p21 produces a bioactive secretome that places stressed cells under immunosurveillance

Senescent cells promote their own recognition and removal through the immune system by generating a bioactive secretome called the senescence-associated secretory phenotype (SASP). Sturmlechner et al . report that the cell cycle regulator p21 directs an early form of the SASP, which they call the p2...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 374; no. 6567; p. eabb3420
Main Authors Sturmlechner, Ines, Zhang, Cheng, Sine, Chance C., van Deursen, Erik-Jan, Jeganathan, Karthik B., Hamada, Naomi, Grasic, Jan, Friedman, David, Stutchman, Jeremy T., Can, Ismail, Hamada, Masakazu, Lim, Do Young, Lee, Jeong-Heon, Ordog, Tamas, Laberge, Remi-Martin, Shapiro, Virginia, Baker, Darren J., Li, Hu, van Deursen, Jan M.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 29.10.2021
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.abb3420

Cover

Loading…
Abstract Senescent cells promote their own recognition and removal through the immune system by generating a bioactive secretome called the senescence-associated secretory phenotype (SASP). Sturmlechner et al . report that the cell cycle regulator p21 directs an early form of the SASP, which they call the p21-activated secretory phenotype (PASP) (see the Perspective by Reen and Gil). As part of the PASP, the chemokine CXCL14 attracts macrophages, which monitor stressed cells expressing elevated p21. If stressed cells recuperate and p21 levels return to normal within 4 days, then macrophages disengage from their targets. Otherwise, macrophages recruit cytotoxic T cells that facilitate target cell removal. Other cell cycle regulators such as p16 can induce many factors overlapping with the PASP, but p21 uniquely drives this CXCL14-mediated “timer” mechanism of senescent cell immunosurveillance. —STS The cell cycle factor p21 concurrently induces proliferative arrest and immunosurveillance of cells under stress, controlling their fate. Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress.
AbstractList Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress.
The clock is ticking for senescent cellsSenescent cells promote their own recognition and removal through the immune system by generating a bioactive secretome called the senescence-associated secretory phenotype (SASP). Sturmlechner et al. report that the cell cycle regulator p21 directs an early form of the SASP, which they call the p21-activated secretory phenotype (PASP) (see the Perspective by Reen and Gil). As part of the PASP, the chemokine CXCL14 attracts macrophages, which monitor stressed cells expressing elevated p21. If stressed cells recuperate and p21 levels return to normal within 4 days, then macrophages disengage from their targets. Otherwise, macrophages recruit cytotoxic T cells that facilitate target cell removal. Other cell cycle regulators such as p16 can induce many factors overlapping with the PASP, but p21 uniquely drives this CXCL14-mediated “timer” mechanism of senescent cell immunosurveillance. —STSINTRODUCTIONComplex multicellular organisms are subject to a myriad of cellular stresses, which can be managed through cell-intrinsic adaptation and repair mechanisms. Cells that fail to recover activate programs that lead to regulated cell death or cellular senescence, thereby limiting the risk of neoplastic transformation. Evidence is emerging that intercellular communication also plays an important role in dealing with cellular stresses. For instance, cells experiencing DNA damage display cell-surface ligands that facilitate lymphocyte recognition and secrete cytokines that attract myeloid cells. Furthermore, cells undergoing cellular senescence generate a bioactive secretome known as the senescence-associated secretory phenotype (SASP), which facilitates senescent cell (SNC) recognition by the immune system.RATIONALEStressed cells that become senescent have been implicated in various biological processes beyond cancer, including development, tissue repair, aging, and age-related diseases, presumably through the paracrine actions of the SASP. To better understand the molecular properties of SNCs, we sought to identify key determinants of SNC identity by screening for genes nearby senescence-associated super-enhancers conserved across stressors, cell types, and mammalian species. Through this approach, we identified p21 (Cdkn1a), which encodes the cyclin-dependent kinase (CDK) inhibitor p21, and conducted an in-depth analysis of its functions from the time cells first experience stress until they have become senescent.RESULTSWe found that p21—in addition to its function in maintaining the cell-cycle arrest of SNCs—has a prominent role in establishing the SASP through retinoblastoma protein (Rb)–dependent transcription involving select SMAD and STAT transcription factors. Although this transcriptional program remains active in SNCs, p21 initiates this program as a first response to stress occurring in parallel with cell-cycle arrest. The resulting immediate-early secretome, which we term the p21-activated secretory phenotype (PASP), comprises several hundred factors, including the chemokine CXCL14, which recruits macrophages to surveil stressed cells with elevated p21. In mouse liver, these macrophages disengage if cells normalize p21 levels within 4 days after its induction. However, if p21 remains elevated, the adjoined macrophages polarize toward an M1 phenotype, and cytotoxic T lymphocytes arrive to execute target cell elimination when classical markers of senescence are not yet detectable. This scenario also occurs with oncogenic KRAS-mediated p21 induction, highlighting the physiological relevance of the uncovered immunosurveillance mechanism to tumor suppression. By contrast, CDK inhibitor p16, which is often elevated in SNCs and also halts cell-cycle progression through Rb hypophosphorylation, does not induce immunosurveillance when overexpressed in mouse liver. Although p16 induction yields an immediate-early secretome that consists largely of factors that overlap with the PASP, there are far fewer factors, and CXCL14 is absent. Studies on CDK inhibitor p27 further suggested that coordinated induction of cell-cycle arrest and immunosurveillance is a distinctive feature of p21.CONCLUSIONOur study demonstrates that in response to cellular stress, p21 alters the transcription regulatory properties of Rb to not only inhibit genes required for cell-cycle progression but also activate a large collection of genes implicated in diverse biological functions, including immunosurveillance. By promptly recruiting macrophages to stressed cells, p21 sets a biological timer that allows for a period in which stressed cells can recuperate, thereby normalizing p21. This timer expires when the immune response transitions from a surveillance to a clearance mode. As such, p21 provides a first line of defense against dysfunctional cells that can become cancerous or otherwise cause pathology. Given that p21 is a p53 target gene, it will be important to define whether this p21-controlled immunoclearance mechanism is perturbed in cancer cells that lack functional p53, and if so, to explore the therapeutic impact of interventions that reactivate it.Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress.
Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)-dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize towards an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress. p21 activates Rb to produce a bioactive secretome that places stressed cells under immunosurveillance to set a timer that controls cell fate.
Senescent cells promote their own recognition and removal through the immune system by generating a bioactive secretome called the senescence-associated secretory phenotype (SASP). Sturmlechner et al . report that the cell cycle regulator p21 directs an early form of the SASP, which they call the p21-activated secretory phenotype (PASP) (see the Perspective by Reen and Gil). As part of the PASP, the chemokine CXCL14 attracts macrophages, which monitor stressed cells expressing elevated p21. If stressed cells recuperate and p21 levels return to normal within 4 days, then macrophages disengage from their targets. Otherwise, macrophages recruit cytotoxic T cells that facilitate target cell removal. Other cell cycle regulators such as p16 can induce many factors overlapping with the PASP, but p21 uniquely drives this CXCL14-mediated “timer” mechanism of senescent cell immunosurveillance. —STS The cell cycle factor p21 concurrently induces proliferative arrest and immunosurveillance of cells under stress, controlling their fate. Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress.
Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress.Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress.
Author Sturmlechner, Ines
Lee, Jeong-Heon
Hamada, Masakazu
Zhang, Cheng
Sine, Chance C.
van Deursen, Jan M.
Hamada, Naomi
Stutchman, Jeremy T.
Lim, Do Young
Can, Ismail
van Deursen, Erik-Jan
Jeganathan, Karthik B.
Shapiro, Virginia
Li, Hu
Friedman, David
Baker, Darren J.
Grasic, Jan
Ordog, Tamas
Laberge, Remi-Martin
AuthorAffiliation 3 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
7 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester MN, United States
6 Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester MN, United States
1 Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
5 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester MN, United States
2 Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
8 Unity Biotechnology, 285 E Grand Ave., South San Francisco, California 94080, USA
4 Department of Immunology, Mayo Clinic, Rochester MN, United States
AuthorAffiliation_xml – name: 6 Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester MN, United States
– name: 4 Department of Immunology, Mayo Clinic, Rochester MN, United States
– name: 5 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester MN, United States
– name: 7 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester MN, United States
– name: 1 Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
– name: 8 Unity Biotechnology, 285 E Grand Ave., South San Francisco, California 94080, USA
– name: 3 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
– name: 2 Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
Author_xml – sequence: 1
  givenname: Ines
  orcidid: 0000-0003-1272-5618
  surname: Sturmlechner
  fullname: Sturmlechner, Ines
  organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA., Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
– sequence: 2
  givenname: Cheng
  surname: Zhang
  fullname: Zhang, Cheng
  organization: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
– sequence: 3
  givenname: Chance C.
  surname: Sine
  fullname: Sine, Chance C.
  organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
– sequence: 4
  givenname: Erik-Jan
  surname: van Deursen
  fullname: van Deursen, Erik-Jan
  organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
– sequence: 5
  givenname: Karthik B.
  orcidid: 0000-0001-5587-1266
  surname: Jeganathan
  fullname: Jeganathan, Karthik B.
  organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
– sequence: 6
  givenname: Naomi
  surname: Hamada
  fullname: Hamada, Naomi
  organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
– sequence: 7
  givenname: Jan
  surname: Grasic
  fullname: Grasic, Jan
  organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
– sequence: 8
  givenname: David
  orcidid: 0000-0002-1295-1562
  surname: Friedman
  fullname: Friedman, David
  organization: Department of Immunology, Mayo Clinic, Rochester, MN, USA
– sequence: 9
  givenname: Jeremy T.
  surname: Stutchman
  fullname: Stutchman, Jeremy T.
  organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
– sequence: 10
  givenname: Ismail
  orcidid: 0000-0003-0569-5326
  surname: Can
  fullname: Can, Ismail
  organization: Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
– sequence: 11
  givenname: Masakazu
  surname: Hamada
  fullname: Hamada, Masakazu
  organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
– sequence: 12
  givenname: Do Young
  orcidid: 0000-0002-7663-5905
  surname: Lim
  fullname: Lim, Do Young
  organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
– sequence: 13
  givenname: Jeong-Heon
  orcidid: 0000-0003-4007-9166
  surname: Lee
  fullname: Lee, Jeong-Heon
  organization: Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
– sequence: 14
  givenname: Tamas
  orcidid: 0000-0002-3940-7284
  surname: Ordog
  fullname: Ordog, Tamas
  organization: Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA., Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
– sequence: 15
  givenname: Remi-Martin
  surname: Laberge
  fullname: Laberge, Remi-Martin
  organization: Unity Biotechnology, South San Francisco, CA 94080, USA
– sequence: 16
  givenname: Virginia
  orcidid: 0000-0001-9978-341X
  surname: Shapiro
  fullname: Shapiro, Virginia
  organization: Department of Immunology, Mayo Clinic, Rochester, MN, USA
– sequence: 17
  givenname: Darren J.
  orcidid: 0000-0001-9006-1939
  surname: Baker
  fullname: Baker, Darren J.
  organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA., Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
– sequence: 18
  givenname: Hu
  orcidid: 0000-0001-5957-5472
  surname: Li
  fullname: Li, Hu
  organization: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
– sequence: 19
  givenname: Jan M.
  orcidid: 0000-0002-3042-5267
  surname: van Deursen
  fullname: van Deursen, Jan M.
  organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA., Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34709885$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rFTEUxYNU7Gt17U4CbtxMm8-ZZCNI0VYouFG3Icnc2JSZyZhkHvjfm0dfRQuu7uL-zuHce87QyZIWQOg1JReUsv6y-AiLhwvrHBeMPEM7SrTsNCP8BO0I4X2nyCBP0Vkp94S0neYv0CkXA9FKyR36vjKK15zGzUPBFruYrK9xD7iAz1DTDLje2YrXyR6IUjOUAiP2ME0Fb8sIGcd53pZUtryHOE22BXqJngc7FXh1nOfo26ePX69uutsv15-vPtx2XjBau0HJoAc9CquZdkGEXlMFo9TBB8ocGQQ4FogeiBt4ryQjwioJ_RgklZQ4fo7eP_ium5th9LDUbCez5jjb_MskG82_myXemR9pb5RublQ0g3dHg5x-blCqmWM53GYXSFsxTGpCeUswNPTtE_Q-bXlp5xnWc0U0F4I36s3fif5EeXx5A-QD4HMqJUMwPlZbYzoEjJOhxByqNcdqzbHaprt8onu0_p_iN27JqnU
CitedBy_id crossref_primary_10_1016_j_jare_2024_11_027
crossref_primary_10_1016_j_devcel_2023_05_010
crossref_primary_10_1021_acschembio_2c00909
crossref_primary_10_3390_ijms25105303
crossref_primary_10_1007_s00428_024_03748_1
crossref_primary_10_1038_s41413_024_00375_z
crossref_primary_10_1016_j_envint_2024_108493
crossref_primary_10_3390_life12091332
crossref_primary_10_1038_s42003_023_05558_8
crossref_primary_10_15252_embj_2023113510
crossref_primary_10_3389_fendo_2023_1212716
crossref_primary_10_3390_ijms23116135
crossref_primary_10_1073_pnas_2420502122
crossref_primary_10_1016_j_jhazmat_2023_132489
crossref_primary_10_3389_fendo_2022_869414
crossref_primary_10_1007_s00439_023_02565_x
crossref_primary_10_1016_j_cmet_2021_12_008
crossref_primary_10_1016_S1470_2045_24_00656_9
crossref_primary_10_1016_j_molmet_2022_101652
crossref_primary_10_1111_acel_14367
crossref_primary_10_1016_j_kint_2023_10_036
crossref_primary_10_2174_1874609815666220914104548
crossref_primary_10_1016_j_jbc_2025_108438
crossref_primary_10_1093_gerona_glac097
crossref_primary_10_3389_fnagi_2023_1281581
crossref_primary_10_1007_s11010_024_05131_9
crossref_primary_10_1016_j_xcrm_2025_101976
crossref_primary_10_3390_cells11121966
crossref_primary_10_1007_s11914_023_00820_8
crossref_primary_10_1038_s41580_024_00727_x
crossref_primary_10_1007_s11357_025_01509_9
crossref_primary_10_1088_1361_6528_ad312a
crossref_primary_10_1038_s41514_023_00105_5
crossref_primary_10_1016_j_tig_2024_08_007
crossref_primary_10_1016_j_celrep_2023_113181
crossref_primary_10_3389_fimmu_2022_908449
crossref_primary_10_1016_j_arr_2024_102400
crossref_primary_10_1038_s43587_024_00752_7
crossref_primary_10_1155_2022_6588144
crossref_primary_10_3390_cancers14061364
crossref_primary_10_1016_j_jbc_2022_102289
crossref_primary_10_1038_s41467_024_51978_3
crossref_primary_10_1016_j_celrep_2023_112129
crossref_primary_10_1016_j_jep_2024_118400
crossref_primary_10_1096_fj_202400808RR
crossref_primary_10_1093_burnst_tkad001
crossref_primary_10_32604_biocell_2024_047871
crossref_primary_10_1016_j_mocell_2024_100113
crossref_primary_10_1093_stmcls_sxae056
crossref_primary_10_3390_cells12060902
crossref_primary_10_1016_j_molmet_2023_101755
crossref_primary_10_3389_fcell_2023_1083401
crossref_primary_10_1016_j_jot_2024_02_003
crossref_primary_10_1126_sciadv_adj2102
crossref_primary_10_1016_j_bbrc_2021_12_098
crossref_primary_10_1002_adma_202206208
crossref_primary_10_1016_j_immuni_2024_01_001
crossref_primary_10_1016_j_ccell_2022_10_015
crossref_primary_10_1111_acel_14069
crossref_primary_10_1172_JCI162519
crossref_primary_10_1134_S0026893322050119
crossref_primary_10_1016_j_ccell_2023_05_006
crossref_primary_10_1016_j_cmet_2023_10_014
crossref_primary_10_1038_s41467_025_57229_3
crossref_primary_10_1186_s13148_024_01702_1
crossref_primary_10_1038_s44318_024_00246_7
crossref_primary_10_1136_jcp_2024_209450
crossref_primary_10_1631_jzus_B2400013
crossref_primary_10_1016_j_tcb_2021_12_003
crossref_primary_10_1111_acel_14354
crossref_primary_10_14348_molcells_2022_0036
crossref_primary_10_3389_fnagi_2022_917797
crossref_primary_10_1111_acel_14358
crossref_primary_10_3390_biom14121484
crossref_primary_10_1016_j_bbcan_2025_189277
crossref_primary_10_1101_cshperspect_a041348
crossref_primary_10_1186_s13020_024_01036_3
crossref_primary_10_1186_s12943_024_01973_5
crossref_primary_10_1016_j_hnm_2023_200189
crossref_primary_10_1016_j_ijbiomac_2022_12_153
crossref_primary_10_1080_15384101_2024_2342714
crossref_primary_10_1016_j_neubiorev_2022_104809
crossref_primary_10_1038_s41571_022_00668_4
crossref_primary_10_1161_CIRCRESAHA_121_319815
crossref_primary_10_1016_j_cmet_2024_03_009
crossref_primary_10_1038_s41417_024_00799_z
crossref_primary_10_1242_jcs_259114
crossref_primary_10_1631_jzus_B2200178
crossref_primary_10_1016_j_devcel_2022_04_005
crossref_primary_10_1152_ajpcell_00049_2022
crossref_primary_10_1038_s42003_025_07738_0
crossref_primary_10_1155_2022_5503575
crossref_primary_10_1111_febs_16573
crossref_primary_10_1126_sciadv_abq7599
crossref_primary_10_1186_s12967_023_04177_5
crossref_primary_10_15252_embj_2022110764
crossref_primary_10_1002_art_42525
crossref_primary_10_1016_j_ymthe_2024_04_002
crossref_primary_10_1038_s44318_024_00245_8
crossref_primary_10_1080_15384101_2024_2364579
crossref_primary_10_1093_jb_mvae098
crossref_primary_10_1038_s41416_024_02865_7
crossref_primary_10_1093_jb_mvae015
crossref_primary_10_1080_14789450_2023_2174851
crossref_primary_10_20517_jca_2024_14
crossref_primary_10_1111_febs_16325
crossref_primary_10_3390_cells12010132
crossref_primary_10_18632_aging_205752
crossref_primary_10_1111_jocd_16019
crossref_primary_10_1016_j_semcancer_2024_10_002
crossref_primary_10_1016_j_tem_2023_09_007
crossref_primary_10_3389_fendo_2023_1196460
crossref_primary_10_1016_j_kint_2022_08_017
crossref_primary_10_1016_j_tox_2024_153804
crossref_primary_10_1111_acel_13806
crossref_primary_10_1038_s41540_022_00238_5
crossref_primary_10_1038_s41467_022_32915_8
crossref_primary_10_3389_fbioe_2024_1450626
crossref_primary_10_1186_s13024_021_00507_7
crossref_primary_10_3389_fphar_2023_1118397
crossref_primary_10_1016_j_mad_2025_112045
crossref_primary_10_1053_j_gastro_2023_03_235
crossref_primary_10_1002_1878_0261_13275
crossref_primary_10_1038_s43587_024_00642_y
crossref_primary_10_1111_acel_14154
crossref_primary_10_1016_j_molmet_2023_101798
crossref_primary_10_1016_j_bj_2023_02_001
crossref_primary_10_1016_j_gde_2022_101914
crossref_primary_10_1186_s41232_024_00342_5
crossref_primary_10_1126_science_abm3229
crossref_primary_10_3390_futurepharmacol3010014
crossref_primary_10_1126_scitranslmed_adg7291
crossref_primary_10_1007_s10753_024_02213_0
crossref_primary_10_1172_JCI158448
crossref_primary_10_1016_j_tcb_2022_04_011
crossref_primary_10_3390_jcm11216338
crossref_primary_10_1016_j_neubiorev_2023_105359
crossref_primary_10_1016_j_mrfmmm_2022_111777
crossref_primary_10_3390_cells11111781
crossref_primary_10_1097_SHK_0000000000002512
crossref_primary_10_3390_epigenomes8010010
crossref_primary_10_1007_s11357_023_00830_5
crossref_primary_10_3389_fmolb_2023_1148389
crossref_primary_10_1002_advs_202401127
crossref_primary_10_3390_ijms24065565
crossref_primary_10_1002_mco2_70048
crossref_primary_10_1038_s41422_023_00842_y
crossref_primary_10_1016_j_semcancer_2022_02_005
crossref_primary_10_1111_acel_13988
crossref_primary_10_1016_j_trecan_2024_11_010
crossref_primary_10_1111_acel_13869
crossref_primary_10_1016_j_biocel_2023_106479
crossref_primary_10_1016_j_smim_2023_101800
crossref_primary_10_1038_s41467_022_31239_x
crossref_primary_10_1007_s11357_023_00785_7
crossref_primary_10_1002_1878_0261_13312
crossref_primary_10_1038_s41420_023_01699_1
crossref_primary_10_1016_j_tem_2024_01_003
crossref_primary_10_3390_ijms252313209
crossref_primary_10_3389_fcell_2022_932723
crossref_primary_10_1111_odi_15263
crossref_primary_10_1186_s13062_021_00313_7
Cites_doi 10.1016/j.cell.2013.10.041
10.1073/pnas.0506580102
10.1038/cr.2017.76
10.1038/nature10599
10.1016/j.cell.2013.03.035
10.7554/eLife.16620
10.1093/nar/gkp335
10.1093/bioinformatics/btr260
10.1038/nature13193
10.1038/ncb3397
10.1093/nar/gkt214
10.1093/bioinformatics/btp536
10.1016/j.ccr.2010.01.023
10.1038/nature16932
10.1371/journal.pone.0013984
10.1038/nmeth.1923
10.1038/nri1936
10.1016/j.cmet.2020.09.006
10.1083/jcb.201102018
10.1016/j.cell.2013.09.053
10.1093/nar/gkw1108
10.1038/nm.4324
10.1038/75556
10.1038/s41586-018-0543-y
10.1016/j.cell.2008.03.039
10.1038/s41598-017-18433-4
10.1002/hep.22136
10.1038/s41580-018-0068-0
10.1002/hep.27094
10.1083/jcb.200211048
10.1186/s13059-014-0550-8
10.1038/s41423-019-0235-z
10.3791/1488
10.1016/j.ccell.2018.06.007
10.1016/j.cell.2014.09.030
10.4049/jimmunol.167.7.4067
10.1128/MCB.19.1.764
10.1158/2159-8290.CD-20-0789
10.1038/nri.2016.99
10.1038/nbt.1754
10.1016/j.ymeth.2008.11.001
10.1172/JCI78437
10.1038/cddiscovery.2016.45
10.1158/0008-5472.CAN-04-4221
10.1073/pnas.0900343106
10.1084/jem.194.6.855
10.1158/2159-8290.CD-16-0217
10.1186/gb-2008-9-9-r137
10.1038/nature10600
10.1016/j.molcel.2019.01.004
10.1002/mc.23188
10.1038/72272
10.1186/gb-2013-14-4-r36
10.1074/jbc.M700412200
10.1186/gb-2009-10-3-r25
10.1084/jem.20031685
10.1016/j.ccell.2016.09.003
10.1016/j.stem.2016.11.020
10.1016/j.cell.2013.10.019
10.1093/jb/mvs030
10.1126/science.aaf6659
10.1016/j.cell.2013.03.036
10.1038/nature11824
10.1093/nar/gkw257
10.1016/j.cell.2006.01.040
10.1093/bioinformatics/btr064
10.1053/j.gastro.2019.03.016
10.1016/j.cell.2008.06.049
10.1186/s12864-017-4371-5
10.1093/nar/gkx1106
10.1093/nar/gky1131
10.1371/journal.pbio.0060301
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.abb3420
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage eabb3420
ExternalDocumentID PMC8985214
34709885
10_1126_science_abb3420
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA208517
– fundername: NIA NIH HHS
  grantid: R01 AG057493
– fundername: NIA NIH HHS
  grantid: RF1 AG056318
– fundername: NCI NIH HHS
  grantid: R01 CA196631
– fundername: NIA NIH HHS
  grantid: R01 AG050618
– fundername: NIDDK NIH HHS
  grantid: P30 DK084567
– fundername: NCI NIH HHS
  grantid: P30 CA015083
– fundername: NIDDK NIH HHS
  grantid: R01 DK058185
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c421t-785f979d4a929bf4f6918ed59fcf12b074eb2f0970b73685204a85e6df51510b3
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 14:11:27 EDT 2025
Fri Jul 11 13:26:15 EDT 2025
Fri Jul 25 19:14:48 EDT 2025
Mon Jul 21 06:04:59 EDT 2025
Tue Jul 01 02:24:08 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6567
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-785f979d4a929bf4f6918ed59fcf12b074eb2f0970b73685204a85e6df51510b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: J.M.v.D. conceived the project. I.S. and J.M.v.D. designed most experiments. I.S. performed most experiments. J.-H.L. and T.O. performed ChIP-related experiments, and C.Z., I.S. and H.L. conducted super-enhancer related studies. C.Z. and I.S. performed bioinformatic analyses. I.S., C.C.S., I.C., E.J.v.D., and J.T.S. conducted knockdown experiments, and K.B.J. co-IP experiments. N.H., J.G., M.H., and D.Y.L generated and validated transgenic strains. R.M.L. helped with experimental design and data interpretation. D.F. and V.S. designed and executed neutralizing antibody experiments in mice with I.S. and helped with interpretation of immunosurveillance data. All authors contributed to data acquisition, analysis and interpretation. J.M.v.D. and I.S. wrote the paper and all authors edited the manuscript. D.J.B. helped supervise and interpret experiments pertaining to the physiological relevance of the PASP. H.L. directed, supervised, and helped interpret all bioinformatics analyses and J.M.v.D. directed and supervised all other aspects of the study.
ORCID 0000-0003-1272-5618
0000-0002-1295-1562
0000-0001-5587-1266
0000-0002-7663-5905
0000-0001-9978-341X
0000-0001-5957-5472
0000-0002-3042-5267
0000-0003-4007-9166
0000-0003-0569-5326
0000-0001-9006-1939
0000-0002-3940-7284
OpenAccessLink https://research.rug.nl/en/publications/3626a32b-932c-4ce8-841f-92381130c73a
PMID 34709885
PQID 2638093443
PQPubID 1256
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8985214
proquest_miscellaneous_2590130977
proquest_journals_2638093443
pubmed_primary_34709885
crossref_citationtrail_10_1126_science_abb3420
crossref_primary_10_1126_science_abb3420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-29
2021-Oct-29
20211029
PublicationDateYYYYMMDD 2021-10-29
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2021
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_3_50_2
e_1_3_3_71_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_70_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
Nam H. J. (e_1_3_3_40_2) 2014; 16
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
34709889 - Science. 2021 Oct 29;374(6567):534-535
References_xml – ident: e_1_3_3_10_2
  doi: 10.1016/j.cell.2013.10.041
– ident: e_1_3_3_57_2
  doi: 10.1073/pnas.0506580102
– ident: e_1_3_3_41_2
  doi: 10.1038/cr.2017.76
– ident: e_1_3_3_5_2
  doi: 10.1038/nature10599
– ident: e_1_3_3_24_2
  doi: 10.1016/j.cell.2013.03.035
– ident: e_1_3_3_69_2
  doi: 10.7554/eLife.16620
– ident: e_1_3_3_51_2
  doi: 10.1093/nar/gkp335
– ident: e_1_3_3_60_2
  doi: 10.1093/bioinformatics/btr260
– ident: e_1_3_3_4_2
  doi: 10.1038/nature13193
– ident: e_1_3_3_21_2
  doi: 10.1038/ncb3397
– ident: e_1_3_3_56_2
  doi: 10.1093/nar/gkt214
– ident: e_1_3_3_63_2
  doi: 10.1093/bioinformatics/btp536
– ident: e_1_3_3_26_2
  doi: 10.1016/j.ccr.2010.01.023
– ident: e_1_3_3_12_2
  doi: 10.1038/nature16932
– ident: e_1_3_3_58_2
  doi: 10.1371/journal.pone.0013984
– volume: 16
  start-page: 538
  year: 2014
  ident: e_1_3_3_40_2
  article-title: Cyclin B2 and p53 control proper timing of centrosome separation
  publication-title: Nat. Cell Biol.
– ident: e_1_3_3_54_2
  doi: 10.1038/nmeth.1923
– ident: e_1_3_3_33_2
  doi: 10.1038/nri1936
– ident: e_1_3_3_20_2
  doi: 10.1016/j.cmet.2020.09.006
– ident: e_1_3_3_44_2
  doi: 10.1083/jcb.201102018
– ident: e_1_3_3_23_2
  doi: 10.1016/j.cell.2013.09.053
– ident: e_1_3_3_62_2
  doi: 10.1093/nar/gkw1108
– ident: e_1_3_3_15_2
  doi: 10.1038/nm.4324
– ident: e_1_3_3_61_2
  doi: 10.1038/75556
– ident: e_1_3_3_16_2
  doi: 10.1038/s41586-018-0543-y
– ident: e_1_3_3_7_2
  doi: 10.1016/j.cell.2008.03.039
– ident: e_1_3_3_38_2
  doi: 10.1038/s41598-017-18433-4
– ident: e_1_3_3_64_2
  doi: 10.1002/hep.22136
– ident: e_1_3_3_2_2
  doi: 10.1038/s41580-018-0068-0
– ident: e_1_3_3_70_2
  doi: 10.1002/hep.27094
– ident: e_1_3_3_42_2
  doi: 10.1083/jcb.200211048
– ident: e_1_3_3_48_2
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_3_3_37_2
  doi: 10.1038/s41423-019-0235-z
– ident: e_1_3_3_73_2
  doi: 10.3791/1488
– ident: e_1_3_3_19_2
  doi: 10.1016/j.ccell.2018.06.007
– ident: e_1_3_3_25_2
  doi: 10.1016/j.cell.2014.09.030
– ident: e_1_3_3_30_2
  doi: 10.4049/jimmunol.167.7.4067
– ident: e_1_3_3_72_2
  doi: 10.1128/MCB.19.1.764
– ident: e_1_3_3_3_2
  doi: 10.1158/2159-8290.CD-20-0789
– ident: e_1_3_3_34_2
  doi: 10.1038/nri.2016.99
– ident: e_1_3_3_50_2
  doi: 10.1038/nbt.1754
– ident: e_1_3_3_68_2
  doi: 10.1016/j.ymeth.2008.11.001
– ident: e_1_3_3_74_2
  doi: 10.1172/JCI78437
– ident: e_1_3_3_43_2
  doi: 10.1038/cddiscovery.2016.45
– ident: e_1_3_3_66_2
  doi: 10.1158/0008-5472.CAN-04-4221
– ident: e_1_3_3_71_2
  doi: 10.1073/pnas.0900343106
– ident: e_1_3_3_29_2
  doi: 10.1084/jem.194.6.855
– ident: e_1_3_3_8_2
  doi: 10.1158/2159-8290.CD-16-0217
– ident: e_1_3_3_47_2
  doi: 10.1186/gb-2008-9-9-r137
– ident: e_1_3_3_13_2
  doi: 10.1038/nature10600
– ident: e_1_3_3_35_2
  doi: 10.1016/j.molcel.2019.01.004
– ident: e_1_3_3_39_2
  doi: 10.1002/mc.23188
– ident: e_1_3_3_32_2
  doi: 10.1038/72272
– ident: e_1_3_3_55_2
  doi: 10.1186/gb-2013-14-4-r36
– ident: e_1_3_3_27_2
  doi: 10.1074/jbc.M700412200
– ident: e_1_3_3_46_2
  doi: 10.1186/gb-2009-10-3-r25
– ident: e_1_3_3_31_2
  doi: 10.1084/jem.20031685
– ident: e_1_3_3_6_2
  doi: 10.1016/j.ccell.2016.09.003
– ident: e_1_3_3_11_2
  doi: 10.1016/j.stem.2016.11.020
– ident: e_1_3_3_9_2
  doi: 10.1016/j.cell.2013.10.019
– ident: e_1_3_3_28_2
  doi: 10.1093/jb/mvs030
– ident: e_1_3_3_14_2
  doi: 10.1126/science.aaf6659
– ident: e_1_3_3_22_2
  doi: 10.1016/j.cell.2013.03.036
– ident: e_1_3_3_36_2
  doi: 10.1038/nature11824
– ident: e_1_3_3_49_2
  doi: 10.1093/nar/gkw257
– ident: e_1_3_3_67_2
  doi: 10.1016/j.cell.2006.01.040
– ident: e_1_3_3_53_2
  doi: 10.1093/bioinformatics/btr064
– ident: e_1_3_3_65_2
  doi: 10.1053/j.gastro.2019.03.016
– ident: e_1_3_3_17_2
  doi: 10.1016/j.cell.2008.06.049
– ident: e_1_3_3_45_2
  doi: 10.1186/s12864-017-4371-5
– ident: e_1_3_3_52_2
  doi: 10.1093/nar/gkx1106
– ident: e_1_3_3_59_2
  doi: 10.1093/nar/gky1131
– ident: e_1_3_3_18_2
  doi: 10.1371/journal.pbio.0060301
– reference: 34709889 - Science. 2021 Oct 29;374(6567):534-535
SSID ssj0009593
Score 2.7048824
Snippet Senescent cells promote their own recognition and removal through the immune system by generating a bioactive secretome called the senescence-associated...
Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we...
The clock is ticking for senescent cellsSenescent cells promote their own recognition and removal through the immune system by generating a bioactive secretome...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage eabb3420
SubjectTerms Age related diseases
Aging
Animals
Biological activity
Cancer
Cell cycle
Cell Cycle Checkpoints
Cell death
Cell fate
Cell Line
Cell surface
Cellular Senescence
Chemokines
Chemokines, CXC - metabolism
Cyclin-dependent kinase
Cyclin-Dependent Kinase Inhibitor p16 - genetics
Cyclin-Dependent Kinase Inhibitor p16 - metabolism
Cyclin-dependent kinase inhibitor p21
Cyclin-Dependent Kinase Inhibitor p21 - genetics
Cyclin-Dependent Kinase Inhibitor p21 - metabolism
Cyclin-dependent kinase inhibitor p27
Cyclin-dependent kinases
Cytokines
Cytotoxicity
Damage detection
Damage prevention
DNA damage
Enhancers
Enzyme inhibitors
Genes
Genes, ras
Genetic screening
Genotype & phenotype
GTP-binding protein
Hepatocytes - immunology
Hepatocytes - metabolism
Humans
Immune clearance
Immune response
Immune system
Immunologic Surveillance
Immunosurveillance
Impact damage
Kinases
Liver
Logical Thinking
Lymphocytes
Lymphocytes T
Macrophages
Macrophages - immunology
Macrophages - metabolism
Mice
Mice, Transgenic
Normalizing
Phenotypes
Proteins
Proto-Oncogene Proteins p21(ras) - metabolism
Recognition
Repair
Retina
Retinoblastoma
Retinoblastoma Protein - metabolism
Senescence
Stress, Physiological
Stresses
T-Lymphocytes, Cytotoxic - immunology
Transcription factors
Transcription, Genetic
Tumor suppression
Tumors
Title p21 produces a bioactive secretome that places stressed cells under immunosurveillance
URI https://www.ncbi.nlm.nih.gov/pubmed/34709885
https://www.proquest.com/docview/2638093443
https://www.proquest.com/docview/2590130977
https://pubmed.ncbi.nlm.nih.gov/PMC8985214
Volume 374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBuXFQYyEg9DVarEduL4sVupugET0jq0tyhOHK1iS6c2RYJ_xr_jOHbclG2I8RJVid24Pp_PreeC0DvdRbtQTHoijMFAAZXUi1kgwOZhOWepCPK6mM7nk2hyxo7Pw_NO51cramlVyUH289a8kv-hKtwDuuos2XtQ1n0p3IDPQF-4AoXh-k80viaBDrDKVzqsKu3L2Tyt2Vd_qZXBan6lQK9Mq74NvDJ5IaBham_9su6Au-jPdILIfLlafFe6AVGDAauvNkcf9FD3306Loi5IcWhCCZrIAjut5WY4BdF2dan9-AYjR-U6eNE5rQ8vlBWkesbMOFt1_gOswHlzgXN_845hHTrzaqR0EErZ9l2QOniOrDnkdJ08c5_Ft_m5LadspJlh4b7uPkl82ubx1LQCsmAGHZbfLj5aDS_VIJWSMuKvJWUTHTAZniZfRuPk09HJxwdoi4CF4nfR1vBgdDC-s-KzrSvVythqXrCpEt2wc_4M123pP9Mn6LE1XPDQoHAbdVS5gx6aVqY_dtC23bUl3reVzN8_RV8BoLgBKE6xAyh2AMUaoNgAFDcAxTVAcQ1QfBOgz9DZ-MP0cOLZRh5exkhQeTwOC8FFDmefCFmwIhJBrPJQFFkREAlarJKk8AX3JdcNEYjP0jhUUV6Ath34kj5H3XJeql2ECVNK8qLgkkhG4yzOacCyPI-oSkVGoh4aNHuZZLbKvW62cpnU1i6JErv5id38Htp3E65NgZe7h-41xEksF1gmBASYLyhjtIfeusfAo_VOpaWar2CMTvCm8Pt4D70wtHTvooz7Io7DHuIbVHYDdP33zSfl7KKuAx8L2KqAvfz7sl6hR-ujt4e61WKlXoMiXck3FrK_AU0V0rM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p21+produces+a+bioactive+secretome+that+places+stressed+cells+under+immunosurveillance&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Sturmlechner%2C+Ines&rft.au=Zhang%2C+Cheng&rft.au=Sine%2C+Chance+C&rft.au=Erik-Jan+van+Deursen&rft.date=2021-10-29&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=374&rft.issue=6567&rft_id=info:doi/10.1126%2Fscience.abb3420&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon