p21 produces a bioactive secretome that places stressed cells under immunosurveillance
Senescent cells promote their own recognition and removal through the immune system by generating a bioactive secretome called the senescence-associated secretory phenotype (SASP). Sturmlechner et al . report that the cell cycle regulator p21 directs an early form of the SASP, which they call the p2...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 374; no. 6567; p. eabb3420 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
29.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abb3420 |
Cover
Loading…
Abstract | Senescent cells promote their own recognition and removal through the immune system by generating a bioactive secretome called the senescence-associated secretory phenotype (SASP). Sturmlechner
et al
. report that the cell cycle regulator p21 directs an early form of the SASP, which they call the p21-activated secretory phenotype (PASP) (see the Perspective by Reen and Gil). As part of the PASP, the chemokine CXCL14 attracts macrophages, which monitor stressed cells expressing elevated p21. If stressed cells recuperate and p21 levels return to normal within 4 days, then macrophages disengage from their targets. Otherwise, macrophages recruit cytotoxic T cells that facilitate target cell removal. Other cell cycle regulators such as p16 can induce many factors overlapping with the PASP, but p21 uniquely drives this CXCL14-mediated “timer” mechanism of senescent cell immunosurveillance. —STS
The cell cycle factor p21 concurrently induces proliferative arrest and immunosurveillance of cells under stress, controlling their fate.
Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress. |
---|---|
AbstractList | Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress. The clock is ticking for senescent cellsSenescent cells promote their own recognition and removal through the immune system by generating a bioactive secretome called the senescence-associated secretory phenotype (SASP). Sturmlechner et al. report that the cell cycle regulator p21 directs an early form of the SASP, which they call the p21-activated secretory phenotype (PASP) (see the Perspective by Reen and Gil). As part of the PASP, the chemokine CXCL14 attracts macrophages, which monitor stressed cells expressing elevated p21. If stressed cells recuperate and p21 levels return to normal within 4 days, then macrophages disengage from their targets. Otherwise, macrophages recruit cytotoxic T cells that facilitate target cell removal. Other cell cycle regulators such as p16 can induce many factors overlapping with the PASP, but p21 uniquely drives this CXCL14-mediated “timer” mechanism of senescent cell immunosurveillance. —STSINTRODUCTIONComplex multicellular organisms are subject to a myriad of cellular stresses, which can be managed through cell-intrinsic adaptation and repair mechanisms. Cells that fail to recover activate programs that lead to regulated cell death or cellular senescence, thereby limiting the risk of neoplastic transformation. Evidence is emerging that intercellular communication also plays an important role in dealing with cellular stresses. For instance, cells experiencing DNA damage display cell-surface ligands that facilitate lymphocyte recognition and secrete cytokines that attract myeloid cells. Furthermore, cells undergoing cellular senescence generate a bioactive secretome known as the senescence-associated secretory phenotype (SASP), which facilitates senescent cell (SNC) recognition by the immune system.RATIONALEStressed cells that become senescent have been implicated in various biological processes beyond cancer, including development, tissue repair, aging, and age-related diseases, presumably through the paracrine actions of the SASP. To better understand the molecular properties of SNCs, we sought to identify key determinants of SNC identity by screening for genes nearby senescence-associated super-enhancers conserved across stressors, cell types, and mammalian species. Through this approach, we identified p21 (Cdkn1a), which encodes the cyclin-dependent kinase (CDK) inhibitor p21, and conducted an in-depth analysis of its functions from the time cells first experience stress until they have become senescent.RESULTSWe found that p21—in addition to its function in maintaining the cell-cycle arrest of SNCs—has a prominent role in establishing the SASP through retinoblastoma protein (Rb)–dependent transcription involving select SMAD and STAT transcription factors. Although this transcriptional program remains active in SNCs, p21 initiates this program as a first response to stress occurring in parallel with cell-cycle arrest. The resulting immediate-early secretome, which we term the p21-activated secretory phenotype (PASP), comprises several hundred factors, including the chemokine CXCL14, which recruits macrophages to surveil stressed cells with elevated p21. In mouse liver, these macrophages disengage if cells normalize p21 levels within 4 days after its induction. However, if p21 remains elevated, the adjoined macrophages polarize toward an M1 phenotype, and cytotoxic T lymphocytes arrive to execute target cell elimination when classical markers of senescence are not yet detectable. This scenario also occurs with oncogenic KRAS-mediated p21 induction, highlighting the physiological relevance of the uncovered immunosurveillance mechanism to tumor suppression. By contrast, CDK inhibitor p16, which is often elevated in SNCs and also halts cell-cycle progression through Rb hypophosphorylation, does not induce immunosurveillance when overexpressed in mouse liver. Although p16 induction yields an immediate-early secretome that consists largely of factors that overlap with the PASP, there are far fewer factors, and CXCL14 is absent. Studies on CDK inhibitor p27 further suggested that coordinated induction of cell-cycle arrest and immunosurveillance is a distinctive feature of p21.CONCLUSIONOur study demonstrates that in response to cellular stress, p21 alters the transcription regulatory properties of Rb to not only inhibit genes required for cell-cycle progression but also activate a large collection of genes implicated in diverse biological functions, including immunosurveillance. By promptly recruiting macrophages to stressed cells, p21 sets a biological timer that allows for a period in which stressed cells can recuperate, thereby normalizing p21. This timer expires when the immune response transitions from a surveillance to a clearance mode. As such, p21 provides a first line of defense against dysfunctional cells that can become cancerous or otherwise cause pathology. Given that p21 is a p53 target gene, it will be important to define whether this p21-controlled immunoclearance mechanism is perturbed in cancer cells that lack functional p53, and if so, to explore the therapeutic impact of interventions that reactivate it.Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress. Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)-dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize towards an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress. p21 activates Rb to produce a bioactive secretome that places stressed cells under immunosurveillance to set a timer that controls cell fate. Senescent cells promote their own recognition and removal through the immune system by generating a bioactive secretome called the senescence-associated secretory phenotype (SASP). Sturmlechner et al . report that the cell cycle regulator p21 directs an early form of the SASP, which they call the p21-activated secretory phenotype (PASP) (see the Perspective by Reen and Gil). As part of the PASP, the chemokine CXCL14 attracts macrophages, which monitor stressed cells expressing elevated p21. If stressed cells recuperate and p21 levels return to normal within 4 days, then macrophages disengage from their targets. Otherwise, macrophages recruit cytotoxic T cells that facilitate target cell removal. Other cell cycle regulators such as p16 can induce many factors overlapping with the PASP, but p21 uniquely drives this CXCL14-mediated “timer” mechanism of senescent cell immunosurveillance. —STS The cell cycle factor p21 concurrently induces proliferative arrest and immunosurveillance of cells under stress, controlling their fate. Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress. Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress.Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress. |
Author | Sturmlechner, Ines Lee, Jeong-Heon Hamada, Masakazu Zhang, Cheng Sine, Chance C. van Deursen, Jan M. Hamada, Naomi Stutchman, Jeremy T. Lim, Do Young Can, Ismail van Deursen, Erik-Jan Jeganathan, Karthik B. Shapiro, Virginia Li, Hu Friedman, David Baker, Darren J. Grasic, Jan Ordog, Tamas Laberge, Remi-Martin |
AuthorAffiliation | 3 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States 7 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester MN, United States 6 Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester MN, United States 1 Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States 5 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester MN, United States 2 Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands 8 Unity Biotechnology, 285 E Grand Ave., South San Francisco, California 94080, USA 4 Department of Immunology, Mayo Clinic, Rochester MN, United States |
AuthorAffiliation_xml | – name: 6 Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester MN, United States – name: 4 Department of Immunology, Mayo Clinic, Rochester MN, United States – name: 5 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester MN, United States – name: 7 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester MN, United States – name: 1 Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States – name: 8 Unity Biotechnology, 285 E Grand Ave., South San Francisco, California 94080, USA – name: 3 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States – name: 2 Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands |
Author_xml | – sequence: 1 givenname: Ines orcidid: 0000-0003-1272-5618 surname: Sturmlechner fullname: Sturmlechner, Ines organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA., Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands – sequence: 2 givenname: Cheng surname: Zhang fullname: Zhang, Cheng organization: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA – sequence: 3 givenname: Chance C. surname: Sine fullname: Sine, Chance C. organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA – sequence: 4 givenname: Erik-Jan surname: van Deursen fullname: van Deursen, Erik-Jan organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA – sequence: 5 givenname: Karthik B. orcidid: 0000-0001-5587-1266 surname: Jeganathan fullname: Jeganathan, Karthik B. organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA – sequence: 6 givenname: Naomi surname: Hamada fullname: Hamada, Naomi organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA – sequence: 7 givenname: Jan surname: Grasic fullname: Grasic, Jan organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA – sequence: 8 givenname: David orcidid: 0000-0002-1295-1562 surname: Friedman fullname: Friedman, David organization: Department of Immunology, Mayo Clinic, Rochester, MN, USA – sequence: 9 givenname: Jeremy T. surname: Stutchman fullname: Stutchman, Jeremy T. organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA – sequence: 10 givenname: Ismail orcidid: 0000-0003-0569-5326 surname: Can fullname: Can, Ismail organization: Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA – sequence: 11 givenname: Masakazu surname: Hamada fullname: Hamada, Masakazu organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA – sequence: 12 givenname: Do Young orcidid: 0000-0002-7663-5905 surname: Lim fullname: Lim, Do Young organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA – sequence: 13 givenname: Jeong-Heon orcidid: 0000-0003-4007-9166 surname: Lee fullname: Lee, Jeong-Heon organization: Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA – sequence: 14 givenname: Tamas orcidid: 0000-0002-3940-7284 surname: Ordog fullname: Ordog, Tamas organization: Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA., Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA – sequence: 15 givenname: Remi-Martin surname: Laberge fullname: Laberge, Remi-Martin organization: Unity Biotechnology, South San Francisco, CA 94080, USA – sequence: 16 givenname: Virginia orcidid: 0000-0001-9978-341X surname: Shapiro fullname: Shapiro, Virginia organization: Department of Immunology, Mayo Clinic, Rochester, MN, USA – sequence: 17 givenname: Darren J. orcidid: 0000-0001-9006-1939 surname: Baker fullname: Baker, Darren J. organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA., Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA – sequence: 18 givenname: Hu orcidid: 0000-0001-5957-5472 surname: Li fullname: Li, Hu organization: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA – sequence: 19 givenname: Jan M. orcidid: 0000-0002-3042-5267 surname: van Deursen fullname: van Deursen, Jan M. organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA., Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34709885$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rFTEUxYNU7Gt17U4CbtxMm8-ZZCNI0VYouFG3Icnc2JSZyZhkHvjfm0dfRQuu7uL-zuHce87QyZIWQOg1JReUsv6y-AiLhwvrHBeMPEM7SrTsNCP8BO0I4X2nyCBP0Vkp94S0neYv0CkXA9FKyR36vjKK15zGzUPBFruYrK9xD7iAz1DTDLje2YrXyR6IUjOUAiP2ME0Fb8sIGcd53pZUtryHOE22BXqJngc7FXh1nOfo26ePX69uutsv15-vPtx2XjBau0HJoAc9CquZdkGEXlMFo9TBB8ocGQQ4FogeiBt4ryQjwioJ_RgklZQ4fo7eP_ium5th9LDUbCez5jjb_MskG82_myXemR9pb5RublQ0g3dHg5x-blCqmWM53GYXSFsxTGpCeUswNPTtE_Q-bXlp5xnWc0U0F4I36s3fif5EeXx5A-QD4HMqJUMwPlZbYzoEjJOhxByqNcdqzbHaprt8onu0_p_iN27JqnU |
CitedBy_id | crossref_primary_10_1016_j_jare_2024_11_027 crossref_primary_10_1016_j_devcel_2023_05_010 crossref_primary_10_1021_acschembio_2c00909 crossref_primary_10_3390_ijms25105303 crossref_primary_10_1007_s00428_024_03748_1 crossref_primary_10_1038_s41413_024_00375_z crossref_primary_10_1016_j_envint_2024_108493 crossref_primary_10_3390_life12091332 crossref_primary_10_1038_s42003_023_05558_8 crossref_primary_10_15252_embj_2023113510 crossref_primary_10_3389_fendo_2023_1212716 crossref_primary_10_3390_ijms23116135 crossref_primary_10_1073_pnas_2420502122 crossref_primary_10_1016_j_jhazmat_2023_132489 crossref_primary_10_3389_fendo_2022_869414 crossref_primary_10_1007_s00439_023_02565_x crossref_primary_10_1016_j_cmet_2021_12_008 crossref_primary_10_1016_S1470_2045_24_00656_9 crossref_primary_10_1016_j_molmet_2022_101652 crossref_primary_10_1111_acel_14367 crossref_primary_10_1016_j_kint_2023_10_036 crossref_primary_10_2174_1874609815666220914104548 crossref_primary_10_1016_j_jbc_2025_108438 crossref_primary_10_1093_gerona_glac097 crossref_primary_10_3389_fnagi_2023_1281581 crossref_primary_10_1007_s11010_024_05131_9 crossref_primary_10_1016_j_xcrm_2025_101976 crossref_primary_10_3390_cells11121966 crossref_primary_10_1007_s11914_023_00820_8 crossref_primary_10_1038_s41580_024_00727_x crossref_primary_10_1007_s11357_025_01509_9 crossref_primary_10_1088_1361_6528_ad312a crossref_primary_10_1038_s41514_023_00105_5 crossref_primary_10_1016_j_tig_2024_08_007 crossref_primary_10_1016_j_celrep_2023_113181 crossref_primary_10_3389_fimmu_2022_908449 crossref_primary_10_1016_j_arr_2024_102400 crossref_primary_10_1038_s43587_024_00752_7 crossref_primary_10_1155_2022_6588144 crossref_primary_10_3390_cancers14061364 crossref_primary_10_1016_j_jbc_2022_102289 crossref_primary_10_1038_s41467_024_51978_3 crossref_primary_10_1016_j_celrep_2023_112129 crossref_primary_10_1016_j_jep_2024_118400 crossref_primary_10_1096_fj_202400808RR crossref_primary_10_1093_burnst_tkad001 crossref_primary_10_32604_biocell_2024_047871 crossref_primary_10_1016_j_mocell_2024_100113 crossref_primary_10_1093_stmcls_sxae056 crossref_primary_10_3390_cells12060902 crossref_primary_10_1016_j_molmet_2023_101755 crossref_primary_10_3389_fcell_2023_1083401 crossref_primary_10_1016_j_jot_2024_02_003 crossref_primary_10_1126_sciadv_adj2102 crossref_primary_10_1016_j_bbrc_2021_12_098 crossref_primary_10_1002_adma_202206208 crossref_primary_10_1016_j_immuni_2024_01_001 crossref_primary_10_1016_j_ccell_2022_10_015 crossref_primary_10_1111_acel_14069 crossref_primary_10_1172_JCI162519 crossref_primary_10_1134_S0026893322050119 crossref_primary_10_1016_j_ccell_2023_05_006 crossref_primary_10_1016_j_cmet_2023_10_014 crossref_primary_10_1038_s41467_025_57229_3 crossref_primary_10_1186_s13148_024_01702_1 crossref_primary_10_1038_s44318_024_00246_7 crossref_primary_10_1136_jcp_2024_209450 crossref_primary_10_1631_jzus_B2400013 crossref_primary_10_1016_j_tcb_2021_12_003 crossref_primary_10_1111_acel_14354 crossref_primary_10_14348_molcells_2022_0036 crossref_primary_10_3389_fnagi_2022_917797 crossref_primary_10_1111_acel_14358 crossref_primary_10_3390_biom14121484 crossref_primary_10_1016_j_bbcan_2025_189277 crossref_primary_10_1101_cshperspect_a041348 crossref_primary_10_1186_s13020_024_01036_3 crossref_primary_10_1186_s12943_024_01973_5 crossref_primary_10_1016_j_hnm_2023_200189 crossref_primary_10_1016_j_ijbiomac_2022_12_153 crossref_primary_10_1080_15384101_2024_2342714 crossref_primary_10_1016_j_neubiorev_2022_104809 crossref_primary_10_1038_s41571_022_00668_4 crossref_primary_10_1161_CIRCRESAHA_121_319815 crossref_primary_10_1016_j_cmet_2024_03_009 crossref_primary_10_1038_s41417_024_00799_z crossref_primary_10_1242_jcs_259114 crossref_primary_10_1631_jzus_B2200178 crossref_primary_10_1016_j_devcel_2022_04_005 crossref_primary_10_1152_ajpcell_00049_2022 crossref_primary_10_1038_s42003_025_07738_0 crossref_primary_10_1155_2022_5503575 crossref_primary_10_1111_febs_16573 crossref_primary_10_1126_sciadv_abq7599 crossref_primary_10_1186_s12967_023_04177_5 crossref_primary_10_15252_embj_2022110764 crossref_primary_10_1002_art_42525 crossref_primary_10_1016_j_ymthe_2024_04_002 crossref_primary_10_1038_s44318_024_00245_8 crossref_primary_10_1080_15384101_2024_2364579 crossref_primary_10_1093_jb_mvae098 crossref_primary_10_1038_s41416_024_02865_7 crossref_primary_10_1093_jb_mvae015 crossref_primary_10_1080_14789450_2023_2174851 crossref_primary_10_20517_jca_2024_14 crossref_primary_10_1111_febs_16325 crossref_primary_10_3390_cells12010132 crossref_primary_10_18632_aging_205752 crossref_primary_10_1111_jocd_16019 crossref_primary_10_1016_j_semcancer_2024_10_002 crossref_primary_10_1016_j_tem_2023_09_007 crossref_primary_10_3389_fendo_2023_1196460 crossref_primary_10_1016_j_kint_2022_08_017 crossref_primary_10_1016_j_tox_2024_153804 crossref_primary_10_1111_acel_13806 crossref_primary_10_1038_s41540_022_00238_5 crossref_primary_10_1038_s41467_022_32915_8 crossref_primary_10_3389_fbioe_2024_1450626 crossref_primary_10_1186_s13024_021_00507_7 crossref_primary_10_3389_fphar_2023_1118397 crossref_primary_10_1016_j_mad_2025_112045 crossref_primary_10_1053_j_gastro_2023_03_235 crossref_primary_10_1002_1878_0261_13275 crossref_primary_10_1038_s43587_024_00642_y crossref_primary_10_1111_acel_14154 crossref_primary_10_1016_j_molmet_2023_101798 crossref_primary_10_1016_j_bj_2023_02_001 crossref_primary_10_1016_j_gde_2022_101914 crossref_primary_10_1186_s41232_024_00342_5 crossref_primary_10_1126_science_abm3229 crossref_primary_10_3390_futurepharmacol3010014 crossref_primary_10_1126_scitranslmed_adg7291 crossref_primary_10_1007_s10753_024_02213_0 crossref_primary_10_1172_JCI158448 crossref_primary_10_1016_j_tcb_2022_04_011 crossref_primary_10_3390_jcm11216338 crossref_primary_10_1016_j_neubiorev_2023_105359 crossref_primary_10_1016_j_mrfmmm_2022_111777 crossref_primary_10_3390_cells11111781 crossref_primary_10_1097_SHK_0000000000002512 crossref_primary_10_3390_epigenomes8010010 crossref_primary_10_1007_s11357_023_00830_5 crossref_primary_10_3389_fmolb_2023_1148389 crossref_primary_10_1002_advs_202401127 crossref_primary_10_3390_ijms24065565 crossref_primary_10_1002_mco2_70048 crossref_primary_10_1038_s41422_023_00842_y crossref_primary_10_1016_j_semcancer_2022_02_005 crossref_primary_10_1111_acel_13988 crossref_primary_10_1016_j_trecan_2024_11_010 crossref_primary_10_1111_acel_13869 crossref_primary_10_1016_j_biocel_2023_106479 crossref_primary_10_1016_j_smim_2023_101800 crossref_primary_10_1038_s41467_022_31239_x crossref_primary_10_1007_s11357_023_00785_7 crossref_primary_10_1002_1878_0261_13312 crossref_primary_10_1038_s41420_023_01699_1 crossref_primary_10_1016_j_tem_2024_01_003 crossref_primary_10_3390_ijms252313209 crossref_primary_10_3389_fcell_2022_932723 crossref_primary_10_1111_odi_15263 crossref_primary_10_1186_s13062_021_00313_7 |
Cites_doi | 10.1016/j.cell.2013.10.041 10.1073/pnas.0506580102 10.1038/cr.2017.76 10.1038/nature10599 10.1016/j.cell.2013.03.035 10.7554/eLife.16620 10.1093/nar/gkp335 10.1093/bioinformatics/btr260 10.1038/nature13193 10.1038/ncb3397 10.1093/nar/gkt214 10.1093/bioinformatics/btp536 10.1016/j.ccr.2010.01.023 10.1038/nature16932 10.1371/journal.pone.0013984 10.1038/nmeth.1923 10.1038/nri1936 10.1016/j.cmet.2020.09.006 10.1083/jcb.201102018 10.1016/j.cell.2013.09.053 10.1093/nar/gkw1108 10.1038/nm.4324 10.1038/75556 10.1038/s41586-018-0543-y 10.1016/j.cell.2008.03.039 10.1038/s41598-017-18433-4 10.1002/hep.22136 10.1038/s41580-018-0068-0 10.1002/hep.27094 10.1083/jcb.200211048 10.1186/s13059-014-0550-8 10.1038/s41423-019-0235-z 10.3791/1488 10.1016/j.ccell.2018.06.007 10.1016/j.cell.2014.09.030 10.4049/jimmunol.167.7.4067 10.1128/MCB.19.1.764 10.1158/2159-8290.CD-20-0789 10.1038/nri.2016.99 10.1038/nbt.1754 10.1016/j.ymeth.2008.11.001 10.1172/JCI78437 10.1038/cddiscovery.2016.45 10.1158/0008-5472.CAN-04-4221 10.1073/pnas.0900343106 10.1084/jem.194.6.855 10.1158/2159-8290.CD-16-0217 10.1186/gb-2008-9-9-r137 10.1038/nature10600 10.1016/j.molcel.2019.01.004 10.1002/mc.23188 10.1038/72272 10.1186/gb-2013-14-4-r36 10.1074/jbc.M700412200 10.1186/gb-2009-10-3-r25 10.1084/jem.20031685 10.1016/j.ccell.2016.09.003 10.1016/j.stem.2016.11.020 10.1016/j.cell.2013.10.019 10.1093/jb/mvs030 10.1126/science.aaf6659 10.1016/j.cell.2013.03.036 10.1038/nature11824 10.1093/nar/gkw257 10.1016/j.cell.2006.01.040 10.1093/bioinformatics/btr064 10.1053/j.gastro.2019.03.016 10.1016/j.cell.2008.06.049 10.1186/s12864-017-4371-5 10.1093/nar/gkx1106 10.1093/nar/gky1131 10.1371/journal.pbio.0060301 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.abb3420 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | eabb3420 |
ExternalDocumentID | PMC8985214 34709885 10_1126_science_abb3420 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA208517 – fundername: NIA NIH HHS grantid: R01 AG057493 – fundername: NIA NIH HHS grantid: RF1 AG056318 – fundername: NCI NIH HHS grantid: R01 CA196631 – fundername: NIA NIH HHS grantid: R01 AG050618 – fundername: NIDDK NIH HHS grantid: P30 DK084567 – fundername: NCI NIH HHS grantid: P30 CA015083 – fundername: NIDDK NIH HHS grantid: R01 DK058185 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c421t-785f979d4a929bf4f6918ed59fcf12b074eb2f0970b73685204a85e6df51510b3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 14:11:27 EDT 2025 Fri Jul 11 13:26:15 EDT 2025 Fri Jul 25 19:14:48 EDT 2025 Mon Jul 21 06:04:59 EDT 2025 Tue Jul 01 02:24:08 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6567 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c421t-785f979d4a929bf4f6918ed59fcf12b074eb2f0970b73685204a85e6df51510b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: J.M.v.D. conceived the project. I.S. and J.M.v.D. designed most experiments. I.S. performed most experiments. J.-H.L. and T.O. performed ChIP-related experiments, and C.Z., I.S. and H.L. conducted super-enhancer related studies. C.Z. and I.S. performed bioinformatic analyses. I.S., C.C.S., I.C., E.J.v.D., and J.T.S. conducted knockdown experiments, and K.B.J. co-IP experiments. N.H., J.G., M.H., and D.Y.L generated and validated transgenic strains. R.M.L. helped with experimental design and data interpretation. D.F. and V.S. designed and executed neutralizing antibody experiments in mice with I.S. and helped with interpretation of immunosurveillance data. All authors contributed to data acquisition, analysis and interpretation. J.M.v.D. and I.S. wrote the paper and all authors edited the manuscript. D.J.B. helped supervise and interpret experiments pertaining to the physiological relevance of the PASP. H.L. directed, supervised, and helped interpret all bioinformatics analyses and J.M.v.D. directed and supervised all other aspects of the study. |
ORCID | 0000-0003-1272-5618 0000-0002-1295-1562 0000-0001-5587-1266 0000-0002-7663-5905 0000-0001-9978-341X 0000-0001-5957-5472 0000-0002-3042-5267 0000-0003-4007-9166 0000-0003-0569-5326 0000-0001-9006-1939 0000-0002-3940-7284 |
OpenAccessLink | https://research.rug.nl/en/publications/3626a32b-932c-4ce8-841f-92381130c73a |
PMID | 34709885 |
PQID | 2638093443 |
PQPubID | 1256 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8985214 proquest_miscellaneous_2590130977 proquest_journals_2638093443 pubmed_primary_34709885 crossref_citationtrail_10_1126_science_abb3420 crossref_primary_10_1126_science_abb3420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-29 2021-Oct-29 20211029 |
PublicationDateYYYYMMDD | 2021-10-29 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_3_50_2 e_1_3_3_71_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_70_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 Nam H. J. (e_1_3_3_40_2) 2014; 16 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 34709889 - Science. 2021 Oct 29;374(6567):534-535 |
References_xml | – ident: e_1_3_3_10_2 doi: 10.1016/j.cell.2013.10.041 – ident: e_1_3_3_57_2 doi: 10.1073/pnas.0506580102 – ident: e_1_3_3_41_2 doi: 10.1038/cr.2017.76 – ident: e_1_3_3_5_2 doi: 10.1038/nature10599 – ident: e_1_3_3_24_2 doi: 10.1016/j.cell.2013.03.035 – ident: e_1_3_3_69_2 doi: 10.7554/eLife.16620 – ident: e_1_3_3_51_2 doi: 10.1093/nar/gkp335 – ident: e_1_3_3_60_2 doi: 10.1093/bioinformatics/btr260 – ident: e_1_3_3_4_2 doi: 10.1038/nature13193 – ident: e_1_3_3_21_2 doi: 10.1038/ncb3397 – ident: e_1_3_3_56_2 doi: 10.1093/nar/gkt214 – ident: e_1_3_3_63_2 doi: 10.1093/bioinformatics/btp536 – ident: e_1_3_3_26_2 doi: 10.1016/j.ccr.2010.01.023 – ident: e_1_3_3_12_2 doi: 10.1038/nature16932 – ident: e_1_3_3_58_2 doi: 10.1371/journal.pone.0013984 – volume: 16 start-page: 538 year: 2014 ident: e_1_3_3_40_2 article-title: Cyclin B2 and p53 control proper timing of centrosome separation publication-title: Nat. Cell Biol. – ident: e_1_3_3_54_2 doi: 10.1038/nmeth.1923 – ident: e_1_3_3_33_2 doi: 10.1038/nri1936 – ident: e_1_3_3_20_2 doi: 10.1016/j.cmet.2020.09.006 – ident: e_1_3_3_44_2 doi: 10.1083/jcb.201102018 – ident: e_1_3_3_23_2 doi: 10.1016/j.cell.2013.09.053 – ident: e_1_3_3_62_2 doi: 10.1093/nar/gkw1108 – ident: e_1_3_3_15_2 doi: 10.1038/nm.4324 – ident: e_1_3_3_61_2 doi: 10.1038/75556 – ident: e_1_3_3_16_2 doi: 10.1038/s41586-018-0543-y – ident: e_1_3_3_7_2 doi: 10.1016/j.cell.2008.03.039 – ident: e_1_3_3_38_2 doi: 10.1038/s41598-017-18433-4 – ident: e_1_3_3_64_2 doi: 10.1002/hep.22136 – ident: e_1_3_3_2_2 doi: 10.1038/s41580-018-0068-0 – ident: e_1_3_3_70_2 doi: 10.1002/hep.27094 – ident: e_1_3_3_42_2 doi: 10.1083/jcb.200211048 – ident: e_1_3_3_48_2 doi: 10.1186/s13059-014-0550-8 – ident: e_1_3_3_37_2 doi: 10.1038/s41423-019-0235-z – ident: e_1_3_3_73_2 doi: 10.3791/1488 – ident: e_1_3_3_19_2 doi: 10.1016/j.ccell.2018.06.007 – ident: e_1_3_3_25_2 doi: 10.1016/j.cell.2014.09.030 – ident: e_1_3_3_30_2 doi: 10.4049/jimmunol.167.7.4067 – ident: e_1_3_3_72_2 doi: 10.1128/MCB.19.1.764 – ident: e_1_3_3_3_2 doi: 10.1158/2159-8290.CD-20-0789 – ident: e_1_3_3_34_2 doi: 10.1038/nri.2016.99 – ident: e_1_3_3_50_2 doi: 10.1038/nbt.1754 – ident: e_1_3_3_68_2 doi: 10.1016/j.ymeth.2008.11.001 – ident: e_1_3_3_74_2 doi: 10.1172/JCI78437 – ident: e_1_3_3_43_2 doi: 10.1038/cddiscovery.2016.45 – ident: e_1_3_3_66_2 doi: 10.1158/0008-5472.CAN-04-4221 – ident: e_1_3_3_71_2 doi: 10.1073/pnas.0900343106 – ident: e_1_3_3_29_2 doi: 10.1084/jem.194.6.855 – ident: e_1_3_3_8_2 doi: 10.1158/2159-8290.CD-16-0217 – ident: e_1_3_3_47_2 doi: 10.1186/gb-2008-9-9-r137 – ident: e_1_3_3_13_2 doi: 10.1038/nature10600 – ident: e_1_3_3_35_2 doi: 10.1016/j.molcel.2019.01.004 – ident: e_1_3_3_39_2 doi: 10.1002/mc.23188 – ident: e_1_3_3_32_2 doi: 10.1038/72272 – ident: e_1_3_3_55_2 doi: 10.1186/gb-2013-14-4-r36 – ident: e_1_3_3_27_2 doi: 10.1074/jbc.M700412200 – ident: e_1_3_3_46_2 doi: 10.1186/gb-2009-10-3-r25 – ident: e_1_3_3_31_2 doi: 10.1084/jem.20031685 – ident: e_1_3_3_6_2 doi: 10.1016/j.ccell.2016.09.003 – ident: e_1_3_3_11_2 doi: 10.1016/j.stem.2016.11.020 – ident: e_1_3_3_9_2 doi: 10.1016/j.cell.2013.10.019 – ident: e_1_3_3_28_2 doi: 10.1093/jb/mvs030 – ident: e_1_3_3_14_2 doi: 10.1126/science.aaf6659 – ident: e_1_3_3_22_2 doi: 10.1016/j.cell.2013.03.036 – ident: e_1_3_3_36_2 doi: 10.1038/nature11824 – ident: e_1_3_3_49_2 doi: 10.1093/nar/gkw257 – ident: e_1_3_3_67_2 doi: 10.1016/j.cell.2006.01.040 – ident: e_1_3_3_53_2 doi: 10.1093/bioinformatics/btr064 – ident: e_1_3_3_65_2 doi: 10.1053/j.gastro.2019.03.016 – ident: e_1_3_3_17_2 doi: 10.1016/j.cell.2008.06.049 – ident: e_1_3_3_45_2 doi: 10.1186/s12864-017-4371-5 – ident: e_1_3_3_52_2 doi: 10.1093/nar/gkx1106 – ident: e_1_3_3_59_2 doi: 10.1093/nar/gky1131 – ident: e_1_3_3_18_2 doi: 10.1371/journal.pbio.0060301 – reference: 34709889 - Science. 2021 Oct 29;374(6567):534-535 |
SSID | ssj0009593 |
Score | 2.7048824 |
Snippet | Senescent cells promote their own recognition and removal through the immune system by generating a bioactive secretome called the senescence-associated... Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we... The clock is ticking for senescent cellsSenescent cells promote their own recognition and removal through the immune system by generating a bioactive secretome... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | eabb3420 |
SubjectTerms | Age related diseases Aging Animals Biological activity Cancer Cell cycle Cell Cycle Checkpoints Cell death Cell fate Cell Line Cell surface Cellular Senescence Chemokines Chemokines, CXC - metabolism Cyclin-dependent kinase Cyclin-Dependent Kinase Inhibitor p16 - genetics Cyclin-Dependent Kinase Inhibitor p16 - metabolism Cyclin-dependent kinase inhibitor p21 Cyclin-Dependent Kinase Inhibitor p21 - genetics Cyclin-Dependent Kinase Inhibitor p21 - metabolism Cyclin-dependent kinase inhibitor p27 Cyclin-dependent kinases Cytokines Cytotoxicity Damage detection Damage prevention DNA damage Enhancers Enzyme inhibitors Genes Genes, ras Genetic screening Genotype & phenotype GTP-binding protein Hepatocytes - immunology Hepatocytes - metabolism Humans Immune clearance Immune response Immune system Immunologic Surveillance Immunosurveillance Impact damage Kinases Liver Logical Thinking Lymphocytes Lymphocytes T Macrophages Macrophages - immunology Macrophages - metabolism Mice Mice, Transgenic Normalizing Phenotypes Proteins Proto-Oncogene Proteins p21(ras) - metabolism Recognition Repair Retina Retinoblastoma Retinoblastoma Protein - metabolism Senescence Stress, Physiological Stresses T-Lymphocytes, Cytotoxic - immunology Transcription factors Transcription, Genetic Tumor suppression Tumors |
Title | p21 produces a bioactive secretome that places stressed cells under immunosurveillance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34709885 https://www.proquest.com/docview/2638093443 https://www.proquest.com/docview/2590130977 https://pubmed.ncbi.nlm.nih.gov/PMC8985214 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBuXFQYyEg9DVarEduL4sVupugET0jq0tyhOHK1iS6c2RYJ_xr_jOHbclG2I8RJVid24Pp_PreeC0DvdRbtQTHoijMFAAZXUi1kgwOZhOWepCPK6mM7nk2hyxo7Pw_NO51cramlVyUH289a8kv-hKtwDuuos2XtQ1n0p3IDPQF-4AoXh-k80viaBDrDKVzqsKu3L2Tyt2Vd_qZXBan6lQK9Mq74NvDJ5IaBham_9su6Au-jPdILIfLlafFe6AVGDAauvNkcf9FD3306Loi5IcWhCCZrIAjut5WY4BdF2dan9-AYjR-U6eNE5rQ8vlBWkesbMOFt1_gOswHlzgXN_845hHTrzaqR0EErZ9l2QOniOrDnkdJ08c5_Ft_m5LadspJlh4b7uPkl82ubx1LQCsmAGHZbfLj5aDS_VIJWSMuKvJWUTHTAZniZfRuPk09HJxwdoi4CF4nfR1vBgdDC-s-KzrSvVythqXrCpEt2wc_4M123pP9Mn6LE1XPDQoHAbdVS5gx6aVqY_dtC23bUl3reVzN8_RV8BoLgBKE6xAyh2AMUaoNgAFDcAxTVAcQ1QfBOgz9DZ-MP0cOLZRh5exkhQeTwOC8FFDmefCFmwIhJBrPJQFFkREAlarJKk8AX3JdcNEYjP0jhUUV6Ath34kj5H3XJeql2ECVNK8qLgkkhG4yzOacCyPI-oSkVGoh4aNHuZZLbKvW62cpnU1i6JErv5id38Htp3E65NgZe7h-41xEksF1gmBASYLyhjtIfeusfAo_VOpaWar2CMTvCm8Pt4D70wtHTvooz7Io7DHuIbVHYDdP33zSfl7KKuAx8L2KqAvfz7sl6hR-ujt4e61WKlXoMiXck3FrK_AU0V0rM |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p21+produces+a+bioactive+secretome+that+places+stressed+cells+under+immunosurveillance&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Sturmlechner%2C+Ines&rft.au=Zhang%2C+Cheng&rft.au=Sine%2C+Chance+C&rft.au=Erik-Jan+van+Deursen&rft.date=2021-10-29&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=374&rft.issue=6567&rft_id=info:doi/10.1126%2Fscience.abb3420&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |