A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge
Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstr...
Saved in:
Published in | Theoretical and computational fluid dynamics Vol. 31; no. 1; pp. 1 - 32 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2017
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0935-4964 1432-2250 |
DOI | 10.1007/s00162-016-0393-x |
Cover
Abstract | Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstrated that, in the transitional flow regime, full-span wings with tubercled leading edges outperform unmodified wings at high attack angles. The flow mechanism associated with such enhanced loading traits is, however, still being investigated. Also, the performance of full-span tubercled wings in the turbulent regime is largely unexplored. The present study aims to investigate Reynolds number effects on the flow mechanism induced by a full-span tubercled wing with the NACA-0021 cross-sectional profile in the transitional and near-turbulent regimes using computational fluid dynamics. The analysis of the flow field suggests that, with the exception of a few different flow features, the same underlying flow mechanism, involving the presence of transverse and streamwise vorticity, is at play in both cases. With regard to lift-generation characteristics, the numerical simulation results indicate that in contrast to the transitional flow regime, where the unmodified NACA-0021 undergoes a sudden loss of lift, in the turbulent regime, the baseline foil experiences gradual stall and produces more lift than the tubercled foil. This observation highlights the importance of considerations regarding the Reynolds number effects and the stall characteristics of the baseline foil, in the industrial applications of tubercled lifting bodies. |
---|---|
AbstractList | Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstrated that, in the transitional flow regime, full-span wings with tubercled leading edges outperform unmodified wings at high attack angles. The flow mechanism associated with such enhanced loading traits is, however, still being investigated. Also, the performance of full-span tubercled wings in the turbulent regime is largely unexplored. The present study aims to investigate Reynolds number effects on the flow mechanism induced by a full-span tubercled wing with the NACA-0021 cross-sectional profile in the transitional and near-turbulent regimes using computational fluid dynamics. The analysis of the flow field suggests that, with the exception of a few different flow features, the same underlying flow mechanism, involving the presence of transverse and streamwise vorticity, is at play in both cases. With regard to lift-generation characteristics, the numerical simulation results indicate that in contrast to the transitional flow regime, where the unmodified NACA-0021 undergoes a sudden loss of lift, in the turbulent regime, the baseline foil experiences gradual stall and produces more lift than the tubercled foil. This observation highlights the importance of considerations regarding the Reynolds number effects and the stall characteristics of the baseline foil, in the industrial applications of tubercled lifting bodies. Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstrated that, in the transitional flow regime, full-span wings with tubercled leading edges outperform unmodified wings at high attack angles. The flow mechanism associated with such enhanced loading traits is, however, still being investigated. Also, the performance of full-span tubercled wings in the turbulent regime is largely unexplored. The present study aims to investigate Reynolds number effects on the flow mechanism induced by a full-span tubercled wing with the NACA-0021 cross-sectional profile in the transitional and near-turbulent regimes using computational fluid dynamics. The analysis of the flow field suggests that, with the exception of a few different flow features, the same underlying flow mechanism, involving the presence of transverse and streamwise vorticity, is at play in both cases. With regard to lift-generation characteristics, the numerical simulation results indicate that in contrast to the transitional flow regime, where the unmodified NACA-0021 undergoes a sudden loss of lift, in the turbulent regime, the baseline foil experiences gradual stall and produces more lift than the tubercled foil. This observation highlights the importance of considerations regarding the Reynolds number effects and the stall characteristics of the baseline foil, in the industrial applications of tubercled lifting bodies. Keywords Passive flow control ? Leading-edge tubercles ? Turbulent regime ? Tubercles |
Audience | Academic |
Author | Kelso, Richard M. Rostamzadeh, Nikan Dally, Bassam |
Author_xml | – sequence: 1 givenname: Nikan surname: Rostamzadeh fullname: Rostamzadeh, Nikan email: nikan4now@yahoo.com organization: School of Mechanical Engineering, The University of Adelaide – sequence: 2 givenname: Richard M. surname: Kelso fullname: Kelso, Richard M. organization: School of Mechanical Engineering, The University of Adelaide – sequence: 3 givenname: Bassam surname: Dally fullname: Dally, Bassam organization: School of Mechanical Engineering, The University of Adelaide |
BookMark | eNqNkU1rFTEUhoNU8Lb6A9wF3LiZepLMR7K8FK1CQRBdh9zkzG1KJqnJjO3992YcF1JQJJBwwvPkcPKek7OYIhLymsElAxjeFQDW86ZuDQglmsdnZMdawRvOOzgjO1Cia1rVty_IeSl3ACC6Xu7Iw57GZcLsrQnUxx9YZn80s0-xVnOi8y1SHEe0c6FppF_wFFNwZZUOmGnFVmIM6YFOaG9N9GWqplssOno4UUPnpYI21DKgcT4eKbojviTPRxMKvvp9XpBvH95_vfrY3Hy-_nS1v2lsy9nc9MCNOcAgBSgnUUAnu84xPnIh-GCHgQ2utyCcla10LZoegPeOs4NTQvJOXJC327v3OX1f6nR68sViCCZiWopmUta_kPXf_gPtpRCsG0RF3zxB79KSYx1kpTreKqHW3pcbdTQBtY9jmrOxdTmcvK35jb7e71ulQPUD41Vgm2BzKiXjqO-zn0w-aQZ6jVlvMeu66TVm_Vid4Ylj_fwrwNrMh3-afDNL7RKPmP8Y4q_STxG7vRk |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2022_111240 crossref_primary_10_1063_5_0203519 crossref_primary_10_1007_s13762_021_03784_3 crossref_primary_10_1016_j_jweia_2021_104613 crossref_primary_10_1007_s00348_025_03981_7 crossref_primary_10_1016_j_energy_2021_122186 crossref_primary_10_1017_jfm_2019_611 crossref_primary_10_3390_app13031519 crossref_primary_10_1007_s11630_023_1465_z crossref_primary_10_1177_0954406220975422 crossref_primary_10_1115_1_4044073 crossref_primary_10_1016_j_ijthermalsci_2023_108447 crossref_primary_10_1016_j_oceaneng_2022_112306 crossref_primary_10_1177_09544100211049932 crossref_primary_10_1016_j_heliyon_2024_e32148 crossref_primary_10_1615_InterJFluidMechRes_2022043017 crossref_primary_10_3390_en17215518 crossref_primary_10_1177_09544100211044316 crossref_primary_10_3390_aerospace11030194 crossref_primary_10_1007_s40722_022_00262_x crossref_primary_10_1063_1_4991596 crossref_primary_10_3390_biomimetics9020090 crossref_primary_10_1134_S0015462820040102 crossref_primary_10_1177_0954410020946903 crossref_primary_10_1051_epjconf_202226901001 crossref_primary_10_1080_19942060_2022_2119282 crossref_primary_10_1063_5_0098400 crossref_primary_10_1088_1757_899X_370_1_012015 crossref_primary_10_1016_j_heliyon_2025_e41661 crossref_primary_10_1016_j_oceaneng_2022_113153 crossref_primary_10_1016_j_ast_2022_107529 crossref_primary_10_1016_j_renene_2022_09_123 crossref_primary_10_1016_j_oceaneng_2025_120748 crossref_primary_10_1063_1_5082840 crossref_primary_10_1016_j_oceaneng_2020_108209 crossref_primary_10_1063_5_0239789 crossref_primary_10_2339_politeknik_391800 crossref_primary_10_1016_j_oceaneng_2021_109731 crossref_primary_10_1007_s11433_018_9331_y crossref_primary_10_1080_15435075_2022_2050376 crossref_primary_10_1038_s44172_023_00077_0 crossref_primary_10_1134_S0021894421030184 crossref_primary_10_1016_j_ijthermalsci_2022_107782 crossref_primary_10_1088_1748_3190_aae6fc crossref_primary_10_2514_1_J058010 |
Cites_doi | 10.1103/PhysRevLett.100.054502 10.2514/1.C031675 10.1093/icb/icn029 10.1063/1.4896748 10.1063/1.4828703 10.1016/j.ijheatfluidflow.2014.12.001 10.1016/j.crme.2011.11.004 10.2172/534484 10.1007/s10494-010-9265-4 10.2514/1.42362 10.2514/1.28497 10.1007/s00162-010-0193-7 10.2514/1.C031163 10.1063/1.1688341 10.2514/1.30303 10.1093/icb/icr016 10.2514/1.J050631 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2016 COPYRIGHT 2017 Springer Theoretical and Computational Fluid Dynamics is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: COPYRIGHT 2017 Springer – notice: Theoretical and Computational Fluid Dynamics is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 3V. 7RQ 7SC 7TB 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ JQ2 K7- KR7 L.G L6V L7M L~C L~D M2O M2P M7S MBDVC P5Z P62 PADUT PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W U9A |
DOI | 10.1007/s00162-016-0393-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Career & Technical Education Database (ProQuest) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Proquest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Research Library Science Database (ProQuest) Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Research Library China ProQuest Central (New) Engineering Collection Career and Technical Education (Alumni Edition) Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest Career and Technical Education ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aerospace Database Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1432-2250 |
EndPage | 32 |
ExternalDocumentID | 4312348741 A499096712 10_1007_s00162_016_0393_x |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 7RQ 88I 8FE 8FG 8FH 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHPGS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IGS IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LK5 LLZTM M2O M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9T PADUT PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7Y Z8M Z8N Z8S ZMTXR _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SC 7TB 7XB 8FD 8FK ABRTQ F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U U9A PUEGO |
ID | FETCH-LOGICAL-c421t-602aab078309d8e305855d12f23327c7717d6c03dc848d4ea60026d21bd938253 |
IEDL.DBID | U2A |
ISSN | 0935-4964 |
IngestDate | Fri Sep 05 04:01:43 EDT 2025 Thu Sep 04 18:04:36 EDT 2025 Sat Aug 16 05:21:00 EDT 2025 Tue Jun 10 20:46:22 EDT 2025 Tue Jul 01 02:38:31 EDT 2025 Thu Apr 24 23:13:27 EDT 2025 Fri Feb 21 02:35:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Leading-edge tubercles Tubercles Passive flow control Turbulent regime |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-602aab078309d8e305855d12f23327c7717d6c03dc848d4ea60026d21bd938253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1865249395 |
PQPubID | 30636 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_1880008016 proquest_miscellaneous_1868331573 proquest_journals_1865249395 gale_infotracacademiconefile_A499096712 crossref_primary_10_1007_s00162_016_0393_x crossref_citationtrail_10_1007_s00162_016_0393_x springer_journals_10_1007_s00162_016_0393_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170200 2017-2-00 20170201 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 2 year: 2017 text: 20170200 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Theoretical and computational fluid dynamics |
PublicationTitleAbbrev | Theor. Comput. Fluid Dyn |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | MiklosovicDSMurrayMMHowleLEFishFELeading edge tubercles delay stall on humpback whale flippersPhys. Fluids2004165L39L4210.1063/1.16883411186.76373 RostamzadehNKelsoRMDallyBBHansenKLThe effect of undulating leading-edge modifications on NACA 0021 airfoil characteristicsPhys. Fluids20132511710110.1063/1.4828703 RostamzadehNHansenKLKelsoRMDallyBBThe formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modificationPhys. Fluids20142610710110.1063/1.4896748 WeberPHowleLMurrayMMiklosovicDComputational evaluation of the performance of lifting surfaces with leading-edge protuberancesJ. Aircr.20114859160010.2514/1.C031163 Hansen, K.L.: Effect of Leading Edge Tubercles on Airfoil Performance. Doctor of Philosophy Thesis, Mechanical Engineering, University of Adelaide, Adelaide, SA, Australia (2012) HansenKLKelsoRMDallyBBPerformance variations of leading-edge tubercles for distinct airfoil profilesAIAA J.2011491859410.2514/1.J050631 ChoudhryAArjmonadiMKelsoRMA study of long separation bubble on thick airfoils and its consequent effectsInt. J. Heat Fluid Flow201552849610.1016/j.ijheatfluidflow.2014.12.001 Swalwell, K.E., Sheridan, J., Melbourne, W.H.: The effect of turbulence intensity on stall of the NACA 0021 Aerofoil. In: Presented at the 14th Australasian Fluid Mechanics Conference, Adelaide University, Adelaide, Australia (2001) Pedro, H.T.C., Kobayashi, M.H.: Numerical study of stall delay on humpback whale flippers. In: AIAA Paper 2008–0584, pp. 7–10 (2008) DropkinACustodioDHenochCWJohariHComputation of flowfield around an airfoil with leading edge protuberancesJ. Aircr.2012491345135510.2514/1.C031675 JohariHHenochCCustodioDLevshinAEffects of leading edge protuberances on airfoil performanceAIAA J.200745112634264210.2514/1.28497 LangtryRMenterFCorrelation-based transition modeling for unstructured parallelized computational fluid dynamics codesAIAA J.2009472894290610.2514/1.42362 SkillenARevellAPinelliAPiomelliUFavierJFlow over a wing with leading-edge undulationsAIAA J.20145319 FishEFWeberPMurrayMHowleLThe tubercles on humpback whales’ flippers: application of bio-inspired technologyIntegr. Comp. Biol.20115120321310.1093/icb/icr016 Custodio, D.: The Effect of Humpback Whale-Like Leading Edge Protuberances on Hydrofoil Performance. Master of Science Thesis submitted to Worcester Polytechnic Institute (2007) WolfeWPOchsSSPredicting Aerodynamic Characterics of Typical Wind Turbine Airfoils using CFD1997IowaSandia National Labratories10.2172/534484 FishEFHowleLMurrayMHydrodynamic flow control in marine mammalsIntegr. Comp. Biol.20084878880010.1093/icb/icn029 ANSYS: ANSYS-CFX Solver Theory Guide. In: ANSYS CFX 14.5.7, ed. Pennsylvania (2013) EgorovYMenterFRLechnerRCokljatDThe scale-adaptive simulation method for unsteady turbulent flow predictions, part 2: application to complex flowsFlow Turbul. Combust.20108513916510.1007/s10494-010-9265-405796355 RodriguezDTheofilisVOn the birth of stall cells on airfoilsTheor. Comput. Fluid Dyn.20112510511710.1007/s00162-010-0193-71272.76124 MiklosovicDSMurrayMMHowleLExperimental evaluation of sinusoidal leading edgesJ. Aircr.2007441404140710.2514/1.30303 WeberPWHowleLMurrayMLift, drag and cavitation onset on rudders with leading edge tuberclesMar. Technol.2010472736 Hansen, K.L., Kelso, R.M., Dally, B.: An investigation of three dimensional effects on the perfomance of tubercles at low Reynolds numbers. In: Presented at the 17th Australian Fluid Mechanics Conference, Auckland, New Zealand (2010) Stanway, M.J.: Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion. In: Master of Science in Ocean Engineering Mechanical Engineering, Massachusetts Institute of Technology (2008) GregorekMHoffmannMJBerchakMJSteady State and Oscillatory Aerodynamic Characteristics of a NACA 0021 Airfoil: Data Report1989ColumbusOhio State University Lohry, M., Clifton, D., Martinelli, L.: Characterization and design of tubercle leading-edge wings. In: Presented at the Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii (2012) van NieropEAlbenSBrennerMPHow bumps on whale flippers delay stall: an aerodynamic modelPhys. Rev. Lett.2008100505450210.1103/PhysRevLett.100.054502 FavierJPinelliAPiomelliUControl of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippersC. R. Mec.201134011107114 393_CR10 393_CR11 393_CR15 393_CR18 N Rostamzadeh (393_CR21) 2013; 25 E Nierop van (393_CR25) 2008; 100 Y Egorov (393_CR5) 2010; 85 J Favier (393_CR6) 2011; 3401 P Weber (393_CR26) 2011; 48 D Rodriguez (393_CR19) 2011; 25 KL Hansen (393_CR12) 2011; 49 M Gregorek (393_CR9) 1989 PW Weber (393_CR27) 2010; 47 393_CR23 WP Wolfe (393_CR28) 1997 393_CR24 N Rostamzadeh (393_CR20) 2014; 26 DS Miklosovic (393_CR16) 2007; 44 A Choudhry (393_CR2) 2015; 52 A Dropkin (393_CR4) 2012; 49 393_CR1 393_CR3 H Johari (393_CR13) 2007; 45 EF Fish (393_CR8) 2011; 51 A Skillen (393_CR22) 2014; 53 R Langtry (393_CR14) 2009; 47 EF Fish (393_CR7) 2008; 48 DS Miklosovic (393_CR17) 2004; 16 |
References_xml | – reference: Custodio, D.: The Effect of Humpback Whale-Like Leading Edge Protuberances on Hydrofoil Performance. Master of Science Thesis submitted to Worcester Polytechnic Institute (2007) – reference: WeberPWHowleLMurrayMLift, drag and cavitation onset on rudders with leading edge tuberclesMar. Technol.2010472736 – reference: RodriguezDTheofilisVOn the birth of stall cells on airfoilsTheor. Comput. Fluid Dyn.20112510511710.1007/s00162-010-0193-71272.76124 – reference: Lohry, M., Clifton, D., Martinelli, L.: Characterization and design of tubercle leading-edge wings. In: Presented at the Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii (2012) – reference: Pedro, H.T.C., Kobayashi, M.H.: Numerical study of stall delay on humpback whale flippers. In: AIAA Paper 2008–0584, pp. 7–10 (2008) – reference: van NieropEAlbenSBrennerMPHow bumps on whale flippers delay stall: an aerodynamic modelPhys. Rev. Lett.2008100505450210.1103/PhysRevLett.100.054502 – reference: RostamzadehNHansenKLKelsoRMDallyBBThe formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modificationPhys. Fluids20142610710110.1063/1.4896748 – reference: FavierJPinelliAPiomelliUControl of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippersC. R. Mec.201134011107114 – reference: MiklosovicDSMurrayMMHowleLEFishFELeading edge tubercles delay stall on humpback whale flippersPhys. Fluids2004165L39L4210.1063/1.16883411186.76373 – reference: Swalwell, K.E., Sheridan, J., Melbourne, W.H.: The effect of turbulence intensity on stall of the NACA 0021 Aerofoil. In: Presented at the 14th Australasian Fluid Mechanics Conference, Adelaide University, Adelaide, Australia (2001) – reference: DropkinACustodioDHenochCWJohariHComputation of flowfield around an airfoil with leading edge protuberancesJ. Aircr.2012491345135510.2514/1.C031675 – reference: EgorovYMenterFRLechnerRCokljatDThe scale-adaptive simulation method for unsteady turbulent flow predictions, part 2: application to complex flowsFlow Turbul. Combust.20108513916510.1007/s10494-010-9265-405796355 – reference: Stanway, M.J.: Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion. In: Master of Science in Ocean Engineering Mechanical Engineering, Massachusetts Institute of Technology (2008) – reference: GregorekMHoffmannMJBerchakMJSteady State and Oscillatory Aerodynamic Characteristics of a NACA 0021 Airfoil: Data Report1989ColumbusOhio State University – reference: WeberPHowleLMurrayMMiklosovicDComputational evaluation of the performance of lifting surfaces with leading-edge protuberancesJ. Aircr.20114859160010.2514/1.C031163 – reference: WolfeWPOchsSSPredicting Aerodynamic Characterics of Typical Wind Turbine Airfoils using CFD1997IowaSandia National Labratories10.2172/534484 – reference: Hansen, K.L.: Effect of Leading Edge Tubercles on Airfoil Performance. Doctor of Philosophy Thesis, Mechanical Engineering, University of Adelaide, Adelaide, SA, Australia (2012) – reference: JohariHHenochCCustodioDLevshinAEffects of leading edge protuberances on airfoil performanceAIAA J.200745112634264210.2514/1.28497 – reference: RostamzadehNKelsoRMDallyBBHansenKLThe effect of undulating leading-edge modifications on NACA 0021 airfoil characteristicsPhys. Fluids20132511710110.1063/1.4828703 – reference: ANSYS: ANSYS-CFX Solver Theory Guide. In: ANSYS CFX 14.5.7, ed. Pennsylvania (2013) – reference: MiklosovicDSMurrayMMHowleLExperimental evaluation of sinusoidal leading edgesJ. Aircr.2007441404140710.2514/1.30303 – reference: FishEFWeberPMurrayMHowleLThe tubercles on humpback whales’ flippers: application of bio-inspired technologyIntegr. Comp. Biol.20115120321310.1093/icb/icr016 – reference: LangtryRMenterFCorrelation-based transition modeling for unstructured parallelized computational fluid dynamics codesAIAA J.2009472894290610.2514/1.42362 – reference: Hansen, K.L., Kelso, R.M., Dally, B.: An investigation of three dimensional effects on the perfomance of tubercles at low Reynolds numbers. In: Presented at the 17th Australian Fluid Mechanics Conference, Auckland, New Zealand (2010) – reference: HansenKLKelsoRMDallyBBPerformance variations of leading-edge tubercles for distinct airfoil profilesAIAA J.2011491859410.2514/1.J050631 – reference: ChoudhryAArjmonadiMKelsoRMA study of long separation bubble on thick airfoils and its consequent effectsInt. J. Heat Fluid Flow201552849610.1016/j.ijheatfluidflow.2014.12.001 – reference: FishEFHowleLMurrayMHydrodynamic flow control in marine mammalsIntegr. Comp. Biol.20084878880010.1093/icb/icn029 – reference: SkillenARevellAPinelliAPiomelliUFavierJFlow over a wing with leading-edge undulationsAIAA J.20145319 – ident: 393_CR18 – ident: 393_CR24 – volume: 100 start-page: 054502 issue: 5 year: 2008 ident: 393_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.054502 – volume-title: Steady State and Oscillatory Aerodynamic Characteristics of a NACA 0021 Airfoil: Data Report year: 1989 ident: 393_CR9 – volume: 49 start-page: 1345 year: 2012 ident: 393_CR4 publication-title: J. Aircr. doi: 10.2514/1.C031675 – volume: 48 start-page: 788 year: 2008 ident: 393_CR7 publication-title: Integr. Comp. Biol. doi: 10.1093/icb/icn029 – ident: 393_CR11 – volume: 26 start-page: 107101 year: 2014 ident: 393_CR20 publication-title: Phys. Fluids doi: 10.1063/1.4896748 – volume: 25 start-page: 117101 year: 2013 ident: 393_CR21 publication-title: Phys. Fluids doi: 10.1063/1.4828703 – volume: 52 start-page: 84 year: 2015 ident: 393_CR2 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2014.12.001 – volume: 47 start-page: 27 year: 2010 ident: 393_CR27 publication-title: Mar. Technol. – volume: 3401 start-page: 107 issue: 1 year: 2011 ident: 393_CR6 publication-title: C. R. Mec. doi: 10.1016/j.crme.2011.11.004 – volume-title: Predicting Aerodynamic Characterics of Typical Wind Turbine Airfoils using CFD year: 1997 ident: 393_CR28 doi: 10.2172/534484 – volume: 53 start-page: 1 year: 2014 ident: 393_CR22 publication-title: AIAA J. – ident: 393_CR23 – ident: 393_CR15 – volume: 85 start-page: 139 year: 2010 ident: 393_CR5 publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-010-9265-4 – volume: 47 start-page: 2894 year: 2009 ident: 393_CR14 publication-title: AIAA J. doi: 10.2514/1.42362 – ident: 393_CR10 – volume: 45 start-page: 2634 issue: 11 year: 2007 ident: 393_CR13 publication-title: AIAA J. doi: 10.2514/1.28497 – volume: 25 start-page: 105 year: 2011 ident: 393_CR19 publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s00162-010-0193-7 – volume: 48 start-page: 591 year: 2011 ident: 393_CR26 publication-title: J. Aircr. doi: 10.2514/1.C031163 – volume: 16 start-page: L39 issue: 5 year: 2004 ident: 393_CR17 publication-title: Phys. Fluids doi: 10.1063/1.1688341 – volume: 44 start-page: 1404 year: 2007 ident: 393_CR16 publication-title: J. Aircr. doi: 10.2514/1.30303 – volume: 51 start-page: 203 year: 2011 ident: 393_CR8 publication-title: Integr. Comp. Biol. doi: 10.1093/icb/icr016 – ident: 393_CR1 – ident: 393_CR3 – volume: 49 start-page: 185 year: 2011 ident: 393_CR12 publication-title: AIAA J. doi: 10.2514/1.J050631 |
SSID | ssj0003568 |
Score | 2.3338106 |
Snippet | Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Classical and Continuum Physics Computational fluid dynamics Computational Science and Engineering Engineering Engineering Fluid Dynamics Flow (Dynamics) Flow control Fluid dynamics Fluid flow Foils Hydrodynamics Leading edges Numerical analysis Original Article Reynolds number Stall Turbulence Turbulence (Fluid dynamics) Turbulent flow Whales & whaling |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9VAEF5q--KLl6oYrbIFQVAWs5dsNk9yEE9LoX0QC30LeztQSJNqcmj7751JNqde8DyGTJIlc9mZ_eZCyDvruQtlbplzlWLKRsuMUyvmQlEZrkpwGrAa-fRMH5-rk4viIh249SmtcraJo6EOnccz8k_c6AJCBVkVn69_MJwahehqGqHxgOxx2GlQzs3yaGOJ5VQKh1gfU5VWM6qZj01EucakBIinZSXZ7R_70t_W-R-YdNx9lk_Io-Q20sXE56dkJ7b75HFyIWlS0P4ZuVnQdj2BMA29vO-h0bVwNXQU3D2aUjhot6Lf4l3bNaGn02AQCmRIsWq6G3oVsSj4sr-CJwMIQKDujlo6rIEQ1hBoM-XfUzyRe07Ol1-_fzlmabYC80rwgelcWOsQw8urYCJovSmKwMVKSClKX0KUF7TPZfBGmaCiRfxOBwGcrSRElfIF2W27Nr4k1JdOWm6ME1YpYYFDRlpty6KSUXBvM5LPf7b2qfE4zr9o6k3L5JEZNSabITPq24x82DxyPXXd2Eb8HtlVo0bCe71NhQWwOuxtVS8gqINAreQiIwczR-ukqn19L1gZOdzcBiVD5MS2sVuPNEZKXpRyG40Z_W-uM_JxlpbfPvO_5b_avqjX5KFAT2JMFD8gu8PPdXwDftDg3o7C_gu7OgNB priority: 102 providerName: ProQuest |
Title | A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge |
URI | https://link.springer.com/article/10.1007/s00162-016-0393-x https://www.proquest.com/docview/1865249395 https://www.proquest.com/docview/1868331573 https://www.proquest.com/docview/1880008016 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0fdGHqlVpaj1WEAQlcPuRZPOY07sWxSLFg_oUdrN7UEgTMTlq_3tn8mX9KvgUQmY3S2Zn9zf5zcwCvDQFty6Zm9DaVIXKeBNqqzahdVGquUoQNFA28sfT-GSt3p9H50MedzNGu4-UZLdST8luhE4ojAA9YJnKEIHjboSuO1njWmTT8iv7_Dci-EKVxmqkMv_WxS-b0e9L8h_caLflrB7C3oAVWdYr9xHc8dU-PBhwIxusstmH-zeKCj6Gq4xV256HKdnFzzIadYV3bc0Q8bEhioPVG3bmr6u6dA3rzwZhKEYSm7K-Ypee8oIvmkts6XAOOGavmWHtFgVxRI6VfQg-o59yT2C9Wn5-exIOxyuEhRK8DeO5MMYSjTdPnfZo-DqKHBcbIaVIigQdPRcXc-kKrbRT3hCFFzuByk0lOpbyKexUdeUPgBWJlYZrbYVRShiZRlqa2CRRKr3ghQlgPn7nvBhqj9MRGGU-VU3uVJNTvBmpJv8ewOupyde-8MZtwq9IeTkZJfZbmCG3AEdH5a3yDP069NUSLgI4GvWbD9ba5FzHEbqhOOwAXkyP0c6IPDGVr7edjJaSR4m8TUZ3EJzHAbwZ586N1_xr-If_Jf0M7gnCFl3o-BHstN-2_jkio9bO4K5eHc9gN1u8W6zoevzlwxKvi-Xpp7NZZyc_APOfCjc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2B7jwRgQKGAmEBIqIH0mcA0ILtNrSdoWqVuotdWKvVClNCslquz_FNzKTx5aH2FuPUcbOxDMez3heAK9MzjMbB8bPskT5yjjj60zN_MyGieYqRqWBspEPptHkWH09CU824OeQC0NhlYNMbAW1rXK6I3_PdRSiqSCT8OPFd5-6RpF3dWih0bHFnlsu0GSrP-x-Qfq-FmJn--jzxO-7Cvi5Erzxo0AYk5H3KkisdsjvOgwtFzMhpYjzGO0bG-WBtLlW2ipnyHMVWYH_lEi0pyTOewM2FWW0jmDz0_b02-FK9ssu-Y68i75KIjX4UYO2bCmPKAwCLXiZSP_yj5Pw7_PgH8dse97t3IXbvaLKxh1n3YMNV96HO73SynqRUD-AxZiV887tU7Czq6odVYlPTcVQwWR90AirZuzQLcuqsDXrWpEwBCOIWVEt2LmjNOSz-hxHWmQ5y7IlM6yZIyDiYFnRRfwzugN8CMfXsu6PYFRWpXsMLI8zabjWmTBKCYM8oaWJTBwm0gmeGw-CYWXTvC91Th03inRVpLklRkrhbUSM9NKDt6shF12dj3XAb4hcKckAnDc3fSoDYkfVtNIxmpFoGsZceLA1UDTthUOdXrGyBy9Xr3Fbk6_GlK6atzBaSh7Gch2MbjV-HnnwbuCW3z7zP_SfrEfqBdycHB3sp_u7072ncEuQHtOGqW_BqPkxd89QC2uy5z3rMzi97t32C61lPvY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQw0CpFQrxwIwIFjARCAlmNj8TOA0IrytJSqBCiUt9Sx3akSmlSyK62-2t8HTM5thxi3_oYZew4nvEcnouQ59bxwuvYsqLIFFM2WGYKVbLCJ5nhSoPSgNnInw_S3UP18Sg52iA_x1wYDKsceWLHqH3j8I58m5s0AVNBZsl2OYRFfNmZvj37zrCDFHpax3YaPYnsh-UCzLf2zd4O4PqFENP3397tsqHDAHNK8BlLY2FtgZ6sOPMmAO2bJPFclEJKoZ0GW8enLpbeGWW8Cha9WKkX8H-ZBNtKwrxXyFUtdYaGn5l-WEkB2afhoZ-RqSxVo0c17gqY8hQDIsCWl5lk53_IxL8lwz8u2k7yTW-RG4PKSic9jd0mG6G-Q24O6isdmEN7lywmtJ73DqCKnlzU72hqeJo1FFRNOoSP0KakX8Oybirf0r4pCQUwhCirZkFPAyYkn7SnMNID8XlaLKmlszkAwho8rfrYf4q3gffI4aXs-n2yWTd1eECo04W03JhCWKWEBeow0qZWJ5kMgjsbkXjc2dwNRc-x90aVr8o1d8jIMdANkZGfR-TVashZX_FjHfBLRFeO3ADmdXZIaoDVYV2tfAIGJRiJmouIbI0YzQc20eYXRB2RZ6vXcMDRa2Pr0Mw7GCMlT7RcB2M63Z-nEXk9Ustvn_nf8h-uX9RTcg3OWP5p72D_EbkuUKHp4tW3yObsxzw8BnVsVjzp6J6S48s-aL8ATZ9Bxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+investigation+into+the+effects+of+Reynolds+number+on+the+flow+mechanism+induced+by+a+tubercled+leading+edge&rft.jtitle=Theoretical+and+computational+fluid+dynamics&rft.au=Rostamzadeh%2C+Nikan&rft.au=Kelso%2C+Richard+M&rft.au=Dally%2C+Bassam&rft.date=2017-02-01&rft.issn=0935-4964&rft.eissn=1432-2250&rft.volume=31&rft.issue=1&rft.spage=1&rft.epage=32&rft_id=info:doi/10.1007%2Fs00162-016-0393-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-4964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-4964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-4964&client=summon |