWtJvP5iI7KuoznRmh1M5_SX-WsHs_KCeN0VNQFDVU4LnFQeU0nZXEzC29hP2kc_lqgtN6TRVXWF1esL6LAGkj5jg1ThD3NZZvk1lqDGLZpK2XuWpPkgGQBheKRKFib5T5zEG7HO5M1OQ41oIz4QI5W65X7SGiOtuoTjwyoSUG41grFjVTGOpAZTnYHRB0g0pt9rgyNc4wAro7g6j24eqmFDpjig8fGgPwIiP79K-S8jh3r7Z3uTUiDwpmA4DZ1XEAD3jrpecO9ccDBJm5ATg_y0L0hdvpRbT49_fkzeRXlHRKzqlNytNs-uC_IN3b2LCrVH2u-yOo priority: 102 providerName: ProQuest |
Title | AUTOMATIC FLOOD DETECTION FROM SENTINEL-1 DATA USING DEEP LEARNING ARCHITECTURES |
URI | https://www.proquest.com/docview/2665367306 https://doaj.org/article/4777231b2e134c4fbe6f1c1fae414b0e |
Volume | V-3-2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9sgFEZbK03bYWr3Q8vWRj5Mu6Ha5hnI0U1wmymxo8yJekNgY6mXrKrT6_72PXC6ddphl10wRiDbHx_wPQMPQj47O7GdaWLaQgwUIJPUspZRY7mwFgV6FzaFLUt-vYGvN9nNk6O-_JqwwT3wANwFCNR_LLGpSxg00FnHu6RJOuMgARu70PvG6RNjCpkEIPwOUfH7b4vIUAn5KQVsoUAnSNUX5Av2GChg4OK2v7vvqQkei-mWMqQOmmg4NIbIHyNWcOz_V78dBqPihLw-qMgoH97-lDxzuzfk1fa2fxhS-7dkhcyrlnk9n0bFoqpm0UzVKqwYiYp1tYy-qbKel2pBk2iW13nkz9-4wkxqFS1Uvi79nZ9JmvtSG6ynd2RTqHp6TQ_HJ9AG0mRPJykCnkrextJaazLG27TlXLrWxBJQJmB1dCgRrM1klznw--KdyRqJWQ0Iw96To933nftAIomttIs71D5NCsy1lonEcGGsA56hmTsi4hEifTd4ydBoXXhwdQBXD-DqrWbaY4pBEiIjcukR_VXKe7sOCcgBfeCA_hcHRuTssT70oQn2GpUHfjJ2YPzj_3jGJ_IysMI7bhVn5Gh__-DOUY_s7Zg8l8XVmBxfqnK1xuu02s5n40BIDJc_1E8rnNcA |
link.rule.ids | 314,780,784,864,2102,12765,21388,27924,27925,33373,33744,38516,43600,43805,43895 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagK_E48FxEYYEcEDfvJvHESU8otCkNpOlqSau9WXbirFYrtaVpL_x6xk7CCpA4cIkcx5ZifZ_n4ccMIe-1Gqlali6twAUKEERUsYpRqXioFBrotb0UNs_5bAlfLoPLbsGt6Y5V9jLRCupqU5o18jNUJAHjyEf-cfudmqxRZne1S6FxlxyZLN7BgByNF6t00jMKIDQ3RcPbVZcwQIvIbC3gTAU6QsreIx9QcqAhA2fXzXbXUGkjF9MVZUghdNVQRdrCb5rLBvj_S35bpTR9TEQ_nPYsys3pYa9Oyx9_RHr8__E-IY86e9WJW4I9JXf0-hl5uLpuDm1t85ycI8cX87hIx840WywmziQpEns2xZleLObOtyQv0jzJqOdM4iJ2TKaPz9goOXeyJL7IzZvZs0pNryUy4pgsp0kxntEuUQMtwff2dOQjtH7EKzdSSkn878qvOI90Jd0I0CBB4Gs0RpQKojrQYG7gaxmUETaVEEr2ggzWm7V-SZwI5UHt1mhllT4wXSkWepKHUmngATrUQxL2IIhtG49DoB9j4BMWPtHCJ1aCCYMaPjxbGJJPBrNfvUxcbVux2V2JbpoKCNHbYJ7ytceghFppXnulV0sNHihXD8lJj5boJnsjbqF69e_P78j9WTHPRJbmX1-TB5ZdJhBseEIG-91Bv0H7Zq_ediT-CeHQ8Cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AUTOMATIC+FLOOD+DETECTION+FROM+SENTINEL-1+DATA+USING+DEEP+LEARNING+ARCHITECTURES&rft.jtitle=ISPRS+annals+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences&rft.au=Ghosh%2C+B.&rft.au=Garg%2C+S.&rft.au=Motagh%2C+M.&rft.date=2022-05-17&rft.issn=2194-9050&rft.eissn=2194-9050&rft.volume=V-3-2022&rft.spage=201&rft.epage=208&rft_id=info:doi/10.5194%2Fisprs-annals-V-3-2022-201-2022&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_isprs_annals_V_3_2022_201_2022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9050&client=summon |