Imprecision farming? Examining the (in)accuracy and risks of digital agriculture

The myriad potential benefits of digital farming hinge on the promise of increased accuracy, which allows ‘doing more with less’ through precise, data-driven operations. Yet, precision farming's foundational claim of increased accuracy has hardly been the subject of comprehensive examination. D...

Full description

Saved in:
Bibliographic Details
Published inJournal of rural studies Vol. 86; pp. 623 - 632
Main Authors Visser, Oane, Sippel, Sarah Ruth, Thiemann, Louis
Format Journal Article
LanguageEnglish
Published Elmsford Elsevier Ltd 01.08.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0743-0167
1873-1392
DOI10.1016/j.jrurstud.2021.07.024

Cover

Abstract The myriad potential benefits of digital farming hinge on the promise of increased accuracy, which allows ‘doing more with less’ through precise, data-driven operations. Yet, precision farming's foundational claim of increased accuracy has hardly been the subject of comprehensive examination. Drawing on social science studies of big data, this article examines digital agriculture's (in)accuracies and their repercussions. Based on an examination of the daily functioning of the various components of yield mapping, it finds that digital farming is often ‘precisely inaccurate’, with the high volume and granularity of big data erroneously equated with high accuracy. The prevailing discourse of ‘ultra-precise’ digital technologies ignores farmers' essential efforts in making these technologies more accurate, via calibration, corroboration and interpretation. We suggest that there is the danger of a ‘precision trap’. Namely, an exaggerated belief in the precision of big data that over time leads to an erosion of checks and balances (analogue data, farmer observation et cetera) on farms. The danger of ‘precision traps’ increases with the opacity of algorithms, with shifts from real-time measurement and advice towards forecasting, and with farmers' increased remoteness from field operations. Furthermore, we identify an emerging ‘precision divide’: unequally distributed precision benefits resulting from the growing algorithmic divide between farmers focusing on staple crops, catered well by technological innovation on the one hand, and farmers cultivating other crops, who have to make do with much less advanced or applicable algorithms on the other. Consequently, for the latter farms digital farming may feel more like ‘imprecision farming’. •Precision farming's foundational claim of ‘accuracy’ has not been comprehensively examined.•Digital farming is often ‘precisely inaccurate’, which, if overlooked, can lead to substantial risks.•We identify a ‘precision trap’: the exaggerated belief in the precision of big data which can erode checks and balances.•We see a ‘precision divide’ as benefits from precision are unequally distributed between farmers.
AbstractList The myriad potential benefits of digital farming hinge on the promise of increased accuracy, which allows ‘doing more with less’ through precise, data-driven operations. Yet, precision farming's foundational claim of increased accuracy has hardly been the subject of comprehensive examination. Drawing on social science studies of big data, this article examines digital agriculture's (in)accuracies and their repercussions. Based on an examination of the daily functioning of the various components of yield mapping, it finds that digital farming is often ‘precisely inaccurate’, with the high volume and granularity of big data erroneously equated with high accuracy. The prevailing discourse of ‘ultra-precise’ digital technologies ignores farmers' essential efforts in making these technologies more accurate, via calibration, corroboration and interpretation. We suggest that there is the danger of a ‘precision trap’. Namely, an exaggerated belief in the precision of big data that over time leads to an erosion of checks and balances (analogue data, farmer observation et cetera) on farms. The danger of ‘precision traps’ increases with the opacity of algorithms, with shifts from real-time measurement and advice towards forecasting, and with farmers' increased remoteness from field operations. Furthermore, we identify an emerging ‘precision divide’: unequally distributed precision benefits resulting from the growing algorithmic divide between farmers focusing on staple crops, catered well by technological innovation on the one hand, and farmers cultivating other crops, who have to make do with much less advanced or applicable algorithms on the other. Consequently, for the latter farms digital farming may feel more like ‘imprecision farming’. •Precision farming's foundational claim of ‘accuracy’ has not been comprehensively examined.•Digital farming is often ‘precisely inaccurate’, which, if overlooked, can lead to substantial risks.•We identify a ‘precision trap’: the exaggerated belief in the precision of big data which can erode checks and balances.•We see a ‘precision divide’ as benefits from precision are unequally distributed between farmers.
The myriad potential benefits of digital farming hinge on the promise of increased accuracy, which allows 'doing more with less' through precise, data-driven operations. Yet, precision farming's foundational claim of increased accuracy has hardly been the subject of comprehensive examination. Drawing on social science studies of big data, this article examines digital agriculture's (in)accuracies and their repercussions. Based on an examination of the daily functioning of the various components of yield mapping, it finds that digital farming is often 'precisely inaccurate', with the high volume and granularity of big data erroneously equated with high accuracy. The prevailing discourse of 'ultra-precise' digital technologies ignores farmers' essential efforts in making these technologies more accurate, via calibration, corroboration and interpretation. We suggest that there is the danger of a 'precision trap'. Namely, an exaggerated belief in the precision of big data that over time leads to an erosion of checks and balances (analogue data, farmer observation et cetera) on farms. The danger of 'precision traps' increases with the opacity of algorithms, with shifts from real-time measurement and advice towards forecasting, and with farmers' increased remoteness from field operations. Furthermore, we identify an emerging 'precision divide': unequally distributed precision benefits resulting from the growing algorithmic divide between farmers focusing on staple crops, catered well by technological innovation on the one hand, and farmers cultivating other crops, who have to make do with much less advanced or applicable algorithms on the other. Consequently, for the latter farms digital farming may feel more like 'imprecision farming'.
Author Visser, Oane
Sippel, Sarah Ruth
Thiemann, Louis
Author_xml – sequence: 1
  givenname: Oane
  surname: Visser
  fullname: Visser, Oane
  organization: International Institute of Social Studies, The Hague, the Netherlands
– sequence: 2
  givenname: Sarah Ruth
  surname: Sippel
  fullname: Sippel, Sarah Ruth
  email: sippel@uni-leipzig.de
  organization: Institute of Cultural Anthropology & SFB 1199, Leipzig University, Leipzig, Germany
– sequence: 3
  givenname: Louis
  surname: Thiemann
  fullname: Thiemann, Louis
  organization: International Institute of Social Studies, The Hague, the Netherlands
BookMark eNqFkU1L7TAQhoMoePz4CxK4G120ZpKmaeGCivgFgi50HdI0Oab2pMckFf33Rs69GzeuZhbP-zI8s4e2_eQNQkdASiBQnw7lEOYQ09yXlFAoiSgJrbbQAhrBCmAt3UYLIipWZFrsor0YB0JAkJYu0OPdah2MdtFNHlsVVs4vz_DVh8pLXnF6MfjY-ROl9RyU_sTK9zi4-BrxZHHvli6pEatlcHoe0xzMAdqxaozm8N_cR8_XV0-Xt8X9w83d5cV9oSsKqeAWgHPWGGB1RZQ2XdUDFcA1b5klTHBRadrVraqh6XuurGGUiJZ2XWcpsWwfHW9612F6m01McuWiNuOovJnmKGmdi9sGKp7RPz_QYZqDz9dJyhtBSdMCzVS9oXSYYgzGynVwKxU-JRD5LVoO8r9o-S1aEiGz6Bz8-yOos5SUhaag3Ph7_HwTN9nWuzNBRu2M16Z3-TFJ9pP7reILQ5CgVA
CitedBy_id crossref_primary_10_1016_j_atech_2022_100139
crossref_primary_10_1186_s13620_023_00245_w
crossref_primary_10_1080_03066150_2023_2232997
crossref_primary_10_53376_ap_2025_07
crossref_primary_10_1111_rego_12571
crossref_primary_10_3390_drones6050112
crossref_primary_10_1016_j_heliyon_2022_e09369
crossref_primary_10_1080_00167428_2023_2261283
crossref_primary_10_1016_j_iot_2023_100898
crossref_primary_10_3917_recma_366_0045
crossref_primary_10_1016_j_agsy_2023_103616
crossref_primary_10_1016_j_agsy_2022_103533
crossref_primary_10_1016_j_agsy_2023_103656
crossref_primary_10_3390_s24247894
crossref_primary_10_1007_s10460_023_10416_8
crossref_primary_10_1016_j_saa_2024_124820
crossref_primary_10_1007_s10460_024_10566_3
crossref_primary_10_3390_su16062590
crossref_primary_10_4000_11s0w
crossref_primary_10_3390_app14051811
crossref_primary_10_1080_00779954_2022_2147861
crossref_primary_10_3390_agriculture15030258
crossref_primary_10_3390_info15010022
crossref_primary_10_1088_1755_1315_935_1_012036
crossref_primary_10_1016_j_techfore_2024_123299
crossref_primary_10_3390_su16052194
crossref_primary_10_1079_cabireviews_2023_0002
crossref_primary_10_1016_j_techsoc_2023_102373
crossref_primary_10_4000_11s11
crossref_primary_10_1007_s11119_022_09979_z
crossref_primary_10_3917_res_244_0117
crossref_primary_10_1111_soru_12456
crossref_primary_10_1016_j_jrurstud_2023_103065
crossref_primary_10_1111_soru_12492
crossref_primary_10_3390_su17052227
crossref_primary_10_1145_3637416
crossref_primary_10_3390_su152215815
crossref_primary_10_1016_j_atech_2024_100516
crossref_primary_10_1016_j_jrurstud_2023_103023
crossref_primary_10_1080_03066150_2022_2163164
crossref_primary_10_1080_03066150_2024_2429480
crossref_primary_10_1016_j_jrurstud_2022_12_004
crossref_primary_10_1007_s10460_023_10435_5
crossref_primary_10_3389_frsus_2023_1231684
crossref_primary_10_1002_fes3_483
crossref_primary_10_3389_fmars_2024_1376256
crossref_primary_10_48084_etasr_4667
crossref_primary_10_1080_03066150_2022_2113779
crossref_primary_10_3390_su16114431
crossref_primary_10_1007_s10460_022_10357_8
crossref_primary_10_1016_j_jbusres_2024_115166
crossref_primary_10_1016_j_atech_2024_100404
crossref_primary_10_1177_14614448231174521
crossref_primary_10_1080_23311932_2024_2422529
Cites_doi 10.1177/2053951716679677
10.1002/asi.23294
10.1002/jsfa.9346
10.1080/1369118X.2016.1154087
10.2148/benv.42.3.457
10.1007/s12571-012-0213-0
10.1016/j.geoforum.2012.09.003
10.1177/2053951715602495
10.1080/03066150.2017.1415887
10.1177/2053951719858751
10.1177/2053951714528481
10.1007/s10291-012-0264-x
10.1016/j.futures.2018.11.001
10.1016/j.jrurstud.2019.01.023
10.1177/2053951716658061
10.1177/2053951719849444
10.1007/s11119-010-9197-y
10.1126/science.1248506
10.2134/agronj2006.0326
10.1007/s13347-017-0265-3
10.1080/1369118X.2012.678878
10.1177/2053951715622512
10.1016/j.jrurstud.2016.03.009
10.24908/ss.v16i3.12594
10.1177/2053951719858743
10.1016/j.jrurstud.2017.08.011
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier Science Ltd. Aug 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier Science Ltd. Aug 2021
DBID AAYXX
CITATION
7ST
7U4
7U6
8BJ
BHHNA
C1K
DWI
FQK
JBE
WZK
7S9
L.6
DOI 10.1016/j.jrurstud.2021.07.024
DatabaseName CrossRef
Environment Abstracts
Sociological Abstracts (pre-2017)
Sustainability Science Abstracts
International Bibliography of the Social Sciences (IBSS)
Sociological Abstracts
Environmental Sciences and Pollution Management
Sociological Abstracts
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
Sociological Abstracts (Ovid)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Sociological Abstracts (pre-2017)
International Bibliography of the Social Sciences (IBSS)
Environment Abstracts
Sustainability Science Abstracts
Sociological Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Sociological Abstracts (pre-2017)
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Sociology & Social History
Agriculture
EISSN 1873-1392
EndPage 632
ExternalDocumentID 10_1016_j_jrurstud_2021_07_024
S0743016721002217
GroupedDBID --K
--M
..I
.~1
07C
0R~
1B1
1RT
1~.
1~5
29L
3EH
3R3
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFJI
AAGJQ
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMY
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
M3Y
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SAB
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSB
SSJ
SSO
SSS
SSZ
T5K
TAE
TN5
UNMZH
WUQ
XOL
Y6R
ZY4
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7U4
7U6
8BJ
BHHNA
C1K
DWI
EFKBS
FQK
JBE
WZK
7S9
L.6
ID FETCH-LOGICAL-c421t-5f115538e13640aceb4d12715c593f037574c2b69a618dd5afe320792bbbf20f3
IEDL.DBID AIKHN
ISSN 0743-0167
IngestDate Thu Sep 04 19:10:29 EDT 2025
Wed Aug 13 04:07:48 EDT 2025
Tue Jul 01 01:57:42 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Fri Feb 23 02:43:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Precision agriculture
Smart farming
Accuracy
Big data
Digital agriculture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-5f115538e13640aceb4d12715c593f037574c2b69a618dd5afe320792bbbf20f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0743016721002217
PQID 2587208912
PQPubID 2036566
PageCount 10
ParticipantIDs proquest_miscellaneous_2636498145
proquest_journals_2587208912
crossref_primary_10_1016_j_jrurstud_2021_07_024
crossref_citationtrail_10_1016_j_jrurstud_2021_07_024
elsevier_sciencedirect_doi_10_1016_j_jrurstud_2021_07_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Journal of rural studies
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Knox, Nafus (bib35) 2018
Seeds (bib59) 2020
Jakku, Taylor, Fleming, Mason, Fielke, Sounness, Thorburn (bib27) 2019; vol. 90
Cheshire, Woods (bib8) 2013; 44
Karsten (bib29) 2020
Johnson (bib28) 2017
McIntosh (bib46) 2020; 105
Dudhwala, Larsen (bib10) 2019; 6
Staalduinen (bib62) 2020; vol. 4
Knuivers (bib36) 2016
Kitchin (bib32) 2017; 20
Proagrico (bib52)
(bib13) 2019
Sudduth, Drummond (bib64) 2007; 99
Lerink, Klompe (bib42) 2016
Carbonell (bib7) 2016; 4
Kuns, Visser, Wästfelt (bib39) 2016; 45
Bos, Janssen (bib2) 2019; 24
(bib20) 2013
McFarland, McFarland (bib45) 2015; 2
Meer (bib47) 2020; 105
Keogh, Henry (bib30) 2016
Lazer, Kennedy, King, Vespignani (bib41) 2014
Shi, Zhao, Hu, Liu (bib61) 2013
(bib12) 2017
Hart (bib21) 2015
Bronson (bib4) 2019; 90
Boyd, Crawford (bib3) 2012; 15
Diakopoulos (bib9) 2013
Higgins, Bryant, Howell, Battersby (bib23) 2017; 55
Rijswijk, Klerkx, Turner (bib55) 2019; 90–91
Stevens (bib63) 2020; 105
Sumberg (bib65) 2012; 4
Dufva, Dufva (bib11) 2018; 107
Garnett (bib18) 2016; 3
Boerderij (bib1) 2021; 106
Kitchin (bib31) 2014; 1
Tsouvalis, Seymour, Watkins (bib68) 2000
Rotz, Gravely, Mosby, Duncan, Finnis, Horgan, LeBlanc, Martin, Neufeld, Nixon, Pant (bib56) 2019; 68
Burke (bib5) 2019; 6
Mustatea (bib50) 2015
Tholhuijsen (bib66) 2019; 105
Fielke, Taylor, Jakku (bib15) 2020; 180
Heijting, De Bruin, Bregt (bib22) 2011; 12
Shepherd, Turner, Small, Wheeler (bib60) 2020; 100
Klauser (bib34) 2018; 16
Puri (bib53) 2016
Said-Rubio, Rovira-Más (bib57) 2020; 10
McArdle, Kitchin (bib44) 2016; 42
(bib25) 2015
Fraser (bib16) 2019; 46
Rankin (bib54) 2020
Ekbia, Mattioli, Kouper, Arave, Ghazinejad, Bowman, Ratandeep Suri, Tsou, Weingart, Sugimoto (bib14) 2015; 66
Ingram, Maye (bib26) 2020; 4
Koerhuis (bib37) 2020; 105
Pasquale (bib51) 2015
Yu (bib70) 2020; 72
Meijering (bib48) 2016
Hosni, Vulpiani (bib24) 2018; 31
Schimpf, Diamond (bib58) 2020
Kwan (bib40) 2016; 106
Tholhuijsen (bib67) 2020; 105
Gabrys, Pritchard, Barrat (bib17) 2016; 3
Koerhuis (bib38) 2020; 105
Global Network for the Right to Food and Nutrition (bib19) 2018
Markwell (bib43) 2016
van der Velden (bib69) 2019
Miles (bib49) 2019; 6
Kitchin, Lauriault (bib33) 2014
Burrell (bib6) 2016; 3
Proagrico (10.1016/j.jrurstud.2021.07.024_bib52)
Knuivers (10.1016/j.jrurstud.2021.07.024_bib36) 2016
Koerhuis (10.1016/j.jrurstud.2021.07.024_bib38) 2020; 105
Schimpf (10.1016/j.jrurstud.2021.07.024_bib58) 2020
Hosni (10.1016/j.jrurstud.2021.07.024_bib24) 2018; 31
Staalduinen (10.1016/j.jrurstud.2021.07.024_bib62) 2020; vol. 4
McFarland (10.1016/j.jrurstud.2021.07.024_bib45) 2015; 2
Karsten (10.1016/j.jrurstud.2021.07.024_bib29) 2020
Jakku (10.1016/j.jrurstud.2021.07.024_bib27) 2019; vol. 90
Global Network for the Right to Food and Nutrition (10.1016/j.jrurstud.2021.07.024_bib19) 2018
Shepherd (10.1016/j.jrurstud.2021.07.024_bib60) 2020; 100
Rotz (10.1016/j.jrurstud.2021.07.024_bib56) 2019; 68
Johnson (10.1016/j.jrurstud.2021.07.024_bib28) 2017
Pasquale (10.1016/j.jrurstud.2021.07.024_bib51) 2015
Miles (10.1016/j.jrurstud.2021.07.024_bib49) 2019; 6
Stevens (10.1016/j.jrurstud.2021.07.024_bib63) 2020; 105
Knox (10.1016/j.jrurstud.2021.07.024_bib35) 2018
Yu (10.1016/j.jrurstud.2021.07.024_bib70) 2020; 72
Diakopoulos (10.1016/j.jrurstud.2021.07.024_bib9) 2013
McArdle (10.1016/j.jrurstud.2021.07.024_bib44) 2016; 42
Fraser (10.1016/j.jrurstud.2021.07.024_bib16) 2019; 46
Tholhuijsen (10.1016/j.jrurstud.2021.07.024_bib66) 2019; 105
Higgins (10.1016/j.jrurstud.2021.07.024_bib23) 2017; 55
Bos (10.1016/j.jrurstud.2021.07.024_bib2) 2019; 24
Lerink (10.1016/j.jrurstud.2021.07.024_bib42) 2016
Puri (10.1016/j.jrurstud.2021.07.024_bib53) 2016
van der Velden (10.1016/j.jrurstud.2021.07.024_bib69) 2019
Dudhwala (10.1016/j.jrurstud.2021.07.024_bib10) 2019; 6
Boyd (10.1016/j.jrurstud.2021.07.024_bib3) 2012; 15
Hart (10.1016/j.jrurstud.2021.07.024_bib21) 2015
Heijting (10.1016/j.jrurstud.2021.07.024_bib22) 2011; 12
Burrell (10.1016/j.jrurstud.2021.07.024_bib6) 2016; 3
(10.1016/j.jrurstud.2021.07.024_bib12) 2017
Koerhuis (10.1016/j.jrurstud.2021.07.024_bib37) 2020; 105
Ingram (10.1016/j.jrurstud.2021.07.024_bib26) 2020; 4
Cheshire (10.1016/j.jrurstud.2021.07.024_bib8) 2013; 44
Rankin (10.1016/j.jrurstud.2021.07.024_bib54) 2020
Said-Rubio (10.1016/j.jrurstud.2021.07.024_bib57) 2020; 10
Rijswijk (10.1016/j.jrurstud.2021.07.024_bib55) 2019; 90–91
Boerderij (10.1016/j.jrurstud.2021.07.024_bib1) 2021; 106
Carbonell (10.1016/j.jrurstud.2021.07.024_bib7) 2016; 4
Seeds (10.1016/j.jrurstud.2021.07.024_bib59) 2020
(10.1016/j.jrurstud.2021.07.024_bib20) 2013
Sumberg (10.1016/j.jrurstud.2021.07.024_bib65) 2012; 4
Lazer (10.1016/j.jrurstud.2021.07.024_bib41) 2014
Meijering (10.1016/j.jrurstud.2021.07.024_bib48) 2016
Keogh (10.1016/j.jrurstud.2021.07.024_bib30) 2016
Kitchin (10.1016/j.jrurstud.2021.07.024_bib32) 2017; 20
Meer (10.1016/j.jrurstud.2021.07.024_bib47) 2020; 105
Mustatea (10.1016/j.jrurstud.2021.07.024_bib50) 2015
Gabrys (10.1016/j.jrurstud.2021.07.024_bib17) 2016; 3
Kwan (10.1016/j.jrurstud.2021.07.024_bib40) 2016; 106
Kitchin (10.1016/j.jrurstud.2021.07.024_bib31) 2014; 1
Markwell (10.1016/j.jrurstud.2021.07.024_bib43) 2016
Ekbia (10.1016/j.jrurstud.2021.07.024_bib14) 2015; 66
Klauser (10.1016/j.jrurstud.2021.07.024_bib34) 2018; 16
Dufva (10.1016/j.jrurstud.2021.07.024_bib11) 2018; 107
Kitchin (10.1016/j.jrurstud.2021.07.024_bib33) 2014
(10.1016/j.jrurstud.2021.07.024_bib13) 2019
McIntosh (10.1016/j.jrurstud.2021.07.024_bib46) 2020; 105
Shi (10.1016/j.jrurstud.2021.07.024_bib61) 2013
Garnett (10.1016/j.jrurstud.2021.07.024_bib18) 2016; 3
Kuns (10.1016/j.jrurstud.2021.07.024_bib39) 2016; 45
Tholhuijsen (10.1016/j.jrurstud.2021.07.024_bib67) 2020; 105
(10.1016/j.jrurstud.2021.07.024_bib25) 2015
Bronson (10.1016/j.jrurstud.2021.07.024_bib4) 2019; 90
Fielke (10.1016/j.jrurstud.2021.07.024_bib15) 2020; 180
Sudduth (10.1016/j.jrurstud.2021.07.024_bib64) 2007; 99
Burke (10.1016/j.jrurstud.2021.07.024_bib5) 2019; 6
Tsouvalis (10.1016/j.jrurstud.2021.07.024_bib68) 2000
References_xml – volume: 105
  start-page: A12
  year: 2020
  end-page: A14
  ident: bib47
  article-title: Eerste stappen bij precisiespuiten gezet
  publication-title: Boerderij
– year: 2015
  ident: bib50
  article-title: 5 reasons why your data analysis is inaccurate
  publication-title: Big Step
– volume: 105
  start-page: 22
  year: 2020
  end-page: 24
  ident: bib38
  article-title: Flinke vooruitgang en besparing gerealiseerd
  publication-title: Boerderij
– volume: 72
  start-page: 331
  year: 2020
  end-page: 389
  ident: bib70
  article-title: The algorithmic divide and equality in the age of artificial intelligence
  publication-title: Fla. Law Rev.
– volume: 3
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib18
  article-title: Developing a feeling for error: practices of monitoring and modelling air pollution data
  publication-title: Big Data and Society
– year: 2018
  ident: bib19
  article-title: When Food Becomes Immaterial: Confronting the Digital Age. Right to Food and Nutrition Watch 10
– volume: 46
  start-page: 893
  year: 2019
  end-page: 912
  ident: bib16
  article-title: Land grab/data grab: precision agriculture and its new horizons. J
  publication-title: Peasant Stud.
– volume: 31
  start-page: 557
  year: 2018
  end-page: 569
  ident: bib24
  article-title: Forecasting in the light of big data
  publication-title: Philly Tech.
– start-page: 1
  year: 2018
  end-page: 32
  ident: bib35
  article-title: Introduction: ethnography for a data-satured world
  publication-title: Ethnography for a Data-Satured World
– start-page: 34
  year: 2016
  end-page: 35
  ident: bib48
  article-title: Tien ton aardappelen meer met TT+ concept
  publication-title: Boerderij-Akkerbouw Plus
– year: 2020
  ident: bib59
  article-title: How to calibrate your yield monitor. LG Seeds
– volume: 24
  year: 2019
  ident: bib2
  article-title: Maxim Februari: vroeger las je de krant, nu word je door de krant gelezen
  publication-title: Vrij Nederland
– year: 2016
  ident: bib53
  article-title: John Deere leads the way with IoT-driven precision farming
  publication-title: Netw. World
– volume: 99
  start-page: 1471
  year: 2007
  end-page: 1482
  ident: bib64
  article-title: Yield editor: software for removing errors from crop yield maps
  publication-title: Agron. J.
– year: 2014
  ident: bib33
  article-title: Towards critical data studies: charting and unpacking data assemblages and their work
  publication-title: The Programmable City Working Paper 2
– volume: 106
  start-page: 40
  year: 2021
  ident: bib1
  article-title: Dagelijkse check op functioneren melkrobot
  publication-title: Boerderij
– volume: 4
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib7
  article-title: The ethics of big data in big agriculture
  publication-title: Internet Policy Rev.
– year: 2015
  ident: bib21
  article-title: Efficiency, accuracy biggest advantages of precision agriculture
  publication-title: Farm Progress
– year: 2019
  ident: bib13
  article-title: EU member states join forces on digitalisation for European agriculture and rural areas
  publication-title: Digibyte
– year: 2017
  ident: bib28
  article-title: Opinion: benchmarking in precision agriculture is big statistics
  publication-title: PrecisionAg
– volume: vol. 4
  start-page: 51
  year: 2020
  end-page: 52
  ident: bib62
  article-title: Crop manager lucas aertsen: ‘slab sensors firm up decision-making’
  publication-title: Greenhouses
– volume: 3
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib17
  article-title: Just good enough data: figuring data citizenships through air pollution sensing and data stories
  publication-title: Big Data Soc.
– volume: 68
  start-page: 112
  year: 2019
  end-page: 122
  ident: bib56
  article-title: Automated pastures and the digital divide: how agricultural technologies are shaping labour and rural communities
  publication-title: J. Rural Stud.
– year: 2016
  ident: bib30
  article-title: The Implications of Digital Agriculture and Big Data for Australian Agriculture
– year: 2017
  ident: bib12
  article-title: Precision Agriculture. Sowing the seeds of the new agricultural revolution
  publication-title: Community Research and Development Information Service (CORDIS)
– volume: 4
  start-page: 66
  year: 2020
  ident: bib26
  article-title: What are the implications of digitalisation for agricultural knowledge? Frontiers sust
  publication-title: Food Sys
– year: 2013
  ident: bib9
  article-title: Algorithmic accountability reporting: on the investigation of black boxes
  publication-title: Tow Center of Digital Journalism
– year: 2015
  ident: bib51
  article-title: The Black Box Society. The Secret Algorithms that Control Money and Information
– year: 2020
  ident: bib54
  article-title: The accuracy trap: the values and meaning of algorithmic mapping, from mineral extraction to climate change
  publication-title: Environ. Hist.-UK., forthcoming
– ident: bib52
  article-title: n.d. How precision agriculture is driving data-gathering on farms
– volume: 105
  start-page: 50
  year: 2020
  end-page: 52
  ident: bib37
  article-title: Veel gedaan en getest: conclusies trekken lastig
  publication-title: Boerderij
– year: 2016
  ident: bib43
  article-title: What is agriculture 4.0. L'Informatore Agrario
– start-page: 909
  year: 2000
  end-page: 924
  ident: bib68
  article-title: Exploring knowledge-cultures: precision farming, yield mapping, and the expert-farmer interface
  publication-title: Environ. Times
– volume: 20
  start-page: 14
  year: 2017
  end-page: 29
  ident: bib32
  article-title: Thinking critically about and researching algorithms
  publication-title: Inf. Commun. Soc.
– volume: 2
  start-page: 1
  year: 2015
  end-page: 4
  ident: bib45
  article-title: Big data and the danger of being precisely inaccurate
  publication-title: Big Data Soc.
– year: 2015
  ident: bib25
  article-title: S-Series yield calibration
  publication-title: Youtube
– volume: 105
  start-page: A12
  year: 2020
  end-page: A14
  ident: bib67
  article-title: Variable dosering kan middelen behouden
  publication-title: Boerderij
– year: 2019
  ident: bib69
  article-title: The Recontextualisation of Precision Agriculture to the Dutch Crop Farming Sector
– volume: 55
  start-page: 193
  year: 2017
  end-page: 202
  ident: bib23
  article-title: Ordering adoption: materiality, knowledge and farmer engagement with precision agriculture technologies
  publication-title: J. Rural Stud.
– volume: 105
  start-page: A20
  year: 2020
  end-page: A22
  ident: bib63
  article-title: Vertraging door problemen met drone
  publication-title: Boerderij
– volume: 6
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib49
  article-title: The combine will tell the truth: on precision agriculture and algorithmic rationality
  publication-title: Big Data Soc.
– volume: 42
  start-page: 457
  year: 2016
  end-page: 473
  ident: bib44
  article-title: Improving the veracity of open and real-time urban data
  publication-title: Built. Environ.
– volume: 1
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib31
  article-title: Big Data, new epistemologies and paradigm shifts
  publication-title: Big Data Soc.
– volume: 15
  start-page: 662
  year: 2012
  end-page: 679
  ident: bib3
  article-title: Critical questions for big data: provocations for a cultural, technological and scholarly phenomenon
  publication-title: Inf. Commun. Soc.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 21
  ident: bib57
  article-title: From smart farming towards Agriculture 5.0: a review of crop data management
  publication-title: Agron. J.
– year: 2020
  ident: bib58
  article-title: Digital Farming. Can Digital Farming Really Address the Systemic Cause of Agriculture's Impact on the Environment and Society, or Will it Entrench Them?
– volume: 44
  start-page: 232
  year: 2013
  end-page: 242
  ident: bib8
  article-title: Globally engaged farmers as transnational actors: navigating the landscape of agri-food globalization
  publication-title: Geoforum
– volume: 90
  start-page: 100294
  year: 2019
  ident: bib4
  article-title: Looking through a responsible innovation lens at uneven engagements with digital farming
  publication-title: Wageningen J. of Life Sc
– start-page: 103
  year: 2013
  end-page: 119
  ident: bib61
  article-title: Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites
  publication-title: GPS solutions 17(1)
– year: 2020
  ident: bib29
  article-title: GPS-test: Vooral Verschil in Bedieningsgemak
– volume: 66
  start-page: 1523
  year: 2015
  end-page: 1545
  ident: bib14
  article-title: Big data, bigger dilemmas: a critical review
  publication-title: J. Assoc. Inf. Sci. Tech
– volume: 180
  start-page: 102763
  year: 2020
  ident: bib15
  article-title: Digitalisation of agricultural knowledge and advice networks: a state-of-the-art review. Agric
  publication-title: System
– volume: 12
  start-page: 488
  year: 2011
  end-page: 507
  ident: bib22
  article-title: The arable farmer as the assessor of within-field soil variation
  publication-title: Precis. Agric.
– volume: 105
  start-page: 42
  year: 2020
  end-page: 44
  ident: bib46
  article-title: Opbrengstmeting staat nog in de kinderschoenen
  publication-title: Boerderij
– volume: 105
  start-page: A20
  year: 2019
  end-page: A22
  ident: bib66
  article-title: Zelflerend algoritme herkent onkruid steeds beter
  publication-title: Boerderij
– year: 2013
  ident: bib20
  publication-title: Elements of Spatial Data Quality
– volume: 107
  start-page: 17
  year: 2018
  end-page: 28
  ident: bib11
  article-title: Grasping the future of the digital society
  publication-title: Futures
– year: 2016
  ident: bib42
  article-title: Back to the roots. Visie en plan voor een integrale benadering voor duurzaam bodembeheer
– volume: 4
  start-page: 509
  year: 2012
  end-page: 518
  ident: bib65
  article-title: Mind the (yield) gap(s)
  publication-title: Food Sec
– volume: 16
  start-page: 370
  year: 2018
  end-page: 378
  ident: bib34
  article-title: Surveillance farm: towards a research agenda on big data agriculture
  publication-title: Surveill. Soc.
– volume: 45
  start-page: 199
  year: 2016
  end-page: 217
  ident: bib39
  article-title: The stock market and the steppe: the challenges faced by stock-market financed, Nordic farming ventures in Russia and Ukraine
  publication-title: J. Rural Stud.
– volume: 3
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib6
  article-title: How the machine thinks: understanding opacity in machine learning algorithms
  publication-title: Big Data Soc.
– volume: vol. 90
  year: 2019
  ident: bib27
  article-title: “If they don't tell us what they do with it, why would we trust them?” trust, transparency and benefit-sharing in smart farming’
  publication-title: Wageningen J. Life Sci.
– volume: 106
  start-page: 274
  year: 2016
  end-page: 282
  ident: bib40
  article-title: Algorithmic geographies: big data, algorithmic uncertainty, and the production of geographic knowledge
  publication-title: Ann. Assoc. Am. Geogr.
– start-page: 28
  year: 2016
  end-page: 31
  ident: bib36
  article-title: Niet alles wat kan met gps, moet
  publication-title: Kritisch zijn op nut precisielandbouw technieken
– volume: 6
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib5
  article-title: Occluded algorithms
  publication-title: Big Data Soc.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib10
  article-title: Recalibration in counting and accounting practices: dealing with algorithmic output in public and private
  publication-title: Big Data Soc.
– start-page: 1203
  year: 2014
  end-page: 1205
  ident: bib41
  article-title: The parable of Google flu: traps in big data analysis
  publication-title: Science 343(6176)
– volume: 90–91
  start-page: 100313
  year: 2019
  ident: bib55
  article-title: Digitalisation in the New Zealand Agricultural Knowledge and Innovation System: initial understandings and emerging organisational responses to digital agriculture. Wageningen
  publication-title: J. Life Sci.
– volume: 100
  start-page: 5083
  year: 2020
  end-page: 5092
  ident: bib60
  article-title: Priorities for science to overcome hurdles thwarting the full promise of the “digital agriculture” revolution
  publication-title: J. Sci. Food Agric.
– volume: 3
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib17
  article-title: Just good enough data: figuring data citizenships through air pollution sensing and data stories
  publication-title: Big Data Soc.
  doi: 10.1177/2053951716679677
– volume: 66
  start-page: 1523
  issue: 8
  year: 2015
  ident: 10.1016/j.jrurstud.2021.07.024_bib14
  article-title: Big data, bigger dilemmas: a critical review
  publication-title: J. Assoc. Inf. Sci. Tech
  doi: 10.1002/asi.23294
– volume: 105
  start-page: A20
  issue: 9
  year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib63
  article-title: Vertraging door problemen met drone
  publication-title: Boerderij
– year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib54
  article-title: The accuracy trap: the values and meaning of algorithmic mapping, from mineral extraction to climate change
  publication-title: Environ. Hist.-UK., forthcoming
– ident: 10.1016/j.jrurstud.2021.07.024_bib52
– volume: 100
  start-page: 5083
  issue: 14
  year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib60
  article-title: Priorities for science to overcome hurdles thwarting the full promise of the “digital agriculture” revolution
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.9346
– start-page: 909
  year: 2000
  ident: 10.1016/j.jrurstud.2021.07.024_bib68
  article-title: Exploring knowledge-cultures: precision farming, yield mapping, and the expert-farmer interface
  publication-title: Environ. Times
– volume: 20
  start-page: 14
  issue: 1
  year: 2017
  ident: 10.1016/j.jrurstud.2021.07.024_bib32
  article-title: Thinking critically about and researching algorithms
  publication-title: Inf. Commun. Soc.
  doi: 10.1080/1369118X.2016.1154087
– volume: 72
  start-page: 331
  year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib70
  article-title: The algorithmic divide and equality in the age of artificial intelligence
  publication-title: Fla. Law Rev.
– start-page: 34
  year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib48
  article-title: Tien ton aardappelen meer met TT+ concept
  publication-title: Boerderij-Akkerbouw Plus
– volume: 42
  start-page: 457
  issue: 2
  year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib44
  article-title: Improving the veracity of open and real-time urban data
  publication-title: Built. Environ.
  doi: 10.2148/benv.42.3.457
– volume: 4
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib7
  article-title: The ethics of big data in big agriculture
  publication-title: Internet Policy Rev.
– start-page: 28
  year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib36
  article-title: Niet alles wat kan met gps, moet
  publication-title: Kritisch zijn op nut precisielandbouw technieken
– year: 2013
  ident: 10.1016/j.jrurstud.2021.07.024_bib9
  article-title: Algorithmic accountability reporting: on the investigation of black boxes
  publication-title: Tow Center of Digital Journalism
– year: 2015
  ident: 10.1016/j.jrurstud.2021.07.024_bib51
– year: 2015
  ident: 10.1016/j.jrurstud.2021.07.024_bib21
  article-title: Efficiency, accuracy biggest advantages of precision agriculture
  publication-title: Farm Progress
– volume: 4
  start-page: 509
  year: 2012
  ident: 10.1016/j.jrurstud.2021.07.024_bib65
  article-title: Mind the (yield) gap(s)
  publication-title: Food Sec
  doi: 10.1007/s12571-012-0213-0
– year: 2019
  ident: 10.1016/j.jrurstud.2021.07.024_bib13
  article-title: EU member states join forces on digitalisation for European agriculture and rural areas
  publication-title: Digibyte
– volume: 106
  start-page: 40
  issue: 21
  year: 2021
  ident: 10.1016/j.jrurstud.2021.07.024_bib1
  article-title: Dagelijkse check op functioneren melkrobot
  publication-title: Boerderij
– volume: 106
  start-page: 274
  issue: 2
  year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib40
  article-title: Algorithmic geographies: big data, algorithmic uncertainty, and the production of geographic knowledge
  publication-title: Ann. Assoc. Am. Geogr.
– year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib58
– volume: 44
  start-page: 232
  issue: 1
  year: 2013
  ident: 10.1016/j.jrurstud.2021.07.024_bib8
  article-title: Globally engaged farmers as transnational actors: navigating the landscape of agri-food globalization
  publication-title: Geoforum
  doi: 10.1016/j.geoforum.2012.09.003
– year: 2015
  ident: 10.1016/j.jrurstud.2021.07.024_bib25
  article-title: S-Series yield calibration
  publication-title: Youtube
– volume: 2
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.jrurstud.2021.07.024_bib45
  article-title: Big data and the danger of being precisely inaccurate
  publication-title: Big Data Soc.
  doi: 10.1177/2053951715602495
– volume: 105
  start-page: A12
  issue: 34
  year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib47
  article-title: Eerste stappen bij precisiespuiten gezet
  publication-title: Boerderij
– volume: 24
  year: 2019
  ident: 10.1016/j.jrurstud.2021.07.024_bib2
  article-title: Maxim Februari: vroeger las je de krant, nu word je door de krant gelezen
  publication-title: Vrij Nederland
– volume: vol. 90
  year: 2019
  ident: 10.1016/j.jrurstud.2021.07.024_bib27
  article-title: “If they don't tell us what they do with it, why would we trust them?” trust, transparency and benefit-sharing in smart farming’
  publication-title: Wageningen J. Life Sci.
– volume: 46
  start-page: 893
  issue: 5
  year: 2019
  ident: 10.1016/j.jrurstud.2021.07.024_bib16
  article-title: Land grab/data grab: precision agriculture and its new horizons. J
  publication-title: Peasant Stud.
  doi: 10.1080/03066150.2017.1415887
– volume: 6
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.jrurstud.2021.07.024_bib10
  article-title: Recalibration in counting and accounting practices: dealing with algorithmic output in public and private
  publication-title: Big Data Soc.
  doi: 10.1177/2053951719858751
– volume: 90
  start-page: 100294
  year: 2019
  ident: 10.1016/j.jrurstud.2021.07.024_bib4
  article-title: Looking through a responsible innovation lens at uneven engagements with digital farming
  publication-title: Wageningen J. of Life Sc
– year: 2017
  ident: 10.1016/j.jrurstud.2021.07.024_bib12
  article-title: Precision Agriculture. Sowing the seeds of the new agricultural revolution
  publication-title: Community Research and Development Information Service (CORDIS)
– year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib29
– volume: 1
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.jrurstud.2021.07.024_bib31
  article-title: Big Data, new epistemologies and paradigm shifts
  publication-title: Big Data Soc.
  doi: 10.1177/2053951714528481
– start-page: 103
  year: 2013
  ident: 10.1016/j.jrurstud.2021.07.024_bib61
  article-title: Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites
  publication-title: GPS solutions 17(1)
  doi: 10.1007/s10291-012-0264-x
– volume: 107
  start-page: 17
  year: 2018
  ident: 10.1016/j.jrurstud.2021.07.024_bib11
  article-title: Grasping the future of the digital society
  publication-title: Futures
  doi: 10.1016/j.futures.2018.11.001
– year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib59
– volume: 68
  start-page: 112
  year: 2019
  ident: 10.1016/j.jrurstud.2021.07.024_bib56
  article-title: Automated pastures and the digital divide: how agricultural technologies are shaping labour and rural communities
  publication-title: J. Rural Stud.
  doi: 10.1016/j.jrurstud.2019.01.023
– volume: 3
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib18
  article-title: Developing a feeling for error: practices of monitoring and modelling air pollution data
  publication-title: Big Data and Society
  doi: 10.1177/2053951716658061
– volume: 180
  start-page: 102763
  year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib15
  article-title: Digitalisation of agricultural knowledge and advice networks: a state-of-the-art review. Agric
  publication-title: System
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.jrurstud.2021.07.024_bib49
  article-title: The combine will tell the truth: on precision agriculture and algorithmic rationality
  publication-title: Big Data Soc.
  doi: 10.1177/2053951719849444
– volume: 4
  start-page: 66
  year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib26
  article-title: What are the implications of digitalisation for agricultural knowledge? Frontiers sust
  publication-title: Food Sys
– start-page: 1
  year: 2018
  ident: 10.1016/j.jrurstud.2021.07.024_bib35
  article-title: Introduction: ethnography for a data-satured world
– volume: 105
  start-page: 50
  issue: 32
  year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib37
  article-title: Veel gedaan en getest: conclusies trekken lastig
  publication-title: Boerderij
– year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib42
– volume: 12
  start-page: 488
  issue: 4
  year: 2011
  ident: 10.1016/j.jrurstud.2021.07.024_bib22
  article-title: The arable farmer as the assessor of within-field soil variation
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-010-9197-y
– start-page: 1203
  year: 2014
  ident: 10.1016/j.jrurstud.2021.07.024_bib41
  article-title: The parable of Google flu: traps in big data analysis
  publication-title: Science 343(6176)
  doi: 10.1126/science.1248506
– volume: 99
  start-page: 1471
  issue: 6
  year: 2007
  ident: 10.1016/j.jrurstud.2021.07.024_bib64
  article-title: Yield editor: software for removing errors from crop yield maps
  publication-title: Agron. J.
  doi: 10.2134/agronj2006.0326
– volume: 31
  start-page: 557
  year: 2018
  ident: 10.1016/j.jrurstud.2021.07.024_bib24
  article-title: Forecasting in the light of big data
  publication-title: Philly Tech.
  doi: 10.1007/s13347-017-0265-3
– year: 2015
  ident: 10.1016/j.jrurstud.2021.07.024_bib50
  article-title: 5 reasons why your data analysis is inaccurate
  publication-title: Big Step
– year: 2019
  ident: 10.1016/j.jrurstud.2021.07.024_bib69
– year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib53
  article-title: John Deere leads the way with IoT-driven precision farming
  publication-title: Netw. World
– year: 2018
  ident: 10.1016/j.jrurstud.2021.07.024_bib19
– volume: 15
  start-page: 662
  issue: 5
  year: 2012
  ident: 10.1016/j.jrurstud.2021.07.024_bib3
  article-title: Critical questions for big data: provocations for a cultural, technological and scholarly phenomenon
  publication-title: Inf. Commun. Soc.
  doi: 10.1080/1369118X.2012.678878
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib6
  article-title: How the machine thinks: understanding opacity in machine learning algorithms
  publication-title: Big Data Soc.
  doi: 10.1177/2053951715622512
– volume: 90–91
  start-page: 100313
  year: 2019
  ident: 10.1016/j.jrurstud.2021.07.024_bib55
  article-title: Digitalisation in the New Zealand Agricultural Knowledge and Innovation System: initial understandings and emerging organisational responses to digital agriculture. Wageningen
  publication-title: J. Life Sci.
– volume: 105
  start-page: A12
  issue: 52
  year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib67
  article-title: Variable dosering kan middelen behouden
  publication-title: Boerderij
– year: 2014
  ident: 10.1016/j.jrurstud.2021.07.024_bib33
  article-title: Towards critical data studies: charting and unpacking data assemblages and their work
– volume: 105
  start-page: A20
  issue: 3
  year: 2019
  ident: 10.1016/j.jrurstud.2021.07.024_bib66
  article-title: Zelflerend algoritme herkent onkruid steeds beter
  publication-title: Boerderij
– volume: vol. 4
  start-page: 51
  year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib62
  article-title: Crop manager lucas aertsen: ‘slab sensors firm up decision-making’
– volume: 45
  start-page: 199
  year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib39
  article-title: The stock market and the steppe: the challenges faced by stock-market financed, Nordic farming ventures in Russia and Ukraine
  publication-title: J. Rural Stud.
  doi: 10.1016/j.jrurstud.2016.03.009
– year: 2013
  ident: 10.1016/j.jrurstud.2021.07.024_bib20
– volume: 16
  start-page: 370
  issue: 3
  year: 2018
  ident: 10.1016/j.jrurstud.2021.07.024_bib34
  article-title: Surveillance farm: towards a research agenda on big data agriculture
  publication-title: Surveill. Soc.
  doi: 10.24908/ss.v16i3.12594
– volume: 105
  start-page: 42
  issue: 47
  year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib46
  article-title: Opbrengstmeting staat nog in de kinderschoenen
  publication-title: Boerderij
– year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib30
– volume: 105
  start-page: 22
  issue: 33
  year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib38
  article-title: Flinke vooruitgang en besparing gerealiseerd
  publication-title: Boerderij
– year: 2017
  ident: 10.1016/j.jrurstud.2021.07.024_bib28
  article-title: Opinion: benchmarking in precision agriculture is big statistics
  publication-title: PrecisionAg
– year: 2016
  ident: 10.1016/j.jrurstud.2021.07.024_bib43
– volume: 6
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.jrurstud.2021.07.024_bib5
  article-title: Occluded algorithms
  publication-title: Big Data Soc.
  doi: 10.1177/2053951719858743
– volume: 55
  start-page: 193
  year: 2017
  ident: 10.1016/j.jrurstud.2021.07.024_bib23
  article-title: Ordering adoption: materiality, knowledge and farmer engagement with precision agriculture technologies
  publication-title: J. Rural Stud.
  doi: 10.1016/j.jrurstud.2017.08.011
– volume: 10
  start-page: 1
  issue: 207
  year: 2020
  ident: 10.1016/j.jrurstud.2021.07.024_bib57
  article-title: From smart farming towards Agriculture 5.0: a review of crop data management
  publication-title: Agron. J.
SSID ssj0017092
Score 2.5459764
Snippet The myriad potential benefits of digital farming hinge on the promise of increased accuracy, which allows ‘doing more with less’ through precise, data-driven...
The myriad potential benefits of digital farming hinge on the promise of increased accuracy, which allows 'doing more with less' through precise, data-driven...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 623
SubjectTerms Academic disciplines
Accuracy
Agricultural technology
Agriculture
Algorithms
Analog data
Big Data
Checks and balances
Corroboration
Crops
Digital agriculture
Digital mapping
Farmers
Farming
Farms
Forecasting
Innovations
Mapping
Measurement
Opacity
Precision agriculture
Precision farming
Smart farming
Social sciences
Technological change
technology
Threats
Time measurement
Title Imprecision farming? Examining the (in)accuracy and risks of digital agriculture
URI https://dx.doi.org/10.1016/j.jrurstud.2021.07.024
https://www.proquest.com/docview/2587208912
https://www.proquest.com/docview/2636498145
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_a64O-FK2K19YSQUQftpdkk_14klJaTsUiaKFvIZ_HHbpX7gPal_7tZnazhxZKH3zc3Qy7zCQzs8nM7wfwriqsy00uM5YbnwlnaGYM9ZmTofAlk060G27fLorxpfhyJa-24LTvhcGyyuT7O5_eeut0Z5S0ObqeTkc_MPhhET1HFNGYWW_DDs_rQg5g5-Tz1_HF5jChpC03covGiQJ_NQrPjmeL-Fe-WiNoKGctjicXD8Woe966DUHnz2A35Y7kpPu857Dlmz140rcWL_dgf9N-Qt6TrvGWdDggty_gO-4fJEYdEjTWwEw-kbMb_bvliCAxEyQfps1Hbe16oe0t0Y0jWHm-JPNA3HSC9CJETxYJrcO_hMvzs5-n4yzxKWRWcLbKZGDIElR5lheCauuNcIxHg1hZ5wHJcEthuSlqXbDKOamDzzkta26MCZyG_BUMmnnjXwMxJqYKOphoYCqQsLzC49vKWR7zXy7MEGSvQWUT2DhyXvxSfVXZTPWaV6h5RUsVNT-E0UbuuoPbeFSi7g2k_pk4KsaER2UPe4uqtHSXisuq5LSqGR_C283juOjwJEU3fr6OY4qowbpiQu7_x-sP4CledeWEhzBYLdb-TUxxVuYIto_v2FGayH8AOnr8OQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxQxFH_UeqgXsVVxa60RRPQw3SSTzMdJSmlZtS2CLfQW8rnsorNlP8Be-rc3byazVEF68DpJmOG95OVN8nu_H8D7qrAuN7nMWG58JpyhmTHUZ06GwpdMOtEeuJ2dF6NL8fVKXm3AUV8Lg7DKFPu7mN5G6_RkmKw5vJ5Mhj9w80MQPUcW0ZhZP4LHQuYl4voObtc4D1bSVhm55eLE7vfKhKcH03n8J1-ukDKUs5bFk4t_7VB_xep2Azp5Bk9T5kgOu4_bhg3f7MBWX1i82IHddfEJ-UC6slvSsYDcPIfveHqQ9HRI0IiAGX8mx7_1r1YhgsQ8kHycNJ-0tau5tjdEN44g7nxBZoG4yRjFRYgezxNXh38BlyfHF0ejLKkpZFZwtsxkYKgRVHmWF4Jq641wjEd3WFnnAaVwS2G5KWpdsMo5qYPPOS1rbowJnIb8JWw2s8a_AmJMTBR0MNG9VKBceYWXt5WzPGa_XJgByN6CyiaqcVS8-Kl6TNlU9ZZXaHlFSxUtP4Dhetx1R7bx4Ii6d5D6Y9qouCM8OHav96hKC3ehuKxKTqua8QG8WzfHJYf3KLrxs1XsU0QL1hUTcvc_Xv8WtkYXZ6fq9Mv5t9fwBFs6YOEebC7nK_8mJjtLs99O5jtfQP0E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imprecision+farming%3F+Examining+the+%28in%29accuracy+and+risks+of+digital+agriculture&rft.jtitle=Journal+of+rural+studies&rft.au=Visser%2C+Oane&rft.au=Sippel%2C+Sarah+Ruth&rft.au=Thiemann%2C+Louis&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=0743-0167&rft.eissn=1873-1392&rft.volume=86&rft.spage=623&rft.epage=632&rft_id=info:doi/10.1016%2Fj.jrurstud.2021.07.024&rft.externalDocID=S0743016721002217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-0167&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-0167&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-0167&client=summon