Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions

The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculati...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 148; no. 24; pp. 241725 - 241735
Main Authors Nguyen, Thuong T., Székely, Eszter, Imbalzano, Giulio, Behler, Jörg, Csányi, Gábor, Ceriotti, Michele, Götz, Andreas W., Paesani, Francesco
Format Journal Article
LanguageEnglish
Published United States 28.06.2018
Online AccessGet full text

Cover

Loading…
Abstract The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.
AbstractList The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.
The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.
Author Ceriotti, Michele
Paesani, Francesco
Imbalzano, Giulio
Csányi, Gábor
Nguyen, Thuong T.
Székely, Eszter
Götz, Andreas W.
Behler, Jörg
Author_xml – sequence: 1
  givenname: Thuong T.
  surname: Nguyen
  fullname: Nguyen, Thuong T.
  organization: 5Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstr. 6, 37077 Göttingen, Germany
– sequence: 2
  givenname: Eszter
  surname: Székely
  fullname: Székely, Eszter
  organization: Engineering Department, University of Cambridge
– sequence: 3
  givenname: Giulio
  surname: Imbalzano
  fullname: Imbalzano, Giulio
  organization: Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne
– sequence: 4
  givenname: Jörg
  surname: Behler
  fullname: Behler, Jörg
  organization: Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie
– sequence: 5
  givenname: Gábor
  surname: Csányi
  fullname: Csányi, Gábor
  organization: Engineering Department, University of Cambridge
– sequence: 6
  givenname: Michele
  surname: Ceriotti
  fullname: Ceriotti, Michele
  organization: Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne
– sequence: 7
  givenname: Andreas W.
  surname: Götz
  fullname: Götz, Andreas W.
  organization: San Diego Supercomputer Center, University of California, San Diego
– sequence: 8
  givenname: Francesco
  surname: Paesani
  fullname: Paesani, Francesco
  email: fpaesani@ucsd.edu
  organization: 5Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstr. 6, 37077 Göttingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29960316$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9u1DAQxi1URLeFAy-AfARE2nH-eXNEK1qQKnGBszV2Jm0gsYPttM0z8ZJ12N0LQlxmpG9-3yfNzBk7sc4SY68FXAioi0txUUFeVlI-YxsB2yaTdQMnbAOQi6ypoT5lZyH8AAAh8_IFO82bpBai3rDfOzdO6PvgLHcdn8iPc8TYO4vDsPDe3qch2sgnNyzWjT0O4QO3NHscUosPzv9MAtqWX-McQmI5TpN3j_34JyYZI9m4-lIa9zR5Cqtgb_kDRvJJTRXNCgce77ybb-_4iHbJtGsXTo8T2rAOX7LnXYqhV4d-zr5fffq2-5zdfL3-svt4k5kyFzGrtzlViFTUxVY2BrQ0ett1oI0RUmpBRpu2aAuASpda1AZaDQZLg3Ury4KKc_Z2n5vW-DVTiGrsg6FhQEtuDipPN5d5BU2V0DcHdNYjtWryaW2_qOOBE3C5B4x3IXjqlOn3940e-0EJUOsLlVCHFybHu78cx9B_se_3bDim_gd-AkiarwQ
CODEN JCPSA6
CitedBy_id crossref_primary_10_1063_5_0031215
crossref_primary_10_1021_acs_jctc_2c00731
crossref_primary_10_1021_acsenergylett_1c00194
crossref_primary_10_1021_acs_est_1c05970
crossref_primary_10_1063_5_0080506
crossref_primary_10_1063_1_5114618
crossref_primary_10_1063_5_0197105
crossref_primary_10_1021_acs_jpca_9b08723
crossref_primary_10_1038_s41570_019_0080_8
crossref_primary_10_1021_acs_jctc_9b00884
crossref_primary_10_1021_acs_jpcb_0c01218
crossref_primary_10_1063_5_0089200
crossref_primary_10_1021_acs_chemrev_0c00665
crossref_primary_10_1063_5_0041022
crossref_primary_10_1016_j_commatsci_2021_110481
crossref_primary_10_1021_acs_jpca_1c03709
crossref_primary_10_1063_5_0055779
crossref_primary_10_1016_j_coche_2019_04_003
crossref_primary_10_1021_acs_jctc_1c00595
crossref_primary_10_1021_acs_jpca_1c09786
crossref_primary_10_1063_5_0026133
crossref_primary_10_1021_acs_jpcc_0c05831
crossref_primary_10_1103_PhysRevMaterials_5_063804
crossref_primary_10_1088_1361_648X_abf6e2
crossref_primary_10_1063_5_0007473
crossref_primary_10_1021_acscentsci_8b00913
crossref_primary_10_1063_1_5078394
crossref_primary_10_1103_PhysRevB_105_165141
crossref_primary_10_1002_jcc_26004
crossref_primary_10_1088_2632_2153_aca1f8
crossref_primary_10_1021_acs_jctc_4c01333
crossref_primary_10_1063_5_0154989
crossref_primary_10_1021_acs_jpcc_2c07423
crossref_primary_10_1016_j_matdes_2022_111162
crossref_primary_10_1021_acs_jctc_1c00541
crossref_primary_10_1021_acs_chemrev_1c00021
crossref_primary_10_1021_acs_jpcb_0c04473
crossref_primary_10_1039_D0CP06135B
crossref_primary_10_1103_PhysRevB_107_174106
crossref_primary_10_1063_5_0007166
crossref_primary_10_1021_acs_jpca_0c05979
crossref_primary_10_1063_5_0139245
crossref_primary_10_1038_s41570_022_00416_3
crossref_primary_10_1002_jcc_26037
crossref_primary_10_1021_acs_jpca_4c05873
crossref_primary_10_1063_1_5086358
crossref_primary_10_1063_5_0201241
crossref_primary_10_1088_2632_2153_abc9fd
crossref_primary_10_1146_annurev_physchem_090519_051837
crossref_primary_10_1039_C8FD00085A
crossref_primary_10_1021_acs_jctc_8b00179
crossref_primary_10_1063_1674_0068_cjcp2201005
crossref_primary_10_1021_acs_jctc_1c01241
crossref_primary_10_1021_acs_jctc_8b00298
crossref_primary_10_1021_acs_jctc_4c00858
crossref_primary_10_1063_5_0015872
crossref_primary_10_1063_1_5100141
crossref_primary_10_1021_acs_jctc_2c00645
crossref_primary_10_1088_2632_2153_abd51e
crossref_primary_10_1063_5_0002162
crossref_primary_10_1080_01621459_2019_1654876
crossref_primary_10_1021_acs_jctc_1c00813
crossref_primary_10_1063_5_0024210
crossref_primary_10_1021_acs_jpca_9b04087
crossref_primary_10_1039_D3DD00011G
crossref_primary_10_1016_j_jcp_2022_110946
crossref_primary_10_1016_j_cpc_2019_106949
crossref_primary_10_1021_acs_jpclett_9b03664
crossref_primary_10_1063_1_5114652
crossref_primary_10_1021_acs_jctc_0c00837
crossref_primary_10_1021_acsphyschemau_4c00004
crossref_primary_10_1088_2515_7655_abc96f
crossref_primary_10_1039_C9FD00030E
crossref_primary_10_1063_1_5123999
crossref_primary_10_1103_PhysRevB_110_064101
crossref_primary_10_1063_5_0101280
crossref_primary_10_1021_acs_jctc_9b01241
crossref_primary_10_1039_D4CP02989E
crossref_primary_10_1557_mrc_2019_80
crossref_primary_10_1021_acsomega_9b02968
crossref_primary_10_1063_5_0079314
crossref_primary_10_1103_PhysRevMaterials_4_045602
crossref_primary_10_1021_acs_jctc_8b00636
crossref_primary_10_1146_annurev_physchem_062422_023532
crossref_primary_10_1021_acs_jctc_3c00344
crossref_primary_10_1039_D4SC05955G
crossref_primary_10_1016_j_coche_2019_03_005
crossref_primary_10_1126_sciadv_aav1190
crossref_primary_10_1021_acs_jctc_3c00187
crossref_primary_10_1039_D0CP04221H
crossref_primary_10_1021_acs_jpcb_8b11905
crossref_primary_10_1063_5_0044689
crossref_primary_10_1021_acs_jcim_1c01125
crossref_primary_10_1021_acs_chemrev_0c00868
crossref_primary_10_1021_acs_jctc_4c01005
crossref_primary_10_1063_5_0207567
crossref_primary_10_1021_acs_jpclett_0c00989
crossref_primary_10_1021_acs_jctc_9b01256
crossref_primary_10_1021_acs_jpca_3c07104
crossref_primary_10_1002_pssb_202000416
crossref_primary_10_1021_acs_jpca_0c04473
crossref_primary_10_1021_acs_jpca_2c00601
crossref_primary_10_1021_acs_jctc_4c00039
crossref_primary_10_1021_acs_jpcb_3c00693
crossref_primary_10_1103_PhysRevB_99_014104
crossref_primary_10_1039_C8CP05921G
crossref_primary_10_1103_RevModPhys_91_045002
crossref_primary_10_1021_acs_jctc_8b00869
crossref_primary_10_1063_1_5092794
crossref_primary_10_1088_2632_2153_ac9a9d
crossref_primary_10_1063_5_0007276
crossref_primary_10_1063_1_5088393
crossref_primary_10_1063_5_0129613
crossref_primary_10_1063_5_0021955
crossref_primary_10_1021_acs_jctc_0c00698
crossref_primary_10_1039_D0FD00028K
crossref_primary_10_1063_5_0032362
crossref_primary_10_1103_PhysRevB_107_144103
crossref_primary_10_1038_s41597_020_0473_z
crossref_primary_10_1039_D0CP05089J
crossref_primary_10_1021_acs_jctc_1c00046
crossref_primary_10_1021_acs_jpcb_3c04629
crossref_primary_10_1021_acs_jpca_3c06823
crossref_primary_10_52396_JUSTC_2024_0031
crossref_primary_10_1021_acs_jctc_2c00396
crossref_primary_10_1021_acs_jpclett_0c01061
crossref_primary_10_1039_D2CP00719C
crossref_primary_10_1002_wcms_1645
crossref_primary_10_1063_5_0176709
crossref_primary_10_1021_acs_jpcc_2c06341
crossref_primary_10_1038_s41467_021_21376_0
crossref_primary_10_1039_D2DD00057A
crossref_primary_10_1021_acs_jpca_2c02243
crossref_primary_10_1063_5_0063534
crossref_primary_10_1002_qua_27389
crossref_primary_10_1063_1_5091842
crossref_primary_10_1063_5_0027643
crossref_primary_10_1021_acs_jctc_4c00660
crossref_primary_10_1088_2515_7639_ab084b
crossref_primary_10_1088_1367_2630_ac3261
crossref_primary_10_1063_5_0128780
crossref_primary_10_1007_s00214_021_02773_6
crossref_primary_10_1039_D1CP01544C
crossref_primary_10_1063_5_0072004
crossref_primary_10_1021_acs_jctc_1c00069
crossref_primary_10_1063_1_5043213
Cites_doi 10.1021/j100296a048
10.1021/ct300913g
10.1063/1.1423940
10.1002/qua.24927
10.1063/1.2386157
10.1039/c6cp00415f
10.1021/acs.accounts.6b00285
10.1063/1.432402
10.1063/1.473987
10.1137/0206041
10.1021/j100308a038
10.1063/1.1447904
10.1002/qua.560360845
10.1063/1.1423942
10.1103/physrevb.88.054104
10.1039/c7sc04665k
10.1021/jp2069489
10.1021/jp8001614
10.1080/01442350903234923
10.1021/jp027815+
10.1063/1.2817618
10.1021/jp403802c
10.1021/acs.jpclett.6b00729
10.1103/physrevlett.98.146401
10.1063/1.1676585
10.1063/1.473820
10.1021/jp8105919
10.1063/1.3664730
10.1021/acs.jpclett.7b01106
10.1021/acs.chemrev.5b00644
10.1021/ct5004115
10.1039/df9572400133
10.1016/0009-2614(69)80119-3
10.1002/jcc.540160413
10.1063/1.445869
10.1063/1.4967719
10.1103/physrevb.87.184115
10.1063/1.436773
10.1063/1.3553717
10.1063/1.4930194
10.1126/science.aae0012
10.1063/1.1423941
10.1063/1.1683075
10.1021/jacs.7b03143
10.1002/qua.24890
10.1103/physreva.33.2679
10.1016/s0009-2614(00)00592-3
10.1016/0009-2614(87)80416-5
10.1021/jacs.6b00893
10.1103/physrevlett.104.136403
10.1126/sciadv.1701816
10.1021/cr068037a
10.1073/pnas.1602375113
10.1021/ct500079y
10.1016/j.fluid.2015.07.040
10.1063/1.3554905
10.1186/s13321-017-0192-4
10.1126/science.1136371
10.1021/ct400863t
10.1126/science.aad8625
10.1021/jz3017733
10.1063/1.4973380
10.1016/s0167-7322(02)00094-6
10.1063/1.5003074
10.1063/1.2136877
10.1073/pnas.0803205106
10.1021/j100383a037
10.1063/1.2831537
10.1063/1.2895750
10.1021/acs.jpcb.6b02366
10.1063/1.1731425
10.1002/anie.201703114
10.1063/1.2837299
10.1063/1.449246
10.1063/1.1699114
10.1063/1.1743822
10.1063/1.1730376
10.1021/jp208946p
10.1021/ct501131j
10.1021/ct3010563
10.1039/c1cp22168j
10.1021/acs.jctc.6b01248
10.1063/1.481505
10.1063/1.3167790
10.1021/ct9004917
10.1073/pnas.1108486108
ContentType Journal Article
Copyright Author(s)
Copyright_xml – notice: Author(s)
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1063/1.5024577
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 29960316
10_1063_1_5024577
jcp
Genre Journal Article
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: 677013-HBMAP
  funderid: http://dx.doi.org/10.13039/100010663
– fundername: National Science Foundation
  grantid: ACI-1548562; ACI-1642336
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Deutsche Forschungsgemeinschaft
  grantid: Be3264/11-2
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
7X8
ID FETCH-LOGICAL-c421t-682e5aae363879c0b7cb8ff0bcc177b1ecbcd3d3005b4b16c0db0ca4ca6d743e3
ISSN 0021-9606
1089-7690
IngestDate Thu Jul 10 23:21:17 EDT 2025
Wed Feb 19 02:43:08 EST 2025
Tue Jul 01 00:27:15 EDT 2025
Thu Apr 24 23:00:43 EDT 2025
Fri Jun 21 00:14:57 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License 0021-9606/2018/148(24)/241725/11/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-682e5aae363879c0b7cb8ff0bcc177b1ecbcd3d3005b4b16c0db0ca4ca6d743e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1220-1542
0000-0003-2571-2832
0000-0002-4451-1203
0000000212201542
0000000325712832
0000000244511203
OpenAccessLink http://infoscience.epfl.ch/record/272592
PMID 29960316
PQID 2063725095
PQPubID 23479
PageCount 11
ParticipantIDs scitation_primary_10_1063_1_5024577
pubmed_primary_29960316
crossref_citationtrail_10_1063_1_5024577
proquest_miscellaneous_2063725095
crossref_primary_10_1063_1_5024577
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-28
PublicationDateYYYYMMDD 2018-06-28
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2018
References Ball (c5) 2008; 108
Lyubartsev, Laaksonen (c29) 2000; 325
Richardson, Pérez, Lobsiger, Reid, Temelso, Shields, Kisiel, Wales, Pate, Althorpe (c54) 2016; 351
De, Musil, Ingram, Baldauf, Ceriotti (c88) 2017; 9
Wood, Parker (c2) 1957; 27
Bartók, Gillan, Manby, Csányi (c43) 2013; 88
Dang, Pettitt (c16) 1987; 91
Lie, Clementi (c28) 1986; 33
Moberg, Straight, Knight, Paesani (c64) 2017; 8
Dang, Chang (c34) 1997; 106
Guillot (c6) 2002; 101
Rahman, Stillinger (c11) 1971; 55
Burnham, Xantheas (c35) 2002; 116
Jorgensen, Chandrasekhar, Madura, Impey, Klein (c14) 1983; 79
Góra, Podeszwa, Cencek, Szalewicz (c74) 2011; 135
Cheng, Behler, Ceriotti (c59) 2016; 7
Wu, Tepper, Voth (c20) 2006; 124
Xie, Bowman (c68) 2010; 6
Niesar, Corongiu, Huang, Dupuis, Clementi (c31) 1989; 36
Paesani (c53) 2016; 49
Stillinger, David (c33) 1978; 69
Bukowski, Szalewicz, Groenenboom, van der Avoird (c47) 2007; 315
Wang, Head-Gordon, Ponder, Ren, Chodera, Eastman, Martinez, Pande (c42) 2013; 117
Babin, Medders, Paesani (c51) 2014; 10
Burnham, Xantheas (c38) 2002; 116
Park, Lin, Paesani (c23) 2011; 116
Yao, Herr, Parkhill (c70) 2017; 146
Kamath, Vargas-Hernández, Krems, Carrington, Manzhos (c71) 2018; 148
Burnham, Anick, Mankoo, Reiter (c40) 2008; 128
Behler (c46) 2017; 56
Babin, Leforestier, Paesani (c50) 2013; 9
Lybrand, Kollman (c26) 1985; 83
Fanourgakis, Xantheas (c39) 2008; 128
De, Bartók, Csányi, Ceriotti (c85) 2016; 18
Frank, Wen (c25) 1957; 24
Bates, Tschumper (c72) 2009; 113
Burnham, Xantheas (c37) 2002; 116
Mahoney, Drineas (c87) 2009; 106
Ferguson (c17) 1995; 16
Horn, Swope, Pitera, Madura, Dick, Hura, Head-Gordon (c19) 2004; 120
Reddy, Straight, Bajaj, Huy Pham, Riera, Moberg, Morales, Knight, Götz, Paesani (c58) 2016; 145
Bartók, Csányi (c69) 2015; 115
Musil, De, Yang, Campbell, Day, Ceriotti (c92) 2018; 9
Ren, Ponder (c41) 2003; 107
Behler, Parrinello (c66) 2007; 98
Medders, Paesani (c61) 2015; 11
Pham, Reddy, Chen, Knight, Paesani (c60) 2017; 13
Adler, Knizia, Werner (c75) 2007; 127
Bartók, Payne, Kondor, Csányi (c82) 2010; 104
Bartok, De, Poelking, Bernstein, Kermode, Csanyi, Ceriotti (c86) 2017; 3
Joung, Cheatham (c24) 2008; 112
Berendsen, Grigera, Straatsma (c15) 1987; 91
Wang, Huang, Shepler, Braams, Bowman (c48) 2011; 134
Peterson, Adler, Werner (c76) 2008; 128
Matsuoka, Clementi, Yoshimine (c27) 1976; 64
Xantheas, Burnham, Harrison (c36) 2002; 116
Cole, Farrell, Wales, Saykally (c55) 2016; 352
Medders, Babin, Paesani (c57) 2013; 9
Rosenkrantz, Stearns, Lewis (c89) 1977; 6
Barker, Watts (c10) 1969; 3
Honda, Kitaura (c30) 1987; 140
Vega, Abascal (c7) 2011; 13
Shvab, Sadus (c8) 2016; 407
Brown, Götz, Cheng, Steele, Mandelshtam, Paesani (c56) 2017; 139
Partridge, Schwenke (c65) 1997; 106
Straight, Paesani (c62) 2016; 120
Paesani, Zhang, Case, Cheatham, Voth (c21) 2006; 125
Habershon, Markland, Manolopoulos (c22) 2009; 131
Niesar, Corongiu, Clementi, Kneller, Bhattacharya (c32) 1990; 94
Bartók, Kondor, Csányi (c83) 2013; 87
Alder, Wainwright (c4) 1960; 33
Medders, Götz, Morales, Paesani (c93) 2015; 143
Medders, Babin, Paesani (c52) 2014; 10
Behler (c78) 2011; 134
Babin, Medders, Paesani (c49) 2012; 3
Mahoney, Jorgensen (c18) 2000; 112
Alder, Wainwright (c3) 1959; 31
Braams, Bowman (c45) 2009; 28
Medders, Paesani (c63) 2016; 138
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (c1) 1953; 21
Temelso, Archer, Shields (c73) 2011; 115
Cisneros, Wikfeldt, Ojamäe, Lu, Xu, Torabifard, Bartók, Csányi, Molinero, Paesani (c9) 2016; 116
Ceriotti, Tribello, Parrinello (c90) 2011; 108
Ceriotti, Tribello, Parrinello (c91) 2013; 9
Behler (c67) 2015; 115
Morawietz, Singraber, Dellago, Behler (c44) 2016; 113
(2023080301095653800_c20) 2006; 124
(2023080301095653800_c67) 2015; 115
(2023080301095653800_c81) 1990
(2023080301095653800_c14) 1983; 79
Theano Development Team (2023080301095653800_c80) 2016
(2023080301095653800_c63) 2016; 138
(2023080301095653800_c31) 1989; 36
(2023080301095653800_c90) 2011; 108
(2023080301095653800_c74) 2011; 135
(2023080301095653800_c1) 1953; 21
(2023080301095653800_c82) 2010; 104
(2023080301095653800_c89) 1977; 6
(2023080301095653800_c3) 1959; 31
(2023080301095653800_c50) 2013; 9
(2023080301095653800_c26) 1985; 83
(2023080301095653800_c28) 1986; 33
(2023080301095653800_c52) 2014; 10
(2023080301095653800_c58) 2016; 145
(2023080301095653800_c59) 2016; 7
(2023080301095653800_c64) 2017; 8
(2023080301095653800_c71) 2018; 148
(2023080301095653800_c5) 2008; 108
(2023080301095653800_c25) 1957; 24
(2023080301095653800_c45) 2009; 28
(2023080301095653800_c47) 2007; 315
(2023080301095653800_c15) 1987; 91
(2023080301095653800_c69) 2015; 115
(2023080301095653800_c85) 2016; 18
(2023080301095653800_c60) 2017; 13
(2023080301095653800_c93) 2015; 143
(2023080301095653800_c35) 2002; 116
(2023080301095653800_c24) 2008; 112
(2023080301095653800_c30) 1987; 140
(2023080301095653800_c39) 2008; 128
(2023080301095653800_c41) 2003; 107
(2023080301095653800_c17) 1995; 16
(2023080301095653800_c55) 2016; 352
(2023080301095653800_c6) 2002; 101
(2023080301095653800_c84) 2017
(2023080301095653800_c86) 2017; 3
(2023080301095653800_c43) 2013; 88
(2023080301095653800_c87) 2009; 106
(2023080301095653800_c51) 2014; 10
(2023080301095653800_c70) 2017; 146
(2023080301095653800_c44) 2016; 113
(2023080301095653800_c79) 2015
(2023080301095653800_c65) 1997; 106
(2023080301095653800_c54) 2016; 351
(2023080301095653800_c32) 1990; 94
(2023080301095653800_c27) 1976; 64
(2023080301095653800_c62) 2016; 120
(2023080301095653800_c34) 1997; 106
(2023080301095653800_c57) 2013; 9
(2023080301095653800_c19) 2004; 120
(2023080301095653800_c2) 1957; 27
(2023080301095653800_c16) 1987; 91
(2023080301095653800_c53) 2016; 49
(2023080301095653800_c77) 1963
(2023080301095653800_c75) 2007; 127
(2023080301095653800_c36) 2002; 116
(2023080301095653800_c78) 2011; 134
(2023080301095653800_c8) 2016; 407
(2023080301095653800_c12) 1940
(2023080301095653800_c10) 1969; 3
(2023080301095653800_c91) 2013; 9
(2023080301095653800_c22) 2009; 131
(2023080301095653800_c18) 2000; 112
(2023080301095653800_c42) 2013; 117
(2023080301095653800_c46) 2017; 56
(2023080301095653800_c33) 1978; 69
(2023080301095653800_c11) 1971; 55
(2023080301095653800_c48) 2011; 134
(2023080301095653800_c61) 2015; 11
(2023080301095653800_c68) 2010; 6
(2023080301095653800_c40) 2008; 128
(2023080301095653800_c92) 2018; 9
(2023080301095653800_c66) 2007; 98
(2023080301095653800_c13) 1981
(2023080301095653800_c83) 2013; 87
(2023080301095653800_c38) 2002; 116
(2023080301095653800_c73) 2011; 115
(2023080301095653800_c4) 1960; 33
(2023080301095653800_c7) 2011; 13
(2023080301095653800_c88) 2017; 9
(2023080301095653800_c29) 2000; 325
(2023080301095653800_c76) 2008; 128
(2023080301095653800_c56) 2017; 139
(2023080301095653800_c23) 2011; 116
(2023080301095653800_c72) 2009; 113
(2023080301095653800_c37) 2002; 116
(2023080301095653800_c49) 2012; 3
(2023080301095653800_c21) 2006; 125
(2023080301095653800_c9) 2016; 116
References_xml – volume: 112
  start-page: 8910
  year: 2000
  ident: c18
  publication-title: J. Chem. Phys.
– volume: 116
  start-page: 5115
  year: 2002
  ident: c38
  publication-title: J. Chem. Phys.
– volume: 139
  start-page: 7082
  year: 2017
  ident: c56
  publication-title: J. Am. Chem. Soc.
– volume: 91
  start-page: 6269
  year: 1987
  ident: c15
  publication-title: J. Phys. Chem.
– volume: 13
  start-page: 19663
  year: 2011
  ident: c7
  publication-title: Phys. Chem. Chem. Phys.
– volume: 124
  start-page: 024503
  year: 2006
  ident: c20
  publication-title: J. Chem. Phys.
– volume: 140
  start-page: 53
  year: 1987
  ident: c30
  publication-title: Chem. Phys. Lett.
– volume: 407
  start-page: 7
  year: 2016
  ident: c8
  publication-title: Fluid Phase Equilib.
– volume: 9
  start-page: 5395
  year: 2013
  ident: c50
  publication-title: J. Chem. Theory Comput.
– volume: 3
  start-page: 144
  year: 1969
  ident: c10
  publication-title: Chem. Phys. Lett.
– volume: 146
  start-page: 014106
  year: 2017
  ident: c70
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 6
  year: 2017
  ident: c88
  publication-title: J. Cheminf.
– volume: 116
  start-page: 343
  year: 2011
  ident: c23
  publication-title: J. Phys. Chem. B
– volume: 120
  start-page: 8539
  year: 2016
  ident: c62
  publication-title: J. Phys. Chem. B
– volume: 11
  start-page: 1145
  year: 2015
  ident: c61
  publication-title: J. Chem. Theory Comput.
– volume: 6
  start-page: 563
  year: 1977
  ident: c89
  publication-title: SIAM J. Comput.
– volume: 101
  start-page: 219
  year: 2002
  ident: c6
  publication-title: J. Mol. Liq.
– volume: 115
  start-page: 1051
  year: 2015
  ident: c69
  publication-title: Int. J. Quantum Chem.
– volume: 134
  start-page: 074106
  year: 2011
  ident: c78
  publication-title: J. Chem. Phys.
– volume: 351
  start-page: 1310
  year: 2016
  ident: c54
  publication-title: Science
– volume: 33
  start-page: 1439
  year: 1960
  ident: c4
  publication-title: J. Chem. Phys.
– volume: 36
  start-page: 421
  year: 1989
  ident: c31
  publication-title: Int. J. Quantum Chem.
– volume: 116
  start-page: 1493
  year: 2002
  ident: c36
  publication-title: J. Chem. Phys.
– volume: 145
  start-page: 194504
  year: 2016
  ident: c58
  publication-title: J. Chem. Phys.
– volume: 148
  start-page: 241702
  year: 2018
  ident: c71
  publication-title: J. Chem. Phys.
– volume: 108
  start-page: 13023
  year: 2011
  ident: c90
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 33
  start-page: 2679
  year: 1986
  ident: c28
  publication-title: Phys. Rev. A
– volume: 31
  start-page: 459
  year: 1959
  ident: c3
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 1599
  year: 2014
  ident: c51
  publication-title: J. Chem. Theory Comput.
– volume: 24
  start-page: 133
  year: 1957
  ident: c25
  publication-title: Discuss. Faraday Soc.
– volume: 3
  start-page: e1701816
  year: 2017
  ident: c86
  publication-title: Sci. Adv.
– volume: 143
  start-page: 104102
  year: 2015
  ident: c93
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 2906
  year: 2014
  ident: c52
  publication-title: J. Chem. Theory Comput.
– volume: 138
  start-page: 3912
  year: 2016
  ident: c63
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 1032
  year: 2015
  ident: c67
  publication-title: Int. J. Quantum Chem.
– volume: 108
  start-page: 74
  year: 2008
  ident: c5
  publication-title: Chem. Rev.
– volume: 27
  start-page: 720
  year: 1957
  ident: c2
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 2210
  year: 2016
  ident: c59
  publication-title: J. Phys. Chem. Lett.
– volume: 352
  start-page: 1194
  year: 2016
  ident: c55
  publication-title: Science
– volume: 120
  start-page: 9665
  year: 2004
  ident: c19
  publication-title: J. Chem. Phys.
– volume: 125
  start-page: 184507
  year: 2006
  ident: c21
  publication-title: J. Chem. Phys.
– volume: 56
  start-page: 12828
  year: 2017
  ident: c46
  publication-title: Angew. Chem., Int. Ed.
– volume: 315
  start-page: 1249
  year: 2007
  ident: c47
  publication-title: Science
– volume: 135
  start-page: 224102
  year: 2011
  ident: c74
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 1103
  year: 2013
  ident: c57
  publication-title: J. Chem. Theory Comput.
– volume: 116
  start-page: 1479
  year: 2002
  ident: c35
  publication-title: J. Chem. Phys.
– volume: 134
  start-page: 094509
  year: 2011
  ident: c48
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 2579
  year: 2017
  ident: c64
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 3765
  year: 2012
  ident: c49
  publication-title: J. Phys. Chem. Lett.
– volume: 115
  start-page: 12034
  year: 2011
  ident: c73
  publication-title: J. Phys. Chem. A
– volume: 117
  start-page: 9956
  year: 2013
  ident: c42
  publication-title: J. Phys. Chem. B
– volume: 325
  start-page: 15
  year: 2000
  ident: c29
  publication-title: Chem. Phys. Lett.
– volume: 106
  start-page: 8149
  year: 1997
  ident: c34
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 26
  year: 2010
  ident: c68
  publication-title: J. Chem. Theory Comput.
– volume: 113
  start-page: 3555
  year: 2009
  ident: c72
  publication-title: J. Phys. Chem. A
– volume: 131
  start-page: 024501
  year: 2009
  ident: c22
  publication-title: J. Chem. Phys.
– volume: 55
  start-page: 3336
  year: 1971
  ident: c11
  publication-title: J. Chem. Phys.
– volume: 83
  start-page: 2923
  year: 1985
  ident: c26
  publication-title: J. Chem. Phys.
– volume: 128
  start-page: 074506
  year: 2008
  ident: c39
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 1289
  year: 2018
  ident: c92
  publication-title: Chem. Sci.
– volume: 18
  start-page: 13754
  year: 2016
  ident: c85
  publication-title: Phys. Chem. Chem. Phys.
– volume: 16
  start-page: 501
  year: 1995
  ident: c17
  publication-title: J. Comput. Chem.
– volume: 98
  start-page: 146401
  year: 2007
  ident: c66
  publication-title: Phys. Rev. Lett.
– volume: 113
  start-page: 8368
  year: 2016
  ident: c44
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 13
  start-page: 1778
  year: 2017
  ident: c60
  publication-title: J. Chem. Theory Comput.
– volume: 128
  start-page: 154519
  year: 2008
  ident: c40
  publication-title: J. Chem. Phys.
– volume: 106
  start-page: 4618
  year: 1997
  ident: c65
  publication-title: J. Chem. Phys.
– volume: 116
  start-page: 7501
  year: 2016
  ident: c9
  publication-title: Chem. Rev.
– volume: 79
  start-page: 926
  year: 1983
  ident: c14
  publication-title: J. Chem. Phys.
– volume: 127
  start-page: 221106
  year: 2007
  ident: c75
  publication-title: J. Chem. Phys.
– volume: 21
  start-page: 1087
  year: 1953
  ident: c1
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 9020
  year: 2008
  ident: c24
  publication-title: J. Phys. Chem. B
– volume: 94
  start-page: 7949
  year: 1990
  ident: c32
  publication-title: J. Phys. Chem.
– volume: 87
  start-page: 184115
  year: 2013
  ident: c83
  publication-title: Phys. Rev. B
– volume: 116
  start-page: 1500
  year: 2002
  ident: c37
  publication-title: J. Chem. Phys.
– volume: 91
  start-page: 3349
  year: 1987
  ident: c16
  publication-title: J. Phys. Chem.
– volume: 69
  start-page: 1473
  year: 1978
  ident: c33
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 1521
  year: 2013
  ident: c91
  publication-title: J. Chem. Theory Comput.
– volume: 107
  start-page: 5933
  year: 2003
  ident: c41
  publication-title: J. Phys. Chem. B
– volume: 88
  start-page: 054104
  year: 2013
  ident: c43
  publication-title: Phys. Rev. B
– volume: 104
  start-page: 136403
  year: 2010
  ident: c82
  publication-title: Phys. Rev. Lett.
– volume: 49
  start-page: 1844
  year: 2016
  ident: c53
  publication-title: Acc. Chem. Res.
– volume: 128
  start-page: 084102
  year: 2008
  ident: c76
  publication-title: J. Chem. Phys.
– volume: 64
  start-page: 1351
  year: 1976
  ident: c27
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 577
  year: 2009
  ident: c45
  publication-title: Int. Rev. Phys. Chem.
– volume: 106
  start-page: 697
  year: 2009
  ident: c87
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 91
  start-page: 3349
  year: 1987
  ident: 2023080301095653800_c16
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100296a048
– volume: 9
  start-page: 1103
  year: 2013
  ident: 2023080301095653800_c57
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300913g
– volume: 116
  start-page: 1479
  year: 2002
  ident: 2023080301095653800_c35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1423940
– year: 2015
  ident: 2023080301095653800_c79
– volume: 115
  start-page: 1051
  year: 2015
  ident: 2023080301095653800_c69
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24927
– volume: 125
  start-page: 184507
  year: 2006
  ident: 2023080301095653800_c21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2386157
– volume: 18
  start-page: 13754
  year: 2016
  ident: 2023080301095653800_c85
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c6cp00415f
– volume: 49
  start-page: 1844
  year: 2016
  ident: 2023080301095653800_c53
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00285
– volume: 64
  start-page: 1351
  year: 1976
  ident: 2023080301095653800_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.432402
– volume: 106
  start-page: 4618
  year: 1997
  ident: 2023080301095653800_c65
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473987
– volume: 6
  start-page: 563
  year: 1977
  ident: 2023080301095653800_c89
  publication-title: SIAM J. Comput.
  doi: 10.1137/0206041
– volume: 91
  start-page: 6269
  year: 1987
  ident: 2023080301095653800_c15
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100308a038
– volume: 116
  start-page: 5115
  year: 2002
  ident: 2023080301095653800_c38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1447904
– volume: 36
  start-page: 421
  year: 1989
  ident: 2023080301095653800_c31
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560360845
– volume: 116
  start-page: 1500
  year: 2002
  ident: 2023080301095653800_c37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1423942
– volume: 88
  start-page: 054104
  year: 2013
  ident: 2023080301095653800_c43
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.88.054104
– volume: 9
  start-page: 1289
  year: 2018
  ident: 2023080301095653800_c92
  publication-title: Chem. Sci.
  doi: 10.1039/c7sc04665k
– volume: 115
  start-page: 12034
  year: 2011
  ident: 2023080301095653800_c73
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp2069489
– volume: 112
  start-page: 9020
  year: 2008
  ident: 2023080301095653800_c24
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp8001614
– volume: 28
  start-page: 577
  year: 2009
  ident: 2023080301095653800_c45
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/01442350903234923
– volume: 107
  start-page: 5933
  year: 2003
  ident: 2023080301095653800_c41
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp027815+
– volume: 127
  start-page: 221106
  year: 2007
  ident: 2023080301095653800_c75
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2817618
– volume: 117
  start-page: 9956
  year: 2013
  ident: 2023080301095653800_c42
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp403802c
– volume: 7
  start-page: 2210
  year: 2016
  ident: 2023080301095653800_c59
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00729
– volume: 98
  start-page: 146401
  year: 2007
  ident: 2023080301095653800_c66
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.98.146401
– volume: 55
  start-page: 3336
  year: 1971
  ident: 2023080301095653800_c11
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1676585
– volume: 106
  start-page: 8149
  year: 1997
  ident: 2023080301095653800_c34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473820
– volume: 113
  start-page: 3555
  year: 2009
  ident: 2023080301095653800_c72
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8105919
– volume: 135
  start-page: 224102
  year: 2011
  ident: 2023080301095653800_c74
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3664730
– volume: 8
  start-page: 2579
  year: 2017
  ident: 2023080301095653800_c64
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01106
– volume: 116
  start-page: 7501
  year: 2016
  ident: 2023080301095653800_c9
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00644
– volume: 10
  start-page: 2906
  year: 2014
  ident: 2023080301095653800_c52
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5004115
– volume: 24
  start-page: 133
  year: 1957
  ident: 2023080301095653800_c25
  publication-title: Discuss. Faraday Soc.
  doi: 10.1039/df9572400133
– year: 2016
  ident: 2023080301095653800_c80
– volume: 3
  start-page: 144
  year: 1969
  ident: 2023080301095653800_c10
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(69)80119-3
– volume: 16
  start-page: 501
  year: 1995
  ident: 2023080301095653800_c17
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540160413
– volume: 79
  start-page: 926
  year: 1983
  ident: 2023080301095653800_c14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 145
  start-page: 194504
  year: 2016
  ident: 2023080301095653800_c58
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4967719
– volume: 87
  start-page: 184115
  year: 2013
  ident: 2023080301095653800_c83
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.87.184115
– volume: 69
  start-page: 1473
  year: 1978
  ident: 2023080301095653800_c33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.436773
– volume: 134
  start-page: 074106
  year: 2011
  ident: 2023080301095653800_c78
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3553717
– volume: 143
  start-page: 104102
  year: 2015
  ident: 2023080301095653800_c93
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4930194
– volume: 351
  start-page: 1310
  year: 2016
  ident: 2023080301095653800_c54
  publication-title: Science
  doi: 10.1126/science.aae0012
– volume: 116
  start-page: 1493
  year: 2002
  ident: 2023080301095653800_c36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1423941
– volume: 120
  start-page: 9665
  year: 2004
  ident: 2023080301095653800_c19
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1683075
– volume: 139
  start-page: 7082
  year: 2017
  ident: 2023080301095653800_c56
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03143
– volume: 115
  start-page: 1032
  year: 2015
  ident: 2023080301095653800_c67
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24890
– volume: 33
  start-page: 2679
  year: 1986
  ident: 2023080301095653800_c28
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.33.2679
– volume: 325
  start-page: 15
  year: 2000
  ident: 2023080301095653800_c29
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/s0009-2614(00)00592-3
– volume: 140
  start-page: 53
  year: 1987
  ident: 2023080301095653800_c30
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(87)80416-5
– volume: 138
  start-page: 3912
  year: 2016
  ident: 2023080301095653800_c63
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00893
– volume: 104
  start-page: 136403
  year: 2010
  ident: 2023080301095653800_c82
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.104.136403
– volume: 3
  start-page: e1701816
  year: 2017
  ident: 2023080301095653800_c86
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701816
– volume: 108
  start-page: 74
  year: 2008
  ident: 2023080301095653800_c5
  publication-title: Chem. Rev.
  doi: 10.1021/cr068037a
– start-page: 1035
  volume-title: Soviet Mathematics Doklady
  year: 1963
  ident: 2023080301095653800_c77
– volume: 113
  start-page: 8368
  year: 2016
  ident: 2023080301095653800_c44
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1602375113
– start-page: 21
  year: 1990
  ident: 2023080301095653800_c81
– volume: 10
  start-page: 1599
  year: 2014
  ident: 2023080301095653800_c51
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500079y
– volume: 407
  start-page: 7
  year: 2016
  ident: 2023080301095653800_c8
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2015.07.040
– volume-title: Statistical Mechanics
  year: 1940
  ident: 2023080301095653800_c12
– volume: 134
  start-page: 094509
  year: 2011
  ident: 2023080301095653800_c48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3554905
– volume: 9
  start-page: 6
  year: 2017
  ident: 2023080301095653800_c88
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-017-0192-4
– volume: 315
  start-page: 1249
  year: 2007
  ident: 2023080301095653800_c47
  publication-title: Science
  doi: 10.1126/science.1136371
– volume: 9
  start-page: 5395
  year: 2013
  ident: 2023080301095653800_c50
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400863t
– volume: 352
  start-page: 1194
  year: 2016
  ident: 2023080301095653800_c55
  publication-title: Science
  doi: 10.1126/science.aad8625
– volume: 3
  start-page: 3765
  year: 2012
  ident: 2023080301095653800_c49
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3017733
– volume: 146
  start-page: 014106
  year: 2017
  ident: 2023080301095653800_c70
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4973380
– volume: 101
  start-page: 219
  year: 2002
  ident: 2023080301095653800_c6
  publication-title: J. Mol. Liq.
  doi: 10.1016/s0167-7322(02)00094-6
– volume: 148
  start-page: 241702
  year: 2018
  ident: 2023080301095653800_c71
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5003074
– volume: 124
  start-page: 024503
  year: 2006
  ident: 2023080301095653800_c20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2136877
– volume: 106
  start-page: 697
  year: 2009
  ident: 2023080301095653800_c87
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0803205106
– volume: 94
  start-page: 7949
  year: 1990
  ident: 2023080301095653800_c32
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100383a037
– volume: 128
  start-page: 084102
  year: 2008
  ident: 2023080301095653800_c76
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2831537
– volume: 128
  start-page: 154519
  year: 2008
  ident: 2023080301095653800_c40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2895750
– volume: 120
  start-page: 8539
  year: 2016
  ident: 2023080301095653800_c62
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b02366
– volume: 33
  start-page: 1439
  year: 1960
  ident: 2023080301095653800_c4
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1731425
– start-page: 331
  volume-title: Intermolecular Forces
  year: 1981
  ident: 2023080301095653800_c13
– volume: 56
  start-page: 12828
  year: 2017
  ident: 2023080301095653800_c46
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201703114
– volume: 128
  start-page: 074506
  year: 2008
  ident: 2023080301095653800_c39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2837299
– volume: 83
  start-page: 2923
  year: 1985
  ident: 2023080301095653800_c26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.449246
– volume: 21
  start-page: 1087
  year: 1953
  ident: 2023080301095653800_c1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 27
  start-page: 720
  year: 1957
  ident: 2023080301095653800_c2
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1743822
– year: 2017
  ident: 2023080301095653800_c84
– volume: 31
  start-page: 459
  year: 1959
  ident: 2023080301095653800_c3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1730376
– volume: 116
  start-page: 343
  year: 2011
  ident: 2023080301095653800_c23
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp208946p
– volume: 11
  start-page: 1145
  year: 2015
  ident: 2023080301095653800_c61
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct501131j
– volume: 9
  start-page: 1521
  year: 2013
  ident: 2023080301095653800_c91
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct3010563
– volume: 13
  start-page: 19663
  year: 2011
  ident: 2023080301095653800_c7
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp22168j
– volume: 13
  start-page: 1778
  year: 2017
  ident: 2023080301095653800_c60
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b01248
– volume: 112
  start-page: 8910
  year: 2000
  ident: 2023080301095653800_c18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481505
– volume: 131
  start-page: 024501
  year: 2009
  ident: 2023080301095653800_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3167790
– volume: 6
  start-page: 26
  year: 2010
  ident: 2023080301095653800_c68
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct9004917
– volume: 108
  start-page: 13023
  year: 2011
  ident: 2023080301095653800_c90
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1108486108
SSID ssj0001724
Score 2.6245291
Snippet The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems....
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 241725
Title Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions
URI http://dx.doi.org/10.1063/1.5024577
https://www.ncbi.nlm.nih.gov/pubmed/29960316
https://www.proquest.com/docview/2063725095
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtQwFLWGqVDhAUHZhk1meUCiKVmc7bEMpaWiFRJTqW-R7ThQmE2dBDHzS3wJf8W9ceykpZWAl2iUxYlyzjjX9r3nEPJCsCTlPlb0uLFwWJHi-m4oIZBL41QqiEkFFgofHEZ7R2z_ODzu9X51spaqUmzJ1YV1Jf-DKuwDXLFK9h-QtY3CDvgN-MIWEIbtX2E87JoIogLxpCqbyb0x1vN9h4Pw5tCJYYnlx_BA-EpRwxKQmeoM8IVJ4Nzl1aIuqax1xn-c6KJGuLjEjCKUWa5rX-a6YKmexOUosYiKE6e6PmJhfX8m0Mk4YpYv0UMAPod2WvBrS89OMCyNboGeabGB_uHnaqk7xtGXCm2RWk3JlV7j_6a0V_bOYtXJNH4_EXy84rWv-Kvdk2qs0810RZIxfN7HFt5EjcRXM_XhJZii1ZSSK91du0nqxJE2HLX9OUs6xPVZt3tmEK-FF345IFTDSYytENeitbNMh0HzSU0hH7VsAu-cdncdDZhDV8iaDyMWv0_Wtt8efPhkwwK4MzPSVlHw2t4J5aiba8_GRn8MeK6TdQiLNI86QdDoJrnRAEa3NRVvkZ6abpD1oTEN3CBXP2r8bpOfLTnprKDnyEktOWmHnJtUU5Maam5SICY1xKRniElbYkJrtEtMWhOTdolJG2JSS0zaEvMOOXq3MxruOY0ziCOZ75VOlPgq5FwF8PWALsUVsRRJUbhCSi-OhaekkHmQoxWDYMKLpJsLV3ImeZRDyKyCu6Q_nU3VfULTVIRFKHjEi4Jh5iUTAoY5KsxjBYMTOSAvDSaZefno3jLO6vSNKMi8rEFyQJ7ZU-daK-aik54aYDPABpfn-FTNqkXmw3nAThjzDMg9jbhtxjBkQJ5bClx-jweXXv-QXGv_SI9Ivzyt1GOIqkvxpOHrbzp52Ng
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+permutationally+invariant+polynomials%2C+neural+networks%2C+and+Gaussian+approximation+potentials+in+representing+water+interactions+through+many-body+expansions&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Nguyen%2C+Thuong+T&rft.au=Sz%C3%A9kely%2C+Eszter&rft.au=Imbalzano%2C+Giulio&rft.au=Behler%2C+J%C3%B6rg&rft.date=2018-06-28&rft.eissn=1089-7690&rft.volume=148&rft.issue=24&rft.spage=241725&rft_id=info:doi/10.1063%2F1.5024577&rft_id=info%3Apmid%2F29960316&rft.externalDocID=29960316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon