Mechanism-based design of agents that selectively target drug-resistant glioma
Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O 6 -methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through lo...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 377; no. 6605; pp. 502 - 511 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
29.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O
6
-methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects.
A glioma is a tumor of the glial cells found in the brain and spinal cord. Glioblastoma multiforme (GBM) is the most common type of glioma, and is a highly aggressive brain tumor in dire need of new treatment strategies. GBM is frequently treated with the chemotherapy drug temozolomide (TMZ), but resistance develops in more than half of patients. Using a medical chemistry approach, Lin
et al
. designed TMZ analogs to overcome drug resistance in GBM (see the Perspective by Reddel and Aref). These agents generate a primary DNA lesion that can be repaired by healthy cells with intact DNA repair mechanisms. However, cancer cells that lack DNA-repair machinery are not able to repair the damage and slowly evolve to harbor more toxic secondary lesions that cause selective tumor cell killing. —PNK
Bifunctional agents exploit tumor-associated DNA repair defects to selectively generate cytotoxic DNA interstrand cross-links in tumor cells. |
---|---|
AbstractList | Targeting drug-resistant brain cancerA glioma is a tumor of the glial cells found in the brain and spinal cord. Glioblastoma multiforme (GBM) is the most common type of glioma, and is a highly aggressive brain tumor in dire need of new treatment strategies. GBM is frequently treated with the chemotherapy drug temozolomide (TMZ), but resistance develops in more than half of patients. Using a medical chemistry approach, Lin et al. designed TMZ analogs to overcome drug resistance in GBM (see the Perspective by Reddel and Aref). These agents generate a primary DNA lesion that can be repaired by healthy cells with intact DNA repair mechanisms. However, cancer cells that lack DNA-repair machinery are not able to repair the damage and slowly evolve to harbor more toxic secondary lesions that cause selective tumor cell killing. —PNK Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O 6 -methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects. A glioma is a tumor of the glial cells found in the brain and spinal cord. Glioblastoma multiforme (GBM) is the most common type of glioma, and is a highly aggressive brain tumor in dire need of new treatment strategies. GBM is frequently treated with the chemotherapy drug temozolomide (TMZ), but resistance develops in more than half of patients. Using a medical chemistry approach, Lin et al . designed TMZ analogs to overcome drug resistance in GBM (see the Perspective by Reddel and Aref). These agents generate a primary DNA lesion that can be repaired by healthy cells with intact DNA repair mechanisms. However, cancer cells that lack DNA-repair machinery are not able to repair the damage and slowly evolve to harbor more toxic secondary lesions that cause selective tumor cell killing. —PNK Bifunctional agents exploit tumor-associated DNA repair defects to selectively generate cytotoxic DNA interstrand cross-links in tumor cells. Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O 6 -methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects. Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O -methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects. Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O6-methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects.Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O6-methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects. |
Author | Sundaram, Ranjini K. Gueble, Susan E. Huseman, Eric D. Herzon, Seth B. Bindra, Ranjit S. Lin, Kingson |
AuthorAffiliation | 1 Department of Chemistry, Yale University, New Haven, CT 06520, USA 4 Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA 2 Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA 3 Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA |
AuthorAffiliation_xml | – name: 1 Department of Chemistry, Yale University, New Haven, CT 06520, USA – name: 3 Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA – name: 4 Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA – name: 2 Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA |
Author_xml | – sequence: 1 givenname: Kingson orcidid: 0000-0002-5460-4008 surname: Lin fullname: Lin, Kingson organization: Department of Chemistry, Yale University, New Haven, CT 06520, USA., Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA., Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA – sequence: 2 givenname: Susan E. orcidid: 0000-0002-8043-1147 surname: Gueble fullname: Gueble, Susan E. organization: Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA – sequence: 3 givenname: Ranjini K. orcidid: 0000-0002-5725-0284 surname: Sundaram fullname: Sundaram, Ranjini K. organization: Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA – sequence: 4 givenname: Eric D. orcidid: 0000-0002-7550-1593 surname: Huseman fullname: Huseman, Eric D. organization: Department of Chemistry, Yale University, New Haven, CT 06520, USA – sequence: 5 givenname: Ranjit S. orcidid: 0000-0002-3255-0467 surname: Bindra fullname: Bindra, Ranjit S. organization: Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA., Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA – sequence: 6 givenname: Seth B. orcidid: 0000-0001-5940-9853 surname: Herzon fullname: Herzon, Seth B. organization: Department of Chemistry, Yale University, New Haven, CT 06520, USA., Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35901163$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v1DAQxS1URLeFMzcUiQuXtOPPjS9IqIKCVOACZ8txJllXiV1sp1L_e7ztUkElTnOY33t6M--EHIUYkJDXFM4oZeo8O4_B4Zntw1Zu4RnZUNCy1Qz4EdkAcNV2sJXH5CTna4C60_wFOeZSA6WKb8i3r-h2Nvi8tL3NODQDZj-FJo6NnTCU3JSdLU3GGV3xtzjfNcWmCUszpHVqU6VzsaE00-zjYl-S56OdM746zFPy89PHHxef26vvl18uPly1TjBaWoW9kBwQuEBdg1uJW6Y66gT2DuzQ9TBqrbilatR9P3RCDKKjuncaheCSn5L3D743a7_g4GrSZGdzk_xi052J1pt_N8HvzBRvjZbAgLFq8O5gkOKvFXMxi88O59kGjGs2TGnVKcbUHn37BL2Oawr1vHuKSug6Uak3fyd6jPLn1RU4fwBcijknHB8RCmZfpjmUaQ5lVoV8onC-2OLj_iQ__1f3G4wAp8U |
CitedBy_id | crossref_primary_10_1002_cbic_202400848 crossref_primary_10_1038_s41419_024_06902_4 crossref_primary_10_1021_acs_chemrestox_4c00076 crossref_primary_10_31083_j_fbl2809197 crossref_primary_10_1007_s12031_023_02115_0 crossref_primary_10_1021_acsami_4c09394 crossref_primary_10_1038_s41392_022_01260_z crossref_primary_10_1093_neuonc_noaf001 crossref_primary_10_1021_acs_jmedchem_3c00223 crossref_primary_10_1093_nar_gkad1257 crossref_primary_10_3390_cancers15194775 crossref_primary_10_1016_j_drup_2024_101122 crossref_primary_10_1002_advs_202308124 crossref_primary_10_1007_s00401_024_02761_7 crossref_primary_10_1039_D3BM01139A crossref_primary_10_3389_fimmu_2024_1362543 crossref_primary_10_3389_fphar_2023_1211719 crossref_primary_10_1016_j_heliyon_2024_e39984 crossref_primary_10_1016_j_ejmech_2023_115507 crossref_primary_10_20517_cdr_2023_82 crossref_primary_10_1016_j_phymed_2023_154933 crossref_primary_10_1038_s44321_024_00091_5 crossref_primary_10_1002_cpz1_70097 crossref_primary_10_1093_neuonc_noad159 crossref_primary_10_1038_d41573_022_00146_7 crossref_primary_10_1021_acs_jmedchem_3c02476 crossref_primary_10_1016_j_phymed_2024_155714 crossref_primary_10_3390_cancers14246199 crossref_primary_10_1158_1078_0432_CCR_23_0673 crossref_primary_10_3390_biomedicines10092174 crossref_primary_10_1186_s12951_023_01801_w crossref_primary_10_1016_j_cej_2023_147703 crossref_primary_10_1016_j_ccr_2023_215406 crossref_primary_10_1055_s_0041_1738594 crossref_primary_10_1016_j_critrevonc_2024_104532 crossref_primary_10_1016_j_dnarep_2024_103702 crossref_primary_10_3390_cancers16020331 crossref_primary_10_3390_ijms25052743 crossref_primary_10_1038_s41467_023_37872_4 crossref_primary_10_1038_s41598_024_68902_w crossref_primary_10_1093_noajnl_vdae105 crossref_primary_10_1016_j_biomaterials_2024_122708 crossref_primary_10_1093_neuonc_noae257 crossref_primary_10_1021_jacs_3c06483 crossref_primary_10_1038_s41467_024_53280_8 crossref_primary_10_1002_cbic_202400935 crossref_primary_10_1007_s42242_024_00317_y crossref_primary_10_1126_science_add4839 crossref_primary_10_1007_s11060_023_04397_1 crossref_primary_10_3390_diagnostics15030251 crossref_primary_10_1016_j_canlet_2024_216812 crossref_primary_10_1016_j_ejmech_2024_117171 crossref_primary_10_1039_D4QM00833B crossref_primary_10_1093_neuonc_noae072 crossref_primary_10_3389_fphar_2024_1485067 crossref_primary_10_1097_PAI_0000000000001201 crossref_primary_10_1039_D3CB00076A crossref_primary_10_1111_cbdd_14309 crossref_primary_10_1158_1535_7163_MCT_24_0012 crossref_primary_10_3390_diagnostics14222569 crossref_primary_10_1080_20415990_2025_2463312 |
Cites_doi | 10.1101/gad.455407 10.1038/cr.2007.115 10.1038/s41598-022-09614-x 10.1021/jo00408a041 10.1158/0008-5472.CAN-18-3394 10.1186/s13014-015-0453-1 10.1021/jacs.6b00162 10.1016/j.dnarep.2015.10.003 10.1128/mBio.02393-17 10.1002/jps.2600640147 10.1002/em.21944 10.1038/leu.2011.38 10.1093/carcin/bgi298 10.1038/sj.cgt.7700120 10.1021/acschembio.8b00864 10.1021/om9503712 10.1016/j.nec.2020.12.009 10.1039/a800572i 10.1101/cshperspect.a012633 10.1038/nchembio.573 10.1002/anie.201108018 10.1016/0006-2952(83)90420-3 10.1038/s41467-019-11760-2 10.1016/0006-2952(78)90349-0 10.1016/j.dnarep.2012.09.010 10.1021/acs.biochem.9b01070 10.1016/0027-5107(96)00020-6 10.1038/nature03445 10.1007/978-1-61779-421-6_9 10.1016/S1568-7864(03)00086-7 10.1371/journal.pbio.2005970 10.1093/neuonc/noab081 10.1093/nar/gkl117 10.1007/s00109-006-0153-2 10.1158/0008-5472.CAN-09-1178 10.1038/s41467-021-23463-8 10.1016/S0006-291X(87)80249-8 10.1158/0008-5472.CAN-16-2983 10.1038/s41571-021-00532-x 10.1021/acsmedchemlett.9b00235 10.1039/p19870000665 10.1021/ol302791x 10.7554/eLife.43333 10.1139/v81-198 10.1371/journal.pone.0063583 10.1038/nature03443 10.1158/0008-5472.CAN-12-2753 10.1038/nm.4292 10.1006/abbi.1993.1027 10.1001/jamaoncol.2018.1977 10.1016/j.jfluchem.2011.10.008 10.1038/s41586-020-2209-9 10.1074/jbc.M313910200 10.1093/carcin/6.7.1027 10.1667/RR14746.1 10.3389/fonc.2012.00186 10.1021/tx200031q 10.1186/1476-4598-9-259 10.1056/NEJMoa043331 10.1007/978-1-4684-1327-4_50 10.1093/jnci/81.13.988 10.1158/1535-7163.MCT-21-0228 10.1039/C6MD00384B 10.1038/nrc3399 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.abn7570 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 511 |
ExternalDocumentID | PMC9502022 35901163 10_1126_science_abn7570 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: F30 CA254158 – fundername: NIGMS NIH HHS grantid: R35 GM131913 – fundername: NCI NIH HHS grantid: U19 CA264362 – fundername: NCI NIH HHS grantid: R01 CA215453 – fundername: NCI NIH HHS grantid: P30 CA016359 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NIGMS NIH HHS grantid: T32 GM007205 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 AEUPB CGR CUY CVF ECM EIF ESX GX1 IGG NPM OK1 PKN UIG VQA YCJ YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c421t-6eb4530e034e9757a5e72681c4ebc0ad8b0f9963a16f9bbd844d4819bc9e44353 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 13:57:30 EDT 2025 Fri Jul 11 15:51:55 EDT 2025 Sat Aug 23 13:25:30 EDT 2025 Wed Feb 19 02:24:41 EST 2025 Tue Jul 01 02:24:12 EDT 2025 Thu Apr 24 22:52:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6605 |
Language | English |
License | Permissions https://www.science.org/help/reprints-and-permissions |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c421t-6eb4530e034e9757a5e72681c4ebc0ad8b0f9963a16f9bbd844d4819bc9e44353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. Author contributions: S.B.H. and R.S.B. conceived and codirected the study. K.L., S.E.G., R.K.S., and E.D.H. carried out the experiments. All authors contributed to the design and analysis of the experiments and writing of the manuscript. |
ORCID | 0000-0002-5460-4008 0000-0002-7550-1593 0000-0002-3255-0467 0000-0001-5940-9853 0000-0002-5725-0284 0000-0002-8043-1147 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9502022 |
PMID | 35901163 |
PQID | 2696150884 |
PQPubID | 1256 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9502022 proquest_miscellaneous_2696862262 proquest_journals_2696150884 pubmed_primary_35901163 crossref_primary_10_1126_science_abn7570 crossref_citationtrail_10_1126_science_abn7570 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-29 |
PublicationDateYYYYMMDD | 2022-07-29 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 Esteller M. (e_1_3_2_50_2) 1999; 59 Liu L. (e_1_3_2_29_2) 1996; 56 e_1_3_2_27_2 e_1_3_2_48_2 Koi M. (e_1_3_2_62_2) 1994; 54 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 Cahill D. P. (e_1_3_2_53_2) 2008; 55 36045286 - Nat Rev Drug Discov. 2022 Oct;21(10):711 35901132 - Science. 2022 Jul 29;377(6605):467-468 |
References_xml | – ident: e_1_3_2_42_2 doi: 10.1101/gad.455407 – ident: e_1_3_2_15_2 doi: 10.1038/cr.2007.115 – ident: e_1_3_2_31_2 doi: 10.1038/s41598-022-09614-x – ident: e_1_3_2_55_2 doi: 10.1021/jo00408a041 – ident: e_1_3_2_36_2 doi: 10.1158/0008-5472.CAN-18-3394 – ident: e_1_3_2_67_2 doi: 10.1186/s13014-015-0453-1 – ident: e_1_3_2_66_2 doi: 10.1021/jacs.6b00162 – ident: e_1_3_2_13_2 doi: 10.1016/j.dnarep.2015.10.003 – ident: e_1_3_2_34_2 doi: 10.1128/mBio.02393-17 – ident: e_1_3_2_61_2 doi: 10.1002/jps.2600640147 – ident: e_1_3_2_37_2 doi: 10.1002/em.21944 – ident: e_1_3_2_12_2 doi: 10.1038/leu.2011.38 – ident: e_1_3_2_38_2 doi: 10.1093/carcin/bgi298 – ident: e_1_3_2_28_2 doi: 10.1038/sj.cgt.7700120 – ident: e_1_3_2_54_2 doi: 10.1021/acschembio.8b00864 – ident: e_1_3_2_56_2 doi: 10.1021/om9503712 – ident: e_1_3_2_43_2 doi: 10.1016/j.nec.2020.12.009 – volume: 56 start-page: 5375 year: 1996 ident: e_1_3_2_29_2 article-title: Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl)nitrosourea publication-title: Cancer Res. – ident: e_1_3_2_26_2 doi: 10.1039/a800572i – ident: e_1_3_2_30_2 doi: 10.1101/cshperspect.a012633 – ident: e_1_3_2_6_2 doi: 10.1038/nchembio.573 – ident: e_1_3_2_21_2 doi: 10.1002/anie.201108018 – ident: e_1_3_2_20_2 doi: 10.1016/0006-2952(83)90420-3 – ident: e_1_3_2_40_2 doi: 10.1038/s41467-019-11760-2 – ident: e_1_3_2_46_2 doi: 10.1016/0006-2952(78)90349-0 – ident: e_1_3_2_39_2 doi: 10.1016/j.dnarep.2012.09.010 – ident: e_1_3_2_35_2 doi: 10.1021/acs.biochem.9b01070 – volume: 54 start-page: 4308 year: 1994 ident: e_1_3_2_62_2 article-title: Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N′-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation publication-title: Cancer Res. – ident: e_1_3_2_48_2 doi: 10.1016/0027-5107(96)00020-6 – ident: e_1_3_2_4_2 doi: 10.1038/nature03445 – ident: e_1_3_2_65_2 doi: 10.1007/978-1-61779-421-6_9 – ident: e_1_3_2_32_2 doi: 10.1016/S1568-7864(03)00086-7 – ident: e_1_3_2_64_2 doi: 10.1371/journal.pbio.2005970 – ident: e_1_3_2_19_2 doi: 10.1093/neuonc/noab081 – ident: e_1_3_2_23_2 doi: 10.1093/nar/gkl117 – ident: e_1_3_2_41_2 doi: 10.1007/s00109-006-0153-2 – ident: e_1_3_2_63_2 doi: 10.1158/0008-5472.CAN-09-1178 – ident: e_1_3_2_5_2 doi: 10.1038/s41467-021-23463-8 – ident: e_1_3_2_45_2 doi: 10.1016/S0006-291X(87)80249-8 – ident: e_1_3_2_51_2 doi: 10.1158/0008-5472.CAN-16-2983 – ident: e_1_3_2_9_2 doi: 10.1038/s41571-021-00532-x – ident: e_1_3_2_44_2 doi: 10.1021/acsmedchemlett.9b00235 – ident: e_1_3_2_58_2 doi: 10.1039/p19870000665 – ident: e_1_3_2_57_2 doi: 10.1021/ol302791x – ident: e_1_3_2_7_2 doi: 10.7554/eLife.43333 – volume: 59 start-page: 793 year: 1999 ident: e_1_3_2_50_2 article-title: Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia publication-title: Cancer Res. – ident: e_1_3_2_59_2 doi: 10.1139/v81-198 – ident: e_1_3_2_69_2 doi: 10.1371/journal.pone.0063583 – ident: e_1_3_2_3_2 doi: 10.1038/nature03443 – ident: e_1_3_2_8_2 doi: 10.1158/0008-5472.CAN-12-2753 – ident: e_1_3_2_52_2 doi: 10.1038/nm.4292 – ident: e_1_3_2_22_2 doi: 10.1006/abbi.1993.1027 – ident: e_1_3_2_14_2 doi: 10.1001/jamaoncol.2018.1977 – ident: e_1_3_2_25_2 doi: 10.1016/j.jfluchem.2011.10.008 – ident: e_1_3_2_18_2 doi: 10.1038/s41586-020-2209-9 – ident: e_1_3_2_11_2 doi: 10.1074/jbc.M313910200 – ident: e_1_3_2_47_2 doi: 10.1093/carcin/6.7.1027 – ident: e_1_3_2_68_2 doi: 10.1667/RR14746.1 – ident: e_1_3_2_17_2 doi: 10.3389/fonc.2012.00186 – ident: e_1_3_2_24_2 doi: 10.1021/tx200031q – ident: e_1_3_2_10_2 doi: 10.1186/1476-4598-9-259 – volume: 55 start-page: 165 year: 2008 ident: e_1_3_2_53_2 article-title: MSH6 inactivation and emergent temozolomide resistance in human glioblastomas publication-title: Clin. Neurosurg. – ident: e_1_3_2_16_2 doi: 10.1056/NEJMoa043331 – ident: e_1_3_2_33_2 doi: 10.1007/978-1-4684-1327-4_50 – ident: e_1_3_2_27_2 doi: 10.1093/jnci/81.13.988 – ident: e_1_3_2_49_2 doi: 10.1158/1535-7163.MCT-21-0228 – ident: e_1_3_2_60_2 doi: 10.1039/C6MD00384B – ident: e_1_3_2_2_2 doi: 10.1038/nrc3399 – reference: 35901132 - Science. 2022 Jul 29;377(6605):467-468 – reference: 36045286 - Nat Rev Drug Discov. 2022 Oct;21(10):711 |
SSID | ssj0009593 |
Score | 2.6110373 |
Snippet | Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O
6
-methylguanine methyl transferase... Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O -methylguanine methyl transferase... Targeting drug-resistant brain cancerA glioma is a tumor of the glial cells found in the brain and spinal cord. Glioblastoma multiforme (GBM) is the most... Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O6-methylguanine methyl transferase... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 502 |
SubjectTerms | Antineoplastic Agents, Alkylating - chemistry Antineoplastic Agents, Alkylating - pharmacology Antineoplastic Agents, Alkylating - therapeutic use Brain Brain cancer Brain Neoplasms - drug therapy Brain Neoplasms - genetics Brain tumors Cancer Cell Line, Tumor Chemotherapy Dacarbazine - pharmacology Dacarbazine - therapeutic use Deoxyribonucleic acid DNA DNA Methylation - genetics DNA Modification Methylases - genetics DNA repair DNA Repair - genetics DNA Repair Enzymes - genetics Drug Design Drug development Drug resistance Drug Resistance, Neoplasm - genetics Glial cells Glioblastoma Glioblastoma - drug therapy Glioblastoma - genetics Glioma Humans Lesions Repair Spinal cord Temozolomide Temozolomide - pharmacology Temozolomide - therapeutic use Tumor Suppressor Proteins - genetics Tumors |
Title | Mechanism-based design of agents that selectively target drug-resistant glioma |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35901163 https://www.proquest.com/docview/2696150884 https://www.proquest.com/docview/2696862262 https://pubmed.ncbi.nlm.nih.gov/PMC9502022 |
Volume | 377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJ9BeJjZgdAxkJB6GqkSp47jOY_fFBHRCaJP2FsWJsxV16bSkD_A38Udy_kjibkyCvURVYteJ7-fznX3-HUIfKGMw6ebCE5wzj_I493gUhV5WwA0-CrnURNrTU3ZyTj9fRBe93m8namlZCz_79ddzJY-RKtwDuapTsv8h2fZP4Qb8BvnCFSQM13-S8VSqc7uz6tpTk1E-zHU4ht7av9Qn1-or8P8rneoGtNocLE0d-D3Mb5eXHjjayngsFSvIbGH1s7VTmyEP9me7p-NIsg1OnJgQgiaiwFZzlhe-Go4ClTql6nb8Py2lmHdRQcMjv9ucUisbBqXf0_LHrJwNv_gd-Cppl2yVAh8e-u6qBdERrrZtq4ktEbKZh4zyDVTeSBKErnYObZYXA0PGgshRt1FAnJk7Mmr7_qTgpLGUfirKcWSSlTgQubnWGAn1UVyrcld5uL9ND2JoD77lCVoj4JSQPlqb7B_uHz9I8myppJxDWk3r6-hZ09SqQXTPy7kbrOtYP2fP0YZ1W_DEYHAT9WS5hZ6aRKY_t9CmFXyF9yyP-ccX6PQOPLGBJ14U2MATK3hiB57YwBOvwhMbeL5E58dHZwcnnk3f4WWUjGqPSUGjMJBBSGUMH51GckwYH2VUiixIcy6CArztMB2xIhYi55TmFAxUkcWSghUfvkL9clHK1wiPpFB5BkgRZ4xykaU0Ak-8UNyMjPGQD5Df9GGSWW57lWJlnmgfl7DE9n9i-3-A9toKN4bW5eGiu41QEjv2q4SwWGdS4HSA3rePQTOr7ba0lIulKQNvSRgZoG0jw7atRvgDNF6RbltAsb6vPilnV5r93YJw59E136D1bkTuon59u5RvwbKuxTsL6D_dZ9KG |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism-based+design+of+agents+that+selectively+target+drug-resistant+glioma&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Lin%2C+Kingson&rft.au=Gueble%2C+Susan+E.&rft.au=Sundaram%2C+Ranjini+K.&rft.au=Huseman%2C+Eric+D.&rft.date=2022-07-29&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=377&rft.issue=6605&rft.spage=502&rft.epage=511&rft_id=info:doi/10.1126%2Fscience.abn7570&rft_id=info%3Apmid%2F35901163&rft.externalDocID=PMC9502022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |