Imprecision farming? Examining the (in)accuracy and risks of digital agriculture
The myriad potential benefits of digital farming hinge on the promise of increased accuracy, which allows ‘doing more with less’ through precise, data-driven operations. Yet, precision farming's foundational claim of increased accuracy has hardly been the subject of comprehensive examination. D...
Saved in:
Published in | Journal of rural studies Vol. 86; pp. 623 - 632 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elmsford
Elsevier Ltd
01.08.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0743-0167 1873-1392 |
DOI | 10.1016/j.jrurstud.2021.07.024 |
Cover
Abstract | The myriad potential benefits of digital farming hinge on the promise of increased accuracy, which allows ‘doing more with less’ through precise, data-driven operations. Yet, precision farming's foundational claim of increased accuracy has hardly been the subject of comprehensive examination. Drawing on social science studies of big data, this article examines digital agriculture's (in)accuracies and their repercussions. Based on an examination of the daily functioning of the various components of yield mapping, it finds that digital farming is often ‘precisely inaccurate’, with the high volume and granularity of big data erroneously equated with high accuracy. The prevailing discourse of ‘ultra-precise’ digital technologies ignores farmers' essential efforts in making these technologies more accurate, via calibration, corroboration and interpretation. We suggest that there is the danger of a ‘precision trap’. Namely, an exaggerated belief in the precision of big data that over time leads to an erosion of checks and balances (analogue data, farmer observation et cetera) on farms. The danger of ‘precision traps’ increases with the opacity of algorithms, with shifts from real-time measurement and advice towards forecasting, and with farmers' increased remoteness from field operations. Furthermore, we identify an emerging ‘precision divide’: unequally distributed precision benefits resulting from the growing algorithmic divide between farmers focusing on staple crops, catered well by technological innovation on the one hand, and farmers cultivating other crops, who have to make do with much less advanced or applicable algorithms on the other. Consequently, for the latter farms digital farming may feel more like ‘imprecision farming’.
•Precision farming's foundational claim of ‘accuracy’ has not been comprehensively examined.•Digital farming is often ‘precisely inaccurate’, which, if overlooked, can lead to substantial risks.•We identify a ‘precision trap’: the exaggerated belief in the precision of big data which can erode checks and balances.•We see a ‘precision divide’ as benefits from precision are unequally distributed between farmers. |
---|---|
AbstractList | The myriad potential benefits of digital farming hinge on the promise of increased accuracy, which allows ‘doing more with less’ through precise, data-driven operations. Yet, precision farming's foundational claim of increased accuracy has hardly been the subject of comprehensive examination. Drawing on social science studies of big data, this article examines digital agriculture's (in)accuracies and their repercussions. Based on an examination of the daily functioning of the various components of yield mapping, it finds that digital farming is often ‘precisely inaccurate’, with the high volume and granularity of big data erroneously equated with high accuracy. The prevailing discourse of ‘ultra-precise’ digital technologies ignores farmers' essential efforts in making these technologies more accurate, via calibration, corroboration and interpretation. We suggest that there is the danger of a ‘precision trap’. Namely, an exaggerated belief in the precision of big data that over time leads to an erosion of checks and balances (analogue data, farmer observation et cetera) on farms. The danger of ‘precision traps’ increases with the opacity of algorithms, with shifts from real-time measurement and advice towards forecasting, and with farmers' increased remoteness from field operations. Furthermore, we identify an emerging ‘precision divide’: unequally distributed precision benefits resulting from the growing algorithmic divide between farmers focusing on staple crops, catered well by technological innovation on the one hand, and farmers cultivating other crops, who have to make do with much less advanced or applicable algorithms on the other. Consequently, for the latter farms digital farming may feel more like ‘imprecision farming’.
•Precision farming's foundational claim of ‘accuracy’ has not been comprehensively examined.•Digital farming is often ‘precisely inaccurate’, which, if overlooked, can lead to substantial risks.•We identify a ‘precision trap’: the exaggerated belief in the precision of big data which can erode checks and balances.•We see a ‘precision divide’ as benefits from precision are unequally distributed between farmers. The myriad potential benefits of digital farming hinge on the promise of increased accuracy, which allows 'doing more with less' through precise, data-driven operations. Yet, precision farming's foundational claim of increased accuracy has hardly been the subject of comprehensive examination. Drawing on social science studies of big data, this article examines digital agriculture's (in)accuracies and their repercussions. Based on an examination of the daily functioning of the various components of yield mapping, it finds that digital farming is often 'precisely inaccurate', with the high volume and granularity of big data erroneously equated with high accuracy. The prevailing discourse of 'ultra-precise' digital technologies ignores farmers' essential efforts in making these technologies more accurate, via calibration, corroboration and interpretation. We suggest that there is the danger of a 'precision trap'. Namely, an exaggerated belief in the precision of big data that over time leads to an erosion of checks and balances (analogue data, farmer observation et cetera) on farms. The danger of 'precision traps' increases with the opacity of algorithms, with shifts from real-time measurement and advice towards forecasting, and with farmers' increased remoteness from field operations. Furthermore, we identify an emerging 'precision divide': unequally distributed precision benefits resulting from the growing algorithmic divide between farmers focusing on staple crops, catered well by technological innovation on the one hand, and farmers cultivating other crops, who have to make do with much less advanced or applicable algorithms on the other. Consequently, for the latter farms digital farming may feel more like 'imprecision farming'. |
Author | Visser, Oane Sippel, Sarah Ruth Thiemann, Louis |
Author_xml | – sequence: 1 givenname: Oane surname: Visser fullname: Visser, Oane organization: International Institute of Social Studies, The Hague, the Netherlands – sequence: 2 givenname: Sarah Ruth surname: Sippel fullname: Sippel, Sarah Ruth email: sippel@uni-leipzig.de organization: Institute of Cultural Anthropology & SFB 1199, Leipzig University, Leipzig, Germany – sequence: 3 givenname: Louis surname: Thiemann fullname: Thiemann, Louis organization: International Institute of Social Studies, The Hague, the Netherlands |
BookMark | eNqFkU1L7TAQhoMoePz4CxK4G120ZpKmaeGCivgFgi50HdI0Oab2pMckFf33Rs69GzeuZhbP-zI8s4e2_eQNQkdASiBQnw7lEOYQ09yXlFAoiSgJrbbQAhrBCmAt3UYLIipWZFrsor0YB0JAkJYu0OPdah2MdtFNHlsVVs4vz_DVh8pLXnF6MfjY-ROl9RyU_sTK9zi4-BrxZHHvli6pEatlcHoe0xzMAdqxaozm8N_cR8_XV0-Xt8X9w83d5cV9oSsKqeAWgHPWGGB1RZQ2XdUDFcA1b5klTHBRadrVraqh6XuurGGUiJZ2XWcpsWwfHW9612F6m01McuWiNuOovJnmKGmdi9sGKp7RPz_QYZqDz9dJyhtBSdMCzVS9oXSYYgzGynVwKxU-JRD5LVoO8r9o-S1aEiGz6Bz8-yOos5SUhaag3Ph7_HwTN9nWuzNBRu2M16Z3-TFJ9pP7reILQ5CgVA |
CitedBy_id | crossref_primary_10_1016_j_atech_2022_100139 crossref_primary_10_1186_s13620_023_00245_w crossref_primary_10_1080_03066150_2023_2232997 crossref_primary_10_53376_ap_2025_07 crossref_primary_10_1111_rego_12571 crossref_primary_10_3390_drones6050112 crossref_primary_10_1016_j_heliyon_2022_e09369 crossref_primary_10_1080_00167428_2023_2261283 crossref_primary_10_1016_j_iot_2023_100898 crossref_primary_10_3917_recma_366_0045 crossref_primary_10_1016_j_agsy_2023_103616 crossref_primary_10_1016_j_agsy_2022_103533 crossref_primary_10_1016_j_agsy_2023_103656 crossref_primary_10_3390_s24247894 crossref_primary_10_1007_s10460_023_10416_8 crossref_primary_10_1016_j_saa_2024_124820 crossref_primary_10_1007_s10460_024_10566_3 crossref_primary_10_3390_su16062590 crossref_primary_10_4000_11s0w crossref_primary_10_3390_app14051811 crossref_primary_10_1080_00779954_2022_2147861 crossref_primary_10_3390_agriculture15030258 crossref_primary_10_3390_info15010022 crossref_primary_10_1088_1755_1315_935_1_012036 crossref_primary_10_1016_j_techfore_2024_123299 crossref_primary_10_3390_su16052194 crossref_primary_10_1079_cabireviews_2023_0002 crossref_primary_10_1016_j_techsoc_2023_102373 crossref_primary_10_4000_11s11 crossref_primary_10_1007_s11119_022_09979_z crossref_primary_10_3917_res_244_0117 crossref_primary_10_1111_soru_12456 crossref_primary_10_1016_j_jrurstud_2023_103065 crossref_primary_10_1111_soru_12492 crossref_primary_10_3390_su17052227 crossref_primary_10_1145_3637416 crossref_primary_10_3390_su152215815 crossref_primary_10_1016_j_atech_2024_100516 crossref_primary_10_1016_j_jrurstud_2023_103023 crossref_primary_10_1080_03066150_2022_2163164 crossref_primary_10_1080_03066150_2024_2429480 crossref_primary_10_1016_j_jrurstud_2022_12_004 crossref_primary_10_1007_s10460_023_10435_5 crossref_primary_10_3389_frsus_2023_1231684 crossref_primary_10_1002_fes3_483 crossref_primary_10_3389_fmars_2024_1376256 crossref_primary_10_48084_etasr_4667 crossref_primary_10_1080_03066150_2022_2113779 crossref_primary_10_3390_su16114431 crossref_primary_10_1007_s10460_022_10357_8 crossref_primary_10_1016_j_jbusres_2024_115166 crossref_primary_10_1016_j_atech_2024_100404 crossref_primary_10_1177_14614448231174521 crossref_primary_10_1080_23311932_2024_2422529 |
Cites_doi | 10.1177/2053951716679677 10.1002/asi.23294 10.1002/jsfa.9346 10.1080/1369118X.2016.1154087 10.2148/benv.42.3.457 10.1007/s12571-012-0213-0 10.1016/j.geoforum.2012.09.003 10.1177/2053951715602495 10.1080/03066150.2017.1415887 10.1177/2053951719858751 10.1177/2053951714528481 10.1007/s10291-012-0264-x 10.1016/j.futures.2018.11.001 10.1016/j.jrurstud.2019.01.023 10.1177/2053951716658061 10.1177/2053951719849444 10.1007/s11119-010-9197-y 10.1126/science.1248506 10.2134/agronj2006.0326 10.1007/s13347-017-0265-3 10.1080/1369118X.2012.678878 10.1177/2053951715622512 10.1016/j.jrurstud.2016.03.009 10.24908/ss.v16i3.12594 10.1177/2053951719858743 10.1016/j.jrurstud.2017.08.011 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright Elsevier Science Ltd. Aug 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright Elsevier Science Ltd. Aug 2021 |
DBID | AAYXX CITATION 7ST 7U4 7U6 8BJ BHHNA C1K DWI FQK JBE WZK 7S9 L.6 |
DOI | 10.1016/j.jrurstud.2021.07.024 |
DatabaseName | CrossRef Environment Abstracts Sociological Abstracts (pre-2017) Sustainability Science Abstracts International Bibliography of the Social Sciences (IBSS) Sociological Abstracts Environmental Sciences and Pollution Management Sociological Abstracts International Bibliography of the Social Sciences International Bibliography of the Social Sciences Sociological Abstracts (Ovid) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Sociological Abstracts (pre-2017) International Bibliography of the Social Sciences (IBSS) Environment Abstracts Sustainability Science Abstracts Sociological Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Sociological Abstracts (pre-2017) AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Sociology & Social History Agriculture |
EISSN | 1873-1392 |
EndPage | 632 |
ExternalDocumentID | 10_1016_j_jrurstud_2021_07_024 S0743016721002217 |
GroupedDBID | --K --M ..I .~1 07C 0R~ 1B1 1RT 1~. 1~5 29L 3EH 3R3 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JO AABNK AABVA AACTN AAEDT AAEDW AAFJI AAGJQ AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABFYP ABGRD ABJNI ABLST ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMY HVGLF HZ~ IHE J1W KCYFY KOM LW9 M3Y M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ RXW SAB SDF SDG SDP SES SEW SPCBC SSA SSB SSJ SSO SSS SSZ T5K TAE TN5 UNMZH WUQ XOL Y6R ZY4 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7U4 7U6 8BJ BHHNA C1K DWI EFKBS FQK JBE WZK 7S9 L.6 |
ID | FETCH-LOGICAL-c421t-5f115538e13640aceb4d12715c593f037574c2b69a618dd5afe320792bbbf20f3 |
IEDL.DBID | AIKHN |
ISSN | 0743-0167 |
IngestDate | Thu Sep 04 19:10:29 EDT 2025 Wed Aug 13 04:07:48 EDT 2025 Tue Jul 01 01:57:42 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Fri Feb 23 02:43:38 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Precision agriculture Smart farming Accuracy Big data Digital agriculture |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-5f115538e13640aceb4d12715c593f037574c2b69a618dd5afe320792bbbf20f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0743016721002217 |
PQID | 2587208912 |
PQPubID | 2036566 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2636498145 proquest_journals_2587208912 crossref_primary_10_1016_j_jrurstud_2021_07_024 crossref_citationtrail_10_1016_j_jrurstud_2021_07_024 elsevier_sciencedirect_doi_10_1016_j_jrurstud_2021_07_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationPlace | Elmsford |
PublicationPlace_xml | – name: Elmsford |
PublicationTitle | Journal of rural studies |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Knox, Nafus (bib35) 2018 Seeds (bib59) 2020 Jakku, Taylor, Fleming, Mason, Fielke, Sounness, Thorburn (bib27) 2019; vol. 90 Cheshire, Woods (bib8) 2013; 44 Karsten (bib29) 2020 Johnson (bib28) 2017 McIntosh (bib46) 2020; 105 Dudhwala, Larsen (bib10) 2019; 6 Staalduinen (bib62) 2020; vol. 4 Knuivers (bib36) 2016 Kitchin (bib32) 2017; 20 Proagrico (bib52) (bib13) 2019 Sudduth, Drummond (bib64) 2007; 99 Lerink, Klompe (bib42) 2016 Carbonell (bib7) 2016; 4 Kuns, Visser, Wästfelt (bib39) 2016; 45 Bos, Janssen (bib2) 2019; 24 (bib20) 2013 McFarland, McFarland (bib45) 2015; 2 Meer (bib47) 2020; 105 Keogh, Henry (bib30) 2016 Lazer, Kennedy, King, Vespignani (bib41) 2014 Shi, Zhao, Hu, Liu (bib61) 2013 (bib12) 2017 Hart (bib21) 2015 Bronson (bib4) 2019; 90 Boyd, Crawford (bib3) 2012; 15 Diakopoulos (bib9) 2013 Higgins, Bryant, Howell, Battersby (bib23) 2017; 55 Rijswijk, Klerkx, Turner (bib55) 2019; 90–91 Stevens (bib63) 2020; 105 Sumberg (bib65) 2012; 4 Dufva, Dufva (bib11) 2018; 107 Garnett (bib18) 2016; 3 Boerderij (bib1) 2021; 106 Kitchin (bib31) 2014; 1 Tsouvalis, Seymour, Watkins (bib68) 2000 Rotz, Gravely, Mosby, Duncan, Finnis, Horgan, LeBlanc, Martin, Neufeld, Nixon, Pant (bib56) 2019; 68 Burke (bib5) 2019; 6 Mustatea (bib50) 2015 Tholhuijsen (bib66) 2019; 105 Fielke, Taylor, Jakku (bib15) 2020; 180 Heijting, De Bruin, Bregt (bib22) 2011; 12 Shepherd, Turner, Small, Wheeler (bib60) 2020; 100 Klauser (bib34) 2018; 16 Puri (bib53) 2016 Said-Rubio, Rovira-Más (bib57) 2020; 10 McArdle, Kitchin (bib44) 2016; 42 (bib25) 2015 Fraser (bib16) 2019; 46 Rankin (bib54) 2020 Ekbia, Mattioli, Kouper, Arave, Ghazinejad, Bowman, Ratandeep Suri, Tsou, Weingart, Sugimoto (bib14) 2015; 66 Ingram, Maye (bib26) 2020; 4 Koerhuis (bib37) 2020; 105 Pasquale (bib51) 2015 Yu (bib70) 2020; 72 Meijering (bib48) 2016 Hosni, Vulpiani (bib24) 2018; 31 Schimpf, Diamond (bib58) 2020 Kwan (bib40) 2016; 106 Tholhuijsen (bib67) 2020; 105 Gabrys, Pritchard, Barrat (bib17) 2016; 3 Koerhuis (bib38) 2020; 105 Global Network for the Right to Food and Nutrition (bib19) 2018 Markwell (bib43) 2016 van der Velden (bib69) 2019 Miles (bib49) 2019; 6 Kitchin, Lauriault (bib33) 2014 Burrell (bib6) 2016; 3 Proagrico (10.1016/j.jrurstud.2021.07.024_bib52) Knuivers (10.1016/j.jrurstud.2021.07.024_bib36) 2016 Koerhuis (10.1016/j.jrurstud.2021.07.024_bib38) 2020; 105 Schimpf (10.1016/j.jrurstud.2021.07.024_bib58) 2020 Hosni (10.1016/j.jrurstud.2021.07.024_bib24) 2018; 31 Staalduinen (10.1016/j.jrurstud.2021.07.024_bib62) 2020; vol. 4 McFarland (10.1016/j.jrurstud.2021.07.024_bib45) 2015; 2 Karsten (10.1016/j.jrurstud.2021.07.024_bib29) 2020 Jakku (10.1016/j.jrurstud.2021.07.024_bib27) 2019; vol. 90 Global Network for the Right to Food and Nutrition (10.1016/j.jrurstud.2021.07.024_bib19) 2018 Shepherd (10.1016/j.jrurstud.2021.07.024_bib60) 2020; 100 Rotz (10.1016/j.jrurstud.2021.07.024_bib56) 2019; 68 Johnson (10.1016/j.jrurstud.2021.07.024_bib28) 2017 Pasquale (10.1016/j.jrurstud.2021.07.024_bib51) 2015 Miles (10.1016/j.jrurstud.2021.07.024_bib49) 2019; 6 Stevens (10.1016/j.jrurstud.2021.07.024_bib63) 2020; 105 Knox (10.1016/j.jrurstud.2021.07.024_bib35) 2018 Yu (10.1016/j.jrurstud.2021.07.024_bib70) 2020; 72 Diakopoulos (10.1016/j.jrurstud.2021.07.024_bib9) 2013 McArdle (10.1016/j.jrurstud.2021.07.024_bib44) 2016; 42 Fraser (10.1016/j.jrurstud.2021.07.024_bib16) 2019; 46 Tholhuijsen (10.1016/j.jrurstud.2021.07.024_bib66) 2019; 105 Higgins (10.1016/j.jrurstud.2021.07.024_bib23) 2017; 55 Bos (10.1016/j.jrurstud.2021.07.024_bib2) 2019; 24 Lerink (10.1016/j.jrurstud.2021.07.024_bib42) 2016 Puri (10.1016/j.jrurstud.2021.07.024_bib53) 2016 van der Velden (10.1016/j.jrurstud.2021.07.024_bib69) 2019 Dudhwala (10.1016/j.jrurstud.2021.07.024_bib10) 2019; 6 Boyd (10.1016/j.jrurstud.2021.07.024_bib3) 2012; 15 Hart (10.1016/j.jrurstud.2021.07.024_bib21) 2015 Heijting (10.1016/j.jrurstud.2021.07.024_bib22) 2011; 12 Burrell (10.1016/j.jrurstud.2021.07.024_bib6) 2016; 3 (10.1016/j.jrurstud.2021.07.024_bib12) 2017 Koerhuis (10.1016/j.jrurstud.2021.07.024_bib37) 2020; 105 Ingram (10.1016/j.jrurstud.2021.07.024_bib26) 2020; 4 Cheshire (10.1016/j.jrurstud.2021.07.024_bib8) 2013; 44 Rankin (10.1016/j.jrurstud.2021.07.024_bib54) 2020 Said-Rubio (10.1016/j.jrurstud.2021.07.024_bib57) 2020; 10 Rijswijk (10.1016/j.jrurstud.2021.07.024_bib55) 2019; 90–91 Boerderij (10.1016/j.jrurstud.2021.07.024_bib1) 2021; 106 Carbonell (10.1016/j.jrurstud.2021.07.024_bib7) 2016; 4 Seeds (10.1016/j.jrurstud.2021.07.024_bib59) 2020 (10.1016/j.jrurstud.2021.07.024_bib20) 2013 Sumberg (10.1016/j.jrurstud.2021.07.024_bib65) 2012; 4 Lazer (10.1016/j.jrurstud.2021.07.024_bib41) 2014 Meijering (10.1016/j.jrurstud.2021.07.024_bib48) 2016 Keogh (10.1016/j.jrurstud.2021.07.024_bib30) 2016 Kitchin (10.1016/j.jrurstud.2021.07.024_bib32) 2017; 20 Meer (10.1016/j.jrurstud.2021.07.024_bib47) 2020; 105 Mustatea (10.1016/j.jrurstud.2021.07.024_bib50) 2015 Gabrys (10.1016/j.jrurstud.2021.07.024_bib17) 2016; 3 Kwan (10.1016/j.jrurstud.2021.07.024_bib40) 2016; 106 Kitchin (10.1016/j.jrurstud.2021.07.024_bib31) 2014; 1 Markwell (10.1016/j.jrurstud.2021.07.024_bib43) 2016 Ekbia (10.1016/j.jrurstud.2021.07.024_bib14) 2015; 66 Klauser (10.1016/j.jrurstud.2021.07.024_bib34) 2018; 16 Dufva (10.1016/j.jrurstud.2021.07.024_bib11) 2018; 107 Kitchin (10.1016/j.jrurstud.2021.07.024_bib33) 2014 (10.1016/j.jrurstud.2021.07.024_bib13) 2019 McIntosh (10.1016/j.jrurstud.2021.07.024_bib46) 2020; 105 Shi (10.1016/j.jrurstud.2021.07.024_bib61) 2013 Garnett (10.1016/j.jrurstud.2021.07.024_bib18) 2016; 3 Kuns (10.1016/j.jrurstud.2021.07.024_bib39) 2016; 45 Tholhuijsen (10.1016/j.jrurstud.2021.07.024_bib67) 2020; 105 (10.1016/j.jrurstud.2021.07.024_bib25) 2015 Bronson (10.1016/j.jrurstud.2021.07.024_bib4) 2019; 90 Fielke (10.1016/j.jrurstud.2021.07.024_bib15) 2020; 180 Sudduth (10.1016/j.jrurstud.2021.07.024_bib64) 2007; 99 Burke (10.1016/j.jrurstud.2021.07.024_bib5) 2019; 6 Tsouvalis (10.1016/j.jrurstud.2021.07.024_bib68) 2000 |
References_xml | – volume: 105 start-page: A12 year: 2020 end-page: A14 ident: bib47 article-title: Eerste stappen bij precisiespuiten gezet publication-title: Boerderij – year: 2015 ident: bib50 article-title: 5 reasons why your data analysis is inaccurate publication-title: Big Step – volume: 105 start-page: 22 year: 2020 end-page: 24 ident: bib38 article-title: Flinke vooruitgang en besparing gerealiseerd publication-title: Boerderij – volume: 72 start-page: 331 year: 2020 end-page: 389 ident: bib70 article-title: The algorithmic divide and equality in the age of artificial intelligence publication-title: Fla. Law Rev. – volume: 3 start-page: 1 year: 2016 end-page: 12 ident: bib18 article-title: Developing a feeling for error: practices of monitoring and modelling air pollution data publication-title: Big Data and Society – year: 2018 ident: bib19 article-title: When Food Becomes Immaterial: Confronting the Digital Age. Right to Food and Nutrition Watch 10 – volume: 46 start-page: 893 year: 2019 end-page: 912 ident: bib16 article-title: Land grab/data grab: precision agriculture and its new horizons. J publication-title: Peasant Stud. – volume: 31 start-page: 557 year: 2018 end-page: 569 ident: bib24 article-title: Forecasting in the light of big data publication-title: Philly Tech. – start-page: 1 year: 2018 end-page: 32 ident: bib35 article-title: Introduction: ethnography for a data-satured world publication-title: Ethnography for a Data-Satured World – start-page: 34 year: 2016 end-page: 35 ident: bib48 article-title: Tien ton aardappelen meer met TT+ concept publication-title: Boerderij-Akkerbouw Plus – year: 2020 ident: bib59 article-title: How to calibrate your yield monitor. LG Seeds – volume: 24 year: 2019 ident: bib2 article-title: Maxim Februari: vroeger las je de krant, nu word je door de krant gelezen publication-title: Vrij Nederland – year: 2016 ident: bib53 article-title: John Deere leads the way with IoT-driven precision farming publication-title: Netw. World – volume: 99 start-page: 1471 year: 2007 end-page: 1482 ident: bib64 article-title: Yield editor: software for removing errors from crop yield maps publication-title: Agron. J. – year: 2014 ident: bib33 article-title: Towards critical data studies: charting and unpacking data assemblages and their work publication-title: The Programmable City Working Paper 2 – volume: 106 start-page: 40 year: 2021 ident: bib1 article-title: Dagelijkse check op functioneren melkrobot publication-title: Boerderij – volume: 4 start-page: 1 year: 2016 end-page: 13 ident: bib7 article-title: The ethics of big data in big agriculture publication-title: Internet Policy Rev. – year: 2015 ident: bib21 article-title: Efficiency, accuracy biggest advantages of precision agriculture publication-title: Farm Progress – year: 2019 ident: bib13 article-title: EU member states join forces on digitalisation for European agriculture and rural areas publication-title: Digibyte – year: 2017 ident: bib28 article-title: Opinion: benchmarking in precision agriculture is big statistics publication-title: PrecisionAg – volume: vol. 4 start-page: 51 year: 2020 end-page: 52 ident: bib62 article-title: Crop manager lucas aertsen: ‘slab sensors firm up decision-making’ publication-title: Greenhouses – volume: 3 start-page: 1 year: 2016 end-page: 14 ident: bib17 article-title: Just good enough data: figuring data citizenships through air pollution sensing and data stories publication-title: Big Data Soc. – volume: 68 start-page: 112 year: 2019 end-page: 122 ident: bib56 article-title: Automated pastures and the digital divide: how agricultural technologies are shaping labour and rural communities publication-title: J. Rural Stud. – year: 2016 ident: bib30 article-title: The Implications of Digital Agriculture and Big Data for Australian Agriculture – year: 2017 ident: bib12 article-title: Precision Agriculture. Sowing the seeds of the new agricultural revolution publication-title: Community Research and Development Information Service (CORDIS) – volume: 4 start-page: 66 year: 2020 ident: bib26 article-title: What are the implications of digitalisation for agricultural knowledge? Frontiers sust publication-title: Food Sys – year: 2013 ident: bib9 article-title: Algorithmic accountability reporting: on the investigation of black boxes publication-title: Tow Center of Digital Journalism – year: 2015 ident: bib51 article-title: The Black Box Society. The Secret Algorithms that Control Money and Information – year: 2020 ident: bib54 article-title: The accuracy trap: the values and meaning of algorithmic mapping, from mineral extraction to climate change publication-title: Environ. Hist.-UK., forthcoming – ident: bib52 article-title: n.d. How precision agriculture is driving data-gathering on farms – volume: 105 start-page: 50 year: 2020 end-page: 52 ident: bib37 article-title: Veel gedaan en getest: conclusies trekken lastig publication-title: Boerderij – year: 2016 ident: bib43 article-title: What is agriculture 4.0. L'Informatore Agrario – start-page: 909 year: 2000 end-page: 924 ident: bib68 article-title: Exploring knowledge-cultures: precision farming, yield mapping, and the expert-farmer interface publication-title: Environ. Times – volume: 20 start-page: 14 year: 2017 end-page: 29 ident: bib32 article-title: Thinking critically about and researching algorithms publication-title: Inf. Commun. Soc. – volume: 2 start-page: 1 year: 2015 end-page: 4 ident: bib45 article-title: Big data and the danger of being precisely inaccurate publication-title: Big Data Soc. – year: 2015 ident: bib25 article-title: S-Series yield calibration publication-title: Youtube – volume: 105 start-page: A12 year: 2020 end-page: A14 ident: bib67 article-title: Variable dosering kan middelen behouden publication-title: Boerderij – year: 2019 ident: bib69 article-title: The Recontextualisation of Precision Agriculture to the Dutch Crop Farming Sector – volume: 55 start-page: 193 year: 2017 end-page: 202 ident: bib23 article-title: Ordering adoption: materiality, knowledge and farmer engagement with precision agriculture technologies publication-title: J. Rural Stud. – volume: 105 start-page: A20 year: 2020 end-page: A22 ident: bib63 article-title: Vertraging door problemen met drone publication-title: Boerderij – volume: 6 start-page: 1 year: 2019 end-page: 12 ident: bib49 article-title: The combine will tell the truth: on precision agriculture and algorithmic rationality publication-title: Big Data Soc. – volume: 42 start-page: 457 year: 2016 end-page: 473 ident: bib44 article-title: Improving the veracity of open and real-time urban data publication-title: Built. Environ. – volume: 1 start-page: 1 year: 2014 end-page: 12 ident: bib31 article-title: Big Data, new epistemologies and paradigm shifts publication-title: Big Data Soc. – volume: 15 start-page: 662 year: 2012 end-page: 679 ident: bib3 article-title: Critical questions for big data: provocations for a cultural, technological and scholarly phenomenon publication-title: Inf. Commun. Soc. – volume: 10 start-page: 1 year: 2020 end-page: 21 ident: bib57 article-title: From smart farming towards Agriculture 5.0: a review of crop data management publication-title: Agron. J. – year: 2020 ident: bib58 article-title: Digital Farming. Can Digital Farming Really Address the Systemic Cause of Agriculture's Impact on the Environment and Society, or Will it Entrench Them? – volume: 44 start-page: 232 year: 2013 end-page: 242 ident: bib8 article-title: Globally engaged farmers as transnational actors: navigating the landscape of agri-food globalization publication-title: Geoforum – volume: 90 start-page: 100294 year: 2019 ident: bib4 article-title: Looking through a responsible innovation lens at uneven engagements with digital farming publication-title: Wageningen J. of Life Sc – start-page: 103 year: 2013 end-page: 119 ident: bib61 article-title: Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites publication-title: GPS solutions 17(1) – year: 2020 ident: bib29 article-title: GPS-test: Vooral Verschil in Bedieningsgemak – volume: 66 start-page: 1523 year: 2015 end-page: 1545 ident: bib14 article-title: Big data, bigger dilemmas: a critical review publication-title: J. Assoc. Inf. Sci. Tech – volume: 180 start-page: 102763 year: 2020 ident: bib15 article-title: Digitalisation of agricultural knowledge and advice networks: a state-of-the-art review. Agric publication-title: System – volume: 12 start-page: 488 year: 2011 end-page: 507 ident: bib22 article-title: The arable farmer as the assessor of within-field soil variation publication-title: Precis. Agric. – volume: 105 start-page: 42 year: 2020 end-page: 44 ident: bib46 article-title: Opbrengstmeting staat nog in de kinderschoenen publication-title: Boerderij – volume: 105 start-page: A20 year: 2019 end-page: A22 ident: bib66 article-title: Zelflerend algoritme herkent onkruid steeds beter publication-title: Boerderij – year: 2013 ident: bib20 publication-title: Elements of Spatial Data Quality – volume: 107 start-page: 17 year: 2018 end-page: 28 ident: bib11 article-title: Grasping the future of the digital society publication-title: Futures – year: 2016 ident: bib42 article-title: Back to the roots. Visie en plan voor een integrale benadering voor duurzaam bodembeheer – volume: 4 start-page: 509 year: 2012 end-page: 518 ident: bib65 article-title: Mind the (yield) gap(s) publication-title: Food Sec – volume: 16 start-page: 370 year: 2018 end-page: 378 ident: bib34 article-title: Surveillance farm: towards a research agenda on big data agriculture publication-title: Surveill. Soc. – volume: 45 start-page: 199 year: 2016 end-page: 217 ident: bib39 article-title: The stock market and the steppe: the challenges faced by stock-market financed, Nordic farming ventures in Russia and Ukraine publication-title: J. Rural Stud. – volume: 3 start-page: 1 year: 2016 end-page: 12 ident: bib6 article-title: How the machine thinks: understanding opacity in machine learning algorithms publication-title: Big Data Soc. – volume: vol. 90 year: 2019 ident: bib27 article-title: “If they don't tell us what they do with it, why would we trust them?” trust, transparency and benefit-sharing in smart farming’ publication-title: Wageningen J. Life Sci. – volume: 106 start-page: 274 year: 2016 end-page: 282 ident: bib40 article-title: Algorithmic geographies: big data, algorithmic uncertainty, and the production of geographic knowledge publication-title: Ann. Assoc. Am. Geogr. – start-page: 28 year: 2016 end-page: 31 ident: bib36 article-title: Niet alles wat kan met gps, moet publication-title: Kritisch zijn op nut precisielandbouw technieken – volume: 6 start-page: 1 year: 2019 end-page: 15 ident: bib5 article-title: Occluded algorithms publication-title: Big Data Soc. – volume: 6 start-page: 1 year: 2019 end-page: 12 ident: bib10 article-title: Recalibration in counting and accounting practices: dealing with algorithmic output in public and private publication-title: Big Data Soc. – start-page: 1203 year: 2014 end-page: 1205 ident: bib41 article-title: The parable of Google flu: traps in big data analysis publication-title: Science 343(6176) – volume: 90–91 start-page: 100313 year: 2019 ident: bib55 article-title: Digitalisation in the New Zealand Agricultural Knowledge and Innovation System: initial understandings and emerging organisational responses to digital agriculture. Wageningen publication-title: J. Life Sci. – volume: 100 start-page: 5083 year: 2020 end-page: 5092 ident: bib60 article-title: Priorities for science to overcome hurdles thwarting the full promise of the “digital agriculture” revolution publication-title: J. Sci. Food Agric. – volume: 3 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib17 article-title: Just good enough data: figuring data citizenships through air pollution sensing and data stories publication-title: Big Data Soc. doi: 10.1177/2053951716679677 – volume: 66 start-page: 1523 issue: 8 year: 2015 ident: 10.1016/j.jrurstud.2021.07.024_bib14 article-title: Big data, bigger dilemmas: a critical review publication-title: J. Assoc. Inf. Sci. Tech doi: 10.1002/asi.23294 – volume: 105 start-page: A20 issue: 9 year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib63 article-title: Vertraging door problemen met drone publication-title: Boerderij – year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib54 article-title: The accuracy trap: the values and meaning of algorithmic mapping, from mineral extraction to climate change publication-title: Environ. Hist.-UK., forthcoming – ident: 10.1016/j.jrurstud.2021.07.024_bib52 – volume: 100 start-page: 5083 issue: 14 year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib60 article-title: Priorities for science to overcome hurdles thwarting the full promise of the “digital agriculture” revolution publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.9346 – start-page: 909 year: 2000 ident: 10.1016/j.jrurstud.2021.07.024_bib68 article-title: Exploring knowledge-cultures: precision farming, yield mapping, and the expert-farmer interface publication-title: Environ. Times – volume: 20 start-page: 14 issue: 1 year: 2017 ident: 10.1016/j.jrurstud.2021.07.024_bib32 article-title: Thinking critically about and researching algorithms publication-title: Inf. Commun. Soc. doi: 10.1080/1369118X.2016.1154087 – volume: 72 start-page: 331 year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib70 article-title: The algorithmic divide and equality in the age of artificial intelligence publication-title: Fla. Law Rev. – start-page: 34 year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib48 article-title: Tien ton aardappelen meer met TT+ concept publication-title: Boerderij-Akkerbouw Plus – volume: 42 start-page: 457 issue: 2 year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib44 article-title: Improving the veracity of open and real-time urban data publication-title: Built. Environ. doi: 10.2148/benv.42.3.457 – volume: 4 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib7 article-title: The ethics of big data in big agriculture publication-title: Internet Policy Rev. – start-page: 28 year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib36 article-title: Niet alles wat kan met gps, moet publication-title: Kritisch zijn op nut precisielandbouw technieken – year: 2013 ident: 10.1016/j.jrurstud.2021.07.024_bib9 article-title: Algorithmic accountability reporting: on the investigation of black boxes publication-title: Tow Center of Digital Journalism – year: 2015 ident: 10.1016/j.jrurstud.2021.07.024_bib51 – year: 2015 ident: 10.1016/j.jrurstud.2021.07.024_bib21 article-title: Efficiency, accuracy biggest advantages of precision agriculture publication-title: Farm Progress – volume: 4 start-page: 509 year: 2012 ident: 10.1016/j.jrurstud.2021.07.024_bib65 article-title: Mind the (yield) gap(s) publication-title: Food Sec doi: 10.1007/s12571-012-0213-0 – year: 2019 ident: 10.1016/j.jrurstud.2021.07.024_bib13 article-title: EU member states join forces on digitalisation for European agriculture and rural areas publication-title: Digibyte – volume: 106 start-page: 40 issue: 21 year: 2021 ident: 10.1016/j.jrurstud.2021.07.024_bib1 article-title: Dagelijkse check op functioneren melkrobot publication-title: Boerderij – volume: 106 start-page: 274 issue: 2 year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib40 article-title: Algorithmic geographies: big data, algorithmic uncertainty, and the production of geographic knowledge publication-title: Ann. Assoc. Am. Geogr. – year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib58 – volume: 44 start-page: 232 issue: 1 year: 2013 ident: 10.1016/j.jrurstud.2021.07.024_bib8 article-title: Globally engaged farmers as transnational actors: navigating the landscape of agri-food globalization publication-title: Geoforum doi: 10.1016/j.geoforum.2012.09.003 – year: 2015 ident: 10.1016/j.jrurstud.2021.07.024_bib25 article-title: S-Series yield calibration publication-title: Youtube – volume: 2 start-page: 1 issue: 2 year: 2015 ident: 10.1016/j.jrurstud.2021.07.024_bib45 article-title: Big data and the danger of being precisely inaccurate publication-title: Big Data Soc. doi: 10.1177/2053951715602495 – volume: 105 start-page: A12 issue: 34 year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib47 article-title: Eerste stappen bij precisiespuiten gezet publication-title: Boerderij – volume: 24 year: 2019 ident: 10.1016/j.jrurstud.2021.07.024_bib2 article-title: Maxim Februari: vroeger las je de krant, nu word je door de krant gelezen publication-title: Vrij Nederland – volume: vol. 90 year: 2019 ident: 10.1016/j.jrurstud.2021.07.024_bib27 article-title: “If they don't tell us what they do with it, why would we trust them?” trust, transparency and benefit-sharing in smart farming’ publication-title: Wageningen J. Life Sci. – volume: 46 start-page: 893 issue: 5 year: 2019 ident: 10.1016/j.jrurstud.2021.07.024_bib16 article-title: Land grab/data grab: precision agriculture and its new horizons. J publication-title: Peasant Stud. doi: 10.1080/03066150.2017.1415887 – volume: 6 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.jrurstud.2021.07.024_bib10 article-title: Recalibration in counting and accounting practices: dealing with algorithmic output in public and private publication-title: Big Data Soc. doi: 10.1177/2053951719858751 – volume: 90 start-page: 100294 year: 2019 ident: 10.1016/j.jrurstud.2021.07.024_bib4 article-title: Looking through a responsible innovation lens at uneven engagements with digital farming publication-title: Wageningen J. of Life Sc – year: 2017 ident: 10.1016/j.jrurstud.2021.07.024_bib12 article-title: Precision Agriculture. Sowing the seeds of the new agricultural revolution publication-title: Community Research and Development Information Service (CORDIS) – year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib29 – volume: 1 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.jrurstud.2021.07.024_bib31 article-title: Big Data, new epistemologies and paradigm shifts publication-title: Big Data Soc. doi: 10.1177/2053951714528481 – start-page: 103 year: 2013 ident: 10.1016/j.jrurstud.2021.07.024_bib61 article-title: Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites publication-title: GPS solutions 17(1) doi: 10.1007/s10291-012-0264-x – volume: 107 start-page: 17 year: 2018 ident: 10.1016/j.jrurstud.2021.07.024_bib11 article-title: Grasping the future of the digital society publication-title: Futures doi: 10.1016/j.futures.2018.11.001 – year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib59 – volume: 68 start-page: 112 year: 2019 ident: 10.1016/j.jrurstud.2021.07.024_bib56 article-title: Automated pastures and the digital divide: how agricultural technologies are shaping labour and rural communities publication-title: J. Rural Stud. doi: 10.1016/j.jrurstud.2019.01.023 – volume: 3 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib18 article-title: Developing a feeling for error: practices of monitoring and modelling air pollution data publication-title: Big Data and Society doi: 10.1177/2053951716658061 – volume: 180 start-page: 102763 year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib15 article-title: Digitalisation of agricultural knowledge and advice networks: a state-of-the-art review. Agric publication-title: System – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.jrurstud.2021.07.024_bib49 article-title: The combine will tell the truth: on precision agriculture and algorithmic rationality publication-title: Big Data Soc. doi: 10.1177/2053951719849444 – volume: 4 start-page: 66 year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib26 article-title: What are the implications of digitalisation for agricultural knowledge? Frontiers sust publication-title: Food Sys – start-page: 1 year: 2018 ident: 10.1016/j.jrurstud.2021.07.024_bib35 article-title: Introduction: ethnography for a data-satured world – volume: 105 start-page: 50 issue: 32 year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib37 article-title: Veel gedaan en getest: conclusies trekken lastig publication-title: Boerderij – year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib42 – volume: 12 start-page: 488 issue: 4 year: 2011 ident: 10.1016/j.jrurstud.2021.07.024_bib22 article-title: The arable farmer as the assessor of within-field soil variation publication-title: Precis. Agric. doi: 10.1007/s11119-010-9197-y – start-page: 1203 year: 2014 ident: 10.1016/j.jrurstud.2021.07.024_bib41 article-title: The parable of Google flu: traps in big data analysis publication-title: Science 343(6176) doi: 10.1126/science.1248506 – volume: 99 start-page: 1471 issue: 6 year: 2007 ident: 10.1016/j.jrurstud.2021.07.024_bib64 article-title: Yield editor: software for removing errors from crop yield maps publication-title: Agron. J. doi: 10.2134/agronj2006.0326 – volume: 31 start-page: 557 year: 2018 ident: 10.1016/j.jrurstud.2021.07.024_bib24 article-title: Forecasting in the light of big data publication-title: Philly Tech. doi: 10.1007/s13347-017-0265-3 – year: 2015 ident: 10.1016/j.jrurstud.2021.07.024_bib50 article-title: 5 reasons why your data analysis is inaccurate publication-title: Big Step – year: 2019 ident: 10.1016/j.jrurstud.2021.07.024_bib69 – year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib53 article-title: John Deere leads the way with IoT-driven precision farming publication-title: Netw. World – year: 2018 ident: 10.1016/j.jrurstud.2021.07.024_bib19 – volume: 15 start-page: 662 issue: 5 year: 2012 ident: 10.1016/j.jrurstud.2021.07.024_bib3 article-title: Critical questions for big data: provocations for a cultural, technological and scholarly phenomenon publication-title: Inf. Commun. Soc. doi: 10.1080/1369118X.2012.678878 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib6 article-title: How the machine thinks: understanding opacity in machine learning algorithms publication-title: Big Data Soc. doi: 10.1177/2053951715622512 – volume: 90–91 start-page: 100313 year: 2019 ident: 10.1016/j.jrurstud.2021.07.024_bib55 article-title: Digitalisation in the New Zealand Agricultural Knowledge and Innovation System: initial understandings and emerging organisational responses to digital agriculture. Wageningen publication-title: J. Life Sci. – volume: 105 start-page: A12 issue: 52 year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib67 article-title: Variable dosering kan middelen behouden publication-title: Boerderij – year: 2014 ident: 10.1016/j.jrurstud.2021.07.024_bib33 article-title: Towards critical data studies: charting and unpacking data assemblages and their work – volume: 105 start-page: A20 issue: 3 year: 2019 ident: 10.1016/j.jrurstud.2021.07.024_bib66 article-title: Zelflerend algoritme herkent onkruid steeds beter publication-title: Boerderij – volume: vol. 4 start-page: 51 year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib62 article-title: Crop manager lucas aertsen: ‘slab sensors firm up decision-making’ – volume: 45 start-page: 199 year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib39 article-title: The stock market and the steppe: the challenges faced by stock-market financed, Nordic farming ventures in Russia and Ukraine publication-title: J. Rural Stud. doi: 10.1016/j.jrurstud.2016.03.009 – year: 2013 ident: 10.1016/j.jrurstud.2021.07.024_bib20 – volume: 16 start-page: 370 issue: 3 year: 2018 ident: 10.1016/j.jrurstud.2021.07.024_bib34 article-title: Surveillance farm: towards a research agenda on big data agriculture publication-title: Surveill. Soc. doi: 10.24908/ss.v16i3.12594 – volume: 105 start-page: 42 issue: 47 year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib46 article-title: Opbrengstmeting staat nog in de kinderschoenen publication-title: Boerderij – year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib30 – volume: 105 start-page: 22 issue: 33 year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib38 article-title: Flinke vooruitgang en besparing gerealiseerd publication-title: Boerderij – year: 2017 ident: 10.1016/j.jrurstud.2021.07.024_bib28 article-title: Opinion: benchmarking in precision agriculture is big statistics publication-title: PrecisionAg – year: 2016 ident: 10.1016/j.jrurstud.2021.07.024_bib43 – volume: 6 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.jrurstud.2021.07.024_bib5 article-title: Occluded algorithms publication-title: Big Data Soc. doi: 10.1177/2053951719858743 – volume: 55 start-page: 193 year: 2017 ident: 10.1016/j.jrurstud.2021.07.024_bib23 article-title: Ordering adoption: materiality, knowledge and farmer engagement with precision agriculture technologies publication-title: J. Rural Stud. doi: 10.1016/j.jrurstud.2017.08.011 – volume: 10 start-page: 1 issue: 207 year: 2020 ident: 10.1016/j.jrurstud.2021.07.024_bib57 article-title: From smart farming towards Agriculture 5.0: a review of crop data management publication-title: Agron. J. |
SSID | ssj0017092 |
Score | 2.5459764 |
Snippet | The myriad potential benefits of digital farming hinge on the promise of increased accuracy, which allows ‘doing more with less’ through precise, data-driven... The myriad potential benefits of digital farming hinge on the promise of increased accuracy, which allows 'doing more with less' through precise, data-driven... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 623 |
SubjectTerms | Academic disciplines Accuracy Agricultural technology Agriculture Algorithms Analog data Big Data Checks and balances Corroboration Crops Digital agriculture Digital mapping Farmers Farming Farms Forecasting Innovations Mapping Measurement Opacity Precision agriculture Precision farming Smart farming Social sciences Technological change technology Threats Time measurement |
Title | Imprecision farming? Examining the (in)accuracy and risks of digital agriculture |
URI | https://dx.doi.org/10.1016/j.jrurstud.2021.07.024 https://www.proquest.com/docview/2587208912 https://www.proquest.com/docview/2636498145 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_a64O-FK2K19YSQUQftpdkk_14klJaTsUiaKFvIZ_HHbpX7gPal_7tZnazhxZKH3zc3Qy7zCQzs8nM7wfwriqsy00uM5YbnwlnaGYM9ZmTofAlk060G27fLorxpfhyJa-24LTvhcGyyuT7O5_eeut0Z5S0ObqeTkc_MPhhET1HFNGYWW_DDs_rQg5g5-Tz1_HF5jChpC03covGiQJ_NQrPjmeL-Fe-WiNoKGctjicXD8Woe966DUHnz2A35Y7kpPu857Dlmz140rcWL_dgf9N-Qt6TrvGWdDggty_gO-4fJEYdEjTWwEw-kbMb_bvliCAxEyQfps1Hbe16oe0t0Y0jWHm-JPNA3HSC9CJETxYJrcO_hMvzs5-n4yzxKWRWcLbKZGDIElR5lheCauuNcIxHg1hZ5wHJcEthuSlqXbDKOamDzzkta26MCZyG_BUMmnnjXwMxJqYKOphoYCqQsLzC49vKWR7zXy7MEGSvQWUT2DhyXvxSfVXZTPWaV6h5RUsVNT-E0UbuuoPbeFSi7g2k_pk4KsaER2UPe4uqtHSXisuq5LSqGR_C283juOjwJEU3fr6OY4qowbpiQu7_x-sP4CledeWEhzBYLdb-TUxxVuYIto_v2FGayH8AOnr8OQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxQxFH_UeqgXsVVxa60RRPQw3SSTzMdJSmlZtS2CLfQW8rnsorNlP8Be-rc3byazVEF68DpJmOG95OVN8nu_H8D7qrAuN7nMWG58JpyhmTHUZ06GwpdMOtEeuJ2dF6NL8fVKXm3AUV8Lg7DKFPu7mN5G6_RkmKw5vJ5Mhj9w80MQPUcW0ZhZP4LHQuYl4voObtc4D1bSVhm55eLE7vfKhKcH03n8J1-ukDKUs5bFk4t_7VB_xep2Azp5Bk9T5kgOu4_bhg3f7MBWX1i82IHddfEJ-UC6slvSsYDcPIfveHqQ9HRI0IiAGX8mx7_1r1YhgsQ8kHycNJ-0tau5tjdEN44g7nxBZoG4yRjFRYgezxNXh38BlyfHF0ejLKkpZFZwtsxkYKgRVHmWF4Jq641wjEd3WFnnAaVwS2G5KWpdsMo5qYPPOS1rbowJnIb8JWw2s8a_AmJMTBR0MNG9VKBceYWXt5WzPGa_XJgByN6CyiaqcVS8-Kl6TNlU9ZZXaHlFSxUtP4Dhetx1R7bx4Ii6d5D6Y9qouCM8OHav96hKC3ehuKxKTqua8QG8WzfHJYf3KLrxs1XsU0QL1hUTcvc_Xv8WtkYXZ6fq9Mv5t9fwBFs6YOEebC7nK_8mJjtLs99O5jtfQP0E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imprecision+farming%3F+Examining+the+%28in%29accuracy+and+risks+of+digital+agriculture&rft.jtitle=Journal+of+rural+studies&rft.au=Visser%2C+Oane&rft.au=Sippel%2C+Sarah+Ruth&rft.au=Thiemann%2C+Louis&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=0743-0167&rft.eissn=1873-1392&rft.volume=86&rft.spage=623&rft.epage=632&rft_id=info:doi/10.1016%2Fj.jrurstud.2021.07.024&rft.externalDocID=S0743016721002217 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-0167&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-0167&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-0167&client=summon |