STL-ATTLSTM: Vegetable Price Forecasting Using STL and Attention Mechanism-Based LSTM
It is difficult to forecast vegetable prices because they are affected by numerous factors, such as weather and crop production, and the time-series data have strong non-linear and non-stationary characteristics. To address these issues, we propose the STL-ATTLSTM (STL-Attention-based LSTM) model, w...
Saved in:
Published in | Agriculture (Basel) Vol. 10; no. 12; p. 612 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is difficult to forecast vegetable prices because they are affected by numerous factors, such as weather and crop production, and the time-series data have strong non-linear and non-stationary characteristics. To address these issues, we propose the STL-ATTLSTM (STL-Attention-based LSTM) model, which integrates the seasonal trend decomposition using the Loess (STL) preprocessing method and attention mechanism based on long short-term memory (LSTM). The proposed STL-ATTLSTM forecasts monthly vegetable prices using various types of information, such as vegetable prices, weather information of the main production areas, and market trading volumes. The STL method decomposes time-series vegetable price data into trend, seasonality, and remainder components. It uses the remainder component by removing the trend and seasonality components. In the model training process, attention weights are assigned to all input variables; thus, the model’s prediction performance is improved by focusing on the variables that affect the prediction results. The proposed STL-ATTLSTM was applied to five crops, namely cabbage, radish, onion, hot pepper, and garlic, and its performance was compared to three benchmark models (i.e., LSTM, attention LSTM, and STL-LSTM). The performance results show that the LSTM model combined with the STL method (STL-LSTM) achieved a 12% higher prediction accuracy than the attention LSTM model that did not use the STL method and solved the prediction lag arising from high seasonality. The attention LSTM model improved the prediction accuracy by approximately 4% to 5% compared to the LSTM model. The STL-ATTLSTM model achieved the best performance, with an average root mean square error (RMSE) of 380, and an average mean absolute percentage error (MAPE) of 7%. |
---|---|
AbstractList | It is difficult to forecast vegetable prices because they are affected by numerous factors, such as weather and crop production, and the time-series data have strong non-linear and non-stationary characteristics. To address these issues, we propose the STL-ATTLSTM (STL-Attention-based LSTM) model, which integrates the seasonal trend decomposition using the Loess (STL) preprocessing method and attention mechanism based on long short-term memory (LSTM). The proposed STL-ATTLSTM forecasts monthly vegetable prices using various types of information, such as vegetable prices, weather information of the main production areas, and market trading volumes. The STL method decomposes time-series vegetable price data into trend, seasonality, and remainder components. It uses the remainder component by removing the trend and seasonality components. In the model training process, attention weights are assigned to all input variables; thus, the model’s prediction performance is improved by focusing on the variables that affect the prediction results. The proposed STL-ATTLSTM was applied to five crops, namely cabbage, radish, onion, hot pepper, and garlic, and its performance was compared to three benchmark models (i.e., LSTM, attention LSTM, and STL-LSTM). The performance results show that the LSTM model combined with the STL method (STL-LSTM) achieved a 12% higher prediction accuracy than the attention LSTM model that did not use the STL method and solved the prediction lag arising from high seasonality. The attention LSTM model improved the prediction accuracy by approximately 4% to 5% compared to the LSTM model. The STL-ATTLSTM model achieved the best performance, with an average root mean square error (RMSE) of 380, and an average mean absolute percentage error (MAPE) of 7%. |
Author | Han, Sang Keun Yoo, Seong Joon Gu, Yeong Hyeon Yin, Helin Park, Chang Jin Jin, Dong |
Author_xml | – sequence: 1 givenname: Helin orcidid: 0000-0001-5859-4006 surname: Yin fullname: Yin, Helin – sequence: 2 givenname: Dong surname: Jin fullname: Jin, Dong – sequence: 3 givenname: Yeong Hyeon surname: Gu fullname: Gu, Yeong Hyeon – sequence: 4 givenname: Chang Jin surname: Park fullname: Park, Chang Jin – sequence: 5 givenname: Sang Keun orcidid: 0000-0002-0718-125X surname: Han fullname: Han, Sang Keun – sequence: 6 givenname: Seong Joon surname: Yoo fullname: Yoo, Seong Joon |
BookMark | eNp9kU1v1DAQhiNUJErpL-ASiQuXUH8k_uC2VJRW2gqkZrlaE3uyeJW1i-0c-PckLEioQvhgW9bzPprxvKzOQgxYVa8pece5JlewT97OU5kTUkIZEZQ9q84ZkbIhrWRnf91fVJc5H8iyNOWKiPNq99Bvm03fbx_6-_f1V9xjgWHC-svixPomJrSQiw_7epfXfcFrCK7elIKh-Bjqe7TfIPh8bD5ARlevplfV8xGmjJe_z4tqd_Oxv75ttp8_3V1vto1tGS1NJxUFpI51bkSipHWjotqBch3X3Ao7OC4JaHAjVUxIxkUrhFbUWTV22vKL6u7kdREO5jH5I6QfJoI3vx5i2htIxdsJjeLMScq06GBoB0EUc5wMRFIrCeHELa63J9djit9nzMUcfbY4TRAwztkwwQUVbcflgr55gh7inMLSqWGt0GKptV0pfaJsijknHI31BdY_Kwn8ZCgx6_zMP-a3ZPmT7J_m_pf6CVMcoK0 |
CitedBy_id | crossref_primary_10_1016_j_chaos_2023_113854 crossref_primary_10_1080_03610918_2024_2433495 crossref_primary_10_1007_s44196_023_00371_x crossref_primary_10_3390_agriculture13091671 crossref_primary_10_3390_math11092060 crossref_primary_10_1007_s11600_023_01023_6 crossref_primary_10_1016_j_eti_2025_104107 crossref_primary_10_3390_app122211366 crossref_primary_10_1016_j_heliyon_2024_e41478 crossref_primary_10_1007_s00704_024_05009_2 crossref_primary_10_3233_JIFS_235843 crossref_primary_10_1177_0309524X251314204 crossref_primary_10_3390_math10162915 crossref_primary_10_3390_horticulturae10040347 crossref_primary_10_3390_s24216857 crossref_primary_10_3390_agriculture11040359 crossref_primary_10_1016_j_inpa_2022_06_002 crossref_primary_10_1038_s41598_023_38465_3 crossref_primary_10_15406_ijfcm_2024_08_00369 crossref_primary_10_1117_1_JRS_16_034529 crossref_primary_10_1016_j_nexus_2023_100250 crossref_primary_10_1108_AJEB_01_2024_0007 crossref_primary_10_1371_journal_pone_0311199 crossref_primary_10_3390_agriculture12020256 crossref_primary_10_1016_j_compag_2022_107068 crossref_primary_10_1134_S0016793224600693 crossref_primary_10_1142_S1469026823500244 crossref_primary_10_1007_s11277_023_10234_5 crossref_primary_10_3390_agronomy12112680 crossref_primary_10_1007_s13563_022_00357_9 crossref_primary_10_3390_electronics13183646 crossref_primary_10_3390_ani13081322 crossref_primary_10_1016_j_compeleceng_2024_109227 crossref_primary_10_1016_j_asoc_2024_111557 crossref_primary_10_3390_agriculture14020210 crossref_primary_10_22144_ctujoisd_2024_324 crossref_primary_10_3390_app132111824 crossref_primary_10_3934_mbe_2023397 crossref_primary_10_3390_stats5040068 crossref_primary_10_1080_03019233_2023_2218243 crossref_primary_10_3390_su141710483 crossref_primary_10_1007_s12665_023_11110_y crossref_primary_10_1155_acis_6626517 crossref_primary_10_3390_foods13182936 crossref_primary_10_3390_agriculture11100951 crossref_primary_10_3390_horticulturae9050549 crossref_primary_10_3390_pollutants4040034 crossref_primary_10_3390_math12071054 |
Cites_doi | 10.24963/ijcai.2017/366 10.1016/S2095-3119(13)60610-3 10.1016/j.compag.2016.10.005 10.1007/978-3-642-18354-6_79 10.1016/j.procs.2018.05.187 10.3390/s19040861 10.1093/wber/lhr056 10.1088/1757-899X/569/5/052037 10.1109/ICSAI48974.2019.9010181 10.15531/ksccr.2016.7.2.193 10.1016/j.compag.2018.09.016 10.1016/j.compag.2017.06.025 10.1162/neco.1997.9.8.1735 10.1109/ICPRIME.2013.6496514 10.1109/ITSC.2017.8317886 10.1016/j.compag.2015.09.002 10.5958/0976-4666.2017.00047.X 10.1016/j.compag.2005.12.001 10.1016/j.knosys.2019.05.028 10.1016/j.neucom.2017.11.053 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00142 10.1109/UKSim.2014.67 10.1111/j.1574-0862.1989.tb00068.x 10.1016/j.compag.2019.01.027 10.1109/ICPRIME.2012.6208294 10.1016/j.compag.2017.06.019 10.1109/CAC48633.2019.8997169 10.1016/j.compag.2018.08.016 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 DOA |
DOI | 10.3390/agriculture10120612 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection (UHCL Subscription) Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_832d712965ab4b6082d30b071c70030d 10_3390_agriculture10120612 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO KQ8 M0K MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c421t-5781ae1d25dfe087cdf819da8d5393c6cbd370a9adf18267236466981dc8f59c3 |
IEDL.DBID | DOA |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:31:57 EDT 2025 Fri Jul 11 04:46:37 EDT 2025 Mon Jun 30 03:01:59 EDT 2025 Thu Apr 24 22:52:13 EDT 2025 Tue Jul 01 02:12:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-5781ae1d25dfe087cdf819da8d5393c6cbd370a9adf18267236466981dc8f59c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5859-4006 0000-0002-0718-125X |
OpenAccessLink | https://doaj.org/article/832d712965ab4b6082d30b071c70030d |
PQID | 2469682647 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_832d712965ab4b6082d30b071c70030d proquest_miscellaneous_2636164537 proquest_journals_2469682647 crossref_citationtrail_10_3390_agriculture10120612 crossref_primary_10_3390_agriculture10120612 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Nam (ref_5) 2015; 22 Liu (ref_31) 2019; 157 Rao (ref_2) 1989; 3 ref_10 Gu (ref_6) 2016; 130 ref_18 Xiong (ref_3) 2018; 275 Fafchamps (ref_7) 2012; 26 Subhasree (ref_28) 2016; 3 Ebrahimi (ref_27) 2017; 140 Hochreiter (ref_42) 1997; 9 ref_24 BV (ref_14) 2018; 132 ref_22 ref_21 Yoo (ref_4) 2016; 275 Leksakul (ref_32) 2015; 118 Buddhakulsomsiri (ref_19) 2018; 154 ref_36 Li (ref_23) 2013; 14 ref_35 ref_34 ref_30 ref_39 ref_38 Pardhi (ref_17) 2018; 11 ref_37 Wang (ref_20) 2018; 57 Li (ref_29) 2014; 2014 Karimi (ref_33) 2006; 51 Darekar (ref_15) 2017; 62 Zhang (ref_25) 2018; 154 Jadhav (ref_16) 2017; 19 ref_47 ref_46 ref_45 ref_44 ref_43 ref_41 ref_40 ref_1 Assis (ref_12) 2010; 1 Lim (ref_8) 2016; 7 Adanacioglu (ref_13) 2012; 8 ref_49 ref_48 ref_9 Asgari (ref_26) 2017; 140 Li (ref_11) 2019; 181 |
References_xml | – ident: ref_49 – volume: 19 start-page: 981 year: 2017 ident: ref_16 article-title: Application of ARIMA model for forecasting agricultural prices publication-title: J. Agric. Sci. Technol. – ident: ref_39 – ident: ref_10 doi: 10.24963/ijcai.2017/366 – volume: 14 start-page: 2292 year: 2013 ident: ref_23 article-title: (JIA2013–0072) The Prediction Model of Weekly Retail Price of Eggs Based on Chaotic Neural Network publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(13)60610-3 – volume: 130 start-page: 169 year: 2016 ident: ref_6 article-title: BLITE-SVR: New forecasting model for late blight on potato using support-vector regression publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.10.005 – volume: 1 start-page: 71 year: 2010 ident: ref_12 article-title: Forecasting cocoa bean prices using univariate time series models publication-title: Res. World – ident: ref_24 doi: 10.1007/978-3-642-18354-6_79 – ident: ref_1 – ident: ref_35 – volume: 132 start-page: 198 year: 2018 ident: ref_14 article-title: Performance analysis of the regression and time series predictive models using parallel implementation for agricultural data publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.05.187 – ident: ref_37 doi: 10.3390/s19040861 – volume: 26 start-page: 383 year: 2012 ident: ref_7 article-title: Impact of SMS-based agricultural information on Indian farmers publication-title: World Bank Econ. Rev. doi: 10.1093/wber/lhr056 – ident: ref_36 doi: 10.1088/1757-899X/569/5/052037 – ident: ref_30 doi: 10.1109/ICSAI48974.2019.9010181 – volume: 7 start-page: 193 year: 2016 ident: ref_8 article-title: Development on crop yield forecasting model for major vegetable crops using meteorological information of main production area publication-title: J. Clim. Chang. Res. doi: 10.15531/ksccr.2016.7.2.193 – volume: 154 start-page: 296 year: 2018 ident: ref_19 article-title: Prediction models of starch content in fresh cassava roots for a tapioca starch manufacturer in Thailand publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.09.016 – volume: 140 start-page: 422 year: 2017 ident: ref_26 article-title: Practical modeling and optimization of ultrasound-assisted bleaching of olive oil using hybrid artificial neural network-genetic algorithm technique publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.06.025 – volume: 11 start-page: 357 year: 2018 ident: ref_17 article-title: Price Forecasting of Mango in Lucknow Market of Uttar Pradesh publication-title: Int. J. Agric. Environ. Biotechnol. – ident: ref_41 – volume: 9 start-page: 1735 year: 1997 ident: ref_42 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 275 start-page: 2831 year: 2016 ident: ref_4 article-title: Developing vegetable price forecasting model with climate factors publication-title: Korean J. Agric. Econ. – ident: ref_22 doi: 10.1109/ICPRIME.2013.6496514 – ident: ref_38 – ident: ref_48 doi: 10.1109/ITSC.2017.8317886 – ident: ref_45 – volume: 118 start-page: 259 year: 2015 ident: ref_32 article-title: Forecast of off-season longan supply using fuzzy support vector regression and fuzzy artificial neural network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.09.002 – volume: 22 start-page: 423 year: 2015 ident: ref_5 article-title: A study on onion wholesale price forecasting model publication-title: J. Agric. Ext. Community Dev. – volume: 62 start-page: 373 year: 2017 ident: ref_15 article-title: Cotton price forecasting in major producing states publication-title: Econ. Aff. doi: 10.5958/0976-4666.2017.00047.X – volume: 51 start-page: 99 year: 2006 ident: ref_33 article-title: Application of support vector machine technology for weed and nitrogen stress detection in corn publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2005.12.001 – volume: 8 start-page: 52 year: 2012 ident: ref_13 article-title: An analysis of tomato prices at wholesale level in Turkey: An application of SARIMA model publication-title: Custos e @Gronegócio – volume: 2014 start-page: 135862 year: 2014 ident: ref_29 article-title: A Hybrid Neural Network and Hp Filter Model for Short-Term Vegetable Price Forecasting publication-title: Math. Probl. Eng. – ident: ref_47 – volume: 181 start-page: 104785 year: 2019 ident: ref_11 article-title: EA-LSTM: Evolutionary attention-based LSTM for time series prediction publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.05.028 – ident: ref_40 – volume: 275 start-page: 2831 year: 2018 ident: ref_3 article-title: Seasonal forecasting of agricultural commodity price using a hybrid STL and ELM method: Evidence from the vegetable market in China publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.053 – ident: ref_18 – ident: ref_34 doi: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00142 – ident: ref_44 – volume: 3 start-page: 535 year: 2016 ident: ref_28 article-title: Forecasting Vegetable Price Using Time Series Data publication-title: Int. J. Adv. Res. – ident: ref_9 doi: 10.1109/UKSim.2014.67 – volume: 3 start-page: 1 year: 1989 ident: ref_2 article-title: Agricultural Supply Response: A Survey publication-title: Agric. Econ. doi: 10.1111/j.1574-0862.1989.tb00068.x – ident: ref_46 – volume: 157 start-page: 581 year: 2019 ident: ref_31 article-title: Prediction for Hog Prices Based on Similar Sub-Series Search and Support Vector Regression publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.01.027 – volume: 57 start-page: 283 year: 2018 ident: ref_20 article-title: Research on hybrid model of garlic short-term price forecasting based on big data publication-title: CMC Comput. Mater. Continua – ident: ref_21 doi: 10.1109/ICPRIME.2012.6208294 – volume: 140 start-page: 409 year: 2017 ident: ref_27 article-title: Comparison of artificial neural network and multivariate regression models for prediction of Azotobacteria population in soil under different land uses publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.06.019 – ident: ref_43 – ident: ref_50 doi: 10.1109/CAC48633.2019.8997169 – volume: 154 start-page: 10 year: 2018 ident: ref_25 article-title: Prediction of soybean price in China using QR-RBF neural network model publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.08.016 |
SSID | ssj0000913806 |
Score | 2.3846993 |
Snippet | It is difficult to forecast vegetable prices because they are affected by numerous factors, such as weather and crop production, and the time-series data have... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 612 |
SubjectTerms | Accuracy Agricultural production Agriculture attention mechanism Back propagation cabbage Climate change Consumers Crop production Decomposition Deep learning Forecasting Garlic Genetic algorithms hot peppers loess Long short-term memory LSTM Machine learning markets Mathematical models Meteorological data Model accuracy Neural networks onions prediction Predictions Prices Pricing radishes Regression analysis Root-mean-square errors Seasonal variations Statistical methods STL Supply & demand Support vector machines Time series time series analysis Trends vegetable price forecasting Vegetables Weather |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3BcoEDaimIpbRypR6xSOzEdnqpdhEIVYAqyFbcIsd2EBLN0t3w_zuT9S5CIK7JZA4ez8dzxm8Avoc0C143nocmFwRQLC9cyHjinGzyIsUU17N9XqnzSfbrNr-NB27z2Fa5jIl9oPZTR2fkxyIjGhdM3_rn4z9OU6Po72ocobEOGxiCjRnAxvj06vf16pSFWC9NohZ0QxLx_bG9m0VSi0DUVpThX6Sknrn_VWDus83ZB9iOZSIbLez6EdZCuwNbo2etn2ByU17wUVle3JSXP9gfRP8dXYNi_SB3RiM3nZ1TUzPr2wIYijPbejbqukWLI7sMdO33fv6XjzGXeUaadmFydlqenPM4JIG7TKQdR49LbUi9yH0TEqOdbzDJe2t8LgvplKu91IktrG8ISmgijFeqwDLVGTSGk3swaKdt2AcmCpRupG60NlmQBlWYonZShGCETZIhiOU6VS4yiNMgi4cKkQQtbvXG4g7haPXR44JA433xMRlgJUrs1_2D6eyuis5UYRTyGgsVlds6qxVWMV4mNRZLTlPQ8kM4XJqvii45r5430BC-rV6jM9EfEtuG6RPKKKkQP-ZSH7yv4jNsCgLefV_LIQy62VP4gtVJV3-NW_A_OXnklg priority: 102 providerName: ProQuest |
Title | STL-ATTLSTM: Vegetable Price Forecasting Using STL and Attention Mechanism-Based LSTM |
URI | https://www.proquest.com/docview/2469682647 https://www.proquest.com/docview/2636164537 https://doaj.org/article/832d712965ab4b6082d30b071c70030d |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6iL_og_sTpHBF8tNg2bZL61okisoloJ76VNElF0E627v_3Lu2mouiLr-01LZdLvvvo5TtCjm0QWSNK49kyDpGgKC_RNvJ8rVkZJwFAnFP7vOFXo-j6MX781OoLa8IaeeDGcacQcUYAKPFYFVHBAbEM8wsARi0wQA3uvoB5n8iU24PhLdLnjcwQA15_qp4mrZiFRUkrRPYvUOQU-79tyA5lLjfIepse0rT5rE2yZKstspZ-jLpNRvfZwEuzbHCfDc_oA7D-Go8_UdfAnWKrTa2mWMxMXTkABXOqKkPTum5KG-nQ4nHf5-mr1wcMMxRH2iGjy4vs_MprmyN4OgqD2oOVFigbmDA2pfWl0KYEcDdKmpglTHNdGCZ8lShTIoUQKBTPeQLpqZYwCZrtkuVqXNk9QsG5uiiZKIWQkWUShpBJoVlorQyV73dIOPdTrlvlcGxg8ZIDg0Dn5j84t0NOFg-9NcIZv5v3cQIWpqh67S5ALORtLOR_xUKHdOfTl7dLcZqHEer_QN4nOuRocRsWEf4ZUZUdz8CGMw68MWZi_z--44CshkjLXdVLlyzXk5k9hNylLnpkpX9xc3vXc-H6DpBt65o |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gF4QHyKwgAjwRvWEjuxEySEWtjUsbZCLEV7C47tVEiQjjYT4p_ib-QuH50QaG97TS6nyD7f_c4-_w7ghQ8j73TpuC9jQQmK4an1EQ-slWWchhjiGrbPuZosog-n8ekO_O7vwlBZZe8TG0ftVpb2yPdFRDQuGL7127MfnLpG0elq30KjNYtj_-snpmybN0fvcX5fCnF4kL2b8K6rALeRCGuOJhoaHzoRu9IHibauxKjoTOJimUqrbOGkDkxqXEnYWxPDulIp4jqb4N9biXqvwW4kVSAGsDs-mH_8tN3VIZbNJFAtvZGUabBvluuORMMTlRYhir9CYNMp4J9A0ES3w9twq4OlbNTa0R3Y8dVduDm60HoPFifZlI-ybHqSzV6zz37pa7p2xZrG8YxafFqzoSJq1pQhMBRnpnJsVNdtSSWbebpm_HXznY8xdjpGmu7D4kqG7wEMqlXlHwITKUqXUpdaJ5GXCapI0sJK4X0iTBAMQfTjlNuOsZwaZ3zLMXOhwc3_M7hDeLX96Kwl7LhcfEwTsBUltu3mwWq9zLvFm6PXcxqBkYpNERUKUZOTQYHgzGpykm4Ie_305Z0L2OQXBjuE59vXuHjpRMZUfnWOMkoqzFdjqR9druIZXJ9ks2k-PZofP4YbgpL-pqZmDwb1-tw_QWRUF087c2Tw5apXwB_5XCF- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfpH7h1VpX0DfDJbtJNhFE7myP1l6PYnPSt7jZj0Noc-1diviv-dc5k48rovStr8lkIDOz87E7-xuAtzYIrZHOeNZFnAoU5aXahp6vtXBRGmCIq9E-p_HBLPxyFp1twO_uLgy1VXY-sXbUZqFpj3zAQ4JxwfAtB65tizjZG3-6vPJoghSdtHbjNBoTObK_fmL5tvp4uIe6fsf5eD_7fOC1EwY8HfKg8tBcA2UDwyPjrJ9IbRxGSKMSE4lU6FgXRkhfpco4ysMloa3HcYo5nk7wT7RAvvdgU1JV1IPN0f705Ot6h4cQNxM_bqCOhEj9gZovW0ANS7BalF38FQ7rqQH_BIU60o234FGborJhY1OPYcOWT-Dh8IbrU5idZhNvmGWT0-z4A_tm57aiK1isHiLPaNynVitqqGZ1SwJDcqZKw4ZV1bRXsmNLV45_rC68EcZRw4jTM5jdifieQ69clPYFMJ4itRPSSZmEViTIIkkLLbi1CVe-3wfeySnXLXo5DdE4z7GKIeHm_xFuH96vP7pswDtuJx-RAtakhLxdP1gs53m7kHP0gEZikhRHqgiLGDMoI_wC9a8lOUzTh51OfXnrDlb5jfH24c36NS5kOp1RpV1cI00sYqxdIyG3b2fxGu6j5eeTw-nRS3jAqf6v22t2oFctr-0rTJKqYre1Rgbf73oB_AFGMiWz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STL-ATTLSTM%3A+Vegetable+Price+Forecasting+Using+STL+and+Attention+Mechanism-Based+LSTM&rft.jtitle=Agriculture+%28Basel%29&rft.au=Yin%2C+Helin&rft.au=Jin%2C+Dong&rft.au=Gu%2C+Yeong+Hyeon&rft.au=Park%2C+Chang+Jin&rft.date=2020-12-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=10&rft.issue=12&rft.spage=612&rft_id=info:doi/10.3390%2Fagriculture10120612&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriculture10120612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |