STL-ATTLSTM: Vegetable Price Forecasting Using STL and Attention Mechanism-Based LSTM

It is difficult to forecast vegetable prices because they are affected by numerous factors, such as weather and crop production, and the time-series data have strong non-linear and non-stationary characteristics. To address these issues, we propose the STL-ATTLSTM (STL-Attention-based LSTM) model, w...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 10; no. 12; p. 612
Main Authors Yin, Helin, Jin, Dong, Gu, Yeong Hyeon, Park, Chang Jin, Han, Sang Keun, Yoo, Seong Joon
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is difficult to forecast vegetable prices because they are affected by numerous factors, such as weather and crop production, and the time-series data have strong non-linear and non-stationary characteristics. To address these issues, we propose the STL-ATTLSTM (STL-Attention-based LSTM) model, which integrates the seasonal trend decomposition using the Loess (STL) preprocessing method and attention mechanism based on long short-term memory (LSTM). The proposed STL-ATTLSTM forecasts monthly vegetable prices using various types of information, such as vegetable prices, weather information of the main production areas, and market trading volumes. The STL method decomposes time-series vegetable price data into trend, seasonality, and remainder components. It uses the remainder component by removing the trend and seasonality components. In the model training process, attention weights are assigned to all input variables; thus, the model’s prediction performance is improved by focusing on the variables that affect the prediction results. The proposed STL-ATTLSTM was applied to five crops, namely cabbage, radish, onion, hot pepper, and garlic, and its performance was compared to three benchmark models (i.e., LSTM, attention LSTM, and STL-LSTM). The performance results show that the LSTM model combined with the STL method (STL-LSTM) achieved a 12% higher prediction accuracy than the attention LSTM model that did not use the STL method and solved the prediction lag arising from high seasonality. The attention LSTM model improved the prediction accuracy by approximately 4% to 5% compared to the LSTM model. The STL-ATTLSTM model achieved the best performance, with an average root mean square error (RMSE) of 380, and an average mean absolute percentage error (MAPE) of 7%.
AbstractList It is difficult to forecast vegetable prices because they are affected by numerous factors, such as weather and crop production, and the time-series data have strong non-linear and non-stationary characteristics. To address these issues, we propose the STL-ATTLSTM (STL-Attention-based LSTM) model, which integrates the seasonal trend decomposition using the Loess (STL) preprocessing method and attention mechanism based on long short-term memory (LSTM). The proposed STL-ATTLSTM forecasts monthly vegetable prices using various types of information, such as vegetable prices, weather information of the main production areas, and market trading volumes. The STL method decomposes time-series vegetable price data into trend, seasonality, and remainder components. It uses the remainder component by removing the trend and seasonality components. In the model training process, attention weights are assigned to all input variables; thus, the model’s prediction performance is improved by focusing on the variables that affect the prediction results. The proposed STL-ATTLSTM was applied to five crops, namely cabbage, radish, onion, hot pepper, and garlic, and its performance was compared to three benchmark models (i.e., LSTM, attention LSTM, and STL-LSTM). The performance results show that the LSTM model combined with the STL method (STL-LSTM) achieved a 12% higher prediction accuracy than the attention LSTM model that did not use the STL method and solved the prediction lag arising from high seasonality. The attention LSTM model improved the prediction accuracy by approximately 4% to 5% compared to the LSTM model. The STL-ATTLSTM model achieved the best performance, with an average root mean square error (RMSE) of 380, and an average mean absolute percentage error (MAPE) of 7%.
Author Han, Sang Keun
Yoo, Seong Joon
Gu, Yeong Hyeon
Yin, Helin
Park, Chang Jin
Jin, Dong
Author_xml – sequence: 1
  givenname: Helin
  orcidid: 0000-0001-5859-4006
  surname: Yin
  fullname: Yin, Helin
– sequence: 2
  givenname: Dong
  surname: Jin
  fullname: Jin, Dong
– sequence: 3
  givenname: Yeong Hyeon
  surname: Gu
  fullname: Gu, Yeong Hyeon
– sequence: 4
  givenname: Chang Jin
  surname: Park
  fullname: Park, Chang Jin
– sequence: 5
  givenname: Sang Keun
  orcidid: 0000-0002-0718-125X
  surname: Han
  fullname: Han, Sang Keun
– sequence: 6
  givenname: Seong Joon
  surname: Yoo
  fullname: Yoo, Seong Joon
BookMark eNp9kU1v1DAQhiNUJErpL-ASiQuXUH8k_uC2VJRW2gqkZrlaE3uyeJW1i-0c-PckLEioQvhgW9bzPprxvKzOQgxYVa8pece5JlewT97OU5kTUkIZEZQ9q84ZkbIhrWRnf91fVJc5H8iyNOWKiPNq99Bvm03fbx_6-_f1V9xjgWHC-svixPomJrSQiw_7epfXfcFrCK7elIKh-Bjqe7TfIPh8bD5ARlevplfV8xGmjJe_z4tqd_Oxv75ttp8_3V1vto1tGS1NJxUFpI51bkSipHWjotqBch3X3Ao7OC4JaHAjVUxIxkUrhFbUWTV22vKL6u7kdREO5jH5I6QfJoI3vx5i2htIxdsJjeLMScq06GBoB0EUc5wMRFIrCeHELa63J9djit9nzMUcfbY4TRAwztkwwQUVbcflgr55gh7inMLSqWGt0GKptV0pfaJsijknHI31BdY_Kwn8ZCgx6_zMP-a3ZPmT7J_m_pf6CVMcoK0
CitedBy_id crossref_primary_10_1016_j_chaos_2023_113854
crossref_primary_10_1080_03610918_2024_2433495
crossref_primary_10_1007_s44196_023_00371_x
crossref_primary_10_3390_agriculture13091671
crossref_primary_10_3390_math11092060
crossref_primary_10_1007_s11600_023_01023_6
crossref_primary_10_1016_j_eti_2025_104107
crossref_primary_10_3390_app122211366
crossref_primary_10_1016_j_heliyon_2024_e41478
crossref_primary_10_1007_s00704_024_05009_2
crossref_primary_10_3233_JIFS_235843
crossref_primary_10_1177_0309524X251314204
crossref_primary_10_3390_math10162915
crossref_primary_10_3390_horticulturae10040347
crossref_primary_10_3390_s24216857
crossref_primary_10_3390_agriculture11040359
crossref_primary_10_1016_j_inpa_2022_06_002
crossref_primary_10_1038_s41598_023_38465_3
crossref_primary_10_15406_ijfcm_2024_08_00369
crossref_primary_10_1117_1_JRS_16_034529
crossref_primary_10_1016_j_nexus_2023_100250
crossref_primary_10_1108_AJEB_01_2024_0007
crossref_primary_10_1371_journal_pone_0311199
crossref_primary_10_3390_agriculture12020256
crossref_primary_10_1016_j_compag_2022_107068
crossref_primary_10_1134_S0016793224600693
crossref_primary_10_1142_S1469026823500244
crossref_primary_10_1007_s11277_023_10234_5
crossref_primary_10_3390_agronomy12112680
crossref_primary_10_1007_s13563_022_00357_9
crossref_primary_10_3390_electronics13183646
crossref_primary_10_3390_ani13081322
crossref_primary_10_1016_j_compeleceng_2024_109227
crossref_primary_10_1016_j_asoc_2024_111557
crossref_primary_10_3390_agriculture14020210
crossref_primary_10_22144_ctujoisd_2024_324
crossref_primary_10_3390_app132111824
crossref_primary_10_3934_mbe_2023397
crossref_primary_10_3390_stats5040068
crossref_primary_10_1080_03019233_2023_2218243
crossref_primary_10_3390_su141710483
crossref_primary_10_1007_s12665_023_11110_y
crossref_primary_10_1155_acis_6626517
crossref_primary_10_3390_foods13182936
crossref_primary_10_3390_agriculture11100951
crossref_primary_10_3390_horticulturae9050549
crossref_primary_10_3390_pollutants4040034
crossref_primary_10_3390_math12071054
Cites_doi 10.24963/ijcai.2017/366
10.1016/S2095-3119(13)60610-3
10.1016/j.compag.2016.10.005
10.1007/978-3-642-18354-6_79
10.1016/j.procs.2018.05.187
10.3390/s19040861
10.1093/wber/lhr056
10.1088/1757-899X/569/5/052037
10.1109/ICSAI48974.2019.9010181
10.15531/ksccr.2016.7.2.193
10.1016/j.compag.2018.09.016
10.1016/j.compag.2017.06.025
10.1162/neco.1997.9.8.1735
10.1109/ICPRIME.2013.6496514
10.1109/ITSC.2017.8317886
10.1016/j.compag.2015.09.002
10.5958/0976-4666.2017.00047.X
10.1016/j.compag.2005.12.001
10.1016/j.knosys.2019.05.028
10.1016/j.neucom.2017.11.053
10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00142
10.1109/UKSim.2014.67
10.1111/j.1574-0862.1989.tb00068.x
10.1016/j.compag.2019.01.027
10.1109/ICPRIME.2012.6208294
10.1016/j.compag.2017.06.019
10.1109/CAC48633.2019.8997169
10.1016/j.compag.2018.08.016
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
DOA
DOI 10.3390/agriculture10120612
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection (UHCL Subscription)
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_832d712965ab4b6082d30b071c70030d
10_3390_agriculture10120612
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
KQ8
M0K
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c421t-5781ae1d25dfe087cdf819da8d5393c6cbd370a9adf18267236466981dc8f59c3
IEDL.DBID DOA
ISSN 2077-0472
IngestDate Wed Aug 27 01:31:57 EDT 2025
Fri Jul 11 04:46:37 EDT 2025
Mon Jun 30 03:01:59 EDT 2025
Thu Apr 24 22:52:13 EDT 2025
Tue Jul 01 02:12:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-5781ae1d25dfe087cdf819da8d5393c6cbd370a9adf18267236466981dc8f59c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5859-4006
0000-0002-0718-125X
OpenAccessLink https://doaj.org/article/832d712965ab4b6082d30b071c70030d
PQID 2469682647
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_832d712965ab4b6082d30b071c70030d
proquest_miscellaneous_2636164537
proquest_journals_2469682647
crossref_citationtrail_10_3390_agriculture10120612
crossref_primary_10_3390_agriculture10120612
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Nam (ref_5) 2015; 22
Liu (ref_31) 2019; 157
Rao (ref_2) 1989; 3
ref_10
Gu (ref_6) 2016; 130
ref_18
Xiong (ref_3) 2018; 275
Fafchamps (ref_7) 2012; 26
Subhasree (ref_28) 2016; 3
Ebrahimi (ref_27) 2017; 140
Hochreiter (ref_42) 1997; 9
ref_24
BV (ref_14) 2018; 132
ref_22
ref_21
Yoo (ref_4) 2016; 275
Leksakul (ref_32) 2015; 118
Buddhakulsomsiri (ref_19) 2018; 154
ref_36
Li (ref_23) 2013; 14
ref_35
ref_34
ref_30
ref_39
ref_38
Pardhi (ref_17) 2018; 11
ref_37
Wang (ref_20) 2018; 57
Li (ref_29) 2014; 2014
Karimi (ref_33) 2006; 51
Darekar (ref_15) 2017; 62
Zhang (ref_25) 2018; 154
Jadhav (ref_16) 2017; 19
ref_47
ref_46
ref_45
ref_44
ref_43
ref_41
ref_40
ref_1
Assis (ref_12) 2010; 1
Lim (ref_8) 2016; 7
Adanacioglu (ref_13) 2012; 8
ref_49
ref_48
ref_9
Asgari (ref_26) 2017; 140
Li (ref_11) 2019; 181
References_xml – ident: ref_49
– volume: 19
  start-page: 981
  year: 2017
  ident: ref_16
  article-title: Application of ARIMA model for forecasting agricultural prices
  publication-title: J. Agric. Sci. Technol.
– ident: ref_39
– ident: ref_10
  doi: 10.24963/ijcai.2017/366
– volume: 14
  start-page: 2292
  year: 2013
  ident: ref_23
  article-title: (JIA2013–0072) The Prediction Model of Weekly Retail Price of Eggs Based on Chaotic Neural Network
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(13)60610-3
– volume: 130
  start-page: 169
  year: 2016
  ident: ref_6
  article-title: BLITE-SVR: New forecasting model for late blight on potato using support-vector regression
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.10.005
– volume: 1
  start-page: 71
  year: 2010
  ident: ref_12
  article-title: Forecasting cocoa bean prices using univariate time series models
  publication-title: Res. World
– ident: ref_24
  doi: 10.1007/978-3-642-18354-6_79
– ident: ref_1
– ident: ref_35
– volume: 132
  start-page: 198
  year: 2018
  ident: ref_14
  article-title: Performance analysis of the regression and time series predictive models using parallel implementation for agricultural data
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.05.187
– ident: ref_37
  doi: 10.3390/s19040861
– volume: 26
  start-page: 383
  year: 2012
  ident: ref_7
  article-title: Impact of SMS-based agricultural information on Indian farmers
  publication-title: World Bank Econ. Rev.
  doi: 10.1093/wber/lhr056
– ident: ref_36
  doi: 10.1088/1757-899X/569/5/052037
– ident: ref_30
  doi: 10.1109/ICSAI48974.2019.9010181
– volume: 7
  start-page: 193
  year: 2016
  ident: ref_8
  article-title: Development on crop yield forecasting model for major vegetable crops using meteorological information of main production area
  publication-title: J. Clim. Chang. Res.
  doi: 10.15531/ksccr.2016.7.2.193
– volume: 154
  start-page: 296
  year: 2018
  ident: ref_19
  article-title: Prediction models of starch content in fresh cassava roots for a tapioca starch manufacturer in Thailand
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.09.016
– volume: 140
  start-page: 422
  year: 2017
  ident: ref_26
  article-title: Practical modeling and optimization of ultrasound-assisted bleaching of olive oil using hybrid artificial neural network-genetic algorithm technique
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.06.025
– volume: 11
  start-page: 357
  year: 2018
  ident: ref_17
  article-title: Price Forecasting of Mango in Lucknow Market of Uttar Pradesh
  publication-title: Int. J. Agric. Environ. Biotechnol.
– ident: ref_41
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_42
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 275
  start-page: 2831
  year: 2016
  ident: ref_4
  article-title: Developing vegetable price forecasting model with climate factors
  publication-title: Korean J. Agric. Econ.
– ident: ref_22
  doi: 10.1109/ICPRIME.2013.6496514
– ident: ref_38
– ident: ref_48
  doi: 10.1109/ITSC.2017.8317886
– ident: ref_45
– volume: 118
  start-page: 259
  year: 2015
  ident: ref_32
  article-title: Forecast of off-season longan supply using fuzzy support vector regression and fuzzy artificial neural network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.09.002
– volume: 22
  start-page: 423
  year: 2015
  ident: ref_5
  article-title: A study on onion wholesale price forecasting model
  publication-title: J. Agric. Ext. Community Dev.
– volume: 62
  start-page: 373
  year: 2017
  ident: ref_15
  article-title: Cotton price forecasting in major producing states
  publication-title: Econ. Aff.
  doi: 10.5958/0976-4666.2017.00047.X
– volume: 51
  start-page: 99
  year: 2006
  ident: ref_33
  article-title: Application of support vector machine technology for weed and nitrogen stress detection in corn
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2005.12.001
– volume: 8
  start-page: 52
  year: 2012
  ident: ref_13
  article-title: An analysis of tomato prices at wholesale level in Turkey: An application of SARIMA model
  publication-title: Custos e @Gronegócio
– volume: 2014
  start-page: 135862
  year: 2014
  ident: ref_29
  article-title: A Hybrid Neural Network and Hp Filter Model for Short-Term Vegetable Price Forecasting
  publication-title: Math. Probl. Eng.
– ident: ref_47
– volume: 181
  start-page: 104785
  year: 2019
  ident: ref_11
  article-title: EA-LSTM: Evolutionary attention-based LSTM for time series prediction
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.05.028
– ident: ref_40
– volume: 275
  start-page: 2831
  year: 2018
  ident: ref_3
  article-title: Seasonal forecasting of agricultural commodity price using a hybrid STL and ELM method: Evidence from the vegetable market in China
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.053
– ident: ref_18
– ident: ref_34
  doi: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00142
– ident: ref_44
– volume: 3
  start-page: 535
  year: 2016
  ident: ref_28
  article-title: Forecasting Vegetable Price Using Time Series Data
  publication-title: Int. J. Adv. Res.
– ident: ref_9
  doi: 10.1109/UKSim.2014.67
– volume: 3
  start-page: 1
  year: 1989
  ident: ref_2
  article-title: Agricultural Supply Response: A Survey
  publication-title: Agric. Econ.
  doi: 10.1111/j.1574-0862.1989.tb00068.x
– ident: ref_46
– volume: 157
  start-page: 581
  year: 2019
  ident: ref_31
  article-title: Prediction for Hog Prices Based on Similar Sub-Series Search and Support Vector Regression
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.027
– volume: 57
  start-page: 283
  year: 2018
  ident: ref_20
  article-title: Research on hybrid model of garlic short-term price forecasting based on big data
  publication-title: CMC Comput. Mater. Continua
– ident: ref_21
  doi: 10.1109/ICPRIME.2012.6208294
– volume: 140
  start-page: 409
  year: 2017
  ident: ref_27
  article-title: Comparison of artificial neural network and multivariate regression models for prediction of Azotobacteria population in soil under different land uses
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.06.019
– ident: ref_43
– ident: ref_50
  doi: 10.1109/CAC48633.2019.8997169
– volume: 154
  start-page: 10
  year: 2018
  ident: ref_25
  article-title: Prediction of soybean price in China using QR-RBF neural network model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.08.016
SSID ssj0000913806
Score 2.3846993
Snippet It is difficult to forecast vegetable prices because they are affected by numerous factors, such as weather and crop production, and the time-series data have...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 612
SubjectTerms Accuracy
Agricultural production
Agriculture
attention mechanism
Back propagation
cabbage
Climate change
Consumers
Crop production
Decomposition
Deep learning
Forecasting
Garlic
Genetic algorithms
hot peppers
loess
Long short-term memory
LSTM
Machine learning
markets
Mathematical models
Meteorological data
Model accuracy
Neural networks
onions
prediction
Predictions
Prices
Pricing
radishes
Regression analysis
Root-mean-square errors
Seasonal variations
Statistical methods
STL
Supply & demand
Support vector machines
Time series
time series analysis
Trends
vegetable price forecasting
Vegetables
Weather
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3BcoEDaimIpbRypR6xSOzEdnqpdhEIVYAqyFbcIsd2EBLN0t3w_zuT9S5CIK7JZA4ez8dzxm8Avoc0C143nocmFwRQLC9cyHjinGzyIsUU17N9XqnzSfbrNr-NB27z2Fa5jIl9oPZTR2fkxyIjGhdM3_rn4z9OU6Po72ocobEOGxiCjRnAxvj06vf16pSFWC9NohZ0QxLx_bG9m0VSi0DUVpThX6Sknrn_VWDus83ZB9iOZSIbLez6EdZCuwNbo2etn2ByU17wUVle3JSXP9gfRP8dXYNi_SB3RiM3nZ1TUzPr2wIYijPbejbqukWLI7sMdO33fv6XjzGXeUaadmFydlqenPM4JIG7TKQdR49LbUi9yH0TEqOdbzDJe2t8LgvplKu91IktrG8ISmgijFeqwDLVGTSGk3swaKdt2AcmCpRupG60NlmQBlWYonZShGCETZIhiOU6VS4yiNMgi4cKkQQtbvXG4g7haPXR44JA433xMRlgJUrs1_2D6eyuis5UYRTyGgsVlds6qxVWMV4mNRZLTlPQ8kM4XJqvii45r5430BC-rV6jM9EfEtuG6RPKKKkQP-ZSH7yv4jNsCgLefV_LIQy62VP4gtVJV3-NW_A_OXnklg
  priority: 102
  providerName: ProQuest
Title STL-ATTLSTM: Vegetable Price Forecasting Using STL and Attention Mechanism-Based LSTM
URI https://www.proquest.com/docview/2469682647
https://www.proquest.com/docview/2636164537
https://doaj.org/article/832d712965ab4b6082d30b071c70030d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6iL_og_sTpHBF8tNg2bZL61okisoloJ76VNElF0E627v_3Lu2mouiLr-01LZdLvvvo5TtCjm0QWSNK49kyDpGgKC_RNvJ8rVkZJwFAnFP7vOFXo-j6MX781OoLa8IaeeDGcacQcUYAKPFYFVHBAbEM8wsARi0wQA3uvoB5n8iU24PhLdLnjcwQA15_qp4mrZiFRUkrRPYvUOQU-79tyA5lLjfIepse0rT5rE2yZKstspZ-jLpNRvfZwEuzbHCfDc_oA7D-Go8_UdfAnWKrTa2mWMxMXTkABXOqKkPTum5KG-nQ4nHf5-mr1wcMMxRH2iGjy4vs_MprmyN4OgqD2oOVFigbmDA2pfWl0KYEcDdKmpglTHNdGCZ8lShTIoUQKBTPeQLpqZYwCZrtkuVqXNk9QsG5uiiZKIWQkWUShpBJoVlorQyV73dIOPdTrlvlcGxg8ZIDg0Dn5j84t0NOFg-9NcIZv5v3cQIWpqh67S5ALORtLOR_xUKHdOfTl7dLcZqHEer_QN4nOuRocRsWEf4ZUZUdz8CGMw68MWZi_z--44CshkjLXdVLlyzXk5k9hNylLnpkpX9xc3vXc-H6DpBt65o
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gF4QHyKwgAjwRvWEjuxEySEWtjUsbZCLEV7C47tVEiQjjYT4p_ib-QuH50QaG97TS6nyD7f_c4-_w7ghQ8j73TpuC9jQQmK4an1EQ-slWWchhjiGrbPuZosog-n8ekO_O7vwlBZZe8TG0ftVpb2yPdFRDQuGL7127MfnLpG0elq30KjNYtj_-snpmybN0fvcX5fCnF4kL2b8K6rALeRCGuOJhoaHzoRu9IHibauxKjoTOJimUqrbOGkDkxqXEnYWxPDulIp4jqb4N9biXqvwW4kVSAGsDs-mH_8tN3VIZbNJFAtvZGUabBvluuORMMTlRYhir9CYNMp4J9A0ES3w9twq4OlbNTa0R3Y8dVduDm60HoPFifZlI-ybHqSzV6zz37pa7p2xZrG8YxafFqzoSJq1pQhMBRnpnJsVNdtSSWbebpm_HXznY8xdjpGmu7D4kqG7wEMqlXlHwITKUqXUpdaJ5GXCapI0sJK4X0iTBAMQfTjlNuOsZwaZ3zLMXOhwc3_M7hDeLX96Kwl7LhcfEwTsBUltu3mwWq9zLvFm6PXcxqBkYpNERUKUZOTQYHgzGpykm4Ie_305Z0L2OQXBjuE59vXuHjpRMZUfnWOMkoqzFdjqR9druIZXJ9ks2k-PZofP4YbgpL-pqZmDwb1-tw_QWRUF087c2Tw5apXwB_5XCF-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfpH7h1VpX0DfDJbtJNhFE7myP1l6PYnPSt7jZj0Noc-1diviv-dc5k48rovStr8lkIDOz87E7-xuAtzYIrZHOeNZFnAoU5aXahp6vtXBRGmCIq9E-p_HBLPxyFp1twO_uLgy1VXY-sXbUZqFpj3zAQ4JxwfAtB65tizjZG3-6vPJoghSdtHbjNBoTObK_fmL5tvp4uIe6fsf5eD_7fOC1EwY8HfKg8tBcA2UDwyPjrJ9IbRxGSKMSE4lU6FgXRkhfpco4ysMloa3HcYo5nk7wT7RAvvdgU1JV1IPN0f705Ot6h4cQNxM_bqCOhEj9gZovW0ANS7BalF38FQ7rqQH_BIU60o234FGborJhY1OPYcOWT-Dh8IbrU5idZhNvmGWT0-z4A_tm57aiK1isHiLPaNynVitqqGZ1SwJDcqZKw4ZV1bRXsmNLV45_rC68EcZRw4jTM5jdifieQ69clPYFMJ4itRPSSZmEViTIIkkLLbi1CVe-3wfeySnXLXo5DdE4z7GKIeHm_xFuH96vP7pswDtuJx-RAtakhLxdP1gs53m7kHP0gEZikhRHqgiLGDMoI_wC9a8lOUzTh51OfXnrDlb5jfH24c36NS5kOp1RpV1cI00sYqxdIyG3b2fxGu6j5eeTw-nRS3jAqf6v22t2oFctr-0rTJKqYre1Rgbf73oB_AFGMiWz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STL-ATTLSTM%3A+Vegetable+Price+Forecasting+Using+STL+and+Attention+Mechanism-Based+LSTM&rft.jtitle=Agriculture+%28Basel%29&rft.au=Yin%2C+Helin&rft.au=Jin%2C+Dong&rft.au=Gu%2C+Yeong+Hyeon&rft.au=Park%2C+Chang+Jin&rft.date=2020-12-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=10&rft.issue=12&rft.spage=612&rft_id=info:doi/10.3390%2Fagriculture10120612&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriculture10120612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon