Disease Detection in Apple Leaves Using Deep Convolutional Neural Network
The automatic detection of diseases in plants is necessary, as it reduces the tedious work of monitoring large farms and it will detect the disease at an early stage of its occurrence to minimize further degradation of plants. Besides the decline of plant health, a country’s economy is highly affect...
Saved in:
Published in | Agriculture (Basel) Vol. 11; no. 7; p. 617 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The automatic detection of diseases in plants is necessary, as it reduces the tedious work of monitoring large farms and it will detect the disease at an early stage of its occurrence to minimize further degradation of plants. Besides the decline of plant health, a country’s economy is highly affected by this scenario due to lower production. The current approach to identify diseases by an expert is slow and non-optimal for large farms. Our proposed model is an ensemble of pre-trained DenseNet121, EfficientNetB7, and EfficientNet NoisyStudent, which aims to classify leaves of apple trees into one of the following categories: healthy, apple scab, apple cedar rust, and multiple diseases, using its images. Various Image Augmentation techniques are included in this research to increase the dataset size, and subsequentially, the model’s accuracy increases. Our proposed model achieves an accuracy of 96.25% on the validation dataset. The proposed model can identify leaves with multiple diseases with 90% accuracy. Our proposed model achieved a good performance on different metrics and can be deployed in the agricultural domain to identify plant health accurately and timely. |
---|---|
AbstractList | The automatic detection of diseases in plants is necessary, as it reduces the tedious work of monitoring large farms and it will detect the disease at an early stage of its occurrence to minimize further degradation of plants. Besides the decline of plant health, a country’s economy is highly affected by this scenario due to lower production. The current approach to identify diseases by an expert is slow and non-optimal for large farms. Our proposed model is an ensemble of pre-trained DenseNet121, EfficientNetB7, and EfficientNet NoisyStudent, which aims to classify leaves of apple trees into one of the following categories: healthy, apple scab, apple cedar rust, and multiple diseases, using its images. Various Image Augmentation techniques are included in this research to increase the dataset size, and subsequentially, the model’s accuracy increases. Our proposed model achieves an accuracy of 96.25% on the validation dataset. The proposed model can identify leaves with multiple diseases with 90% accuracy. Our proposed model achieved a good performance on different metrics and can be deployed in the agricultural domain to identify plant health accurately and timely. |
Author | Kumar, Rahul Kumar, Somesh Bansal, Prakhar |
Author_xml | – sequence: 1 givenname: Prakhar surname: Bansal fullname: Bansal, Prakhar – sequence: 2 givenname: Rahul surname: Kumar fullname: Kumar, Rahul – sequence: 3 givenname: Somesh orcidid: 0000-0001-8712-1646 surname: Kumar fullname: Kumar, Somesh |
BookMark | eNp9kU9vEzEQxVeolShtP0EvK3HhErA9_hMfqxRopAgu7dma3Z1EDu56sb1F_fY4TZFQhfBlrPHvPY3fvGtOxjhS01xx9hHAsk-4S76fQ5kTcc4M09y8ac4EM2bBpBEnf93fNpc571k9lsOS6bNmfeMzYab2hgr1xcex9WN7PU2B2g3hI-X2PvtxV99paldxfIxhPmAY2m80p-dSfsX046I53WLIdPlSz5v7L5_vVreLzfev69X1ZtFLwctCcWK6s5bJDowVGgYjCCSJDnFAYRWHLTBQsF1KYSUpxgUgF2LoUEPXwXmzPvoOEfduSv4B05OL6N1zI6adw1R8H8hJ0lpgNUVhpFZDB4SkAAclO7k0VL0-HL2mFH_OlIt78LmnEHCkOGdXx9NSCWFZRd-_QvdxTjWGSiklAbiCZaXskepTzDnR1vW-4CGvktAHx5k77Mz9Y2dVC6-0fz73P9Vvc4iePg |
CitedBy_id | crossref_primary_10_3390_agriculture12091363 crossref_primary_10_1016_j_aiia_2024_10_005 crossref_primary_10_3390_plants13111535 crossref_primary_10_2478_prolas_2022_0074 crossref_primary_10_1007_s11042_023_18094_8 crossref_primary_10_3390_agriculture12071033 crossref_primary_10_1007_s00521_022_07350_x crossref_primary_10_1007_s10661_024_12790_0 crossref_primary_10_3390_agriculture12091360 crossref_primary_10_1007_s10661_024_12454_z crossref_primary_10_1016_j_atech_2023_100183 crossref_primary_10_3390_jimaging10080183 crossref_primary_10_1007_s10341_024_01042_7 crossref_primary_10_1016_j_jksuci_2022_07_004 crossref_primary_10_1007_s00521_023_08496_y crossref_primary_10_32604_csse_2023_042080 crossref_primary_10_3389_fpls_2023_1120724 crossref_primary_10_1016_j_aiia_2024_04_002 crossref_primary_10_1016_j_compag_2023_107967 crossref_primary_10_1109_ACCESS_2023_3326721 crossref_primary_10_1111_exsy_13786 crossref_primary_10_3390_electronics13030494 crossref_primary_10_1007_s41870_025_02478_0 crossref_primary_10_3390_agriculture13020240 crossref_primary_10_1117_1_JEI_33_3_033014 crossref_primary_10_17798_bitlisfen_1028323 crossref_primary_10_3390_agriculture11121216 crossref_primary_10_1007_s42979_023_02076_6 crossref_primary_10_3390_computers13050116 crossref_primary_10_12720_jait_14_6_1301_1311 crossref_primary_10_32604_cmc_2023_033250 crossref_primary_10_3390_agronomy15010226 crossref_primary_10_3390_app14156710 crossref_primary_10_1007_s40747_024_01764_x crossref_primary_10_1002_rob_22510 crossref_primary_10_54365_adyumbd_988049 crossref_primary_10_3390_agronomy13051240 crossref_primary_10_1016_j_atech_2022_100155 crossref_primary_10_1109_TAI_2023_3307662 crossref_primary_10_1007_s11042_024_18717_8 crossref_primary_10_1016_j_atech_2024_100714 crossref_primary_10_1051_itmconf_20235401014 crossref_primary_10_3390_math13050840 crossref_primary_10_1016_j_scienta_2024_113155 crossref_primary_10_3389_fpls_2022_884891 crossref_primary_10_1007_s40030_022_00668_8 crossref_primary_10_3390_drones7020097 crossref_primary_10_3390_electronics11010148 crossref_primary_10_3389_fpls_2023_1233241 crossref_primary_10_1080_22797254_2021_2017799 crossref_primary_10_3389_fpls_2023_1212747 crossref_primary_10_3390_agriengineering7030051 crossref_primary_10_3390_s25020472 crossref_primary_10_3390_electronics13234715 crossref_primary_10_32604_cmc_2023_035183 crossref_primary_10_3390_agriculture11080707 crossref_primary_10_3390_electronics13152941 crossref_primary_10_1007_s11042_023_14766_7 crossref_primary_10_3390_plants12213765 crossref_primary_10_1094_PHYTO_02_24_0056_KC crossref_primary_10_1007_s11042_024_19047_5 crossref_primary_10_1155_2023_9686697 crossref_primary_10_4108_eetpht_9_4001 crossref_primary_10_32604_cmc_2022_021875 crossref_primary_10_3390_app112411902 crossref_primary_10_35633_inmateh_72_26 crossref_primary_10_1007_s11042_023_15809_9 crossref_primary_10_3390_agronomy12102363 crossref_primary_10_1038_s41598_023_46492_3 crossref_primary_10_21923_jesd_980629 crossref_primary_10_3390_agriengineering7010013 crossref_primary_10_1109_ACCESS_2023_3339375 |
Cites_doi | 10.1109/CVPR.2015.7298594 10.1109/ACCESS.2019.2914929 10.1109/ACCESS.2020.2973658 10.1126/science.aaa8415 10.1038/nature14539 10.1109/TPAMI.1986.4767851 10.1016/j.neucom.2017.06.023 10.1080/02664763.2018.1441383 10.5244/C.31.76 10.1007/978-3-030-01328-8 10.1016/j.biosystemseng.2018.05.013 10.1109/CVPR.2016.90 10.1109/SIU.2018.8404692 10.1038/nbt1206-1565 10.18088/ejbmr.3.1.2017.pp6-9 10.3390/sym10010011 10.1007/978-3-030-01421-6 10.1186/s13007-019-0475-z 10.1049/iet-ipr.2018.6210 10.1109/CVPR.2009.5206848 10.3390/plants8110468 10.1109/CVPR.2017.243 10.1109/5.726791 10.3389/fpls.2019.00941 10.1016/S0020-7373(87)80053-6 10.1109/CVPR42600.2020.01070 10.3389/fpls.2016.01419 10.1016/j.compag.2020.105446 10.1257/jel.20191385 10.1109/ICDI3C.2018.00017 10.1109/IC3INA.2018.8629518 10.29130/dubited.648387 10.1109/CCIS.2011.6045027 10.1016/j.compag.2010.06.009 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 DOA |
DOI | 10.3390/agriculture11070617 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_4e662aa29a27465db3eae53ad54b487e 10_3390_agriculture11070617 |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c421t-51e06b9904b379263d72e34e2baada29513f30353f84294e50123a122dba63bb3 |
IEDL.DBID | DOA |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:24:34 EDT 2025 Fri Jul 11 05:28:00 EDT 2025 Sun Jun 29 12:40:54 EDT 2025 Tue Jul 01 02:12:36 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-51e06b9904b379263d72e34e2baada29513f30353f84294e50123a122dba63bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8712-1646 |
OpenAccessLink | https://doaj.org/article/4e662aa29a27465db3eae53ad54b487e |
PQID | 2554331538 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4e662aa29a27465db3eae53ad54b487e proquest_miscellaneous_2636452290 proquest_journals_2554331538 crossref_citationtrail_10_3390_agriculture11070617 crossref_primary_10_3390_agriculture11070617 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 Noble (ref_6) 2006; 24 ref_57 ref_12 ref_56 ref_11 ref_55 ref_54 ref_53 ref_52 Canny (ref_4) 1986; PAMI-8 ref_51 ref_17 ref_16 ref_15 Badage (ref_3) 2018; 5 Quinlan (ref_7) 1987; 27 Selvaraj (ref_19) 2019; 15 Boulent (ref_13) 2019; 10 ref_25 ref_24 ref_22 ref_20 Sun (ref_27) 2020; 8 ref_29 ref_28 ref_26 Jordan (ref_2) 2015; 349 Kumar (ref_10) 2014; 2 Sinha (ref_21) 2019; 14 Yang (ref_23) 2017; 3 ref_36 ref_35 LeCun (ref_9) 2015; 521 ref_33 ref_32 ref_30 Jiang (ref_39) 2019; 7 Lecun (ref_31) 1998; 86 ref_37 Steel (ref_18) 2020; 58 Ju (ref_50) 2018; 45 ref_47 ref_46 ref_45 ref_44 ref_43 ref_42 ref_41 ref_40 ref_1 Chuanlei (ref_34) 2017; 10 ref_49 Tuncer (ref_38) 2020; 8 ref_48 ref_8 ref_5 |
References_xml | – ident: ref_49 – ident: ref_55 – ident: ref_51 – ident: ref_37 doi: 10.1109/CVPR.2015.7298594 – volume: 7 start-page: 59069 year: 2019 ident: ref_39 article-title: Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914929 – volume: 8 start-page: 33679 year: 2020 ident: ref_27 article-title: Northern Maize Leaf Blight Detection Under Complex Field Environment Based on Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2973658 – volume: 349 start-page: 255 year: 2015 ident: ref_2 article-title: Machine Learning: Trends, Perspectives, and Prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 521 start-page: 436 year: 2015 ident: ref_9 article-title: Deep Learning publication-title: Nature doi: 10.1038/nature14539 – volume: PAMI-8 start-page: 679 year: 1986 ident: ref_4 article-title: A Computational Approach to Edge Detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – volume: 10 start-page: 74 year: 2017 ident: ref_34 article-title: Apple Leaf Disease Identification Using Genetic Algorithm and Correlation Based Feature Selection Method publication-title: Int. J. Agric. Biol. Eng. – ident: ref_29 doi: 10.1016/j.neucom.2017.06.023 – ident: ref_42 – volume: 45 start-page: 2800 year: 2018 ident: ref_50 article-title: The Relative Performance of Ensemble Methods with Deep Convolutional Neural Networks for Image Classification publication-title: J. Appl. Stat. doi: 10.1080/02664763.2018.1441383 – ident: ref_1 – ident: ref_35 – ident: ref_40 doi: 10.5244/C.31.76 – ident: ref_26 doi: 10.1007/978-3-030-01328-8 – ident: ref_32 doi: 10.1016/j.biosystemseng.2018.05.013 – ident: ref_36 doi: 10.1109/CVPR.2016.90 – ident: ref_56 – ident: ref_52 – volume: 2 start-page: 143 year: 2014 ident: ref_10 article-title: Artificial neural networks-a study publication-title: Int. J. Emerg. Eng. Res. Technol. – ident: ref_5 doi: 10.1109/SIU.2018.8404692 – volume: 24 start-page: 1565 year: 2006 ident: ref_6 article-title: What Is a Support Vector Machine? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – volume: 3 start-page: 6 year: 2017 ident: ref_23 article-title: Machine Learning in Plant Disease Research publication-title: Eur. J. Biomed. Res. doi: 10.18088/ejbmr.3.1.2017.pp6-9 – ident: ref_33 doi: 10.3390/sym10010011 – ident: ref_41 – ident: ref_17 doi: 10.1007/978-3-030-01421-6 – volume: 15 start-page: 92 year: 2019 ident: ref_19 article-title: AI-Powered Banana Diseases and Pest Detection publication-title: Plant Methods doi: 10.1186/s13007-019-0475-z – volume: 14 start-page: 1427 year: 2019 ident: ref_21 article-title: Review of Image Processing Approaches for Detecting Plant Diseases publication-title: IET Image Process. doi: 10.1049/iet-ipr.2018.6210 – ident: ref_45 – ident: ref_48 doi: 10.1109/CVPR.2009.5206848 – volume: 5 start-page: 866 year: 2018 ident: ref_3 article-title: Crop disease detection using machine learning: Indian agriculture publication-title: Int. Res. J. Eng. Technol. – ident: ref_25 doi: 10.3390/plants8110468 – ident: ref_14 doi: 10.1109/CVPR.2017.243 – ident: ref_53 – ident: ref_30 – volume: 86 start-page: 2278 year: 1998 ident: ref_31 article-title: Gradient-Based Learning Applied to Document Recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 10 start-page: 941 year: 2019 ident: ref_13 article-title: Convolutional Neural Networks for the Automatic Identification of Plant Diseases publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00941 – ident: ref_47 – volume: 27 start-page: 221 year: 1987 ident: ref_7 article-title: Simplifying Decision Trees publication-title: Int. J. Man-Mach. Stud. doi: 10.1016/S0020-7373(87)80053-6 – ident: ref_44 – ident: ref_16 doi: 10.1109/CVPR42600.2020.01070 – ident: ref_24 doi: 10.3389/fpls.2016.01419 – ident: ref_28 doi: 10.1016/j.compag.2020.105446 – volume: 58 start-page: 644 year: 2020 ident: ref_18 article-title: Model Averaging and Its Use in Economics publication-title: J. Econ. Lit. doi: 10.1257/jel.20191385 – ident: ref_54 – ident: ref_46 – ident: ref_12 – ident: ref_22 doi: 10.1109/ICDI3C.2018.00017 – ident: ref_11 doi: 10.1109/IC3INA.2018.8629518 – ident: ref_15 – volume: 8 start-page: 1110 year: 2020 ident: ref_38 article-title: Detection of Apple Leaf Diseases Using Faster R-CNN publication-title: Düzce Üniversitesi Bilim Teknol. Derg. doi: 10.29130/dubited.648387 – ident: ref_8 doi: 10.1109/CCIS.2011.6045027 – ident: ref_43 – ident: ref_57 – ident: ref_20 doi: 10.1016/j.compag.2010.06.009 |
SSID | ssj0000913806 |
Score | 2.5592968 |
Snippet | The automatic detection of diseases in plants is necessary, as it reduces the tedious work of monitoring large farms and it will detect the disease at an early... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 617 |
SubjectTerms | Accuracy Agriculture Algorithms apple scab Apples Artificial neural networks automatic detection Automation Classification convolutional neural network Crop diseases Crops data collection Datasets Deep learning DenseNet121 Disease detection EfficientNetB7 Farms Fruit trees Fruits Leaves Machine learning Medical imaging Model accuracy Neural networks Plant diseases Rust fungi Support vector machines transfer learning |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9UUfilrF0yoRfDT0sl9JnqSftKUWKS30LcxmJ0WQ5Ly79u_vzN7elaL0KZDdLMnszvfkNwDfutIQatfmtQ5tbrrK5uhcl3cVFr72lbex3dvPC3dybc5u7E0KuM1TWeVKJkZBHYZWYuS7bPrKzz3Mnz-mf3PpGiXZ1dRC4wVssgiuqhFs7h9d_LpcR1kE9bKauCXckGb_fhdvZwnUgsT1EQ3-RCVF5P5_BHPUNsevYSuZidnecl_fwAb1b-HV3uOq23B6uMytZIe0iPVUffa7z8SqpOyc8J7mWawH4HGaZgdDf59OGa8rkBzxEmvA38H18dHVwUmeGiPkrVHFIrcFTZxnPWK8LmvldCgVaUPKIwZUbDTpjlWT1V3F6saQFcMJC6WCR6e91-9h1A89fYCsDrZydSgnxPS1AZGZtMPAbgzpMhTtGNSKNk2bUMOlecWfhr0HIWjzH4KO4fv6oekSNOP56ftC9PVUQbyON4bZbZMYqDHknEL-OGQ_2tngNSFZjcEaL287hp3VljWJDefN46EZw9f1MDOQZEWwp-GO5zjJxArs_cfnl_gEL5UUtMRa3R0YLWZ39JktkoX_ko7dA4ey4nI priority: 102 providerName: ProQuest |
Title | Disease Detection in Apple Leaves Using Deep Convolutional Neural Network |
URI | https://www.proquest.com/docview/2554331538 https://www.proquest.com/docview/2636452290 https://doaj.org/article/4e662aa29a27465db3eae53ad54b487e |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8RADB5EL3oQn7i-qODR4nZebY8-UdFFRMFbyXRSEaS77K7-fpNpd1UUvXgqdKbDkMzkS0j6RYj9KtUIypZxrnwZ6yozMVhbxVUGictd5kxo93bTsxcP-urRPH5q9cU1YQ09cCO4Q43WSgCZA8VP1ninENAo8EY7craRrS9h3qdgKtjgPFFZ1zY0Q4ri-kN4GrZkFsghDyP3FygKjP3fDHJAmfMlsdi6h9FRs61lMYP1ilg4-lh1VVyeNjmV6BTHoY6qjp7riL1JjK4R3nAUhToAGsdBdNKv39rTResyFUd4hNrvNfFwfnZ_chG3DRHiUstkHJsEu9YRfmin0lxa5VOJSqN0AJ5EZBJVESQZVWUEMxoNO0yQSOkdWOWcWhezdb_GDRHl3mQ292kXyZ8wHoAuZwWeJapSn5QdISeyKcqWLZybVrwUFDWwQIsfBNoRB9OPBg1Zxu_Tj1no06nMdB1ekP6LVv_FX_rviO2Jyor2-o0KipP4TzAy5h2xNx2mi8PZEKix_0pzLGdgme5-8z_2sSXmJZe7hErebTE7Hr7iDvkrY7cr5o7Perd3u-GIvgP_p-ui |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbK9gAcEE912wJBghtRk3klOSDUdlvt0u0KoVbqLcxknAoJJcvutog_xW_EzmMrBOqtp0jJxEo8tsceez4DvC0ThVaaIsykL0JVpjq0xpRhmdrYZS51umn3djoz43P16UJfbMDv_iwMl1X2NrEx1L4ueI98j1xfPtxD-vlx_iPkrlGcXe1baLRicYK_flLItvwwGdH8vhPi-OjscBx2XQXCQol4FeoYI-PICCsnk0wY6ROBUqFw1noryOOQJdl1LcuUbLVCzV6HjYXwzhrpnCS692BTSROJAWweHM0-f1nv6jDKZhqZFt5Iyizas5eLDkQDOdRij-GvJbDpFPDPQtCsbseP4VHnlgb7rRw9gQ2snsLD_Ruqz2AyanM5wQhXTf1WFXyrAvZiMZiivcZl0NQf0HOcB4d1dd1JNdFlCJDm0tScP4fzO2HZCxhUdYVbEGRepybzSYQ0n9pbS0ahtJ7CJpSJj4shiJ43edGhlHOzjO85RSvM0Pw_DB3C-_VL8xak4_bhB8z09VBG2G5u1IvLvFPYXKExwtLPWYrbjfZOokUtrdfK8dcOYbefsrxT-2V-I6RDeLN-TArLWRhbYX1FYwxnfhlmf_t2Eq_h_vjsdJpPJ7OTHXgguJimqRPehcFqcYUvyRtauVedCAbw9a6l_g-K-h1a |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkLwgPgrCgOMBG9EbezYSR4Q2tZVKxvVhJi0t2DHlwkJJaXthvhqfDrunKQTAu1tT5Fi5xSfz-c73_l3AG-qNEGrTBnlypdRUmU6ssZUUZXZ2OUuczqUe_s0N4enycczfbYFv_u7MJxW2evEoKh9U_IZ-YhMX77cQ-tzVHVpESeT6YfFj4grSHGktS-n0YrIEf76Se7b6v1sQnP9VsrpwZf9w6irMBCViYzXkY5xbBwp5MSpNJdG-VSiSlA6a72VZH2oinS8VlVGejtBzRaIjaX0zhrlnCK6t2A7Za9oANt7B_OTz5sTHkbczMamhTpSKh-P7PmyA9RAdrvYevhrOwxVA_7ZFMJON70P9zoTVey2MvUAtrB-CHd3r6g-gtmkjeuICa5DLlctvtWCLVoUx2gvcSVCLgK140LsN_VlJ-FEl-FAwiPknz-G0xth2RMY1E2NT0HkXmcm9-kYaW61t5YURGU9uVCoUh-XQ5A9b4qyQyznwhnfC_JcmKHFfxg6hHebjxYtYMf13feY6ZuujLYdXjTL86JbvEWCxkhLg7PkwxvtnUKLWlmvE8d_O4SdfsqKTgWsiiuBHcLrTTMtXo7I2BqbC-pjOArMkPvPrifxCm6TtBfHs_nRc7gjOa8mpAzvwGC9vMAXZBit3ctOAgV8vWmh_wOmUiGP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disease+Detection+in+Apple+Leaves+Using+Deep+Convolutional+Neural+Network&rft.jtitle=Agriculture+%28Basel%29&rft.au=Bansal%2C+Prakhar&rft.au=Kumar%2C+Rahul&rft.au=Kumar%2C+Somesh&rft.date=2021-07-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=11&rft.issue=7&rft.spage=617&rft_id=info:doi/10.3390%2Fagriculture11070617&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriculture11070617 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |