Dynamics and structure of colloidal aggregates under microchannel flow

The kinetics of colloidal gels under narrow confinement are of widespread practical relevance, with applications ranging from flow in biological systems to 3D printing. Although the properties of such gels under uniform shear have received considerable attention, the effects of strongly nonuniform s...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 15; no. 4; pp. 744 - 751
Main Authors Han, Ming, Whitmer, Jonathan K, Luijten, Erik
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.01.2019
Subjects
Online AccessGet full text
ISSN1744-683X
1744-6848
1744-6848
DOI10.1039/c8sm01451e

Cover

Loading…
Abstract The kinetics of colloidal gels under narrow confinement are of widespread practical relevance, with applications ranging from flow in biological systems to 3D printing. Although the properties of such gels under uniform shear have received considerable attention, the effects of strongly nonuniform shear are far less understood. Motivated by the possibilities offered by recent advances in nano- and microfluidics, we explore the generic phase behavior and dynamics of attractive colloids subject to microchannel flow, using mesoscale particle-based hydrodynamic simulations. Whereas moderate shear strengths result in shear-assisted crystallization, high shear strengths overwhelm the attractions and lead to melting of the clusters. Within the transition region between these two regimes, we discover remarkable dynamics of the colloidal aggregates. Shear-induced surface melting of the aggregates, in conjunction with the Plateau-Rayleigh instability and size-dependent cluster velocities, leads to a cyclic process in which elongated threads of colloidal aggregates break up and reform, resulting in large crystallites. These insights offer new possibilities for the control of colloidal dynamics and aggregation under confinement. Nonuniform shear of a microchannel flow drives the crystallization of attractive colloids via a Plateau-Rayleigh instability.
AbstractList The kinetics of colloidal gels under narrow confinement are of widespread practical relevance, with applications ranging from flow in biological systems to 3D printing. Although the properties of such gels under uniform shear have received considerable attention, the effects of strongly nonuniform shear are far less understood. Motivated by the possibilities offered by recent advances in nano- and microfluidics, we explore the generic phase behavior and dynamics of attractive colloids subject to microchannel flow, using mesoscale particle-based hydrodynamic simulations. Whereas moderate shear strengths result in shear-assisted crystallization, high shear strengths overwhelm the attractions and lead to melting of the clusters. Within the transition region between these two regimes, we discover remarkable dynamics of the colloidal aggregates. Shear-induced surface melting of the aggregates, in conjunction with the Plateau–Rayleigh instability and size-dependent cluster velocities, leads to a cyclic process in which elongated threads of colloidal aggregates break up and reform, resulting in large crystallites. These insights offer new possibilities for the control of colloidal dynamics and aggregation under confinement.
The kinetics of colloidal gels under narrow confinement are of widespread practical relevance, with applications ranging from flow in biological systems to 3D printing. Although the properties of such gels under uniform shear have received considerable attention, the effects of strongly nonuniform shear are far less understood. Motivated by the possibilities offered by recent advances in nano- and microfluidics, we explore the generic phase behavior and dynamics of attractive colloids subject to microchannel flow, using mesoscale particle-based hydrodynamic simulations. Whereas moderate shear strengths result in shear-assisted crystallization, high shear strengths overwhelm the attractions and lead to melting of the clusters. Within the transition region between these two regimes, we discover remarkable dynamics of the colloidal aggregates. Shear-induced surface melting of the aggregates, in conjunction with the Plateau-Rayleigh instability and size-dependent cluster velocities, leads to a cyclic process in which elongated threads of colloidal aggregates break up and reform, resulting in large crystallites. These insights offer new possibilities for the control of colloidal dynamics and aggregation under confinement.The kinetics of colloidal gels under narrow confinement are of widespread practical relevance, with applications ranging from flow in biological systems to 3D printing. Although the properties of such gels under uniform shear have received considerable attention, the effects of strongly nonuniform shear are far less understood. Motivated by the possibilities offered by recent advances in nano- and microfluidics, we explore the generic phase behavior and dynamics of attractive colloids subject to microchannel flow, using mesoscale particle-based hydrodynamic simulations. Whereas moderate shear strengths result in shear-assisted crystallization, high shear strengths overwhelm the attractions and lead to melting of the clusters. Within the transition region between these two regimes, we discover remarkable dynamics of the colloidal aggregates. Shear-induced surface melting of the aggregates, in conjunction with the Plateau-Rayleigh instability and size-dependent cluster velocities, leads to a cyclic process in which elongated threads of colloidal aggregates break up and reform, resulting in large crystallites. These insights offer new possibilities for the control of colloidal dynamics and aggregation under confinement.
The kinetics of colloidal gels under narrow confinement are of widespread practical relevance, with applications ranging from flow in biological systems to 3D printing. Although the properties of such gels under uniform shear have received considerable attention, the effects of strongly nonuniform shear are far less understood. Motivated by the possibilities offered by recent advances in nano- and microfluidics, we explore the generic phase behavior and dynamics of attractive colloids subject to microchannel flow, using mesoscale particle-based hydrodynamic simulations. Whereas moderate shear strengths result in shear-assisted crystallization, high shear strengths overwhelm the attractions and lead to melting of the clusters. Within the transition region between these two regimes, we discover remarkable dynamics of the colloidal aggregates. Shear-induced surface melting of the aggregates, in conjunction with the Plateau-Rayleigh instability and size-dependent cluster velocities, leads to a cyclic process in which elongated threads of colloidal aggregates break up and reform, resulting in large crystallites. These insights offer new possibilities for the control of colloidal dynamics and aggregation under confinement. Nonuniform shear of a microchannel flow drives the crystallization of attractive colloids via a Plateau-Rayleigh instability.
Author Whitmer, Jonathan K
Han, Ming
Luijten, Erik
AuthorAffiliation Department of Materials Science and Engineering, Northwestern University
Department of Engineering Sciences and Applied Mathematics, Northwestern University
Department of Physics and Astronomy, Northwestern University
Graduate Program in Applied Physics, Northwestern University
AuthorAffiliation_xml – sequence: 0
  name: Department of Engineering Sciences and Applied Mathematics, Northwestern University
– sequence: 0
  name: Graduate Program in Applied Physics, Northwestern University
– sequence: 0
  name: Department of Physics and Astronomy, Northwestern University
– sequence: 0
  name: Department of Materials Science and Engineering, Northwestern University
Author_xml – sequence: 1
  givenname: Ming
  surname: Han
  fullname: Han, Ming
– sequence: 2
  givenname: Jonathan K
  surname: Whitmer
  fullname: Whitmer, Jonathan K
– sequence: 3
  givenname: Erik
  surname: Luijten
  fullname: Luijten, Erik
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30633289$$D View this record in MEDLINE/PubMed
BookMark eNpt0c1LwzAYBvAgim7Ti3el4EWEaT7aJD3KnB-geFDBW4npm1lJk5m0yP57o9sUxFNC-D0vSZ4h2nTeAUL7BJ8SzMozLWOLSV4Q2EADIvJ8zGUuN3_27HkHDWN8w5jJnPBttMMwZ4zKcoAuLxZOtY2OmXJ1FrvQ664PkHmTaW-tb2plMzWbBZipDmLWuxpClgLB61flHNjMWP-xi7aMshH2VusIPV1OHyfX49v7q5vJ-e1Y55R0Y4nBGMNNyYoClMjNCxZcSCWoSScUE4FracqacsCyBio0KwTUFBeEF8JINkLHy7nz4N97iF3VNlGDtcqB72NFiSgZpzIvEj36Q998H1y6XVK8FJiloUkdrlT_0kJdzUPTqrCo1j-UAF6C9OIYA5hKN53qGu-6oBpbEVx9lVBN5MPddwnTFDn5E1lP_RcfLHGI-sf9Nso-AYDKj1k
CitedBy_id crossref_primary_10_1016_j_colsurfa_2024_135896
crossref_primary_10_1063_5_0042109
crossref_primary_10_1103_PhysRevE_102_062608
crossref_primary_10_1126_sciadv_aay6761
crossref_primary_10_1016_j_cej_2024_150464
crossref_primary_10_1039_D4SM01148A
Cites_doi 10.1021/la060759+
10.1063/1.1740347
10.1017/S0022112004000254
10.1103/PhysRevLett.66.3004
10.1063/1.3525923
10.1073/pnas.0811484106
10.1038/ncomms5120
10.1038/nature08115
10.1002/adma.200702099
10.1103/PhysRevLett.96.028306
10.1063/1.1288684
10.1002/adma.200304890
10.1088/0034-4885/77/4/046602
10.1038/nature05060
10.1126/science.1072133
10.1039/b912547g
10.1103/PhysRevE.74.031402
10.1021/acs.langmuir.5b01369
10.1021/jp111388m
10.1126/science.1207032
10.1063/1.4921800
10.1002/adma.200700127
10.1063/1.3248476
10.1103/PhysRevE.67.031406
10.1103/PhysRevE.71.021401
10.1039/b821250c
10.1038/ncomms5472
10.1103/PhysRevB.28.784
10.1103/PhysRevE.78.041402
10.1063/1.2977970
10.1017/S0022112074001431
10.1112/plms/s1-10.1.4
10.1073/pnas.0812519106
10.1021/ja051381p
10.1038/nature06931
10.1021/jp990061n
10.1103/PhysRevLett.106.138301
10.1103/PhysRevE.71.057301
10.1021/cm0101632
10.1103/PhysRevLett.86.6042
10.1088/0034-4885/71/3/036601
10.1039/C5SM00411J
10.1021/la0257135
10.1103/PhysRevE.76.041402
10.1017/S0022112062001111
10.1038/189209a0
10.1103/PhysRevLett.94.208301
10.1103/PhysRevLett.93.055701
10.1103/PhysRevE.91.052305
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1039/c8sm01451e
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 751
ExternalDocumentID 30633289
10_1039_C8SM01451E
c8sm01451e
Genre Journal Article
GroupedDBID -JG
0-7
0R~
123
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
J3I
KZ1
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
CITATION
L-8
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c421t-80efff6f9355ea74fb07678a72f35520170d8f9d26e08de27c357ed2051657f83
ISSN 1744-683X
1744-6848
IngestDate Fri Jul 11 03:12:26 EDT 2025
Mon Jun 30 12:01:59 EDT 2025
Wed Feb 19 02:35:22 EST 2025
Thu Apr 24 22:52:22 EDT 2025
Tue Jul 01 03:13:16 EDT 2025
Tue Dec 17 21:00:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-80efff6f9355ea74fb07678a72f35520170d8f9d26e08de27c357ed2051657f83
Notes 10.1039/c8sm01451e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0370-0873
0000-0002-9108-8364
0000-0003-2364-1866
PMID 30633289
PQID 2169703516
PQPubID 2047495
PageCount 8
ParticipantIDs crossref_citationtrail_10_1039_C8SM01451E
pubmed_primary_30633289
crossref_primary_10_1039_C8SM01451E
proquest_miscellaneous_2179362845
rsc_primary_c8sm01451e
proquest_journals_2169703516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-28
PublicationDateYYYYMMDD 2019-01-28
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Soft matter
PublicationTitleAlternate Soft Matter
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References de Hoog (C8SM01451E-(cit53)/*[position()=1]) 1999; 103
Ramaswamy (C8SM01451E-(cit42)/*[position()=1]) 2017; 7
Zaccone (C8SM01451E-(cit7)/*[position()=1]) 2011; 106
Calvert (C8SM01451E-(cit14)/*[position()=1]) 2001; 13
Segré (C8SM01451E-(cit43)/*[position()=1]) 1961; 189
Khan (C8SM01451E-(cit23)/*[position()=1]) 2007; 19
Lu (C8SM01451E-(cit25)/*[position()=1]) 2006; 96
Kanehl (C8SM01451E-(cit20)/*[position()=1]) 2015; 142
Lechner (C8SM01451E-(cit39)/*[position()=1]) 2008; 129
Gompper (C8SM01451E-(cit30)/*[position()=1]) 2008
Duits (C8SM01451E-(cit15)/*[position()=1]) 2015; 31
Wagner (C8SM01451E-(cit12)/*[position()=1]) October 2009; 62
McWhirter (C8SM01451E-(cit13)/*[position()=1]) 2009; 106
Mahynski (C8SM01451E-(cit37)/*[position()=1]) 2014; 5
Puertas (C8SM01451E-(cit27)/*[position()=1]) 2003; 67
Lu (C8SM01451E-(cit1)/*[position()=1]) 2008; 453
White (C8SM01451E-(cit34)/*[position()=1]) 2006
Di Carlo (C8SM01451E-(cit47)/*[position()=1]) 2009; 9
Yi (C8SM01451E-(cit21)/*[position()=1]) 2003; 15
Stevens (C8SM01451E-(cit9)/*[position()=1]) 1991; 66
Wu (C8SM01451E-(cit8)/*[position()=1]) 2009; 106
Shepherd (C8SM01451E-(cit22)/*[position()=1]) 2006; 22
Eggers (C8SM01451E-(cit54)/*[position()=1]) 2008; 71
Whitmer (C8SM01451E-(cit33)/*[position()=1]) 2010; 22
Wang (C8SM01451E-(cit5)/*[position()=1]) 2008; 20
Terray (C8SM01451E-(cit17)/*[position()=1]) 2002; 296
Fortini (C8SM01451E-(cit40)/*[position()=1]) 2008; 78
Segré (C8SM01451E-(cit44)/*[position()=1]) 1962; 14
Vermant (C8SM01451E-(cit24)/*[position()=1]) 2005; 17
Chan (C8SM01451E-(cit18)/*[position()=1]) 2005; 127
Brown (C8SM01451E-(cit49)/*[position()=1]) 2014; 77
Whitmer (C8SM01451E-(cit28)/*[position()=1]) 2010; 134
Lim (C8SM01451E-(cit48)/*[position()=1]) 2014; 5
Mortensen (C8SM01451E-(cit35)/*[position()=1]) 2005; 71
Royer (C8SM01451E-(cit51)/*[position()=1]) 2009; 459
Noro (C8SM01451E-(cit29)/*[position()=1]) 2000; 113
Plateau (C8SM01451E-(cit56)/*[position()=1]) 1873
Kobelev (C8SM01451E-(cit10)/*[position()=1]) 2005; 71
Asakura (C8SM01451E-(cit26)/*[position()=1]) 1954; 22
Steinhardt (C8SM01451E-(cit38)/*[position()=1]) 1983; 28
Wysocki (C8SM01451E-(cit55)/*[position()=1]) 2009; 5
Koumakis (C8SM01451E-(cit36)/*[position()=1]) 2015; 11
Cheng (C8SM01451E-(cit11)/*[position()=1]) 2011; 333
Sciortino (C8SM01451E-(cit4)/*[position()=1]) 2004; 93
Ho (C8SM01451E-(cit45)/*[position()=1]) 1974; 65
Psaltis (C8SM01451E-(cit19)/*[position()=1]) 2006; 442
Smay (C8SM01451E-(cit6)/*[position()=1]) 2002; 18
Padding (C8SM01451E-(cit31)/*[position()=1]) 2006; 74
Campbell (C8SM01451E-(cit3)/*[position()=1]) 2005; 94
Rayleigh (C8SM01451E-(cit50)/*[position()=1]) 1878; s1–s10
Segrè (C8SM01451E-(cit2)/*[position()=1]) 2001; 86
Israelachvili (C8SM01451E-(cit52)/*[position()=1]) 2011
Matas (C8SM01451E-(cit46)/*[position()=1]) 2004; 515
Whitmer (C8SM01451E-(cit32)/*[position()=1]) 2011; 115
Smith (C8SM01451E-(cit41)/*[position()=1]) 2007; 76
Ghosh (C8SM01451E-(cit16)/*[position()=1]) 2015; 91
References_xml – issn: 2008
  end-page: p 1-87
  publication-title: Advanced Computer Simulation Approaches for Soft Matter Sciences III
  doi: Gompper Ihle Kroll Winkler
– issn: 2006
  publication-title: Viscous Fluid Flow
  doi: White
– issn: 2011
  publication-title: Intermolecular and Surface Forces
  doi: Israelachvili
– issn: 1873
  publication-title: Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires
  doi: Plateau
– volume: 22
  start-page: 8618
  year: 2006
  ident: C8SM01451E-(cit22)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la060759+
– volume: 22
  start-page: 1255
  year: 1954
  ident: C8SM01451E-(cit26)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740347
– volume: 515
  start-page: 171
  year: 2004
  ident: C8SM01451E-(cit46)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004000254
– volume: 17
  start-page: R187
  year: 2005
  ident: C8SM01451E-(cit24)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 66
  start-page: 3004
  year: 1991
  ident: C8SM01451E-(cit9)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.3004
– volume: 134
  start-page: 034510
  year: 2010
  ident: C8SM01451E-(cit28)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3525923
– volume: 106
  start-page: 6039
  year: 2009
  ident: C8SM01451E-(cit13)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0811484106
– volume: 5
  start-page: 4120
  year: 2014
  ident: C8SM01451E-(cit48)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5120
– volume: 459
  start-page: 1110
  year: 2009
  ident: C8SM01451E-(cit51)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08115
– volume: 20
  start-page: 236
  year: 2008
  ident: C8SM01451E-(cit5)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702099
– volume: 96
  start-page: 028306
  year: 2006
  ident: C8SM01451E-(cit25)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.028306
– volume: 113
  start-page: 2941
  year: 2000
  ident: C8SM01451E-(cit29)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1288684
– volume: 15
  start-page: 1300
  year: 2003
  ident: C8SM01451E-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200304890
– volume: 77
  start-page: 046602
  year: 2014
  ident: C8SM01451E-(cit49)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/77/4/046602
– volume: 442
  start-page: 381
  year: 2006
  ident: C8SM01451E-(cit19)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature05060
– volume-title: Viscous Fluid Flow
  year: 2006
  ident: C8SM01451E-(cit34)/*[position()=1]
– volume: 296
  start-page: 1841
  year: 2002
  ident: C8SM01451E-(cit17)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1072133
– volume: 9
  start-page: 3038
  year: 2009
  ident: C8SM01451E-(cit47)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/b912547g
– volume: 74
  start-page: 031402
  year: 2006
  ident: C8SM01451E-(cit31)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.74.031402
– volume: 31
  start-page: 5689
  year: 2015
  ident: C8SM01451E-(cit15)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b01369
– volume: 115
  start-page: 7294
  year: 2011
  ident: C8SM01451E-(cit32)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp111388m
– volume: 333
  start-page: 1276
  year: 2011
  ident: C8SM01451E-(cit11)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1207032
– volume: 142
  start-page: 214901
  year: 2015
  ident: C8SM01451E-(cit20)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4921800
– volume: 19
  start-page: 2556
  year: 2007
  ident: C8SM01451E-(cit23)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700127
– volume: 62
  start-page: 27
  year: October 2009
  ident: C8SM01451E-(cit12)/*[position()=1]
  publication-title: Phys. Today
  doi: 10.1063/1.3248476
– volume: 67
  start-page: 031406
  year: 2003
  ident: C8SM01451E-(cit27)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.67.031406
– volume: 71
  start-page: 021401
  year: 2005
  ident: C8SM01451E-(cit10)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.71.021401
– volume: 5
  start-page: 1340
  year: 2009
  ident: C8SM01451E-(cit55)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/b821250c
– volume: 5
  start-page: 4472
  year: 2014
  ident: C8SM01451E-(cit37)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5472
– volume: 28
  start-page: 784
  year: 1983
  ident: C8SM01451E-(cit38)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.28.784
– volume: 78
  start-page: 041402
  year: 2008
  ident: C8SM01451E-(cit40)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.78.041402
– volume: 129
  start-page: 114707
  year: 2008
  ident: C8SM01451E-(cit39)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2977970
– volume: 7
  start-page: 041005
  year: 2017
  ident: C8SM01451E-(cit42)/*[position()=1]
  publication-title: Phys. Rev. X
– volume: 65
  start-page: 365
  year: 1974
  ident: C8SM01451E-(cit45)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112074001431
– volume: s1–s10
  start-page: 4
  year: 1878
  ident: C8SM01451E-(cit50)/*[position()=1]
  publication-title: Proc. London Math. Soc.
  doi: 10.1112/plms/s1-10.1.4
– volume-title: Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires
  year: 1873
  ident: C8SM01451E-(cit56)/*[position()=1]
– volume: 106
  start-page: 10564
  year: 2009
  ident: C8SM01451E-(cit8)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0812519106
– volume: 127
  start-page: 13854
  year: 2005
  ident: C8SM01451E-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja051381p
– volume: 453
  start-page: 499
  year: 2008
  ident: C8SM01451E-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06931
– volume: 103
  start-page: 5274
  year: 1999
  ident: C8SM01451E-(cit53)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp990061n
– volume: 106
  start-page: 138301
  year: 2011
  ident: C8SM01451E-(cit7)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.138301
– volume: 71
  start-page: 057301
  year: 2005
  ident: C8SM01451E-(cit35)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.71.057301
– volume: 13
  start-page: 3299
  year: 2001
  ident: C8SM01451E-(cit14)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm0101632
– volume-title: Advanced Computer Simulation Approaches for Soft Matter Sciences III
  year: 2008
  ident: C8SM01451E-(cit30)/*[position()=1]
– volume-title: Intermolecular and Surface Forces
  year: 2011
  ident: C8SM01451E-(cit52)/*[position()=1]
– volume: 86
  start-page: 6042
  year: 2001
  ident: C8SM01451E-(cit2)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.6042
– volume: 71
  start-page: 036601
  year: 2008
  ident: C8SM01451E-(cit54)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/71/3/036601
– volume: 11
  start-page: 4640
  year: 2015
  ident: C8SM01451E-(cit36)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C5SM00411J
– volume: 18
  start-page: 5429
  year: 2002
  ident: C8SM01451E-(cit6)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0257135
– volume: 76
  start-page: 041402
  year: 2007
  ident: C8SM01451E-(cit41)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.76.041402
– volume: 14
  start-page: 136
  year: 1962
  ident: C8SM01451E-(cit44)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112062001111
– volume: 189
  start-page: 209
  year: 1961
  ident: C8SM01451E-(cit43)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/189209a0
– volume: 94
  start-page: 208301
  year: 2005
  ident: C8SM01451E-(cit3)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.208301
– volume: 93
  start-page: 055701
  year: 2004
  ident: C8SM01451E-(cit4)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.055701
– volume: 91
  start-page: 052305
  year: 2015
  ident: C8SM01451E-(cit16)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.91.052305
– volume: 22
  start-page: 104106
  year: 2010
  ident: C8SM01451E-(cit33)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
SSID ssj0038416
Score 2.3234425
Snippet The kinetics of colloidal gels under narrow confinement are of widespread practical relevance, with applications ranging from flow in biological systems to 3D...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 744
SubjectTerms Aggregates
Colloiding
Colloids
Confinement
Crystallites
Crystallization
Crystals
Dynamics
Gels
Melting
Microchannels
Microfluidics
Shear
Three dimensional printing
Title Dynamics and structure of colloidal aggregates under microchannel flow
URI https://www.ncbi.nlm.nih.gov/pubmed/30633289
https://www.proquest.com/docview/2169703516
https://www.proquest.com/docview/2179362845
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BKiQuiFfBpaBFcEGRi722195jVVKFR7k0lXqL1vtAAcdGiatK_HpmH35AeihcrGizthPP55nZnZlvEHrLGOciLkWYJoqGqWA85DQzyQ5SC0ZVWQpTjXz2lc4v0k-X2eXQv9NWl7Tlkfh1Y13J_0gVxkCupkr2HyTbXxQG4DPIF44gYTjeSsYfXDt5R7PsmGBNPMBmildVs5KGCOAbrKjNXtnWtrzdTNcmBc_U-9aqmuqquR77p-egladr3o6Sdufc59d7G-e76vmuK93u-_TzUZ_bc7X63vp9nc3qx3hfwZQyxV2dtlOFeZqGtLDdesFSjMccN2avP7MRTtKRMswds6O3q7kjlt1R2VFiGE9PivMz2zV4NhimLhj_l73qswht_Dxhy-Hcu2iPwHKBTNDe8Wzx8UtnkxMTXHWlse4_dUS1CXs_nP2na7Kz3gDvY9N1hbHex-IheuCXDfjYYeARuqPqx-ieTd8V2yfotEMCBiTgHgm40bhHAh6QgC0S8BgJ2CDhKbo4nS1O5qHvkBGKlMQtuBdKa021IclXPE91GeXgffCcaBghhhtJFppJQlVUSEVykWS5kgQ0Mc1yXST7aFI3tXqOcJwSLVkqI8IkXJvzmBdSgjUQUVlkZRSgd93DWQpPH2-6mFTLXTEE6E0_96cjTblx1mH3jJf-pdouSUxZbqLbNECv-69B5Zk4Fq9Vc2XmgFGh4FdlAXrmZNPfBlbASUIKFqB9EFY_LIrt2t5VHdzqt71A94d34hBNQG7qJXifbfnKQ-s3MxuC0g
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+and+structure+of+colloidal+aggregates+under+microchannel+flow&rft.jtitle=Soft+matter&rft.au=Han%2C+Ming&rft.au=Whitmer%2C+Jonathan+K.&rft.au=Luijten%2C+Erik&rft.date=2019-01-28&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=15&rft.issue=4&rft.spage=744&rft.epage=751&rft_id=info:doi/10.1039%2FC8SM01451E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8SM01451E
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon