Mechanism-based design of agents that selectively target drug-resistant glioma

Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O 6 -methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through lo...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 377; no. 6605; pp. 502 - 511
Main Authors Lin, Kingson, Gueble, Susan E., Sundaram, Ranjini K., Huseman, Eric D., Bindra, Ranjit S., Herzon, Seth B.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 29.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O 6 -methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects. A glioma is a tumor of the glial cells found in the brain and spinal cord. Glioblastoma multiforme (GBM) is the most common type of glioma, and is a highly aggressive brain tumor in dire need of new treatment strategies. GBM is frequently treated with the chemotherapy drug temozolomide (TMZ), but resistance develops in more than half of patients. Using a medical chemistry approach, Lin et al . designed TMZ analogs to overcome drug resistance in GBM (see the Perspective by Reddel and Aref). These agents generate a primary DNA lesion that can be repaired by healthy cells with intact DNA repair mechanisms. However, cancer cells that lack DNA-repair machinery are not able to repair the damage and slowly evolve to harbor more toxic secondary lesions that cause selective tumor cell killing. —PNK Bifunctional agents exploit tumor-associated DNA repair defects to selectively generate cytotoxic DNA interstrand cross-links in tumor cells.
AbstractList Targeting drug-resistant brain cancerA glioma is a tumor of the glial cells found in the brain and spinal cord. Glioblastoma multiforme (GBM) is the most common type of glioma, and is a highly aggressive brain tumor in dire need of new treatment strategies. GBM is frequently treated with the chemotherapy drug temozolomide (TMZ), but resistance develops in more than half of patients. Using a medical chemistry approach, Lin et al. designed TMZ analogs to overcome drug resistance in GBM (see the Perspective by Reddel and Aref). These agents generate a primary DNA lesion that can be repaired by healthy cells with intact DNA repair mechanisms. However, cancer cells that lack DNA-repair machinery are not able to repair the damage and slowly evolve to harbor more toxic secondary lesions that cause selective tumor cell killing. —PNK
Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O 6 -methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects. A glioma is a tumor of the glial cells found in the brain and spinal cord. Glioblastoma multiforme (GBM) is the most common type of glioma, and is a highly aggressive brain tumor in dire need of new treatment strategies. GBM is frequently treated with the chemotherapy drug temozolomide (TMZ), but resistance develops in more than half of patients. Using a medical chemistry approach, Lin et al . designed TMZ analogs to overcome drug resistance in GBM (see the Perspective by Reddel and Aref). These agents generate a primary DNA lesion that can be repaired by healthy cells with intact DNA repair mechanisms. However, cancer cells that lack DNA-repair machinery are not able to repair the damage and slowly evolve to harbor more toxic secondary lesions that cause selective tumor cell killing. —PNK Bifunctional agents exploit tumor-associated DNA repair defects to selectively generate cytotoxic DNA interstrand cross-links in tumor cells.
Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O 6 -methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects.
Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O -methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects.
Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O6-methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects.Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O6-methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects.
Author Sundaram, Ranjini K.
Gueble, Susan E.
Huseman, Eric D.
Herzon, Seth B.
Bindra, Ranjit S.
Lin, Kingson
AuthorAffiliation 1 Department of Chemistry, Yale University, New Haven, CT 06520, USA
4 Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
2 Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
3 Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
AuthorAffiliation_xml – name: 1 Department of Chemistry, Yale University, New Haven, CT 06520, USA
– name: 3 Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
– name: 4 Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
– name: 2 Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
Author_xml – sequence: 1
  givenname: Kingson
  orcidid: 0000-0002-5460-4008
  surname: Lin
  fullname: Lin, Kingson
  organization: Department of Chemistry, Yale University, New Haven, CT 06520, USA., Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA., Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
– sequence: 2
  givenname: Susan E.
  orcidid: 0000-0002-8043-1147
  surname: Gueble
  fullname: Gueble, Susan E.
  organization: Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
– sequence: 3
  givenname: Ranjini K.
  orcidid: 0000-0002-5725-0284
  surname: Sundaram
  fullname: Sundaram, Ranjini K.
  organization: Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
– sequence: 4
  givenname: Eric D.
  orcidid: 0000-0002-7550-1593
  surname: Huseman
  fullname: Huseman, Eric D.
  organization: Department of Chemistry, Yale University, New Haven, CT 06520, USA
– sequence: 5
  givenname: Ranjit S.
  orcidid: 0000-0002-3255-0467
  surname: Bindra
  fullname: Bindra, Ranjit S.
  organization: Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA., Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
– sequence: 6
  givenname: Seth B.
  orcidid: 0000-0001-5940-9853
  surname: Herzon
  fullname: Herzon, Seth B.
  organization: Department of Chemistry, Yale University, New Haven, CT 06520, USA., Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35901163$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS1URLeFMzcUiQuXtOPPjS9IqIKCVOACZ8txJllXiV1sp1L_e7ztUkElTnOY33t6M--EHIUYkJDXFM4oZeo8O4_B4Zntw1Zu4RnZUNCy1Qz4EdkAcNV2sJXH5CTna4C60_wFOeZSA6WKb8i3r-h2Nvi8tL3NODQDZj-FJo6NnTCU3JSdLU3GGV3xtzjfNcWmCUszpHVqU6VzsaE00-zjYl-S56OdM746zFPy89PHHxef26vvl18uPly1TjBaWoW9kBwQuEBdg1uJW6Y66gT2DuzQ9TBqrbilatR9P3RCDKKjuncaheCSn5L3D743a7_g4GrSZGdzk_xi052J1pt_N8HvzBRvjZbAgLFq8O5gkOKvFXMxi88O59kGjGs2TGnVKcbUHn37BL2Oawr1vHuKSug6Uak3fyd6jPLn1RU4fwBcijknHB8RCmZfpjmUaQ5lVoV8onC-2OLj_iQ__1f3G4wAp8U
CitedBy_id crossref_primary_10_1002_cbic_202400848
crossref_primary_10_1038_s41419_024_06902_4
crossref_primary_10_1021_acs_chemrestox_4c00076
crossref_primary_10_31083_j_fbl2809197
crossref_primary_10_1007_s12031_023_02115_0
crossref_primary_10_1021_acsami_4c09394
crossref_primary_10_1038_s41392_022_01260_z
crossref_primary_10_1093_neuonc_noaf001
crossref_primary_10_1021_acs_jmedchem_3c00223
crossref_primary_10_1093_nar_gkad1257
crossref_primary_10_3390_cancers15194775
crossref_primary_10_1016_j_drup_2024_101122
crossref_primary_10_1002_advs_202308124
crossref_primary_10_1007_s00401_024_02761_7
crossref_primary_10_1039_D3BM01139A
crossref_primary_10_3389_fimmu_2024_1362543
crossref_primary_10_3389_fphar_2023_1211719
crossref_primary_10_1016_j_heliyon_2024_e39984
crossref_primary_10_1016_j_ejmech_2023_115507
crossref_primary_10_20517_cdr_2023_82
crossref_primary_10_1016_j_phymed_2023_154933
crossref_primary_10_1038_s44321_024_00091_5
crossref_primary_10_1002_cpz1_70097
crossref_primary_10_1093_neuonc_noad159
crossref_primary_10_1038_d41573_022_00146_7
crossref_primary_10_1021_acs_jmedchem_3c02476
crossref_primary_10_1016_j_phymed_2024_155714
crossref_primary_10_3390_cancers14246199
crossref_primary_10_1158_1078_0432_CCR_23_0673
crossref_primary_10_3390_biomedicines10092174
crossref_primary_10_1186_s12951_023_01801_w
crossref_primary_10_1016_j_cej_2023_147703
crossref_primary_10_1016_j_ccr_2023_215406
crossref_primary_10_1055_s_0041_1738594
crossref_primary_10_1016_j_critrevonc_2024_104532
crossref_primary_10_1016_j_dnarep_2024_103702
crossref_primary_10_3390_cancers16020331
crossref_primary_10_3390_ijms25052743
crossref_primary_10_1038_s41467_023_37872_4
crossref_primary_10_1038_s41598_024_68902_w
crossref_primary_10_1093_noajnl_vdae105
crossref_primary_10_1016_j_biomaterials_2024_122708
crossref_primary_10_1093_neuonc_noae257
crossref_primary_10_1021_jacs_3c06483
crossref_primary_10_1038_s41467_024_53280_8
crossref_primary_10_1002_cbic_202400935
crossref_primary_10_1007_s42242_024_00317_y
crossref_primary_10_1126_science_add4839
crossref_primary_10_1007_s11060_023_04397_1
crossref_primary_10_3390_diagnostics15030251
crossref_primary_10_1016_j_canlet_2024_216812
crossref_primary_10_1016_j_ejmech_2024_117171
crossref_primary_10_1039_D4QM00833B
crossref_primary_10_1093_neuonc_noae072
crossref_primary_10_3389_fphar_2024_1485067
crossref_primary_10_1097_PAI_0000000000001201
crossref_primary_10_1039_D3CB00076A
crossref_primary_10_1111_cbdd_14309
crossref_primary_10_1158_1535_7163_MCT_24_0012
crossref_primary_10_3390_diagnostics14222569
crossref_primary_10_1080_20415990_2025_2463312
Cites_doi 10.1101/gad.455407
10.1038/cr.2007.115
10.1038/s41598-022-09614-x
10.1021/jo00408a041
10.1158/0008-5472.CAN-18-3394
10.1186/s13014-015-0453-1
10.1021/jacs.6b00162
10.1016/j.dnarep.2015.10.003
10.1128/mBio.02393-17
10.1002/jps.2600640147
10.1002/em.21944
10.1038/leu.2011.38
10.1093/carcin/bgi298
10.1038/sj.cgt.7700120
10.1021/acschembio.8b00864
10.1021/om9503712
10.1016/j.nec.2020.12.009
10.1039/a800572i
10.1101/cshperspect.a012633
10.1038/nchembio.573
10.1002/anie.201108018
10.1016/0006-2952(83)90420-3
10.1038/s41467-019-11760-2
10.1016/0006-2952(78)90349-0
10.1016/j.dnarep.2012.09.010
10.1021/acs.biochem.9b01070
10.1016/0027-5107(96)00020-6
10.1038/nature03445
10.1007/978-1-61779-421-6_9
10.1016/S1568-7864(03)00086-7
10.1371/journal.pbio.2005970
10.1093/neuonc/noab081
10.1093/nar/gkl117
10.1007/s00109-006-0153-2
10.1158/0008-5472.CAN-09-1178
10.1038/s41467-021-23463-8
10.1016/S0006-291X(87)80249-8
10.1158/0008-5472.CAN-16-2983
10.1038/s41571-021-00532-x
10.1021/acsmedchemlett.9b00235
10.1039/p19870000665
10.1021/ol302791x
10.7554/eLife.43333
10.1139/v81-198
10.1371/journal.pone.0063583
10.1038/nature03443
10.1158/0008-5472.CAN-12-2753
10.1038/nm.4292
10.1006/abbi.1993.1027
10.1001/jamaoncol.2018.1977
10.1016/j.jfluchem.2011.10.008
10.1038/s41586-020-2209-9
10.1074/jbc.M313910200
10.1093/carcin/6.7.1027
10.1667/RR14746.1
10.3389/fonc.2012.00186
10.1021/tx200031q
10.1186/1476-4598-9-259
10.1056/NEJMoa043331
10.1007/978-1-4684-1327-4_50
10.1093/jnci/81.13.988
10.1158/1535-7163.MCT-21-0228
10.1039/C6MD00384B
10.1038/nrc3399
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.abn7570
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 511
ExternalDocumentID PMC9502022
35901163
10_1126_science_abn7570
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: F30 CA254158
– fundername: NIGMS NIH HHS
  grantid: R35 GM131913
– fundername: NCI NIH HHS
  grantid: U19 CA264362
– fundername: NCI NIH HHS
  grantid: R01 CA215453
– fundername: NCI NIH HHS
  grantid: P30 CA016359
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NIGMS NIH HHS
  grantid: T32 GM007205
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
AEUPB
CGR
CUY
CVF
ECM
EIF
ESX
GX1
IGG
NPM
OK1
PKN
UIG
VQA
YCJ
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c421t-6eb4530e034e9757a5e72681c4ebc0ad8b0f9963a16f9bbd844d4819bc9e44353
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 13:57:30 EDT 2025
Fri Jul 11 15:51:55 EDT 2025
Sat Aug 23 13:25:30 EDT 2025
Wed Feb 19 02:24:41 EST 2025
Tue Jul 01 02:24:12 EDT 2025
Thu Apr 24 22:52:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6605
Language English
License Permissions https://www.science.org/help/reprints-and-permissions
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-6eb4530e034e9757a5e72681c4ebc0ad8b0f9963a16f9bbd844d4819bc9e44353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
Author contributions: S.B.H. and R.S.B. conceived and codirected the study. K.L., S.E.G., R.K.S., and E.D.H. carried out the experiments. All authors contributed to the design and analysis of the experiments and writing of the manuscript.
ORCID 0000-0002-5460-4008
0000-0002-7550-1593
0000-0002-3255-0467
0000-0001-5940-9853
0000-0002-5725-0284
0000-0002-8043-1147
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9502022
PMID 35901163
PQID 2696150884
PQPubID 1256
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9502022
proquest_miscellaneous_2696862262
proquest_journals_2696150884
pubmed_primary_35901163
crossref_primary_10_1126_science_abn7570
crossref_citationtrail_10_1126_science_abn7570
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-29
PublicationDateYYYYMMDD 2022-07-29
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2022
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
Esteller M. (e_1_3_2_50_2) 1999; 59
Liu L. (e_1_3_2_29_2) 1996; 56
e_1_3_2_27_2
e_1_3_2_48_2
Koi M. (e_1_3_2_62_2) 1994; 54
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
Cahill D. P. (e_1_3_2_53_2) 2008; 55
36045286 - Nat Rev Drug Discov. 2022 Oct;21(10):711
35901132 - Science. 2022 Jul 29;377(6605):467-468
References_xml – ident: e_1_3_2_42_2
  doi: 10.1101/gad.455407
– ident: e_1_3_2_15_2
  doi: 10.1038/cr.2007.115
– ident: e_1_3_2_31_2
  doi: 10.1038/s41598-022-09614-x
– ident: e_1_3_2_55_2
  doi: 10.1021/jo00408a041
– ident: e_1_3_2_36_2
  doi: 10.1158/0008-5472.CAN-18-3394
– ident: e_1_3_2_67_2
  doi: 10.1186/s13014-015-0453-1
– ident: e_1_3_2_66_2
  doi: 10.1021/jacs.6b00162
– ident: e_1_3_2_13_2
  doi: 10.1016/j.dnarep.2015.10.003
– ident: e_1_3_2_34_2
  doi: 10.1128/mBio.02393-17
– ident: e_1_3_2_61_2
  doi: 10.1002/jps.2600640147
– ident: e_1_3_2_37_2
  doi: 10.1002/em.21944
– ident: e_1_3_2_12_2
  doi: 10.1038/leu.2011.38
– ident: e_1_3_2_38_2
  doi: 10.1093/carcin/bgi298
– ident: e_1_3_2_28_2
  doi: 10.1038/sj.cgt.7700120
– ident: e_1_3_2_54_2
  doi: 10.1021/acschembio.8b00864
– ident: e_1_3_2_56_2
  doi: 10.1021/om9503712
– ident: e_1_3_2_43_2
  doi: 10.1016/j.nec.2020.12.009
– volume: 56
  start-page: 5375
  year: 1996
  ident: e_1_3_2_29_2
  article-title: Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl)nitrosourea
  publication-title: Cancer Res.
– ident: e_1_3_2_26_2
  doi: 10.1039/a800572i
– ident: e_1_3_2_30_2
  doi: 10.1101/cshperspect.a012633
– ident: e_1_3_2_6_2
  doi: 10.1038/nchembio.573
– ident: e_1_3_2_21_2
  doi: 10.1002/anie.201108018
– ident: e_1_3_2_20_2
  doi: 10.1016/0006-2952(83)90420-3
– ident: e_1_3_2_40_2
  doi: 10.1038/s41467-019-11760-2
– ident: e_1_3_2_46_2
  doi: 10.1016/0006-2952(78)90349-0
– ident: e_1_3_2_39_2
  doi: 10.1016/j.dnarep.2012.09.010
– ident: e_1_3_2_35_2
  doi: 10.1021/acs.biochem.9b01070
– volume: 54
  start-page: 4308
  year: 1994
  ident: e_1_3_2_62_2
  article-title: Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N′-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation
  publication-title: Cancer Res.
– ident: e_1_3_2_48_2
  doi: 10.1016/0027-5107(96)00020-6
– ident: e_1_3_2_4_2
  doi: 10.1038/nature03445
– ident: e_1_3_2_65_2
  doi: 10.1007/978-1-61779-421-6_9
– ident: e_1_3_2_32_2
  doi: 10.1016/S1568-7864(03)00086-7
– ident: e_1_3_2_64_2
  doi: 10.1371/journal.pbio.2005970
– ident: e_1_3_2_19_2
  doi: 10.1093/neuonc/noab081
– ident: e_1_3_2_23_2
  doi: 10.1093/nar/gkl117
– ident: e_1_3_2_41_2
  doi: 10.1007/s00109-006-0153-2
– ident: e_1_3_2_63_2
  doi: 10.1158/0008-5472.CAN-09-1178
– ident: e_1_3_2_5_2
  doi: 10.1038/s41467-021-23463-8
– ident: e_1_3_2_45_2
  doi: 10.1016/S0006-291X(87)80249-8
– ident: e_1_3_2_51_2
  doi: 10.1158/0008-5472.CAN-16-2983
– ident: e_1_3_2_9_2
  doi: 10.1038/s41571-021-00532-x
– ident: e_1_3_2_44_2
  doi: 10.1021/acsmedchemlett.9b00235
– ident: e_1_3_2_58_2
  doi: 10.1039/p19870000665
– ident: e_1_3_2_57_2
  doi: 10.1021/ol302791x
– ident: e_1_3_2_7_2
  doi: 10.7554/eLife.43333
– volume: 59
  start-page: 793
  year: 1999
  ident: e_1_3_2_50_2
  article-title: Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia
  publication-title: Cancer Res.
– ident: e_1_3_2_59_2
  doi: 10.1139/v81-198
– ident: e_1_3_2_69_2
  doi: 10.1371/journal.pone.0063583
– ident: e_1_3_2_3_2
  doi: 10.1038/nature03443
– ident: e_1_3_2_8_2
  doi: 10.1158/0008-5472.CAN-12-2753
– ident: e_1_3_2_52_2
  doi: 10.1038/nm.4292
– ident: e_1_3_2_22_2
  doi: 10.1006/abbi.1993.1027
– ident: e_1_3_2_14_2
  doi: 10.1001/jamaoncol.2018.1977
– ident: e_1_3_2_25_2
  doi: 10.1016/j.jfluchem.2011.10.008
– ident: e_1_3_2_18_2
  doi: 10.1038/s41586-020-2209-9
– ident: e_1_3_2_11_2
  doi: 10.1074/jbc.M313910200
– ident: e_1_3_2_47_2
  doi: 10.1093/carcin/6.7.1027
– ident: e_1_3_2_68_2
  doi: 10.1667/RR14746.1
– ident: e_1_3_2_17_2
  doi: 10.3389/fonc.2012.00186
– ident: e_1_3_2_24_2
  doi: 10.1021/tx200031q
– ident: e_1_3_2_10_2
  doi: 10.1186/1476-4598-9-259
– volume: 55
  start-page: 165
  year: 2008
  ident: e_1_3_2_53_2
  article-title: MSH6 inactivation and emergent temozolomide resistance in human glioblastomas
  publication-title: Clin. Neurosurg.
– ident: e_1_3_2_16_2
  doi: 10.1056/NEJMoa043331
– ident: e_1_3_2_33_2
  doi: 10.1007/978-1-4684-1327-4_50
– ident: e_1_3_2_27_2
  doi: 10.1093/jnci/81.13.988
– ident: e_1_3_2_49_2
  doi: 10.1158/1535-7163.MCT-21-0228
– ident: e_1_3_2_60_2
  doi: 10.1039/C6MD00384B
– ident: e_1_3_2_2_2
  doi: 10.1038/nrc3399
– reference: 35901132 - Science. 2022 Jul 29;377(6605):467-468
– reference: 36045286 - Nat Rev Drug Discov. 2022 Oct;21(10):711
SSID ssj0009593
Score 2.6110373
Snippet Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O 6 -methylguanine methyl transferase...
Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O -methylguanine methyl transferase...
Targeting drug-resistant brain cancerA glioma is a tumor of the glial cells found in the brain and spinal cord. Glioblastoma multiforme (GBM) is the most...
Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O6-methylguanine methyl transferase...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 502
SubjectTerms Antineoplastic Agents, Alkylating - chemistry
Antineoplastic Agents, Alkylating - pharmacology
Antineoplastic Agents, Alkylating - therapeutic use
Brain
Brain cancer
Brain Neoplasms - drug therapy
Brain Neoplasms - genetics
Brain tumors
Cancer
Cell Line, Tumor
Chemotherapy
Dacarbazine - pharmacology
Dacarbazine - therapeutic use
Deoxyribonucleic acid
DNA
DNA Methylation - genetics
DNA Modification Methylases - genetics
DNA repair
DNA Repair - genetics
DNA Repair Enzymes - genetics
Drug Design
Drug development
Drug resistance
Drug Resistance, Neoplasm - genetics
Glial cells
Glioblastoma
Glioblastoma - drug therapy
Glioblastoma - genetics
Glioma
Humans
Lesions
Repair
Spinal cord
Temozolomide
Temozolomide - pharmacology
Temozolomide - therapeutic use
Tumor Suppressor Proteins - genetics
Tumors
Title Mechanism-based design of agents that selectively target drug-resistant glioma
URI https://www.ncbi.nlm.nih.gov/pubmed/35901163
https://www.proquest.com/docview/2696150884
https://www.proquest.com/docview/2696862262
https://pubmed.ncbi.nlm.nih.gov/PMC9502022
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJ9BeJjZgdAxkJB6GqkSp47jOY_fFBHRCaJP2FsWJsxV16bSkD_A38Udy_kjibkyCvURVYteJ7-fznX3-HUIfKGMw6ebCE5wzj_I493gUhV5WwA0-CrnURNrTU3ZyTj9fRBe93m8namlZCz_79ddzJY-RKtwDuapTsv8h2fZP4Qb8BvnCFSQM13-S8VSqc7uz6tpTk1E-zHU4ht7av9Qn1-or8P8rneoGtNocLE0d-D3Mb5eXHjjayngsFSvIbGH1s7VTmyEP9me7p-NIsg1OnJgQgiaiwFZzlhe-Go4ClTql6nb8Py2lmHdRQcMjv9ucUisbBqXf0_LHrJwNv_gd-Cppl2yVAh8e-u6qBdERrrZtq4ktEbKZh4zyDVTeSBKErnYObZYXA0PGgshRt1FAnJk7Mmr7_qTgpLGUfirKcWSSlTgQubnWGAn1UVyrcld5uL9ND2JoD77lCVoj4JSQPlqb7B_uHz9I8myppJxDWk3r6-hZ09SqQXTPy7kbrOtYP2fP0YZ1W_DEYHAT9WS5hZ6aRKY_t9CmFXyF9yyP-ccX6PQOPLGBJ14U2MATK3hiB57YwBOvwhMbeL5E58dHZwcnnk3f4WWUjGqPSUGjMJBBSGUMH51GckwYH2VUiixIcy6CArztMB2xIhYi55TmFAxUkcWSghUfvkL9clHK1wiPpFB5BkgRZ4xykaU0Ak-8UNyMjPGQD5Df9GGSWW57lWJlnmgfl7DE9n9i-3-A9toKN4bW5eGiu41QEjv2q4SwWGdS4HSA3rePQTOr7ba0lIulKQNvSRgZoG0jw7atRvgDNF6RbltAsb6vPilnV5r93YJw59E136D1bkTuon59u5RvwbKuxTsL6D_dZ9KG
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism-based+design+of+agents+that+selectively+target+drug-resistant+glioma&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Lin%2C+Kingson&rft.au=Gueble%2C+Susan+E.&rft.au=Sundaram%2C+Ranjini+K.&rft.au=Huseman%2C+Eric+D.&rft.date=2022-07-29&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=377&rft.issue=6605&rft.spage=502&rft.epage=511&rft_id=info:doi/10.1126%2Fscience.abn7570&rft_id=info%3Apmid%2F35901163&rft.externalDocID=PMC9502022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon