Globally Stable Adaptive Backstepping Neural Network Control for Uncertain Strict-Feedback Systems With Tracking Accuracy Known a Priori

This paper addresses the problem of globally stable direct adaptive backstepping neural network (NN) tracking control design for a class of uncertain strict-feedback systems under the assumption that the accuracy of the ultimate tracking error is given a priori. In contrast to the classical adaptive...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 26; no. 9; pp. 1842 - 1854
Main Authors Weisheng Chen, Ge, Shuzhi Sam, Jian Wu, Maoguo Gong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper addresses the problem of globally stable direct adaptive backstepping neural network (NN) tracking control design for a class of uncertain strict-feedback systems under the assumption that the accuracy of the ultimate tracking error is given a priori. In contrast to the classical adaptive backstepping NN control schemes, this paper analyzes the convergence of the tracking error using Barbalat's Lemma via some nonnegative functions rather than the positive-definite Lyapunov functions. Thus, the accuracy of the ultimate tracking error can be determined and adjusted accurately a priori, and the closed-loop system is guaranteed to be globally uniformly ultimately bounded. The main technical novelty is to construct three new n th-order continuously differentiable functions, which are used to design the control law, the virtual control variables, and the adaptive laws. Finally, two simulation examples are given to illustrate the effectiveness and advantages of the proposed control method.
AbstractList This paper addresses the problem of globally stable direct adaptive backstepping neural network (NN) tracking control design for a class of uncertain strict-feedback systems under the assumption that the accuracy of the ultimate tracking error is given a priori . In contrast to the classical adaptive backstepping NN control schemes, this paper analyzes the convergence of the tracking error using Barbalat's Lemma via some nonnegative functions rather than the positive-definite Lyapunov functions. Thus, the accuracy of the ultimate tracking error can be determined and adjusted accurately a priori , and the closed-loop system is guaranteed to be globally uniformly ultimately bounded. The main technical novelty is to construct three new [Formula Omitted]th-order continuously differentiable functions, which are used to design the control law, the virtual control variables, and the adaptive laws. Finally, two simulation examples are given to illustrate the effectiveness and advantages of the proposed control method.
This paper addresses the problem of globally stable direct adaptive backstepping neural network (NN) tracking control design for a class of uncertain strict-feedback systems under the assumption that the accuracy of the ultimate tracking error is given a priori. In contrast to the classical adaptive backstepping NN control schemes, this paper analyzes the convergence of the tracking error using Barbalat's Lemma via some nonnegative functions rather than the positive-definite Lyapunov functions. Thus, the accuracy of the ultimate tracking error can be determined and adjusted accurately a priori, and the closed-loop system is guaranteed to be globally uniformly ultimately bounded. The main technical novelty is to construct three new n th-order continuously differentiable functions, which are used to design the control law, the virtual control variables, and the adaptive laws. Finally, two simulation examples are given to illustrate the effectiveness and advantages of the proposed control method.
This paper addresses the problem of globally stable direct adaptive backstepping neural network (NN) tracking control design for a class of uncertain strict-feedback systems under the assumption that the accuracy of the ultimate tracking error is given a priori. In contrast to the classical adaptive backstepping NN control schemes, this paper analyzes the convergence of the tracking error using Barbalat's Lemma via some nonnegative functions rather than the positive-definite Lyapunov functions. Thus, the accuracy of the ultimate tracking error can be determined and adjusted accurately a priori, and the closed-loop system is guaranteed to be globally uniformly ultimately bounded. The main technical novelty is to construct three new n th-order continuously differentiable functions, which are used to design the control law, the virtual control variables, and the adaptive laws. Finally, two simulation examples are given to illustrate the effectiveness and advantages of the proposed control method.This paper addresses the problem of globally stable direct adaptive backstepping neural network (NN) tracking control design for a class of uncertain strict-feedback systems under the assumption that the accuracy of the ultimate tracking error is given a priori. In contrast to the classical adaptive backstepping NN control schemes, this paper analyzes the convergence of the tracking error using Barbalat's Lemma via some nonnegative functions rather than the positive-definite Lyapunov functions. Thus, the accuracy of the ultimate tracking error can be determined and adjusted accurately a priori, and the closed-loop system is guaranteed to be globally uniformly ultimately bounded. The main technical novelty is to construct three new n th-order continuously differentiable functions, which are used to design the control law, the virtual control variables, and the adaptive laws. Finally, two simulation examples are given to illustrate the effectiveness and advantages of the proposed control method.
Author Jian Wu
Maoguo Gong
Ge, Shuzhi Sam
Weisheng Chen
Author_xml – sequence: 1
  surname: Weisheng Chen
  fullname: Weisheng Chen
  email: wshchen@126.com
  organization: Sch. of Math. & Stat., Xidian Univ., Xi'an, China
– sequence: 2
  givenname: Shuzhi Sam
  surname: Ge
  fullname: Ge, Shuzhi Sam
  email: samge@nus.edu.sg
  organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore
– sequence: 3
  surname: Jian Wu
  fullname: Jian Wu
  email: jwu2011@126.com
  organization: Sch. of Math. & Stat., Xidian Univ., Xi'an, China
– sequence: 4
  surname: Maoguo Gong
  fullname: Maoguo Gong
  email: gong@ieee.org
  organization: Key Lab. of Intell. Perception & Image Understanding, Xidian Univ., Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25265634$$D View this record in MEDLINE/PubMed
BookMark eNp9kd9uFCEYxYmpsbX2BTQxJN54MyswMH8u142txs1qstvoHWGYb5SWhRFYm30DH1vG3faiF3LBR8jvnMA5z9GJ8w4QeknJjFLSvtusVsv1jBHKZ6wUNRf0CTpjtGIFK5vm5OFcfz9FFzHekLwqIirePkOnTLBKVCU_Q3-urO-UtXu8TqqzgOe9GpP5Dfi90rcxwTga9wOvYBeUzSPd-XCLF96l4C0efMDXTkNIyrjsEIxOxSVA32UxXu-zfhvxN5N-4k3IV5PVXOvspff4s_N3Div8NRgfzAv0dFA2wsVxnqPryw-bxcdi-eXq02K-LDRnNBVCk0YLqjvd0prmH-lqADJ0bUmqgTHa17zsOxC01mzoGq6bvJetaATnrOeqPEdvD75j8L92EJPcmqjBWuXA76KkNakYEXVLM_rmEXrjd8Hl101UzrzldKJeH6ldt4VejsFsVdjL-4wz0BwAHXyMAQapTVLJTBkqYyUlcmpU_mtUTo3KY6NZyh5J793_K3p1EBkAeBBULSWsacu_2VCsSA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1155_2019_9053858
crossref_primary_10_1016_j_neucom_2017_10_042
crossref_primary_10_1080_00207721_2020_1817616
crossref_primary_10_1109_TNNLS_2023_3264151
crossref_primary_10_1109_ACCESS_2017_2788446
crossref_primary_10_1007_s11071_019_05321_x
crossref_primary_10_1109_TASE_2024_3374522
crossref_primary_10_1049_iet_cta_2016_0034
crossref_primary_10_1109_ACCESS_2020_3004401
crossref_primary_10_1109_ACCESS_2019_2919249
crossref_primary_10_1109_TSMC_2023_3281982
crossref_primary_10_1016_j_neucom_2021_01_017
crossref_primary_10_1016_j_ins_2016_10_016
crossref_primary_10_1109_TNNLS_2020_2967150
crossref_primary_10_1109_TFUZZ_2017_2762285
crossref_primary_10_1109_TSMC_2016_2597305
crossref_primary_10_1016_j_isatra_2015_09_018
crossref_primary_10_1109_ACCESS_2019_2929841
crossref_primary_10_1109_TFUZZ_2019_2945487
crossref_primary_10_1109_TSMC_2017_2709813
crossref_primary_10_1002_rnc_7720
crossref_primary_10_1007_s00521_016_2576_1
crossref_primary_10_1080_00207179_2020_1857845
crossref_primary_10_1109_TSMC_2018_2854770
crossref_primary_10_1016_j_neucom_2021_11_097
crossref_primary_10_1177_0142331220985637
crossref_primary_10_1016_j_ins_2018_03_057
crossref_primary_10_1016_j_robot_2019_02_017
crossref_primary_10_1109_TNNLS_2016_2547968
crossref_primary_10_1016_j_neucom_2019_12_102
crossref_primary_10_1115_1_4044372
crossref_primary_10_1109_TSMC_2021_3094975
crossref_primary_10_1007_s11071_021_06237_1
crossref_primary_10_1002_mma_7832
crossref_primary_10_1155_2019_9765353
crossref_primary_10_1016_j_amc_2021_126665
crossref_primary_10_1177_0142331216658508
crossref_primary_10_1109_TNNLS_2017_2650238
crossref_primary_10_1016_j_neucom_2024_128034
crossref_primary_10_1016_j_ins_2018_06_042
crossref_primary_10_1007_s40815_023_01518_w
crossref_primary_10_1109_TFUZZ_2019_2892920
crossref_primary_10_1109_TNNLS_2019_2934403
crossref_primary_10_1007_s00521_021_06387_8
crossref_primary_10_1109_TNNLS_2021_3120620
crossref_primary_10_1155_2019_8602719
crossref_primary_10_1109_TCYB_2016_2607166
crossref_primary_10_1109_TCYB_2022_3158702
crossref_primary_10_1109_TIE_2024_3436632
crossref_primary_10_1007_s00202_021_01353_y
crossref_primary_10_1016_j_neucom_2024_127869
crossref_primary_10_1109_TCYB_2019_2931877
crossref_primary_10_1109_TFUZZ_2023_3348271
crossref_primary_10_1016_j_neucom_2020_10_034
crossref_primary_10_1109_TCYB_2016_2581173
crossref_primary_10_1109_TNNLS_2018_2844165
crossref_primary_10_1016_j_cnsns_2024_108222
crossref_primary_10_1109_TNNLS_2022_3155635
crossref_primary_10_1049_cth2_12517
crossref_primary_10_1016_j_jfranklin_2021_12_004
crossref_primary_10_1016_j_amc_2021_126579
crossref_primary_10_1080_00207721_2017_1282062
crossref_primary_10_1109_JSYST_2024_3445377
crossref_primary_10_1109_TCYB_2020_3012607
crossref_primary_10_1109_TCSII_2023_3310275
crossref_primary_10_1109_TNNLS_2015_2499757
crossref_primary_10_1016_j_isatra_2023_01_032
crossref_primary_10_1002_rnc_7586
crossref_primary_10_1016_j_ifacol_2020_12_2567
crossref_primary_10_1016_j_isatra_2023_11_007
crossref_primary_10_1109_TNNLS_2019_2919676
crossref_primary_10_1002_rnc_4352
crossref_primary_10_1016_j_neucom_2015_09_013
crossref_primary_10_1080_00207721_2016_1151962
crossref_primary_10_1016_j_ins_2017_03_013
crossref_primary_10_1109_TCYB_2022_3178385
crossref_primary_10_1109_TCYB_2020_3030310
crossref_primary_10_1109_TFUZZ_2020_3022570
crossref_primary_10_1109_TNNLS_2017_2765683
crossref_primary_10_1109_TSMC_2021_3099808
crossref_primary_10_1080_00207721_2020_1793232
crossref_primary_10_1109_TCYB_2020_2965800
crossref_primary_10_1109_TFUZZ_2016_2593500
crossref_primary_10_1007_s11071_015_2396_3
crossref_primary_10_1109_TNNLS_2021_3072552
crossref_primary_10_1109_TNNLS_2017_2766123
crossref_primary_10_1016_j_ins_2020_03_015
crossref_primary_10_1002_asjc_1646
crossref_primary_10_1109_TNNLS_2017_2651903
crossref_primary_10_1109_TCNS_2024_3425665
crossref_primary_10_1109_TCYB_2021_3056990
crossref_primary_10_1109_TAI_2021_3093499
crossref_primary_10_1109_TSMC_2018_2800783
crossref_primary_10_1002_oca_3251
crossref_primary_10_1002_acs_3165
crossref_primary_10_1016_j_neucom_2019_10_006
crossref_primary_10_1016_j_isatra_2020_08_036
crossref_primary_10_1016_j_engappai_2023_107533
crossref_primary_10_1016_j_amc_2024_129110
crossref_primary_10_1007_s40815_018_0515_2
crossref_primary_10_1049_iet_cta_2016_0471
crossref_primary_10_1109_TCYB_2022_3192356
crossref_primary_10_1109_TFUZZ_2019_2905827
crossref_primary_10_1109_TNNLS_2021_3054611
crossref_primary_10_1109_TSMC_2023_3245299
crossref_primary_10_1109_TCYB_2018_2875134
crossref_primary_10_1016_j_ins_2017_08_085
crossref_primary_10_1109_TSMC_2022_3143359
crossref_primary_10_1109_TNNLS_2020_3027335
crossref_primary_10_1016_j_jfranklin_2015_11_006
crossref_primary_10_1016_j_neunet_2017_09_013
crossref_primary_10_1109_ACCESS_2019_2920716
crossref_primary_10_1109_TCYB_2017_2655053
crossref_primary_10_1109_TSMC_2015_2470635
crossref_primary_10_1177_1729881419894065
crossref_primary_10_1002_asjc_2720
crossref_primary_10_1007_s11431_022_2140_9
crossref_primary_10_1109_TSMC_2018_2870642
crossref_primary_10_1007_s11071_020_05599_2
crossref_primary_10_1017_S0263574718000723
crossref_primary_10_1109_JSYST_2023_3274160
crossref_primary_10_1515_ijnsns_2020_0141
crossref_primary_10_1016_j_nahs_2017_01_005
crossref_primary_10_1007_s40815_018_0545_9
crossref_primary_10_1016_j_comcom_2020_04_046
crossref_primary_10_1016_j_cnsns_2023_107506
crossref_primary_10_1109_TMECH_2018_2808235
crossref_primary_10_1109_TSMC_2016_2558098
crossref_primary_10_1016_j_asr_2022_08_042
crossref_primary_10_1109_ACCESS_2016_2591978
crossref_primary_10_1109_TIE_2016_2595481
crossref_primary_10_1016_j_jfranklin_2018_11_023
crossref_primary_10_1016_j_isatra_2022_06_013
crossref_primary_10_1109_TMECH_2024_3377679
crossref_primary_10_1109_TASE_2023_3243405
crossref_primary_10_1137_23M1595035
crossref_primary_10_1016_j_jfranklin_2022_11_038
crossref_primary_10_1007_s40815_021_01085_y
crossref_primary_10_1109_TCYB_2017_2655501
crossref_primary_10_1109_TNNLS_2016_2628038
crossref_primary_10_1109_TSMC_2019_2954875
crossref_primary_10_1109_TNNLS_2017_2655503
crossref_primary_10_1109_ACCESS_2019_2891689
crossref_primary_10_1109_TNNLS_2017_2716947
crossref_primary_10_1186_s13662_019_2099_z
crossref_primary_10_1016_j_ast_2022_107752
crossref_primary_10_1016_j_amc_2019_06_008
crossref_primary_10_1109_TNNLS_2018_2793968
crossref_primary_10_1016_j_neucom_2017_06_042
crossref_primary_10_1109_TCYB_2017_2758385
crossref_primary_10_1007_s11071_020_05885_z
crossref_primary_10_1109_TSMC_2020_2994808
crossref_primary_10_1007_s11071_019_05018_1
crossref_primary_10_1109_TCYB_2023_3336992
crossref_primary_10_1109_TSMC_2022_3218399
crossref_primary_10_1109_TNNLS_2017_2712619
crossref_primary_10_1155_2021_3396482
crossref_primary_10_1002_asjc_3116
crossref_primary_10_1007_s12555_021_0433_1
crossref_primary_10_1109_TNNLS_2021_3131364
crossref_primary_10_20965_jrm_2022_p0615
crossref_primary_10_1002_asjc_2253
crossref_primary_10_1177_01423312241267048
crossref_primary_10_1186_s13662_018_1642_7
crossref_primary_10_1002_acs_2823
crossref_primary_10_1016_j_ins_2018_10_032
crossref_primary_10_1080_00207721_2024_2304133
crossref_primary_10_1109_TNNLS_2021_3051030
crossref_primary_10_1002_asjc_3344
crossref_primary_10_1109_ACCESS_2020_3036161
crossref_primary_10_3233_JIFS_190540
crossref_primary_10_1016_j_isatra_2020_08_027
crossref_primary_10_1016_j_isatra_2021_08_048
crossref_primary_10_1109_TFUZZ_2020_2966185
crossref_primary_10_1109_TCYB_2015_2411285
crossref_primary_10_1109_TIE_2021_3123641
crossref_primary_10_1155_2019_6920372
crossref_primary_10_1016_j_ast_2019_03_058
crossref_primary_10_1109_TSMC_2016_2627048
crossref_primary_10_1142_S1469026817500195
crossref_primary_10_1155_2019_5613212
Cites_doi 10.1109/TNN.2004.839354
10.1016/j.neucom.2013.05.042
10.1016/j.automatica.2008.08.012
10.1016/S0005-1098(02)00067-5
10.1109/TNNLS.2012.2213305
10.1109/TNN.2011.2165222
10.1002/0471221139
10.1109/TNN.2010.2047115
10.1109/TNN.2007.912318
10.1016/j.automatica.2009.02.012
10.1109/TSMCB.2008.918568
10.1109/TSMCB.2009.2033563
10.1109/TNNLS.2011.2178448
10.1109/9.486648
10.1109/TNN.2011.2146274
10.1109/TNN.2006.888368
10.1016/j.automatica.2009.02.021
10.1007/978-1-4471-0549-7
10.1109/TNN.2011.2140381
10.1109/TNN.2004.826215
10.1016/j.automatica.2008.11.017
10.1109/TNN.2009.2022159
10.1109/TNN.2011.2159865
10.1049/iet-cta.2009.0428
10.1109/72.950139
10.23919/ACC.1991.4791778
10.1002/asjc.160
10.1109/TSMCB.2003.817055
10.1109/TNN.2005.844907
10.1109/9.827369
10.1016/S0005-1098(00)00116-3
10.1109/TSMCB.2009.2016110
10.1109/72.870049
10.1109/TSMCB.2009.2033808
10.1049/iet-cta.2009.0341
10.1109/3468.895898
10.1162/neco.1991.3.2.246
10.1016/j.sysconle.2008.09.002
10.1016/S0005-1098(02)00034-1
10.1109/TSMCB.2004.833340
10.1109/9.100933
10.1109/TNN.2009.2038999
10.1049/iet-cta.2009.0478
10.1109/9.481548
10.1109/TNN.2008.2001266
10.1080/002071798222280
10.1109/TSMCB.2007.904544
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2014.2357451
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1854
ExternalDocumentID 3784212001
25265634
10_1109_TNNLS_2014_2357451
6910289
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Basic Research Program of China (973 Program)
  grantid: 2011CB707005
– fundername: National Natural Science Foundation of China
  grantid: 61174213; 61203074
  funderid: 10.13039/501100001809
– fundername: Program for New Century Excellent Talents in University
  grantid: NCET-10-0665
  funderid: 10.13039/501100004602
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c421t-5c08c51cbc9171060c6fe0fb9306f221d743dbe517c2fb84c8fb839585442d4a3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 23:20:37 EDT 2025
Mon Jun 30 06:48:32 EDT 2025
Thu Jan 02 22:55:36 EST 2025
Tue Jul 01 00:27:18 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Tue Aug 26 16:37:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords tracking accuracy known a priori
Adaptive backstepping design
uncertain strict-feedback system
Barbalat’s Lemma
radial basis function (RBF) neural network (NN)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-5c08c51cbc9171060c6fe0fb9306f221d743dbe517c2fb84c8fb839585442d4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25265634
PQID 1705749411
PQPubID 85436
PageCount 13
ParticipantIDs ieee_primary_6910289
crossref_primary_10_1109_TNNLS_2014_2357451
crossref_citationtrail_10_1109_TNNLS_2014_2357451
proquest_journals_1705749411
proquest_miscellaneous_1706205791
pubmed_primary_25265634
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref52
ref11
ref10
krstic (ref5) 1995
ref16
ref19
yoo (ref40) 2008; 19
ref18
isidori (ref1) 1999
hua (ref30) 2008; 19
liu (ref17) 2011; 22
ref51
ref50
slotine (ref45) 1991
wen (ref27) 2011; 22
ref46
li (ref12) 2010; 40
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ren (ref44) 2010; 21
ref34
ref36
ref31
ref33
sanner (ref47) 1991
yoo (ref32) 2009; 39
ref2
ref39
ref38
khalil (ref3) 2006
chen (ref35) 2009; 45
ref24
ref23
chen (ref37) 2010; 12
ref25
ref20
ref22
ref21
yoo (ref26) 2009; 20
ref28
ref29
du (ref14) 2008; 44
spong (ref48) 1989
References_xml – ident: ref10
  doi: 10.1109/TNN.2004.839354
– ident: ref46
  doi: 10.1016/j.neucom.2013.05.042
– ident: ref36
  doi: 10.1016/j.automatica.2008.08.012
– year: 2006
  ident: ref3
  publication-title: Nonlinear Systems
– ident: ref16
  doi: 10.1016/S0005-1098(02)00067-5
– ident: ref38
  doi: 10.1109/TNNLS.2012.2213305
– volume: 22
  start-page: 1599
  year: 2011
  ident: ref27
  article-title: Neural networks-based adaptive control for nonlinear time-varying delays systems with unknown control direction
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2165222
– year: 1989
  ident: ref48
  publication-title: Robot Dynamics and Control
– ident: ref2
  doi: 10.1002/0471221139
– volume: 21
  start-page: 1339
  year: 2010
  ident: ref44
  article-title: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2047115
– year: 1991
  ident: ref45
  publication-title: Applied nonlinear control
– volume: 19
  start-page: 673
  year: 2008
  ident: ref30
  article-title: Output feedback stabilization for time-delay nonlinear interconnected systems using neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.912318
– ident: ref22
  doi: 10.1016/j.automatica.2009.02.012
– ident: ref25
  doi: 10.1109/TSMCB.2008.918568
– volume: 40
  start-page: 915
  year: 2010
  ident: ref12
  article-title: A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2009.2033563
– ident: ref33
  doi: 10.1109/TNNLS.2011.2178448
– ident: ref6
  doi: 10.1109/9.486648
– ident: ref31
  doi: 10.1109/TNN.2011.2146274
– ident: ref24
  doi: 10.1109/TNN.2006.888368
– volume: 45
  start-page: 1554
  year: 2009
  ident: ref35
  article-title: Novel adaptive neural control design for nonlinear MIMO time-delay systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.02.021
– year: 1999
  ident: ref1
  publication-title: Nonlinear Control Systems II
  doi: 10.1007/978-1-4471-0549-7
– ident: ref50
  doi: 10.1109/TNN.2011.2140381
– ident: ref9
  doi: 10.1109/TNN.2004.826215
– ident: ref43
  doi: 10.1016/j.automatica.2008.11.017
– volume: 20
  start-page: 1209
  year: 2009
  ident: ref26
  article-title: Adaptive neural control for a class of strict-feedback nonlinear systems with state time delays
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2022159
– volume: 22
  start-page: 1328
  year: 2011
  ident: ref17
  article-title: Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2159865
– ident: ref20
  doi: 10.1049/iet-cta.2009.0428
– ident: ref15
  doi: 10.1109/72.950139
– start-page: 2153
  year: 1991
  ident: ref47
  article-title: gaussian networks for direct adaptive control
  publication-title: 1991 American Control Conference ACC
  doi: 10.23919/ACC.1991.4791778
– volume: 12
  start-page: 96
  year: 2010
  ident: ref37
  article-title: Globally decentralized adaptive backstepping neural network tracking control for unknown nonlinear interconnected systems
  publication-title: Asian Journal of Contro
  doi: 10.1002/asjc.160
– ident: ref23
  doi: 10.1109/TSMCB.2003.817055
– ident: ref28
  doi: 10.1109/TNN.2005.844907
– ident: ref52
  doi: 10.1109/9.827369
– ident: ref8
  doi: 10.1016/S0005-1098(00)00116-3
– year: 1995
  ident: ref5
  publication-title: Nonlinear and Adaptive Control Design
– volume: 39
  start-page: 1316
  year: 2009
  ident: ref32
  article-title: Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2009.2016110
– ident: ref39
  doi: 10.1109/72.870049
– ident: ref19
  doi: 10.1109/TSMCB.2009.2033808
– ident: ref42
  doi: 10.1049/iet-cta.2009.0341
– ident: ref34
  doi: 10.1109/3468.895898
– ident: ref49
  doi: 10.1162/neco.1991.3.2.246
– ident: ref21
  doi: 10.1016/j.sysconle.2008.09.002
– ident: ref13
  doi: 10.1016/S0005-1098(02)00034-1
– ident: ref18
  doi: 10.1109/TSMCB.2004.833340
– ident: ref4
  doi: 10.1109/9.100933
– ident: ref11
  doi: 10.1109/TNN.2009.2038999
– volume: 44
  start-page: 1895
  year: 2008
  ident: ref14
  article-title: Adaptive neural network control for a class of low-triangular-structured nonlinear systems
  publication-title: Automatica
– ident: ref41
  doi: 10.1049/iet-cta.2009.0478
– ident: ref51
  doi: 10.1109/9.481548
– volume: 19
  start-page: 1712
  year: 2008
  ident: ref40
  article-title: Adaptive output feedback control of flexible-joint robots using neural networks: Dynamic surface design approach
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2001266
– ident: ref7
  doi: 10.1080/002071798222280
– ident: ref29
  doi: 10.1109/TSMCB.2007.904544
SSID ssj0000605649
Score 2.562895
Snippet This paper addresses the problem of globally stable direct adaptive backstepping neural network (NN) tracking control design for a class of uncertain...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1842
SubjectTerms Accuracy
Adaptive backstepping design
Adaptive systems
Algorithms
Approximation methods
Artificial neural networks
Backstepping
Barbalat's Lemma
Computer Simulation
Control systems
Feedback
Humans
Lyapunov methods
Neural networks
Neural Networks, Computer
Nonlinear Dynamics
radial basis function (RBF) neural network (NN)
tracking accuracy known a priori
Tracking stock
uncertain strict-feedback system
Uncertainty
Title Globally Stable Adaptive Backstepping Neural Network Control for Uncertain Strict-Feedback Systems With Tracking Accuracy Known a Priori
URI https://ieeexplore.ieee.org/document/6910289
https://www.ncbi.nlm.nih.gov/pubmed/25265634
https://www.proquest.com/docview/1705749411
https://www.proquest.com/docview/1706205791
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI-2PfHCgPFxMFCQeIPckjRNm8dj4jQhdkJiJ-6tatyUnTj1pqP3MP4C_mzs9EMCAeKlqlTHTWWnthP7Z8Zeld7lUKtSYIzshcmkF95ZJbIcrHQedJZT7fDlwl4szftVujpgb8ZamBBCTD4LU7qNZ_nVFva0VXZmHZlDd8gOMXDrarXG_RSJfrmN3q5WVgudZKuhRka6s6vF4sMnSuQyU8J3MSl1iNEEDW8T84tJij1W_u5uRrMzP2aXw4S7bJOv033rp_D9NyzH__2ie-xu73_yWacw99lBaB6w46G3A--X-gn70TUD2NxydEf9JvBZVd7Qr5G_par8NhCuwxdO2B7IbtElk_PzLvGdoyfMl8gnphsgB_zZtmKOhtLjYN6jpPPP6_aao7EE2q7nMwDkBbecOnE3vOQfd-vtbv2QLefvrs4vRN-1QYDRqhUpyBxSBR4wEsSAU4Ktg6y9w-Ck1lpV6LNUPqQqA1373ECO18Rh2GKMrkyZPGJHzbYJTxhPy6SCpLJ1haJVVe1rn0qocwA6IZLlhKlBcAX0kObUWWNTxNBGuiLKvSC5F73cJ-z1OOamA_T4J_UJCW2k7OU1YaeDfhT9mv9WEDBRZpxROOrl-BhXKx3BlE3Y7iON1VT_izSPO70aeQ_q-PTP73zG7uDM0i6_7ZQdtbt9eI4OUetfxJXwE3JhBbI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj9MwDI-O4wFeOOD4GBwQJN6guyZN0-ZxnJgGbBUSm9hb1bgpTEzdaXQPx1_An42dfkggQLxUleq4qezUdmL_zNiLwpoUKlEEGCPbQCWhDazRIkhS0KGxIJOUaocXmZ6t1Lt1vD5ir4ZaGOecTz5zY7r1Z_nlDg60VXauDZlDc41dR7sfy7Zaa9hRCdEz197flULLQEbJuq-SCc35MsvmHymVS40J4UXF1CNGEji8jtQvRsl3Wfm7w-kNz_SELfopt_kmX8eHxo7h-29ojv_7TbfZrc4D5ZNWZe6wI1ffZSd9dwfeLfZT9qNtB7C94uiQ2q3jk7K4pJ8jf011-Y0jZIfPnNA9kF3WppPzizb1naMvzFfIxyccIAf83TbBFE2lxcG8w0nnnzbNF47mEmjDnk8AkBdccerFXfOCf9hvdvvNPbaavllezIKub0MASoomiCFMIRZgAWNBDDlD0JULK2swPKmkFCV6LaV1sUhAVjZVkOI1Mhi4KCVLVUT32XG9q91DxuMiKiEqdVWiaEVZ2crGIVQpAJ0RhcWIiV5wOXSg5tRbY5v74CY0uZd7TnLPO7mP2MthzGUL6fFP6lMS2kDZyWvEznr9yLtV_y0naKJEGSVw1PPhMa5XOoQparc7eBotqQIYaR60ejXw7tXx0Z_f-YzdmC0X83z-Nnv_mN3EWcZtttsZO272B_cE3aPGPvWr4ic74gj8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Globally+Stable+Adaptive+Backstepping+Neural+Network+Control+for+Uncertain+Strict-Feedback+Systems+With+Tracking+Accuracy+Known+a+Priori&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Chen%2C+Weisheng&rft.au=Ge%2C+Shuzhi+Sam&rft.au=Wu%2C+Jian&rft.au=Gong%2C+Maoguo&rft.date=2015-09-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=26&rft.issue=9&rft.spage=1842&rft.epage=1854&rft_id=info:doi/10.1109%2FTNNLS.2014.2357451&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2014_2357451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon