Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts

Various transition metals (M = Pt, Fe, Co, and Ni) were selected to support on molybdenum carbides by in-situ carburization metal-doped molybdenum oxide (M-MoOx) via temperature-programmed reaction (TPR) with a final temperature of 700 degree C in a reaction gas mixture of 20% CH4/H2. XRD analysis r...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 39; no. 1; pp. 258 - 266
Main Authors Ma, Yufei, Guan, Guoqing, Shi, Chuan, Zhu, Aimin, Hao, Xiaogang, Wang, Zhongde, Kusakabe, Katsuki, Abudula, Abuliti
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various transition metals (M = Pt, Fe, Co, and Ni) were selected to support on molybdenum carbides by in-situ carburization metal-doped molybdenum oxide (M-MoOx) via temperature-programmed reaction (TPR) with a final temperature of 700 degree C in a reaction gas mixture of 20% CH4/H2. XRD analysis results indicated that I2-Mo2C phase was formed in the case of Fe, Co, or Ni doping while I--Mo2C phase was appeared with the I2-MoC1ax phase in the case of Pt doping. With the increase in Pt doping amount, more I--MoC1ax phase was produced. As-prepared metal doped molybdenum carbides were investigated as alternative catalysts for the steam reforming of methanol. Comparing with the undoped molybdenum carbide such as I2-Mo2C, metal-doped one showed higher methanol conversion and hydrogen yield. It is found that Pt doped molybdenum carbide had the highest catalytic activity and selectivity among the prepared catalysts and methanol conversion reached 100% even at a temperature as low as 200 degree C, and remained a long-time stability with a stable methanol conversion.
AbstractList Various transition metals (M = Pt, Fe, Co, and Ni) were selected to support on molybdenum carbides by in-situ carburization metal-doped molybdenum oxide (M-MoOx) via temperature-programmed reaction (TPR) with a final temperature of 700 degree C in a reaction gas mixture of 20% CH4/H2. XRD analysis results indicated that I2-Mo2C phase was formed in the case of Fe, Co, or Ni doping while I--Mo2C phase was appeared with the I2-MoC1ax phase in the case of Pt doping. With the increase in Pt doping amount, more I--MoC1ax phase was produced. As-prepared metal doped molybdenum carbides were investigated as alternative catalysts for the steam reforming of methanol. Comparing with the undoped molybdenum carbide such as I2-Mo2C, metal-doped one showed higher methanol conversion and hydrogen yield. It is found that Pt doped molybdenum carbide had the highest catalytic activity and selectivity among the prepared catalysts and methanol conversion reached 100% even at a temperature as low as 200 degree C, and remained a long-time stability with a stable methanol conversion.
Author Shi, Chuan
Hao, Xiaogang
Zhu, Aimin
Kusakabe, Katsuki
Ma, Yufei
Abudula, Abuliti
Guan, Guoqing
Wang, Zhongde
Author_xml – sequence: 1
  givenname: Yufei
  surname: Ma
  fullname: Ma, Yufei
– sequence: 2
  givenname: Guoqing
  surname: Guan
  fullname: Guan, Guoqing
– sequence: 3
  givenname: Chuan
  surname: Shi
  fullname: Shi, Chuan
– sequence: 4
  givenname: Aimin
  surname: Zhu
  fullname: Zhu, Aimin
– sequence: 5
  givenname: Xiaogang
  surname: Hao
  fullname: Hao, Xiaogang
– sequence: 6
  givenname: Zhongde
  surname: Wang
  fullname: Wang, Zhongde
– sequence: 7
  givenname: Katsuki
  surname: Kusakabe
  fullname: Kusakabe, Katsuki
– sequence: 8
  givenname: Abuliti
  surname: Abudula
  fullname: Abudula, Abuliti
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28083848$$DView record in Pascal Francis
BookMark eNqFkTtvHSEQhSkcya_8BYsmkpvdwLIPkNxYluNYulKapEZzYdbmahdugLV1_71Z-VG4cTNTzHeYw5xTcuSDR0IuOKs54_3PXe12jweLHuuGcVEzVfOOHZETJnpWCa7UMTlNaccYH1irTsiyCc9VxnmPEfISkaaMMNOIY4iz8w80jHTG_Ag-TDQHuo_BLgZpWRLDA3oanjDSJ4guLGklYaps2KOlc5gO2-JkmamBuHUWSy_jQ8rpnHwbYUr4_a2fkX-_bv_e_K42f-7ub643lWkbnqtO9qppx20nLYxGbBXYYSjFCAE9ciEbDuVfAgcjJefcorSiGxSTwFuQRpyRy9d3i-3_C6asZ5cMThN4LH51uU0vVNN1sqA_3lBIBqYxgjcu6X10M8SDbiSTQrYr179yJoaUyp0-EM70moHe6fcM9JqBZmrdU4RXn4TGZcgu-BzBTV_JXwDqjZg_
CODEN IJHEDX
CitedBy_id crossref_primary_10_1515_psr_2017_0014
crossref_primary_10_1016_j_apcatb_2016_02_021
crossref_primary_10_1016_j_biteb_2024_101980
crossref_primary_10_1063_1674_0068_27_06_697_703
crossref_primary_10_1016_j_enconman_2017_05_054
crossref_primary_10_1039_D3NR05207A
crossref_primary_10_1016_j_ceramint_2014_06_005
crossref_primary_10_1039_C4RA05673F
crossref_primary_10_54097_ajst_v5i3_8014
crossref_primary_10_1016_j_ijhydene_2019_06_185
crossref_primary_10_1016_j_enconman_2016_12_005
crossref_primary_10_1021_acsaem_4c01694
crossref_primary_10_1016_j_ijhydene_2022_08_134
crossref_primary_10_1016_j_matpr_2023_06_390
crossref_primary_10_1016_j_apcatb_2021_120648
crossref_primary_10_1039_C6GC02335E
crossref_primary_10_1016_j_fuel_2022_125172
crossref_primary_10_1002_adfm_201600915
crossref_primary_10_1021_acs_iecr_0c05041
crossref_primary_10_3103_S0361521920060130
crossref_primary_10_1021_acscatal_0c05019
crossref_primary_10_1063_5_0137706
crossref_primary_10_1021_acs_iecr_8b03542
crossref_primary_10_1016_j_ijhydene_2021_04_062
crossref_primary_10_1002_smtd_202000988
crossref_primary_10_1016_j_ijhydene_2015_07_084
crossref_primary_10_1595_205651322X16383716226126
crossref_primary_10_1039_C8NR00908B
crossref_primary_10_1039_D0CY02269A
crossref_primary_10_1021_acs_chemrev_4c00618
crossref_primary_10_1016_j_cej_2023_145645
crossref_primary_10_1016_j_rser_2023_114147
crossref_primary_10_1016_j_surfin_2020_100831
crossref_primary_10_1039_C7CY02506H
crossref_primary_10_1016_j_inoche_2018_04_001
crossref_primary_10_1016_j_ijhydene_2019_01_029
crossref_primary_10_1016_j_jechem_2021_03_022
crossref_primary_10_1038_s41467_025_55886_y
crossref_primary_10_1016_j_ijhydene_2023_01_166
crossref_primary_10_1007_s11581_018_2508_4
crossref_primary_10_1002_aenm_201801461
crossref_primary_10_1038_nature21672
crossref_primary_10_1021_acs_energyfuels_3c04026
crossref_primary_10_1021_jacs_2c08979
crossref_primary_10_1016_j_coche_2018_02_010
crossref_primary_10_1016_j_enconman_2018_02_092
crossref_primary_10_1039_D3RA06954K
crossref_primary_10_1016_j_ijhydene_2014_09_062
crossref_primary_10_1016_j_ijhydene_2019_11_015
crossref_primary_10_1016_j_apcata_2023_119535
crossref_primary_10_1039_C4RA15226C
crossref_primary_10_1007_s10562_024_04672_4
crossref_primary_10_1039_D3EY00076A
crossref_primary_10_1016_j_ijhydene_2015_04_068
crossref_primary_10_1016_j_fuproc_2023_108000
crossref_primary_10_1016_j_ceja_2024_100625
crossref_primary_10_1016_j_susc_2018_01_001
crossref_primary_10_1007_s12613_016_1243_y
crossref_primary_10_1016_j_ijhydene_2015_08_046
crossref_primary_10_3390_catal15010036
crossref_primary_10_1002_celc_201600171
crossref_primary_10_1039_C8AY00852C
crossref_primary_10_3390_ma12030415
crossref_primary_10_1016_j_apcatb_2019_118500
crossref_primary_10_4236_jpee_2016_48006
crossref_primary_10_1016_j_ijhydene_2022_06_284
crossref_primary_10_1007_s11244_022_01577_7
crossref_primary_10_1016_j_jallcom_2024_173521
crossref_primary_10_1016_j_ijhydene_2019_11_166
crossref_primary_10_1039_D3CS00731F
crossref_primary_10_1039_C6CP06307A
crossref_primary_10_1016_j_ijhydene_2016_10_006
crossref_primary_10_1016_j_crci_2016_06_001
crossref_primary_10_3390_en14248442
crossref_primary_10_1002_chem_201605928
crossref_primary_10_3390_en15093050
crossref_primary_10_1021_acsomega_2c01727
crossref_primary_10_1016_j_surfcoat_2023_129546
crossref_primary_10_1002_cctc_201700304
crossref_primary_10_1016_j_ijhydene_2014_08_041
crossref_primary_10_1016_j_ijhydene_2024_06_271
crossref_primary_10_1039_C5CY01480H
crossref_primary_10_1002_cctc_202300798
crossref_primary_10_1021_acscatal_2c04651
crossref_primary_10_1002_asia_202400217
crossref_primary_10_1016_j_biortech_2019_122263
crossref_primary_10_1021_acs_jpcc_1c03372
crossref_primary_10_1590_0104_6632_20160333s20150107
crossref_primary_10_1016_j_ijhydene_2023_06_017
crossref_primary_10_1016_j_jallcom_2017_11_236
crossref_primary_10_1039_D3NR02511J
crossref_primary_10_1039_D1CY01554K
crossref_primary_10_1016_j_ijhydene_2017_06_203
crossref_primary_10_1016_j_enchem_2020_100050
crossref_primary_10_1016_j_jallcom_2024_176019
crossref_primary_10_1016_j_rser_2016_11_092
crossref_primary_10_1021_acs_accounts_9b00182
crossref_primary_10_1021_jp501021t
crossref_primary_10_1016_j_ijhydene_2022_12_015
crossref_primary_10_1016_j_ijhydene_2020_08_277
crossref_primary_10_1016_j_apsusc_2023_158800
crossref_primary_10_1016_j_apcatb_2019_118177
crossref_primary_10_1016_j_ijhydene_2014_09_140
crossref_primary_10_1016_j_jcat_2021_06_022
crossref_primary_10_1002_er_7363
crossref_primary_10_1016_j_ijhydene_2019_08_003
crossref_primary_10_1021_acs_chemmater_5b00621
crossref_primary_10_1016_j_ijhydene_2021_10_076
crossref_primary_10_3390_molecules26216650
crossref_primary_10_1021_acs_iecr_0c03311
crossref_primary_10_1039_C9MH01094G
crossref_primary_10_1002_adfm_202000561
crossref_primary_10_1002_cctc_202300890
crossref_primary_10_1016_j_ijhydene_2023_05_238
crossref_primary_10_1016_j_biombioe_2024_107094
Cites_doi 10.1021/ie00031a003
10.1016/0021-9517(88)90119-4
10.1023/A:1018829116093
10.1016/j.jcat.2006.01.003
10.1016/j.apcata.2012.04.035
10.1016/j.apcata.2009.02.026
10.1021/cm030395w
10.1016/j.jiec.2012.01.021
10.1023/A:1019098112056
10.1007/s10562-007-9265-8
10.1016/j.ijhydene.2012.10.117
10.1021/jp710015d
10.1039/c2cs35165j
10.1016/j.apcatb.2010.06.015
10.1016/j.ijhydene.2009.01.029
10.1016/j.apcata.2006.10.054
10.1007/s10562-005-5853-7
10.1016/j.apcata.2011.04.037
10.1002/anie.201106591
10.1016/S1872-2067(07)60021-7
10.1021/cm9800229
10.1016/j.apcatb.2008.05.023
10.1039/b924051a
10.1021/ja110705a
10.1016/j.apcata.2008.06.020
10.1021/jp072439k
10.1016/j.cattod.2006.08.062
10.1023/A:1019038426961
10.1016/j.jcat.2007.05.003
10.1016/j.apcata.2005.04.022
10.1016/j.catcom.2011.01.019
10.1002/cjce.5450630412
10.1016/j.apcata.2003.10.031
10.1016/0021-9517(91)90072-C
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QQ
7SP
7SR
7SU
7U5
8FD
C1K
FR3
JG9
L7M
DOI 10.1016/j.ijhydene.2013.09.150
DatabaseName CrossRef
Pascal-Francis
Ceramic Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 266
ExternalDocumentID 28083848
10_1016_j_ijhydene_2013_09_150
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SSK
SSM
SSR
SSZ
T5K
T9H
TN5
WUQ
XPP
ZMT
~G-
AACTN
IQODW
7QQ
7SP
7SR
7SU
7U5
8FD
C1K
EFKBS
FR3
JG9
L7M
ID FETCH-LOGICAL-c421t-586924fb58dafc3b9ad779adc33a6e13821a3603e7c88111de8d357908a14a8c3
ISSN 0360-3199
IngestDate Sun Aug 24 03:58:12 EDT 2025
Wed Apr 02 07:35:50 EDT 2025
Tue Jul 01 00:58:47 EDT 2025
Thu Apr 24 23:07:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords TPR method
Steam reforming of methanol
Hydrogen
Transition metal
Steam reforming
Molybdenum carbide
Molybdenum
Catalyst
Hydrogen production
Low temperature
Methanol
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-586924fb58dafc3b9ad779adc33a6e13821a3603e7c88111de8d357908a14a8c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1506392558
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1506392558
pascalfrancis_primary_28083848
crossref_primary_10_1016_j_ijhydene_2013_09_150
crossref_citationtrail_10_1016_j_ijhydene_2013_09_150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 20140101
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of hydrogen energy
PublicationYear 2014
Publisher Elsevier
Publisher_xml – name: Elsevier
References Amphlett (10.1016/j.ijhydene.2013.09.150_bib2) 2009; 63
Rameshan (10.1016/j.ijhydene.2013.09.150_bib6) 2012; 51
Tsuji (10.1016/j.ijhydene.2013.09.150_bib35) 2000; 69
Kurr (10.1016/j.ijhydene.2013.09.150_bib7) 2008; 348
Penner (10.1016/j.ijhydene.2013.09.150_bib11) 2009; 358
Kelly (10.1016/j.ijhydene.2013.09.150_bib23) 2012; 41
Li (10.1016/j.ijhydene.2013.09.150_bib32) 1998; 10
Koós (10.1016/j.ijhydene.2013.09.150_bib21) 2008; 112
Jung (10.1016/j.ijhydene.2013.09.150_bib31) 2004; 16
Patt (10.1016/j.ijhydene.2013.09.150_bib33) 2000; 65
Ranganathan (10.1016/j.ijhydene.2013.09.150_bib10) 2005; 289
Zhang (10.1016/j.ijhydene.2013.09.150_bib5) 2005; 102
Lee (10.1016/j.ijhydene.2013.09.150_bib15) 1991; 128
Lewandowski (10.1016/j.ijhydene.2013.09.150_bib24) 2007; 119
Sá (10.1016/j.ijhydene.2013.09.150_bib3) 2010; 99
Pongstabodee (10.1016/j.ijhydene.2013.09.150_bib9) 2012; 18
Eswaramoorthi (10.1016/j.ijhydene.2013.09.150_bib13) 2009; 34
Lausche (10.1016/j.ijhydene.2013.09.150_bib27) 2011; 401
Blekkan (10.1016/j.ijhydene.2013.09.150_bib16) 1994; 33
Zhang (10.1016/j.ijhydene.2013.09.150_bib17) 2011; 12
Griboval-Constant (10.1016/j.ijhydene.2013.09.150_bib25) 2004; 260
Schweitzer (10.1016/j.ijhydene.2013.09.150_bib26) 2011; 133
Wang (10.1016/j.ijhydene.2013.09.150_bib12) 2007; 28
Lin (10.1016/j.ijhydene.2013.09.150_bib20) 2007; 318
Shi (10.1016/j.ijhydene.2013.09.150_bib29) 2012; 431
Barthos (10.1016/j.ijhydene.2013.09.150_bib1) 2007; 249
Ma (10.1016/j.ijhydene.2013.09.150_bib28) 2013
Jones (10.1016/j.ijhydene.2013.09.150_bib4) 2008; 84
Lee (10.1016/j.ijhydene.2013.09.150_bib30) 1988; 112
Yi (10.1016/j.ijhydene.2013.09.150_bib8) 2010; 3
Nagai (10.1016/j.ijhydene.2013.09.150_bib34) 2006; 238
Széchenyi (10.1016/j.ijhydene.2013.09.150_bib19) 2007; 111
Brungs (10.1016/j.ijhydene.2013.09.150_bib18) 2000; 70
Barthos (10.1016/j.ijhydene.2013.09.150_bib22) 2008; 120
Pojanavaraphan (10.1016/j.ijhydene.2013.09.150_bib14) 2012; 38
References_xml – volume: 33
  start-page: 1657
  year: 1994
  ident: 10.1016/j.ijhydene.2013.09.150_bib16
  article-title: Isomerization of n-heptane on an oxygen-modified molybdenum carbide catalyst
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie00031a003
– volume: 112
  start-page: 44
  year: 1988
  ident: 10.1016/j.ijhydene.2013.09.150_bib30
  article-title: Molybdenum carbide catalysts: II. Topotactic synthesis of unsupported powders
  publication-title: J Catal
  doi: 10.1016/0021-9517(88)90119-4
– volume: 70
  start-page: 117
  year: 2000
  ident: 10.1016/j.ijhydene.2013.09.150_bib18
  article-title: Dry reforming of methane to synthesis gas over supported molybdenum carbide catalysts
  publication-title: Calat Lett
  doi: 10.1023/A:1018829116093
– volume: 238
  start-page: 489
  year: 2006
  ident: 10.1016/j.ijhydene.2013.09.150_bib34
  article-title: Low-temperature water–gas shift reaction over cobalt–molybdenum carbide catalyst
  publication-title: J Catal
  doi: 10.1016/j.jcat.2006.01.003
– volume: 431
  start-page: 164
  year: 2012
  ident: 10.1016/j.ijhydene.2013.09.150_bib29
  article-title: Ni-modified Mo2C catalysts for methane dry reforming
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2012.04.035
– volume: 358
  start-page: 193
  year: 2009
  ident: 10.1016/j.ijhydene.2013.09.150_bib11
  article-title: Pd/Ga2O3 methanol steam reforming catalysts: part I. Morphology, composition and structural aspects
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2009.02.026
– volume: 16
  start-page: 307
  year: 2004
  ident: 10.1016/j.ijhydene.2013.09.150_bib31
  article-title: Effects of transition metal addition on the solid-state transformation of molybdenum trioxide to molybdenum carbides
  publication-title: Chem Mater
  doi: 10.1021/cm030395w
– volume: 18
  start-page: 831
  year: 2012
  ident: 10.1016/j.ijhydene.2013.09.150_bib9
  article-title: Hydrogen production via methanol steam reforming over Au/CuO, Au/CeO2, and Au/CuO–CeO2 catalysts prepared by deposition–precipitation
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2012.01.021
– volume: 65
  start-page: 193
  year: 2000
  ident: 10.1016/j.ijhydene.2013.09.150_bib33
  article-title: Molybdenum carbide catalysts for water–gas shift
  publication-title: Calat Lett
  doi: 10.1023/A:1019098112056
– volume: 120
  start-page: 161
  year: 2008
  ident: 10.1016/j.ijhydene.2013.09.150_bib22
  article-title: Efficient H2 production from ethanol over Mo2C/C nanotube catalyst
  publication-title: Calat Lett
  doi: 10.1007/s10562-007-9265-8
– volume: 38
  start-page: 1348
  year: 2012
  ident: 10.1016/j.ijhydene.2013.09.150_bib14
  article-title: Effect of catalyst preparation on Au/Ce1−xZrxO2 and Au–Cu/Ce1−xZrxO2 for steam reforming of methanol
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.10.117
– volume: 112
  start-page: 2607
  year: 2008
  ident: 10.1016/j.ijhydene.2013.09.150_bib21
  article-title: Reforming of methanol on a K-promoted Mo2C/Norit catalyst
  publication-title: J Phys Chem C
  doi: 10.1021/jp710015d
– volume: 41
  start-page: 8021
  year: 2012
  ident: 10.1016/j.ijhydene.2013.09.150_bib23
  article-title: Metal overlayer on metal carbide substrate: unique bimetallic properties for catalysis and electrocatalysis
  publication-title: Chem Soc Rev
  doi: 10.1039/c2cs35165j
– volume: 99
  start-page: 43
  year: 2010
  ident: 10.1016/j.ijhydene.2013.09.150_bib3
  article-title: Catalysts for methanol steam reforming – a review
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2010.06.015
– volume: 34
  start-page: 2580
  year: 2009
  ident: 10.1016/j.ijhydene.2013.09.150_bib13
  article-title: A comparative study on the performance of mesoporous SBA-15 supported Pd–Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.01.029
– volume: 318
  start-page: 121
  year: 2007
  ident: 10.1016/j.ijhydene.2013.09.150_bib20
  article-title: Steam reforming of methanol using supported Mo2C catalysts
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2006.10.054
– volume: 102
  start-page: 183
  year: 2005
  ident: 10.1016/j.ijhydene.2013.09.150_bib5
  article-title: A highly efficient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol
  publication-title: Calat Lett
  doi: 10.1007/s10562-005-5853-7
– volume: 401
  start-page: 29
  year: 2011
  ident: 10.1016/j.ijhydene.2013.09.150_bib27
  article-title: Understanding the effects of sulfur on Mo2C and Pt/Mo2C catalysts: methanol steam reforming
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2011.04.037
– volume: 51
  start-page: 3002
  year: 2012
  ident: 10.1016/j.ijhydene.2013.09.150_bib6
  article-title: Hydrogen production by methanol steam reforming on copper boosted by zinc-assisted water activation
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201106591
– volume: 28
  start-page: 234
  year: 2007
  ident: 10.1016/j.ijhydene.2013.09.150_bib12
  article-title: Reduction of Pd/ZnO catalyst and its catalytic activity for steam reforming of methanol
  publication-title: Chinese J Catal
  doi: 10.1016/S1872-2067(07)60021-7
– volume: 10
  start-page: 1853
  year: 1998
  ident: 10.1016/j.ijhydene.2013.09.150_bib32
  article-title: Effect of the reactive gas on the solid-state transformation of molybdenum trioxide to carbides and nitrides
  publication-title: Chem Mater
  doi: 10.1021/cm9800229
– volume: 84
  start-page: 631
  year: 2008
  ident: 10.1016/j.ijhydene.2013.09.150_bib4
  article-title: Steam reforming of methanol using Cu–ZnO catalysts supported on nanoparticle alumina
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2008.05.023
– volume: 3
  start-page: 831
  year: 2010
  ident: 10.1016/j.ijhydene.2013.09.150_bib8
  article-title: Active gold species on cerium oxide nanoshapes for methanol steam reforming and the water gas shift reactions
  publication-title: Energ Environ Sci
  doi: 10.1039/b924051a
– volume: 133
  start-page: 2378
  year: 2011
  ident: 10.1016/j.ijhydene.2013.09.150_bib26
  article-title: High activity carbide supported catalysts for water gas shift
  publication-title: J Am Chem Soc
  doi: 10.1021/ja110705a
– volume: 348
  start-page: 153
  year: 2008
  ident: 10.1016/j.ijhydene.2013.09.150_bib7
  article-title: Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming – a comparative study
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2008.06.020
– volume: 111
  start-page: 9509
  year: 2007
  ident: 10.1016/j.ijhydene.2013.09.150_bib19
  article-title: Production of hydrogen in the decomposition of ethanol and methanol over unsupported Mo2C catalysts
  publication-title: J Phys Chem C
  doi: 10.1021/jp072439k
– volume: 119
  start-page: 31
  year: 2007
  ident: 10.1016/j.ijhydene.2013.09.150_bib24
  article-title: Catalytic performances of platinum doped molybdenum carbide for simultaneous hydrodenitrogenation and hydrodesulfurization
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2006.08.062
– start-page: 45
  year: 2013
  ident: 10.1016/j.ijhydene.2013.09.150_bib28
  article-title: Steam reforming of methanol to produce hydrogen over molybodenum carbide-based catalysts at low temperatures
– volume: 69
  start-page: 195
  year: 2000
  ident: 10.1016/j.ijhydene.2013.09.150_bib35
  article-title: Remarkable support effect of ZrO2 upon the CO2 reforming of CH4 over supported molybdenum carbide catalysts
  publication-title: Calat Lett
  doi: 10.1023/A:1019038426961
– volume: 249
  start-page: 289
  year: 2007
  ident: 10.1016/j.ijhydene.2013.09.150_bib1
  article-title: Hydrogen production in the decomposition and steam reforming of methanol on Mo2C/carbon catalysts
  publication-title: J Catal
  doi: 10.1016/j.jcat.2007.05.003
– volume: 289
  start-page: 153
  year: 2005
  ident: 10.1016/j.ijhydene.2013.09.150_bib10
  article-title: Methanol steam reforming over Pd/ZnO and Pd/CeO2 catalysts
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2005.04.022
– volume: 12
  start-page: 803
  year: 2011
  ident: 10.1016/j.ijhydene.2013.09.150_bib17
  article-title: In-situ synthesis of nickel modified molybdenum carbide catalyst for dry reforming of methane
  publication-title: Catal Commun
  doi: 10.1016/j.catcom.2011.01.019
– volume: 63
  start-page: 605
  year: 2009
  ident: 10.1016/j.ijhydene.2013.09.150_bib2
  article-title: Hydrogen production by the catalytic steam reforming of methanol: Part 2: kinetics of methanol decomposition using girdler G66B catalyst
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.5450630412
– volume: 260
  start-page: 35
  year: 2004
  ident: 10.1016/j.ijhydene.2013.09.150_bib25
  article-title: Catalytic behaviour of cobalt or ruthenium supported molybdenum carbide catalysts for FT reaction
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2003.10.031
– volume: 128
  start-page: 126
  year: 1991
  ident: 10.1016/j.ijhydene.2013.09.150_bib15
  article-title: Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts
  publication-title: J Catal
  doi: 10.1016/0021-9517(91)90072-C
SSID ssj0017049
Score 2.4802167
Snippet Various transition metals (M = Pt, Fe, Co, and Ni) were selected to support on molybdenum carbides by in-situ carburization metal-doped molybdenum oxide...
SourceID proquest
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 258
SubjectTerms Alternative fuels. Production and utilization
Applied sciences
Catalysis
Catalysts
Conversion
Doping
Energy
Exact sciences and technology
Fuels
Hydrogen
Methyl alcohol
Molybdenum carbides
Phase transformations
Platinum
Title Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts
URI https://www.proquest.com/docview/1506392558
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaq5QJCiKcoj5WRuEUpzds5IgSsEHDalVZcIscPtlW3LiUBLQd-Cz-VGTtOk90VsFysKqqd2PNlPDMZf0PIc50zXci4CCMp0jDVaRmyPC_DmOkk1YLHUY6nkT98zA-O0nfH2fFk8muQtdQ29Uz8uPRcyf9IFa6BXPGU7BUk2w8KF-A3yBdakDC0_yTj9-Z7iNxSHTFygBI7DWDPM5jh8tl9O8fYuFmhjbmx7K4qODmTWwODBpi-GXwDbxnzYOGffBVKswET9NSszmpps-QF39YLidlhDdKXOOInb86O44kDFor-FsqeLdzFva3Kb7Va9Ik_rQvBvm3NF7-NWsrIhcsGaHfw_XTSWlWGhciG0YooHUQr_Ckt1PuuKJLXwI7OaIS0Tp06WvduZ45dfZYLSt_FH5azxRImB9PChL0E2Wsjx2k7Ztk-t_v1OYk-3W1Z-XEqHKeal5UNCl2LwRFBTTr72ScRRUXnYPlZDc6gX_48I_Pn5oZ_hTdRuxIqF6wBa-Ic3ia3Ot-EvnRAu0Mman2X3BgwVt4j7TnIUQs52kOOGk095GhjaAc56vFAEXK0gxwdQI7uIEc7yNEecvfJ0ZvXh68Owq5yRyjSOGrCjOXg1-s6Y5JrkdQll0UBjUgSniukvYw4LFmiCsEY7LZSMZlkRTlnPEo5E8kDsrc2a_WQ0DIHgxJZDkUCzrWMWaTKVEjwwjnP5qKckswvaCU6WnusrrKq_izQKXnR99s4Ype_9tgfyavvFjPwY1jKpuSZF2AFShq_vPG1guXE3uAJgPfOHl35to_J9d2L9ITsNdtWPQVDuKn3LRZ_Azwgu88
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-temperature+steam+reforming+of+methanol+to+produce+hydrogen+over+various+metal-doped+molybdenum+carbide+catalysts&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Ma%2C+Yufei&rft.au=Guan%2C+Guoqing&rft.au=Shi%2C+Chuan&rft.au=Zhu%2C+Aimin&rft.date=2014-01-01&rft.issn=0360-3199&rft.volume=39&rft.issue=1&rft.spage=258&rft.epage=266&rft_id=info:doi/10.1016%2Fj.ijhydene.2013.09.150&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2013_09_150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon