A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge

Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstr...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and computational fluid dynamics Vol. 31; no. 1; pp. 1 - 32
Main Authors Rostamzadeh, Nikan, Kelso, Richard M., Dally, Bassam
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2017
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0935-4964
1432-2250
DOI10.1007/s00162-016-0393-x

Cover

Abstract Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstrated that, in the transitional flow regime, full-span wings with tubercled leading edges outperform unmodified wings at high attack angles. The flow mechanism associated with such enhanced loading traits is, however, still being investigated. Also, the performance of full-span tubercled wings in the turbulent regime is largely unexplored. The present study aims to investigate Reynolds number effects on the flow mechanism induced by a full-span tubercled wing with the NACA-0021 cross-sectional profile in the transitional and near-turbulent regimes using computational fluid dynamics. The analysis of the flow field suggests that, with the exception of a few different flow features, the same underlying flow mechanism, involving the presence of transverse and streamwise vorticity, is at play in both cases. With regard to lift-generation characteristics, the numerical simulation results indicate that in contrast to the transitional flow regime, where the unmodified NACA-0021 undergoes a sudden loss of lift, in the turbulent regime, the baseline foil experiences gradual stall and produces more lift than the tubercled foil. This observation highlights the importance of considerations regarding the Reynolds number effects and the stall characteristics of the baseline foil, in the industrial applications of tubercled lifting bodies.
AbstractList Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstrated that, in the transitional flow regime, full-span wings with tubercled leading edges outperform unmodified wings at high attack angles. The flow mechanism associated with such enhanced loading traits is, however, still being investigated. Also, the performance of full-span tubercled wings in the turbulent regime is largely unexplored. The present study aims to investigate Reynolds number effects on the flow mechanism induced by a full-span tubercled wing with the NACA-0021 cross-sectional profile in the transitional and near-turbulent regimes using computational fluid dynamics. The analysis of the flow field suggests that, with the exception of a few different flow features, the same underlying flow mechanism, involving the presence of transverse and streamwise vorticity, is at play in both cases. With regard to lift-generation characteristics, the numerical simulation results indicate that in contrast to the transitional flow regime, where the unmodified NACA-0021 undergoes a sudden loss of lift, in the turbulent regime, the baseline foil experiences gradual stall and produces more lift than the tubercled foil. This observation highlights the importance of considerations regarding the Reynolds number effects and the stall characteristics of the baseline foil, in the industrial applications of tubercled lifting bodies.
Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstrated that, in the transitional flow regime, full-span wings with tubercled leading edges outperform unmodified wings at high attack angles. The flow mechanism associated with such enhanced loading traits is, however, still being investigated. Also, the performance of full-span tubercled wings in the turbulent regime is largely unexplored. The present study aims to investigate Reynolds number effects on the flow mechanism induced by a full-span tubercled wing with the NACA-0021 cross-sectional profile in the transitional and near-turbulent regimes using computational fluid dynamics. The analysis of the flow field suggests that, with the exception of a few different flow features, the same underlying flow mechanism, involving the presence of transverse and streamwise vorticity, is at play in both cases. With regard to lift-generation characteristics, the numerical simulation results indicate that in contrast to the transitional flow regime, where the unmodified NACA-0021 undergoes a sudden loss of lift, in the turbulent regime, the baseline foil experiences gradual stall and produces more lift than the tubercled foil. This observation highlights the importance of considerations regarding the Reynolds number effects and the stall characteristics of the baseline foil, in the industrial applications of tubercled lifting bodies. Keywords Passive flow control ? Leading-edge tubercles ? Turbulent regime ? Tubercles
Audience Academic
Author Kelso, Richard M.
Rostamzadeh, Nikan
Dally, Bassam
Author_xml – sequence: 1
  givenname: Nikan
  surname: Rostamzadeh
  fullname: Rostamzadeh, Nikan
  email: nikan4now@yahoo.com
  organization: School of Mechanical Engineering, The University of Adelaide
– sequence: 2
  givenname: Richard M.
  surname: Kelso
  fullname: Kelso, Richard M.
  organization: School of Mechanical Engineering, The University of Adelaide
– sequence: 3
  givenname: Bassam
  surname: Dally
  fullname: Dally, Bassam
  organization: School of Mechanical Engineering, The University of Adelaide
BookMark eNqNkU1rFTEUhoNU8Lb6A9wF3LiZepLMR7K8FK1CQRBdh9zkzG1KJqnJjO3992YcF1JQJJBwwvPkcPKek7OYIhLymsElAxjeFQDW86ZuDQglmsdnZMdawRvOOzgjO1Cia1rVty_IeSl3ACC6Xu7Iw57GZcLsrQnUxx9YZn80s0-xVnOi8y1SHEe0c6FppF_wFFNwZZUOmGnFVmIM6YFOaG9N9GWqplssOno4UUPnpYI21DKgcT4eKbojviTPRxMKvvp9XpBvH95_vfrY3Hy-_nS1v2lsy9nc9MCNOcAgBSgnUUAnu84xPnIh-GCHgQ2utyCcla10LZoegPeOs4NTQvJOXJC327v3OX1f6nR68sViCCZiWopmUta_kPXf_gPtpRCsG0RF3zxB79KSYx1kpTreKqHW3pcbdTQBtY9jmrOxdTmcvK35jb7e71ulQPUD41Vgm2BzKiXjqO-zn0w-aQZ6jVlvMeu66TVm_Vid4Ylj_fwrwNrMh3-afDNL7RKPmP8Y4q_STxG7vRk
CitedBy_id crossref_primary_10_1016_j_oceaneng_2022_111240
crossref_primary_10_1063_5_0203519
crossref_primary_10_1007_s13762_021_03784_3
crossref_primary_10_1016_j_jweia_2021_104613
crossref_primary_10_1007_s00348_025_03981_7
crossref_primary_10_1016_j_energy_2021_122186
crossref_primary_10_1017_jfm_2019_611
crossref_primary_10_3390_app13031519
crossref_primary_10_1007_s11630_023_1465_z
crossref_primary_10_1177_0954406220975422
crossref_primary_10_1115_1_4044073
crossref_primary_10_1016_j_ijthermalsci_2023_108447
crossref_primary_10_1016_j_oceaneng_2022_112306
crossref_primary_10_1177_09544100211049932
crossref_primary_10_1016_j_heliyon_2024_e32148
crossref_primary_10_1615_InterJFluidMechRes_2022043017
crossref_primary_10_3390_en17215518
crossref_primary_10_1177_09544100211044316
crossref_primary_10_3390_aerospace11030194
crossref_primary_10_1007_s40722_022_00262_x
crossref_primary_10_1063_1_4991596
crossref_primary_10_3390_biomimetics9020090
crossref_primary_10_1134_S0015462820040102
crossref_primary_10_1177_0954410020946903
crossref_primary_10_1051_epjconf_202226901001
crossref_primary_10_1080_19942060_2022_2119282
crossref_primary_10_1063_5_0098400
crossref_primary_10_1088_1757_899X_370_1_012015
crossref_primary_10_1016_j_heliyon_2025_e41661
crossref_primary_10_1016_j_oceaneng_2022_113153
crossref_primary_10_1016_j_ast_2022_107529
crossref_primary_10_1016_j_renene_2022_09_123
crossref_primary_10_1016_j_oceaneng_2025_120748
crossref_primary_10_1063_1_5082840
crossref_primary_10_1016_j_oceaneng_2020_108209
crossref_primary_10_1063_5_0239789
crossref_primary_10_2339_politeknik_391800
crossref_primary_10_1016_j_oceaneng_2021_109731
crossref_primary_10_1007_s11433_018_9331_y
crossref_primary_10_1080_15435075_2022_2050376
crossref_primary_10_1038_s44172_023_00077_0
crossref_primary_10_1134_S0021894421030184
crossref_primary_10_1016_j_ijthermalsci_2022_107782
crossref_primary_10_1088_1748_3190_aae6fc
crossref_primary_10_2514_1_J058010
Cites_doi 10.1103/PhysRevLett.100.054502
10.2514/1.C031675
10.1093/icb/icn029
10.1063/1.4896748
10.1063/1.4828703
10.1016/j.ijheatfluidflow.2014.12.001
10.1016/j.crme.2011.11.004
10.2172/534484
10.1007/s10494-010-9265-4
10.2514/1.42362
10.2514/1.28497
10.1007/s00162-010-0193-7
10.2514/1.C031163
10.1063/1.1688341
10.2514/1.30303
10.1093/icb/icr016
10.2514/1.J050631
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
COPYRIGHT 2017 Springer
Theoretical and Computational Fluid Dynamics is a copyright of Springer, 2017.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: COPYRIGHT 2017 Springer
– notice: Theoretical and Computational Fluid Dynamics is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7RQ
7SC
7TB
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
JQ2
K7-
KR7
L.G
L6V
L7M
L~C
L~D
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
U9A
DOI 10.1007/s00162-016-0393-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Career & Technical Education Database (ProQuest)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Proquest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Research Library
Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Research Library China
ProQuest Central (New)
Engineering Collection
Career and Technical Education (Alumni Edition)
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources

Aerospace Database

Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1432-2250
EndPage 32
ExternalDocumentID 4312348741
A499096712
10_1007_s00162_016_0393_x
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
7RQ
88I
8FE
8FG
8FH
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPGS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IGS
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2O
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9T
PADUT
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7Y
Z8M
Z8N
Z8S
ZMTXR
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SC
7TB
7XB
8FD
8FK
ABRTQ
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
U9A
PUEGO
ID FETCH-LOGICAL-c421t-602aab078309d8e305855d12f23327c7717d6c03dc848d4ea60026d21bd938253
IEDL.DBID U2A
ISSN 0935-4964
IngestDate Fri Sep 05 04:01:43 EDT 2025
Thu Sep 04 18:04:36 EDT 2025
Sat Aug 16 05:21:00 EDT 2025
Tue Jun 10 20:46:22 EDT 2025
Tue Jul 01 02:38:31 EDT 2025
Thu Apr 24 23:13:27 EDT 2025
Fri Feb 21 02:35:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Leading-edge tubercles
Tubercles
Passive flow control
Turbulent regime
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-602aab078309d8e305855d12f23327c7717d6c03dc848d4ea60026d21bd938253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1865249395
PQPubID 30636
PageCount 32
ParticipantIDs proquest_miscellaneous_1880008016
proquest_miscellaneous_1868331573
proquest_journals_1865249395
gale_infotracacademiconefile_A499096712
crossref_primary_10_1007_s00162_016_0393_x
crossref_citationtrail_10_1007_s00162_016_0393_x
springer_journals_10_1007_s00162_016_0393_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170200
2017-2-00
20170201
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 2
  year: 2017
  text: 20170200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Theoretical and computational fluid dynamics
PublicationTitleAbbrev Theor. Comput. Fluid Dyn
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References MiklosovicDSMurrayMMHowleLEFishFELeading edge tubercles delay stall on humpback whale flippersPhys. Fluids2004165L39L4210.1063/1.16883411186.76373
RostamzadehNKelsoRMDallyBBHansenKLThe effect of undulating leading-edge modifications on NACA 0021 airfoil characteristicsPhys. Fluids20132511710110.1063/1.4828703
RostamzadehNHansenKLKelsoRMDallyBBThe formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modificationPhys. Fluids20142610710110.1063/1.4896748
WeberPHowleLMurrayMMiklosovicDComputational evaluation of the performance of lifting surfaces with leading-edge protuberancesJ. Aircr.20114859160010.2514/1.C031163
Hansen, K.L.: Effect of Leading Edge Tubercles on Airfoil Performance. Doctor of Philosophy Thesis, Mechanical Engineering, University of Adelaide, Adelaide, SA, Australia (2012)
HansenKLKelsoRMDallyBBPerformance variations of leading-edge tubercles for distinct airfoil profilesAIAA J.2011491859410.2514/1.J050631
ChoudhryAArjmonadiMKelsoRMA study of long separation bubble on thick airfoils and its consequent effectsInt. J. Heat Fluid Flow201552849610.1016/j.ijheatfluidflow.2014.12.001
Swalwell, K.E., Sheridan, J., Melbourne, W.H.: The effect of turbulence intensity on stall of the NACA 0021 Aerofoil. In: Presented at the 14th Australasian Fluid Mechanics Conference, Adelaide University, Adelaide, Australia (2001)
Pedro, H.T.C., Kobayashi, M.H.: Numerical study of stall delay on humpback whale flippers. In: AIAA Paper 2008–0584, pp. 7–10 (2008)
DropkinACustodioDHenochCWJohariHComputation of flowfield around an airfoil with leading edge protuberancesJ. Aircr.2012491345135510.2514/1.C031675
JohariHHenochCCustodioDLevshinAEffects of leading edge protuberances on airfoil performanceAIAA J.200745112634264210.2514/1.28497
LangtryRMenterFCorrelation-based transition modeling for unstructured parallelized computational fluid dynamics codesAIAA J.2009472894290610.2514/1.42362
SkillenARevellAPinelliAPiomelliUFavierJFlow over a wing with leading-edge undulationsAIAA J.20145319
FishEFWeberPMurrayMHowleLThe tubercles on humpback whales’ flippers: application of bio-inspired technologyIntegr. Comp. Biol.20115120321310.1093/icb/icr016
Custodio, D.: The Effect of Humpback Whale-Like Leading Edge Protuberances on Hydrofoil Performance. Master of Science Thesis submitted to Worcester Polytechnic Institute (2007)
WolfeWPOchsSSPredicting Aerodynamic Characterics of Typical Wind Turbine Airfoils using CFD1997IowaSandia National Labratories10.2172/534484
FishEFHowleLMurrayMHydrodynamic flow control in marine mammalsIntegr. Comp. Biol.20084878880010.1093/icb/icn029
ANSYS: ANSYS-CFX Solver Theory Guide. In: ANSYS CFX 14.5.7, ed. Pennsylvania (2013)
EgorovYMenterFRLechnerRCokljatDThe scale-adaptive simulation method for unsteady turbulent flow predictions, part 2: application to complex flowsFlow Turbul. Combust.20108513916510.1007/s10494-010-9265-405796355
RodriguezDTheofilisVOn the birth of stall cells on airfoilsTheor. Comput. Fluid Dyn.20112510511710.1007/s00162-010-0193-71272.76124
MiklosovicDSMurrayMMHowleLExperimental evaluation of sinusoidal leading edgesJ. Aircr.2007441404140710.2514/1.30303
WeberPWHowleLMurrayMLift, drag and cavitation onset on rudders with leading edge tuberclesMar. Technol.2010472736
Hansen, K.L., Kelso, R.M., Dally, B.: An investigation of three dimensional effects on the perfomance of tubercles at low Reynolds numbers. In: Presented at the 17th Australian Fluid Mechanics Conference, Auckland, New Zealand (2010)
Stanway, M.J.: Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion. In: Master of Science in Ocean Engineering Mechanical Engineering, Massachusetts Institute of Technology (2008)
GregorekMHoffmannMJBerchakMJSteady State and Oscillatory Aerodynamic Characteristics of a NACA 0021 Airfoil: Data Report1989ColumbusOhio State University
Lohry, M., Clifton, D., Martinelli, L.: Characterization and design of tubercle leading-edge wings. In: Presented at the Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii (2012)
van NieropEAlbenSBrennerMPHow bumps on whale flippers delay stall: an aerodynamic modelPhys. Rev. Lett.2008100505450210.1103/PhysRevLett.100.054502
FavierJPinelliAPiomelliUControl of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippersC. R. Mec.201134011107114
393_CR10
393_CR11
393_CR15
393_CR18
N Rostamzadeh (393_CR21) 2013; 25
E Nierop van (393_CR25) 2008; 100
Y Egorov (393_CR5) 2010; 85
J Favier (393_CR6) 2011; 3401
P Weber (393_CR26) 2011; 48
D Rodriguez (393_CR19) 2011; 25
KL Hansen (393_CR12) 2011; 49
M Gregorek (393_CR9) 1989
PW Weber (393_CR27) 2010; 47
393_CR23
WP Wolfe (393_CR28) 1997
393_CR24
N Rostamzadeh (393_CR20) 2014; 26
DS Miklosovic (393_CR16) 2007; 44
A Choudhry (393_CR2) 2015; 52
A Dropkin (393_CR4) 2012; 49
393_CR1
393_CR3
H Johari (393_CR13) 2007; 45
EF Fish (393_CR8) 2011; 51
A Skillen (393_CR22) 2014; 53
R Langtry (393_CR14) 2009; 47
EF Fish (393_CR7) 2008; 48
DS Miklosovic (393_CR17) 2004; 16
References_xml – reference: Custodio, D.: The Effect of Humpback Whale-Like Leading Edge Protuberances on Hydrofoil Performance. Master of Science Thesis submitted to Worcester Polytechnic Institute (2007)
– reference: WeberPWHowleLMurrayMLift, drag and cavitation onset on rudders with leading edge tuberclesMar. Technol.2010472736
– reference: RodriguezDTheofilisVOn the birth of stall cells on airfoilsTheor. Comput. Fluid Dyn.20112510511710.1007/s00162-010-0193-71272.76124
– reference: Lohry, M., Clifton, D., Martinelli, L.: Characterization and design of tubercle leading-edge wings. In: Presented at the Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii (2012)
– reference: Pedro, H.T.C., Kobayashi, M.H.: Numerical study of stall delay on humpback whale flippers. In: AIAA Paper 2008–0584, pp. 7–10 (2008)
– reference: van NieropEAlbenSBrennerMPHow bumps on whale flippers delay stall: an aerodynamic modelPhys. Rev. Lett.2008100505450210.1103/PhysRevLett.100.054502
– reference: RostamzadehNHansenKLKelsoRMDallyBBThe formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modificationPhys. Fluids20142610710110.1063/1.4896748
– reference: FavierJPinelliAPiomelliUControl of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippersC. R. Mec.201134011107114
– reference: MiklosovicDSMurrayMMHowleLEFishFELeading edge tubercles delay stall on humpback whale flippersPhys. Fluids2004165L39L4210.1063/1.16883411186.76373
– reference: Swalwell, K.E., Sheridan, J., Melbourne, W.H.: The effect of turbulence intensity on stall of the NACA 0021 Aerofoil. In: Presented at the 14th Australasian Fluid Mechanics Conference, Adelaide University, Adelaide, Australia (2001)
– reference: DropkinACustodioDHenochCWJohariHComputation of flowfield around an airfoil with leading edge protuberancesJ. Aircr.2012491345135510.2514/1.C031675
– reference: EgorovYMenterFRLechnerRCokljatDThe scale-adaptive simulation method for unsteady turbulent flow predictions, part 2: application to complex flowsFlow Turbul. Combust.20108513916510.1007/s10494-010-9265-405796355
– reference: Stanway, M.J.: Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion. In: Master of Science in Ocean Engineering Mechanical Engineering, Massachusetts Institute of Technology (2008)
– reference: GregorekMHoffmannMJBerchakMJSteady State and Oscillatory Aerodynamic Characteristics of a NACA 0021 Airfoil: Data Report1989ColumbusOhio State University
– reference: WeberPHowleLMurrayMMiklosovicDComputational evaluation of the performance of lifting surfaces with leading-edge protuberancesJ. Aircr.20114859160010.2514/1.C031163
– reference: WolfeWPOchsSSPredicting Aerodynamic Characterics of Typical Wind Turbine Airfoils using CFD1997IowaSandia National Labratories10.2172/534484
– reference: Hansen, K.L.: Effect of Leading Edge Tubercles on Airfoil Performance. Doctor of Philosophy Thesis, Mechanical Engineering, University of Adelaide, Adelaide, SA, Australia (2012)
– reference: JohariHHenochCCustodioDLevshinAEffects of leading edge protuberances on airfoil performanceAIAA J.200745112634264210.2514/1.28497
– reference: RostamzadehNKelsoRMDallyBBHansenKLThe effect of undulating leading-edge modifications on NACA 0021 airfoil characteristicsPhys. Fluids20132511710110.1063/1.4828703
– reference: ANSYS: ANSYS-CFX Solver Theory Guide. In: ANSYS CFX 14.5.7, ed. Pennsylvania (2013)
– reference: MiklosovicDSMurrayMMHowleLExperimental evaluation of sinusoidal leading edgesJ. Aircr.2007441404140710.2514/1.30303
– reference: FishEFWeberPMurrayMHowleLThe tubercles on humpback whales’ flippers: application of bio-inspired technologyIntegr. Comp. Biol.20115120321310.1093/icb/icr016
– reference: LangtryRMenterFCorrelation-based transition modeling for unstructured parallelized computational fluid dynamics codesAIAA J.2009472894290610.2514/1.42362
– reference: Hansen, K.L., Kelso, R.M., Dally, B.: An investigation of three dimensional effects on the perfomance of tubercles at low Reynolds numbers. In: Presented at the 17th Australian Fluid Mechanics Conference, Auckland, New Zealand (2010)
– reference: HansenKLKelsoRMDallyBBPerformance variations of leading-edge tubercles for distinct airfoil profilesAIAA J.2011491859410.2514/1.J050631
– reference: ChoudhryAArjmonadiMKelsoRMA study of long separation bubble on thick airfoils and its consequent effectsInt. J. Heat Fluid Flow201552849610.1016/j.ijheatfluidflow.2014.12.001
– reference: FishEFHowleLMurrayMHydrodynamic flow control in marine mammalsIntegr. Comp. Biol.20084878880010.1093/icb/icn029
– reference: SkillenARevellAPinelliAPiomelliUFavierJFlow over a wing with leading-edge undulationsAIAA J.20145319
– ident: 393_CR18
– ident: 393_CR24
– volume: 100
  start-page: 054502
  issue: 5
  year: 2008
  ident: 393_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.054502
– volume-title: Steady State and Oscillatory Aerodynamic Characteristics of a NACA 0021 Airfoil: Data Report
  year: 1989
  ident: 393_CR9
– volume: 49
  start-page: 1345
  year: 2012
  ident: 393_CR4
  publication-title: J. Aircr.
  doi: 10.2514/1.C031675
– volume: 48
  start-page: 788
  year: 2008
  ident: 393_CR7
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/icn029
– ident: 393_CR11
– volume: 26
  start-page: 107101
  year: 2014
  ident: 393_CR20
  publication-title: Phys. Fluids
  doi: 10.1063/1.4896748
– volume: 25
  start-page: 117101
  year: 2013
  ident: 393_CR21
  publication-title: Phys. Fluids
  doi: 10.1063/1.4828703
– volume: 52
  start-page: 84
  year: 2015
  ident: 393_CR2
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2014.12.001
– volume: 47
  start-page: 27
  year: 2010
  ident: 393_CR27
  publication-title: Mar. Technol.
– volume: 3401
  start-page: 107
  issue: 1
  year: 2011
  ident: 393_CR6
  publication-title: C. R. Mec.
  doi: 10.1016/j.crme.2011.11.004
– volume-title: Predicting Aerodynamic Characterics of Typical Wind Turbine Airfoils using CFD
  year: 1997
  ident: 393_CR28
  doi: 10.2172/534484
– volume: 53
  start-page: 1
  year: 2014
  ident: 393_CR22
  publication-title: AIAA J.
– ident: 393_CR23
– ident: 393_CR15
– volume: 85
  start-page: 139
  year: 2010
  ident: 393_CR5
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-010-9265-4
– volume: 47
  start-page: 2894
  year: 2009
  ident: 393_CR14
  publication-title: AIAA J.
  doi: 10.2514/1.42362
– ident: 393_CR10
– volume: 45
  start-page: 2634
  issue: 11
  year: 2007
  ident: 393_CR13
  publication-title: AIAA J.
  doi: 10.2514/1.28497
– volume: 25
  start-page: 105
  year: 2011
  ident: 393_CR19
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s00162-010-0193-7
– volume: 48
  start-page: 591
  year: 2011
  ident: 393_CR26
  publication-title: J. Aircr.
  doi: 10.2514/1.C031163
– volume: 16
  start-page: L39
  issue: 5
  year: 2004
  ident: 393_CR17
  publication-title: Phys. Fluids
  doi: 10.1063/1.1688341
– volume: 44
  start-page: 1404
  year: 2007
  ident: 393_CR16
  publication-title: J. Aircr.
  doi: 10.2514/1.30303
– volume: 51
  start-page: 203
  year: 2011
  ident: 393_CR8
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/icr016
– ident: 393_CR1
– ident: 393_CR3
– volume: 49
  start-page: 185
  year: 2011
  ident: 393_CR12
  publication-title: AIAA J.
  doi: 10.2514/1.J050631
SSID ssj0003568
Score 2.3338106
Snippet Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Classical and Continuum Physics
Computational fluid dynamics
Computational Science and Engineering
Engineering
Engineering Fluid Dynamics
Flow (Dynamics)
Flow control
Fluid dynamics
Fluid flow
Foils
Hydrodynamics
Leading edges
Numerical analysis
Original Article
Reynolds number
Stall
Turbulence
Turbulence (Fluid dynamics)
Turbulent flow
Whales & whaling
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9VAEF5q--KLl6oYrbIFQVAWs5dsNk9yEE9LoX0QC30LeztQSJNqcmj7751JNqde8DyGTJIlc9mZ_eZCyDvruQtlbplzlWLKRsuMUyvmQlEZrkpwGrAa-fRMH5-rk4viIh249SmtcraJo6EOnccz8k_c6AJCBVkVn69_MJwahehqGqHxgOxx2GlQzs3yaGOJ5VQKh1gfU5VWM6qZj01EucakBIinZSXZ7R_70t_W-R-YdNx9lk_Io-Q20sXE56dkJ7b75HFyIWlS0P4ZuVnQdj2BMA29vO-h0bVwNXQU3D2aUjhot6Lf4l3bNaGn02AQCmRIsWq6G3oVsSj4sr-CJwMIQKDujlo6rIEQ1hBoM-XfUzyRe07Ol1-_fzlmabYC80rwgelcWOsQw8urYCJovSmKwMVKSClKX0KUF7TPZfBGmaCiRfxOBwGcrSRElfIF2W27Nr4k1JdOWm6ME1YpYYFDRlpty6KSUXBvM5LPf7b2qfE4zr9o6k3L5JEZNSabITPq24x82DxyPXXd2Eb8HtlVo0bCe71NhQWwOuxtVS8gqINAreQiIwczR-ukqn19L1gZOdzcBiVD5MS2sVuPNEZKXpRyG40Z_W-uM_JxlpbfPvO_5b_avqjX5KFAT2JMFD8gu8PPdXwDftDg3o7C_gu7OgNB
  priority: 102
  providerName: ProQuest
Title A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge
URI https://link.springer.com/article/10.1007/s00162-016-0393-x
https://www.proquest.com/docview/1865249395
https://www.proquest.com/docview/1868331573
https://www.proquest.com/docview/1880008016
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0fdGHqlVpaj1WEAQlcPuRZPOY07sWxSLFg_oUdrN7UEgTMTlq_3tn8mX9KvgUQmY3S2Zn9zf5zcwCvDQFty6Zm9DaVIXKeBNqqzahdVGquUoQNFA28sfT-GSt3p9H50MedzNGu4-UZLdST8luhE4ojAA9YJnKEIHjboSuO1njWmTT8iv7_Dci-EKVxmqkMv_WxS-b0e9L8h_caLflrB7C3oAVWdYr9xHc8dU-PBhwIxusstmH-zeKCj6Gq4xV256HKdnFzzIadYV3bc0Q8bEhioPVG3bmr6u6dA3rzwZhKEYSm7K-Ypee8oIvmkts6XAOOGavmWHtFgVxRI6VfQg-o59yT2C9Wn5-exIOxyuEhRK8DeO5MMYSjTdPnfZo-DqKHBcbIaVIigQdPRcXc-kKrbRT3hCFFzuByk0lOpbyKexUdeUPgBWJlYZrbYVRShiZRlqa2CRRKr3ghQlgPn7nvBhqj9MRGGU-VU3uVJNTvBmpJv8ewOupyde-8MZtwq9IeTkZJfZbmCG3AEdH5a3yDP069NUSLgI4GvWbD9ba5FzHEbqhOOwAXkyP0c6IPDGVr7edjJaSR4m8TUZ3EJzHAbwZ586N1_xr-If_Jf0M7gnCFl3o-BHstN-2_jkio9bO4K5eHc9gN1u8W6zoevzlwxKvi-Xpp7NZZyc_APOfCjc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2B7jwRgQKGAmEBIqIH0mcA0ILtNrSdoWqVuotdWKvVClNCslquz_FNzKTx5aH2FuPUcbOxDMez3heAK9MzjMbB8bPskT5yjjj60zN_MyGieYqRqWBspEPptHkWH09CU824OeQC0NhlYNMbAW1rXK6I3_PdRSiqSCT8OPFd5-6RpF3dWih0bHFnlsu0GSrP-x-Qfq-FmJn--jzxO-7Cvi5Erzxo0AYk5H3KkisdsjvOgwtFzMhpYjzGO0bG-WBtLlW2ipnyHMVWYH_lEi0pyTOewM2FWW0jmDz0_b02-FK9ssu-Y68i75KIjX4UYO2bCmPKAwCLXiZSP_yj5Pw7_PgH8dse97t3IXbvaLKxh1n3YMNV96HO73SynqRUD-AxZiV887tU7Czq6odVYlPTcVQwWR90AirZuzQLcuqsDXrWpEwBCOIWVEt2LmjNOSz-hxHWmQ5y7IlM6yZIyDiYFnRRfwzugN8CMfXsu6PYFRWpXsMLI8zabjWmTBKCYM8oaWJTBwm0gmeGw-CYWXTvC91Th03inRVpLklRkrhbUSM9NKDt6shF12dj3XAb4hcKckAnDc3fSoDYkfVtNIxmpFoGsZceLA1UDTthUOdXrGyBy9Xr3Fbk6_GlK6atzBaSh7Gch2MbjV-HnnwbuCW3z7zP_SfrEfqBdycHB3sp_u7072ncEuQHtOGqW_BqPkxd89QC2uy5z3rMzi97t32C61lPvY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQw0CpFQrxwIwIFjARCAlmNj8TOA0IrytJSqBCiUt9Sx3akSmlSyK62-2t8HTM5thxi3_oYZew4nvEcnouQ59bxwuvYsqLIFFM2WGYKVbLCJ5nhSoPSgNnInw_S3UP18Sg52iA_x1wYDKsceWLHqH3j8I58m5s0AVNBZsl2OYRFfNmZvj37zrCDFHpax3YaPYnsh-UCzLf2zd4O4PqFENP3397tsqHDAHNK8BlLY2FtgZ6sOPMmAO2bJPFclEJKoZ0GW8enLpbeGWW8Cha9WKkX8H-ZBNtKwrxXyFUtdYaGn5l-WEkB2afhoZ-RqSxVo0c17gqY8hQDIsCWl5lk53_IxL8lwz8u2k7yTW-RG4PKSic9jd0mG6G-Q24O6isdmEN7lywmtJ73DqCKnlzU72hqeJo1FFRNOoSP0KakX8Oybirf0r4pCQUwhCirZkFPAyYkn7SnMNID8XlaLKmlszkAwho8rfrYf4q3gffI4aXs-n2yWTd1eECo04W03JhCWKWEBeow0qZWJ5kMgjsbkXjc2dwNRc-x90aVr8o1d8jIMdANkZGfR-TVashZX_FjHfBLRFeO3ADmdXZIaoDVYV2tfAIGJRiJmouIbI0YzQc20eYXRB2RZ6vXcMDRa2Pr0Mw7GCMlT7RcB2M63Z-nEXk9Ustvn_nf8h-uX9RTcg3OWP5p72D_EbkuUKHp4tW3yObsxzw8BnVsVjzp6J6S48s-aL8ATZ9Bxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+investigation+into+the+effects+of+Reynolds+number+on+the+flow+mechanism+induced+by+a+tubercled+leading+edge&rft.jtitle=Theoretical+and+computational+fluid+dynamics&rft.au=Rostamzadeh%2C+Nikan&rft.au=Kelso%2C+Richard+M&rft.au=Dally%2C+Bassam&rft.date=2017-02-01&rft.issn=0935-4964&rft.eissn=1432-2250&rft.volume=31&rft.issue=1&rft.spage=1&rft.epage=32&rft_id=info:doi/10.1007%2Fs00162-016-0393-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-4964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-4964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-4964&client=summon