Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts
Various transition metals (M = Pt, Fe, Co, and Ni) were selected to support on molybdenum carbides by in-situ carburization metal-doped molybdenum oxide (M-MoOx) via temperature-programmed reaction (TPR) with a final temperature of 700 degree C in a reaction gas mixture of 20% CH4/H2. XRD analysis r...
Saved in:
Published in | International journal of hydrogen energy Vol. 39; no. 1; pp. 258 - 266 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various transition metals (M = Pt, Fe, Co, and Ni) were selected to support on molybdenum carbides by in-situ carburization metal-doped molybdenum oxide (M-MoOx) via temperature-programmed reaction (TPR) with a final temperature of 700 degree C in a reaction gas mixture of 20% CH4/H2. XRD analysis results indicated that I2-Mo2C phase was formed in the case of Fe, Co, or Ni doping while I--Mo2C phase was appeared with the I2-MoC1ax phase in the case of Pt doping. With the increase in Pt doping amount, more I--MoC1ax phase was produced. As-prepared metal doped molybdenum carbides were investigated as alternative catalysts for the steam reforming of methanol. Comparing with the undoped molybdenum carbide such as I2-Mo2C, metal-doped one showed higher methanol conversion and hydrogen yield. It is found that Pt doped molybdenum carbide had the highest catalytic activity and selectivity among the prepared catalysts and methanol conversion reached 100% even at a temperature as low as 200 degree C, and remained a long-time stability with a stable methanol conversion. |
---|---|
AbstractList | Various transition metals (M = Pt, Fe, Co, and Ni) were selected to support on molybdenum carbides by in-situ carburization metal-doped molybdenum oxide (M-MoOx) via temperature-programmed reaction (TPR) with a final temperature of 700 degree C in a reaction gas mixture of 20% CH4/H2. XRD analysis results indicated that I2-Mo2C phase was formed in the case of Fe, Co, or Ni doping while I--Mo2C phase was appeared with the I2-MoC1ax phase in the case of Pt doping. With the increase in Pt doping amount, more I--MoC1ax phase was produced. As-prepared metal doped molybdenum carbides were investigated as alternative catalysts for the steam reforming of methanol. Comparing with the undoped molybdenum carbide such as I2-Mo2C, metal-doped one showed higher methanol conversion and hydrogen yield. It is found that Pt doped molybdenum carbide had the highest catalytic activity and selectivity among the prepared catalysts and methanol conversion reached 100% even at a temperature as low as 200 degree C, and remained a long-time stability with a stable methanol conversion. |
Author | Shi, Chuan Hao, Xiaogang Zhu, Aimin Kusakabe, Katsuki Ma, Yufei Abudula, Abuliti Guan, Guoqing Wang, Zhongde |
Author_xml | – sequence: 1 givenname: Yufei surname: Ma fullname: Ma, Yufei – sequence: 2 givenname: Guoqing surname: Guan fullname: Guan, Guoqing – sequence: 3 givenname: Chuan surname: Shi fullname: Shi, Chuan – sequence: 4 givenname: Aimin surname: Zhu fullname: Zhu, Aimin – sequence: 5 givenname: Xiaogang surname: Hao fullname: Hao, Xiaogang – sequence: 6 givenname: Zhongde surname: Wang fullname: Wang, Zhongde – sequence: 7 givenname: Katsuki surname: Kusakabe fullname: Kusakabe, Katsuki – sequence: 8 givenname: Abuliti surname: Abudula fullname: Abudula, Abuliti |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28083848$$DView record in Pascal Francis |
BookMark | eNqFkTtvHSEQhSkcya_8BYsmkpvdwLIPkNxYluNYulKapEZzYdbmahdugLV1_71Z-VG4cTNTzHeYw5xTcuSDR0IuOKs54_3PXe12jweLHuuGcVEzVfOOHZETJnpWCa7UMTlNaccYH1irTsiyCc9VxnmPEfISkaaMMNOIY4iz8w80jHTG_Ag-TDQHuo_BLgZpWRLDA3oanjDSJ4guLGklYaps2KOlc5gO2-JkmamBuHUWSy_jQ8rpnHwbYUr4_a2fkX-_bv_e_K42f-7ub643lWkbnqtO9qppx20nLYxGbBXYYSjFCAE9ciEbDuVfAgcjJefcorSiGxSTwFuQRpyRy9d3i-3_C6asZ5cMThN4LH51uU0vVNN1sqA_3lBIBqYxgjcu6X10M8SDbiSTQrYr179yJoaUyp0-EM70moHe6fcM9JqBZmrdU4RXn4TGZcgu-BzBTV_JXwDqjZg_ |
CODEN | IJHEDX |
CitedBy_id | crossref_primary_10_1515_psr_2017_0014 crossref_primary_10_1016_j_apcatb_2016_02_021 crossref_primary_10_1016_j_biteb_2024_101980 crossref_primary_10_1063_1674_0068_27_06_697_703 crossref_primary_10_1016_j_enconman_2017_05_054 crossref_primary_10_1039_D3NR05207A crossref_primary_10_1016_j_ceramint_2014_06_005 crossref_primary_10_1039_C4RA05673F crossref_primary_10_54097_ajst_v5i3_8014 crossref_primary_10_1016_j_ijhydene_2019_06_185 crossref_primary_10_1016_j_enconman_2016_12_005 crossref_primary_10_1021_acsaem_4c01694 crossref_primary_10_1016_j_ijhydene_2022_08_134 crossref_primary_10_1016_j_matpr_2023_06_390 crossref_primary_10_1016_j_apcatb_2021_120648 crossref_primary_10_1039_C6GC02335E crossref_primary_10_1016_j_fuel_2022_125172 crossref_primary_10_1002_adfm_201600915 crossref_primary_10_1021_acs_iecr_0c05041 crossref_primary_10_3103_S0361521920060130 crossref_primary_10_1021_acscatal_0c05019 crossref_primary_10_1063_5_0137706 crossref_primary_10_1021_acs_iecr_8b03542 crossref_primary_10_1016_j_ijhydene_2021_04_062 crossref_primary_10_1002_smtd_202000988 crossref_primary_10_1016_j_ijhydene_2015_07_084 crossref_primary_10_1595_205651322X16383716226126 crossref_primary_10_1039_C8NR00908B crossref_primary_10_1039_D0CY02269A crossref_primary_10_1021_acs_chemrev_4c00618 crossref_primary_10_1016_j_cej_2023_145645 crossref_primary_10_1016_j_rser_2023_114147 crossref_primary_10_1016_j_surfin_2020_100831 crossref_primary_10_1039_C7CY02506H crossref_primary_10_1016_j_inoche_2018_04_001 crossref_primary_10_1016_j_ijhydene_2019_01_029 crossref_primary_10_1016_j_jechem_2021_03_022 crossref_primary_10_1038_s41467_025_55886_y crossref_primary_10_1016_j_ijhydene_2023_01_166 crossref_primary_10_1007_s11581_018_2508_4 crossref_primary_10_1002_aenm_201801461 crossref_primary_10_1038_nature21672 crossref_primary_10_1021_acs_energyfuels_3c04026 crossref_primary_10_1021_jacs_2c08979 crossref_primary_10_1016_j_coche_2018_02_010 crossref_primary_10_1016_j_enconman_2018_02_092 crossref_primary_10_1039_D3RA06954K crossref_primary_10_1016_j_ijhydene_2014_09_062 crossref_primary_10_1016_j_ijhydene_2019_11_015 crossref_primary_10_1016_j_apcata_2023_119535 crossref_primary_10_1039_C4RA15226C crossref_primary_10_1007_s10562_024_04672_4 crossref_primary_10_1039_D3EY00076A crossref_primary_10_1016_j_ijhydene_2015_04_068 crossref_primary_10_1016_j_fuproc_2023_108000 crossref_primary_10_1016_j_ceja_2024_100625 crossref_primary_10_1016_j_susc_2018_01_001 crossref_primary_10_1007_s12613_016_1243_y crossref_primary_10_1016_j_ijhydene_2015_08_046 crossref_primary_10_3390_catal15010036 crossref_primary_10_1002_celc_201600171 crossref_primary_10_1039_C8AY00852C crossref_primary_10_3390_ma12030415 crossref_primary_10_1016_j_apcatb_2019_118500 crossref_primary_10_4236_jpee_2016_48006 crossref_primary_10_1016_j_ijhydene_2022_06_284 crossref_primary_10_1007_s11244_022_01577_7 crossref_primary_10_1016_j_jallcom_2024_173521 crossref_primary_10_1016_j_ijhydene_2019_11_166 crossref_primary_10_1039_D3CS00731F crossref_primary_10_1039_C6CP06307A crossref_primary_10_1016_j_ijhydene_2016_10_006 crossref_primary_10_1016_j_crci_2016_06_001 crossref_primary_10_3390_en14248442 crossref_primary_10_1002_chem_201605928 crossref_primary_10_3390_en15093050 crossref_primary_10_1021_acsomega_2c01727 crossref_primary_10_1016_j_surfcoat_2023_129546 crossref_primary_10_1002_cctc_201700304 crossref_primary_10_1016_j_ijhydene_2014_08_041 crossref_primary_10_1016_j_ijhydene_2024_06_271 crossref_primary_10_1039_C5CY01480H crossref_primary_10_1002_cctc_202300798 crossref_primary_10_1021_acscatal_2c04651 crossref_primary_10_1002_asia_202400217 crossref_primary_10_1016_j_biortech_2019_122263 crossref_primary_10_1021_acs_jpcc_1c03372 crossref_primary_10_1590_0104_6632_20160333s20150107 crossref_primary_10_1016_j_ijhydene_2023_06_017 crossref_primary_10_1016_j_jallcom_2017_11_236 crossref_primary_10_1039_D3NR02511J crossref_primary_10_1039_D1CY01554K crossref_primary_10_1016_j_ijhydene_2017_06_203 crossref_primary_10_1016_j_enchem_2020_100050 crossref_primary_10_1016_j_jallcom_2024_176019 crossref_primary_10_1016_j_rser_2016_11_092 crossref_primary_10_1021_acs_accounts_9b00182 crossref_primary_10_1021_jp501021t crossref_primary_10_1016_j_ijhydene_2022_12_015 crossref_primary_10_1016_j_ijhydene_2020_08_277 crossref_primary_10_1016_j_apsusc_2023_158800 crossref_primary_10_1016_j_apcatb_2019_118177 crossref_primary_10_1016_j_ijhydene_2014_09_140 crossref_primary_10_1016_j_jcat_2021_06_022 crossref_primary_10_1002_er_7363 crossref_primary_10_1016_j_ijhydene_2019_08_003 crossref_primary_10_1021_acs_chemmater_5b00621 crossref_primary_10_1016_j_ijhydene_2021_10_076 crossref_primary_10_3390_molecules26216650 crossref_primary_10_1021_acs_iecr_0c03311 crossref_primary_10_1039_C9MH01094G crossref_primary_10_1002_adfm_202000561 crossref_primary_10_1002_cctc_202300890 crossref_primary_10_1016_j_ijhydene_2023_05_238 crossref_primary_10_1016_j_biombioe_2024_107094 |
Cites_doi | 10.1021/ie00031a003 10.1016/0021-9517(88)90119-4 10.1023/A:1018829116093 10.1016/j.jcat.2006.01.003 10.1016/j.apcata.2012.04.035 10.1016/j.apcata.2009.02.026 10.1021/cm030395w 10.1016/j.jiec.2012.01.021 10.1023/A:1019098112056 10.1007/s10562-007-9265-8 10.1016/j.ijhydene.2012.10.117 10.1021/jp710015d 10.1039/c2cs35165j 10.1016/j.apcatb.2010.06.015 10.1016/j.ijhydene.2009.01.029 10.1016/j.apcata.2006.10.054 10.1007/s10562-005-5853-7 10.1016/j.apcata.2011.04.037 10.1002/anie.201106591 10.1016/S1872-2067(07)60021-7 10.1021/cm9800229 10.1016/j.apcatb.2008.05.023 10.1039/b924051a 10.1021/ja110705a 10.1016/j.apcata.2008.06.020 10.1021/jp072439k 10.1016/j.cattod.2006.08.062 10.1023/A:1019038426961 10.1016/j.jcat.2007.05.003 10.1016/j.apcata.2005.04.022 10.1016/j.catcom.2011.01.019 10.1002/cjce.5450630412 10.1016/j.apcata.2003.10.031 10.1016/0021-9517(91)90072-C |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QQ 7SP 7SR 7SU 7U5 8FD C1K FR3 JG9 L7M |
DOI | 10.1016/j.ijhydene.2013.09.150 |
DatabaseName | CrossRef Pascal-Francis Ceramic Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Ceramic Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EndPage | 266 |
ExternalDocumentID | 28083848 10_1016_j_ijhydene_2013_09_150 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AFZHZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SCC SDF SDG SES SEW SPC SPCBC SSH SSK SSM SSR SSZ T5K T9H TN5 WUQ XPP ZMT ~G- AACTN IQODW 7QQ 7SP 7SR 7SU 7U5 8FD C1K EFKBS FR3 JG9 L7M |
ID | FETCH-LOGICAL-c421t-586924fb58dafc3b9ad779adc33a6e13821a3603e7c88111de8d357908a14a8c3 |
ISSN | 0360-3199 |
IngestDate | Sun Aug 24 03:58:12 EDT 2025 Wed Apr 02 07:35:50 EDT 2025 Tue Jul 01 00:58:47 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | TPR method Steam reforming of methanol Hydrogen Transition metal Steam reforming Molybdenum carbide Molybdenum Catalyst Hydrogen production Low temperature Methanol |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c421t-586924fb58dafc3b9ad779adc33a6e13821a3603e7c88111de8d357908a14a8c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1506392558 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1506392558 pascalfrancis_primary_28083848 crossref_primary_10_1016_j_ijhydene_2013_09_150 crossref_citationtrail_10_1016_j_ijhydene_2013_09_150 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140101 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 20140101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2014 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Amphlett (10.1016/j.ijhydene.2013.09.150_bib2) 2009; 63 Rameshan (10.1016/j.ijhydene.2013.09.150_bib6) 2012; 51 Tsuji (10.1016/j.ijhydene.2013.09.150_bib35) 2000; 69 Kurr (10.1016/j.ijhydene.2013.09.150_bib7) 2008; 348 Penner (10.1016/j.ijhydene.2013.09.150_bib11) 2009; 358 Kelly (10.1016/j.ijhydene.2013.09.150_bib23) 2012; 41 Li (10.1016/j.ijhydene.2013.09.150_bib32) 1998; 10 Koós (10.1016/j.ijhydene.2013.09.150_bib21) 2008; 112 Jung (10.1016/j.ijhydene.2013.09.150_bib31) 2004; 16 Patt (10.1016/j.ijhydene.2013.09.150_bib33) 2000; 65 Ranganathan (10.1016/j.ijhydene.2013.09.150_bib10) 2005; 289 Zhang (10.1016/j.ijhydene.2013.09.150_bib5) 2005; 102 Lee (10.1016/j.ijhydene.2013.09.150_bib15) 1991; 128 Lewandowski (10.1016/j.ijhydene.2013.09.150_bib24) 2007; 119 Sá (10.1016/j.ijhydene.2013.09.150_bib3) 2010; 99 Pongstabodee (10.1016/j.ijhydene.2013.09.150_bib9) 2012; 18 Eswaramoorthi (10.1016/j.ijhydene.2013.09.150_bib13) 2009; 34 Lausche (10.1016/j.ijhydene.2013.09.150_bib27) 2011; 401 Blekkan (10.1016/j.ijhydene.2013.09.150_bib16) 1994; 33 Zhang (10.1016/j.ijhydene.2013.09.150_bib17) 2011; 12 Griboval-Constant (10.1016/j.ijhydene.2013.09.150_bib25) 2004; 260 Schweitzer (10.1016/j.ijhydene.2013.09.150_bib26) 2011; 133 Wang (10.1016/j.ijhydene.2013.09.150_bib12) 2007; 28 Lin (10.1016/j.ijhydene.2013.09.150_bib20) 2007; 318 Shi (10.1016/j.ijhydene.2013.09.150_bib29) 2012; 431 Barthos (10.1016/j.ijhydene.2013.09.150_bib1) 2007; 249 Ma (10.1016/j.ijhydene.2013.09.150_bib28) 2013 Jones (10.1016/j.ijhydene.2013.09.150_bib4) 2008; 84 Lee (10.1016/j.ijhydene.2013.09.150_bib30) 1988; 112 Yi (10.1016/j.ijhydene.2013.09.150_bib8) 2010; 3 Nagai (10.1016/j.ijhydene.2013.09.150_bib34) 2006; 238 Széchenyi (10.1016/j.ijhydene.2013.09.150_bib19) 2007; 111 Brungs (10.1016/j.ijhydene.2013.09.150_bib18) 2000; 70 Barthos (10.1016/j.ijhydene.2013.09.150_bib22) 2008; 120 Pojanavaraphan (10.1016/j.ijhydene.2013.09.150_bib14) 2012; 38 |
References_xml | – volume: 33 start-page: 1657 year: 1994 ident: 10.1016/j.ijhydene.2013.09.150_bib16 article-title: Isomerization of n-heptane on an oxygen-modified molybdenum carbide catalyst publication-title: Ind Eng Chem Res doi: 10.1021/ie00031a003 – volume: 112 start-page: 44 year: 1988 ident: 10.1016/j.ijhydene.2013.09.150_bib30 article-title: Molybdenum carbide catalysts: II. Topotactic synthesis of unsupported powders publication-title: J Catal doi: 10.1016/0021-9517(88)90119-4 – volume: 70 start-page: 117 year: 2000 ident: 10.1016/j.ijhydene.2013.09.150_bib18 article-title: Dry reforming of methane to synthesis gas over supported molybdenum carbide catalysts publication-title: Calat Lett doi: 10.1023/A:1018829116093 – volume: 238 start-page: 489 year: 2006 ident: 10.1016/j.ijhydene.2013.09.150_bib34 article-title: Low-temperature water–gas shift reaction over cobalt–molybdenum carbide catalyst publication-title: J Catal doi: 10.1016/j.jcat.2006.01.003 – volume: 431 start-page: 164 year: 2012 ident: 10.1016/j.ijhydene.2013.09.150_bib29 article-title: Ni-modified Mo2C catalysts for methane dry reforming publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2012.04.035 – volume: 358 start-page: 193 year: 2009 ident: 10.1016/j.ijhydene.2013.09.150_bib11 article-title: Pd/Ga2O3 methanol steam reforming catalysts: part I. Morphology, composition and structural aspects publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2009.02.026 – volume: 16 start-page: 307 year: 2004 ident: 10.1016/j.ijhydene.2013.09.150_bib31 article-title: Effects of transition metal addition on the solid-state transformation of molybdenum trioxide to molybdenum carbides publication-title: Chem Mater doi: 10.1021/cm030395w – volume: 18 start-page: 831 year: 2012 ident: 10.1016/j.ijhydene.2013.09.150_bib9 article-title: Hydrogen production via methanol steam reforming over Au/CuO, Au/CeO2, and Au/CuO–CeO2 catalysts prepared by deposition–precipitation publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2012.01.021 – volume: 65 start-page: 193 year: 2000 ident: 10.1016/j.ijhydene.2013.09.150_bib33 article-title: Molybdenum carbide catalysts for water–gas shift publication-title: Calat Lett doi: 10.1023/A:1019098112056 – volume: 120 start-page: 161 year: 2008 ident: 10.1016/j.ijhydene.2013.09.150_bib22 article-title: Efficient H2 production from ethanol over Mo2C/C nanotube catalyst publication-title: Calat Lett doi: 10.1007/s10562-007-9265-8 – volume: 38 start-page: 1348 year: 2012 ident: 10.1016/j.ijhydene.2013.09.150_bib14 article-title: Effect of catalyst preparation on Au/Ce1−xZrxO2 and Au–Cu/Ce1−xZrxO2 for steam reforming of methanol publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.10.117 – volume: 112 start-page: 2607 year: 2008 ident: 10.1016/j.ijhydene.2013.09.150_bib21 article-title: Reforming of methanol on a K-promoted Mo2C/Norit catalyst publication-title: J Phys Chem C doi: 10.1021/jp710015d – volume: 41 start-page: 8021 year: 2012 ident: 10.1016/j.ijhydene.2013.09.150_bib23 article-title: Metal overlayer on metal carbide substrate: unique bimetallic properties for catalysis and electrocatalysis publication-title: Chem Soc Rev doi: 10.1039/c2cs35165j – volume: 99 start-page: 43 year: 2010 ident: 10.1016/j.ijhydene.2013.09.150_bib3 article-title: Catalysts for methanol steam reforming – a review publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2010.06.015 – volume: 34 start-page: 2580 year: 2009 ident: 10.1016/j.ijhydene.2013.09.150_bib13 article-title: A comparative study on the performance of mesoporous SBA-15 supported Pd–Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.01.029 – volume: 318 start-page: 121 year: 2007 ident: 10.1016/j.ijhydene.2013.09.150_bib20 article-title: Steam reforming of methanol using supported Mo2C catalysts publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2006.10.054 – volume: 102 start-page: 183 year: 2005 ident: 10.1016/j.ijhydene.2013.09.150_bib5 article-title: A highly efficient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol publication-title: Calat Lett doi: 10.1007/s10562-005-5853-7 – volume: 401 start-page: 29 year: 2011 ident: 10.1016/j.ijhydene.2013.09.150_bib27 article-title: Understanding the effects of sulfur on Mo2C and Pt/Mo2C catalysts: methanol steam reforming publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2011.04.037 – volume: 51 start-page: 3002 year: 2012 ident: 10.1016/j.ijhydene.2013.09.150_bib6 article-title: Hydrogen production by methanol steam reforming on copper boosted by zinc-assisted water activation publication-title: Angew Chem Int Ed doi: 10.1002/anie.201106591 – volume: 28 start-page: 234 year: 2007 ident: 10.1016/j.ijhydene.2013.09.150_bib12 article-title: Reduction of Pd/ZnO catalyst and its catalytic activity for steam reforming of methanol publication-title: Chinese J Catal doi: 10.1016/S1872-2067(07)60021-7 – volume: 10 start-page: 1853 year: 1998 ident: 10.1016/j.ijhydene.2013.09.150_bib32 article-title: Effect of the reactive gas on the solid-state transformation of molybdenum trioxide to carbides and nitrides publication-title: Chem Mater doi: 10.1021/cm9800229 – volume: 84 start-page: 631 year: 2008 ident: 10.1016/j.ijhydene.2013.09.150_bib4 article-title: Steam reforming of methanol using Cu–ZnO catalysts supported on nanoparticle alumina publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2008.05.023 – volume: 3 start-page: 831 year: 2010 ident: 10.1016/j.ijhydene.2013.09.150_bib8 article-title: Active gold species on cerium oxide nanoshapes for methanol steam reforming and the water gas shift reactions publication-title: Energ Environ Sci doi: 10.1039/b924051a – volume: 133 start-page: 2378 year: 2011 ident: 10.1016/j.ijhydene.2013.09.150_bib26 article-title: High activity carbide supported catalysts for water gas shift publication-title: J Am Chem Soc doi: 10.1021/ja110705a – volume: 348 start-page: 153 year: 2008 ident: 10.1016/j.ijhydene.2013.09.150_bib7 article-title: Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming – a comparative study publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2008.06.020 – volume: 111 start-page: 9509 year: 2007 ident: 10.1016/j.ijhydene.2013.09.150_bib19 article-title: Production of hydrogen in the decomposition of ethanol and methanol over unsupported Mo2C catalysts publication-title: J Phys Chem C doi: 10.1021/jp072439k – volume: 119 start-page: 31 year: 2007 ident: 10.1016/j.ijhydene.2013.09.150_bib24 article-title: Catalytic performances of platinum doped molybdenum carbide for simultaneous hydrodenitrogenation and hydrodesulfurization publication-title: Catal Today doi: 10.1016/j.cattod.2006.08.062 – start-page: 45 year: 2013 ident: 10.1016/j.ijhydene.2013.09.150_bib28 article-title: Steam reforming of methanol to produce hydrogen over molybodenum carbide-based catalysts at low temperatures – volume: 69 start-page: 195 year: 2000 ident: 10.1016/j.ijhydene.2013.09.150_bib35 article-title: Remarkable support effect of ZrO2 upon the CO2 reforming of CH4 over supported molybdenum carbide catalysts publication-title: Calat Lett doi: 10.1023/A:1019038426961 – volume: 249 start-page: 289 year: 2007 ident: 10.1016/j.ijhydene.2013.09.150_bib1 article-title: Hydrogen production in the decomposition and steam reforming of methanol on Mo2C/carbon catalysts publication-title: J Catal doi: 10.1016/j.jcat.2007.05.003 – volume: 289 start-page: 153 year: 2005 ident: 10.1016/j.ijhydene.2013.09.150_bib10 article-title: Methanol steam reforming over Pd/ZnO and Pd/CeO2 catalysts publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2005.04.022 – volume: 12 start-page: 803 year: 2011 ident: 10.1016/j.ijhydene.2013.09.150_bib17 article-title: In-situ synthesis of nickel modified molybdenum carbide catalyst for dry reforming of methane publication-title: Catal Commun doi: 10.1016/j.catcom.2011.01.019 – volume: 63 start-page: 605 year: 2009 ident: 10.1016/j.ijhydene.2013.09.150_bib2 article-title: Hydrogen production by the catalytic steam reforming of methanol: Part 2: kinetics of methanol decomposition using girdler G66B catalyst publication-title: Can J Chem Eng doi: 10.1002/cjce.5450630412 – volume: 260 start-page: 35 year: 2004 ident: 10.1016/j.ijhydene.2013.09.150_bib25 article-title: Catalytic behaviour of cobalt or ruthenium supported molybdenum carbide catalysts for FT reaction publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2003.10.031 – volume: 128 start-page: 126 year: 1991 ident: 10.1016/j.ijhydene.2013.09.150_bib15 article-title: Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts publication-title: J Catal doi: 10.1016/0021-9517(91)90072-C |
SSID | ssj0017049 |
Score | 2.4802167 |
Snippet | Various transition metals (M = Pt, Fe, Co, and Ni) were selected to support on molybdenum carbides by in-situ carburization metal-doped molybdenum oxide... |
SourceID | proquest pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 258 |
SubjectTerms | Alternative fuels. Production and utilization Applied sciences Catalysis Catalysts Conversion Doping Energy Exact sciences and technology Fuels Hydrogen Methyl alcohol Molybdenum carbides Phase transformations Platinum |
Title | Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts |
URI | https://www.proquest.com/docview/1506392558 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaq5QJCiKcoj5WRuEUpzds5IgSsEHDalVZcIscPtlW3LiUBLQd-Cz-VGTtOk90VsFysKqqd2PNlPDMZf0PIc50zXci4CCMp0jDVaRmyPC_DmOkk1YLHUY6nkT98zA-O0nfH2fFk8muQtdQ29Uz8uPRcyf9IFa6BXPGU7BUk2w8KF-A3yBdakDC0_yTj9-Z7iNxSHTFygBI7DWDPM5jh8tl9O8fYuFmhjbmx7K4qODmTWwODBpi-GXwDbxnzYOGffBVKswET9NSszmpps-QF39YLidlhDdKXOOInb86O44kDFor-FsqeLdzFva3Kb7Va9Ik_rQvBvm3NF7-NWsrIhcsGaHfw_XTSWlWGhciG0YooHUQr_Ckt1PuuKJLXwI7OaIS0Tp06WvduZ45dfZYLSt_FH5azxRImB9PChL0E2Wsjx2k7Ztk-t_v1OYk-3W1Z-XEqHKeal5UNCl2LwRFBTTr72ScRRUXnYPlZDc6gX_48I_Pn5oZ_hTdRuxIqF6wBa-Ic3ia3Ot-EvnRAu0Mman2X3BgwVt4j7TnIUQs52kOOGk095GhjaAc56vFAEXK0gxwdQI7uIEc7yNEecvfJ0ZvXh68Owq5yRyjSOGrCjOXg1-s6Y5JrkdQll0UBjUgSniukvYw4LFmiCsEY7LZSMZlkRTlnPEo5E8kDsrc2a_WQ0DIHgxJZDkUCzrWMWaTKVEjwwjnP5qKckswvaCU6WnusrrKq_izQKXnR99s4Ype_9tgfyavvFjPwY1jKpuSZF2AFShq_vPG1guXE3uAJgPfOHl35to_J9d2L9ITsNdtWPQVDuKn3LRZ_Azwgu88 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-temperature+steam+reforming+of+methanol+to+produce+hydrogen+over+various+metal-doped+molybdenum+carbide+catalysts&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Ma%2C+Yufei&rft.au=Guan%2C+Guoqing&rft.au=Shi%2C+Chuan&rft.au=Zhu%2C+Aimin&rft.date=2014-01-01&rft.issn=0360-3199&rft.volume=39&rft.issue=1&rft.spage=258&rft.epage=266&rft_id=info:doi/10.1016%2Fj.ijhydene.2013.09.150&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2013_09_150 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |