Disease Detection in Apple Leaves Using Deep Convolutional Neural Network

The automatic detection of diseases in plants is necessary, as it reduces the tedious work of monitoring large farms and it will detect the disease at an early stage of its occurrence to minimize further degradation of plants. Besides the decline of plant health, a country’s economy is highly affect...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 11; no. 7; p. 617
Main Authors Bansal, Prakhar, Kumar, Rahul, Kumar, Somesh
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The automatic detection of diseases in plants is necessary, as it reduces the tedious work of monitoring large farms and it will detect the disease at an early stage of its occurrence to minimize further degradation of plants. Besides the decline of plant health, a country’s economy is highly affected by this scenario due to lower production. The current approach to identify diseases by an expert is slow and non-optimal for large farms. Our proposed model is an ensemble of pre-trained DenseNet121, EfficientNetB7, and EfficientNet NoisyStudent, which aims to classify leaves of apple trees into one of the following categories: healthy, apple scab, apple cedar rust, and multiple diseases, using its images. Various Image Augmentation techniques are included in this research to increase the dataset size, and subsequentially, the model’s accuracy increases. Our proposed model achieves an accuracy of 96.25% on the validation dataset. The proposed model can identify leaves with multiple diseases with 90% accuracy. Our proposed model achieved a good performance on different metrics and can be deployed in the agricultural domain to identify plant health accurately and timely.
AbstractList The automatic detection of diseases in plants is necessary, as it reduces the tedious work of monitoring large farms and it will detect the disease at an early stage of its occurrence to minimize further degradation of plants. Besides the decline of plant health, a country’s economy is highly affected by this scenario due to lower production. The current approach to identify diseases by an expert is slow and non-optimal for large farms. Our proposed model is an ensemble of pre-trained DenseNet121, EfficientNetB7, and EfficientNet NoisyStudent, which aims to classify leaves of apple trees into one of the following categories: healthy, apple scab, apple cedar rust, and multiple diseases, using its images. Various Image Augmentation techniques are included in this research to increase the dataset size, and subsequentially, the model’s accuracy increases. Our proposed model achieves an accuracy of 96.25% on the validation dataset. The proposed model can identify leaves with multiple diseases with 90% accuracy. Our proposed model achieved a good performance on different metrics and can be deployed in the agricultural domain to identify plant health accurately and timely.
Author Kumar, Rahul
Kumar, Somesh
Bansal, Prakhar
Author_xml – sequence: 1
  givenname: Prakhar
  surname: Bansal
  fullname: Bansal, Prakhar
– sequence: 2
  givenname: Rahul
  surname: Kumar
  fullname: Kumar, Rahul
– sequence: 3
  givenname: Somesh
  orcidid: 0000-0001-8712-1646
  surname: Kumar
  fullname: Kumar, Somesh
BookMark eNp9kU9vEzEQxVeolShtP0EvK3HhErA9_hMfqxRopAgu7dma3Z1EDu56sb1F_fY4TZFQhfBlrPHvPY3fvGtOxjhS01xx9hHAsk-4S76fQ5kTcc4M09y8ac4EM2bBpBEnf93fNpc571k9lsOS6bNmfeMzYab2hgr1xcex9WN7PU2B2g3hI-X2PvtxV99paldxfIxhPmAY2m80p-dSfsX046I53WLIdPlSz5v7L5_vVreLzfev69X1ZtFLwctCcWK6s5bJDowVGgYjCCSJDnFAYRWHLTBQsF1KYSUpxgUgF2LoUEPXwXmzPvoOEfduSv4B05OL6N1zI6adw1R8H8hJ0lpgNUVhpFZDB4SkAAclO7k0VL0-HL2mFH_OlIt78LmnEHCkOGdXx9NSCWFZRd-_QvdxTjWGSiklAbiCZaXskepTzDnR1vW-4CGvktAHx5k77Mz9Y2dVC6-0fz73P9Vvc4iePg
CitedBy_id crossref_primary_10_3390_agriculture12091363
crossref_primary_10_1016_j_aiia_2024_10_005
crossref_primary_10_3390_plants13111535
crossref_primary_10_2478_prolas_2022_0074
crossref_primary_10_1007_s11042_023_18094_8
crossref_primary_10_3390_agriculture12071033
crossref_primary_10_1007_s00521_022_07350_x
crossref_primary_10_1007_s10661_024_12790_0
crossref_primary_10_3390_agriculture12091360
crossref_primary_10_1007_s10661_024_12454_z
crossref_primary_10_1016_j_atech_2023_100183
crossref_primary_10_3390_jimaging10080183
crossref_primary_10_1007_s10341_024_01042_7
crossref_primary_10_1016_j_jksuci_2022_07_004
crossref_primary_10_1007_s00521_023_08496_y
crossref_primary_10_32604_csse_2023_042080
crossref_primary_10_3389_fpls_2023_1120724
crossref_primary_10_1016_j_aiia_2024_04_002
crossref_primary_10_1016_j_compag_2023_107967
crossref_primary_10_1109_ACCESS_2023_3326721
crossref_primary_10_1111_exsy_13786
crossref_primary_10_3390_electronics13030494
crossref_primary_10_1007_s41870_025_02478_0
crossref_primary_10_3390_agriculture13020240
crossref_primary_10_1117_1_JEI_33_3_033014
crossref_primary_10_17798_bitlisfen_1028323
crossref_primary_10_3390_agriculture11121216
crossref_primary_10_1007_s42979_023_02076_6
crossref_primary_10_3390_computers13050116
crossref_primary_10_12720_jait_14_6_1301_1311
crossref_primary_10_32604_cmc_2023_033250
crossref_primary_10_3390_agronomy15010226
crossref_primary_10_3390_app14156710
crossref_primary_10_1007_s40747_024_01764_x
crossref_primary_10_1002_rob_22510
crossref_primary_10_54365_adyumbd_988049
crossref_primary_10_3390_agronomy13051240
crossref_primary_10_1016_j_atech_2022_100155
crossref_primary_10_1109_TAI_2023_3307662
crossref_primary_10_1007_s11042_024_18717_8
crossref_primary_10_1016_j_atech_2024_100714
crossref_primary_10_1051_itmconf_20235401014
crossref_primary_10_3390_math13050840
crossref_primary_10_1016_j_scienta_2024_113155
crossref_primary_10_3389_fpls_2022_884891
crossref_primary_10_1007_s40030_022_00668_8
crossref_primary_10_3390_drones7020097
crossref_primary_10_3390_electronics11010148
crossref_primary_10_3389_fpls_2023_1233241
crossref_primary_10_1080_22797254_2021_2017799
crossref_primary_10_3389_fpls_2023_1212747
crossref_primary_10_3390_agriengineering7030051
crossref_primary_10_3390_s25020472
crossref_primary_10_3390_electronics13234715
crossref_primary_10_32604_cmc_2023_035183
crossref_primary_10_3390_agriculture11080707
crossref_primary_10_3390_electronics13152941
crossref_primary_10_1007_s11042_023_14766_7
crossref_primary_10_3390_plants12213765
crossref_primary_10_1094_PHYTO_02_24_0056_KC
crossref_primary_10_1007_s11042_024_19047_5
crossref_primary_10_1155_2023_9686697
crossref_primary_10_4108_eetpht_9_4001
crossref_primary_10_32604_cmc_2022_021875
crossref_primary_10_3390_app112411902
crossref_primary_10_35633_inmateh_72_26
crossref_primary_10_1007_s11042_023_15809_9
crossref_primary_10_3390_agronomy12102363
crossref_primary_10_1038_s41598_023_46492_3
crossref_primary_10_21923_jesd_980629
crossref_primary_10_3390_agriengineering7010013
crossref_primary_10_1109_ACCESS_2023_3339375
Cites_doi 10.1109/CVPR.2015.7298594
10.1109/ACCESS.2019.2914929
10.1109/ACCESS.2020.2973658
10.1126/science.aaa8415
10.1038/nature14539
10.1109/TPAMI.1986.4767851
10.1016/j.neucom.2017.06.023
10.1080/02664763.2018.1441383
10.5244/C.31.76
10.1007/978-3-030-01328-8
10.1016/j.biosystemseng.2018.05.013
10.1109/CVPR.2016.90
10.1109/SIU.2018.8404692
10.1038/nbt1206-1565
10.18088/ejbmr.3.1.2017.pp6-9
10.3390/sym10010011
10.1007/978-3-030-01421-6
10.1186/s13007-019-0475-z
10.1049/iet-ipr.2018.6210
10.1109/CVPR.2009.5206848
10.3390/plants8110468
10.1109/CVPR.2017.243
10.1109/5.726791
10.3389/fpls.2019.00941
10.1016/S0020-7373(87)80053-6
10.1109/CVPR42600.2020.01070
10.3389/fpls.2016.01419
10.1016/j.compag.2020.105446
10.1257/jel.20191385
10.1109/ICDI3C.2018.00017
10.1109/IC3INA.2018.8629518
10.29130/dubited.648387
10.1109/CCIS.2011.6045027
10.1016/j.compag.2010.06.009
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
DOA
DOI 10.3390/agriculture11070617
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Agricultural Science Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_4e662aa29a27465db3eae53ad54b487e
10_3390_agriculture11070617
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c421t-51e06b9904b379263d72e34e2baada29513f30353f84294e50123a122dba63bb3
IEDL.DBID DOA
ISSN 2077-0472
IngestDate Wed Aug 27 01:24:34 EDT 2025
Fri Jul 11 05:28:00 EDT 2025
Sun Jun 29 12:40:54 EDT 2025
Tue Jul 01 02:12:36 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-51e06b9904b379263d72e34e2baada29513f30353f84294e50123a122dba63bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8712-1646
OpenAccessLink https://doaj.org/article/4e662aa29a27465db3eae53ad54b487e
PQID 2554331538
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_4e662aa29a27465db3eae53ad54b487e
proquest_miscellaneous_2636452290
proquest_journals_2554331538
crossref_citationtrail_10_3390_agriculture11070617
crossref_primary_10_3390_agriculture11070617
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
Noble (ref_6) 2006; 24
ref_57
ref_12
ref_56
ref_11
ref_55
ref_54
ref_53
ref_52
Canny (ref_4) 1986; PAMI-8
ref_51
ref_17
ref_16
ref_15
Badage (ref_3) 2018; 5
Quinlan (ref_7) 1987; 27
Selvaraj (ref_19) 2019; 15
Boulent (ref_13) 2019; 10
ref_25
ref_24
ref_22
ref_20
Sun (ref_27) 2020; 8
ref_29
ref_28
ref_26
Jordan (ref_2) 2015; 349
Kumar (ref_10) 2014; 2
Sinha (ref_21) 2019; 14
Yang (ref_23) 2017; 3
ref_36
ref_35
LeCun (ref_9) 2015; 521
ref_33
ref_32
ref_30
Jiang (ref_39) 2019; 7
Lecun (ref_31) 1998; 86
ref_37
Steel (ref_18) 2020; 58
Ju (ref_50) 2018; 45
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
ref_41
ref_40
ref_1
Chuanlei (ref_34) 2017; 10
ref_49
Tuncer (ref_38) 2020; 8
ref_48
ref_8
ref_5
References_xml – ident: ref_49
– ident: ref_55
– ident: ref_51
– ident: ref_37
  doi: 10.1109/CVPR.2015.7298594
– volume: 7
  start-page: 59069
  year: 2019
  ident: ref_39
  article-title: Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914929
– volume: 8
  start-page: 33679
  year: 2020
  ident: ref_27
  article-title: Northern Maize Leaf Blight Detection Under Complex Field Environment Based on Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2973658
– volume: 349
  start-page: 255
  year: 2015
  ident: ref_2
  article-title: Machine Learning: Trends, Perspectives, and Prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_9
  article-title: Deep Learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: PAMI-8
  start-page: 679
  year: 1986
  ident: ref_4
  article-title: A Computational Approach to Edge Detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– volume: 10
  start-page: 74
  year: 2017
  ident: ref_34
  article-title: Apple Leaf Disease Identification Using Genetic Algorithm and Correlation Based Feature Selection Method
  publication-title: Int. J. Agric. Biol. Eng.
– ident: ref_29
  doi: 10.1016/j.neucom.2017.06.023
– ident: ref_42
– volume: 45
  start-page: 2800
  year: 2018
  ident: ref_50
  article-title: The Relative Performance of Ensemble Methods with Deep Convolutional Neural Networks for Image Classification
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2018.1441383
– ident: ref_1
– ident: ref_35
– ident: ref_40
  doi: 10.5244/C.31.76
– ident: ref_26
  doi: 10.1007/978-3-030-01328-8
– ident: ref_32
  doi: 10.1016/j.biosystemseng.2018.05.013
– ident: ref_36
  doi: 10.1109/CVPR.2016.90
– ident: ref_56
– ident: ref_52
– volume: 2
  start-page: 143
  year: 2014
  ident: ref_10
  article-title: Artificial neural networks-a study
  publication-title: Int. J. Emerg. Eng. Res. Technol.
– ident: ref_5
  doi: 10.1109/SIU.2018.8404692
– volume: 24
  start-page: 1565
  year: 2006
  ident: ref_6
  article-title: What Is a Support Vector Machine?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1206-1565
– volume: 3
  start-page: 6
  year: 2017
  ident: ref_23
  article-title: Machine Learning in Plant Disease Research
  publication-title: Eur. J. Biomed. Res.
  doi: 10.18088/ejbmr.3.1.2017.pp6-9
– ident: ref_33
  doi: 10.3390/sym10010011
– ident: ref_41
– ident: ref_17
  doi: 10.1007/978-3-030-01421-6
– volume: 15
  start-page: 92
  year: 2019
  ident: ref_19
  article-title: AI-Powered Banana Diseases and Pest Detection
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0475-z
– volume: 14
  start-page: 1427
  year: 2019
  ident: ref_21
  article-title: Review of Image Processing Approaches for Detecting Plant Diseases
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2018.6210
– ident: ref_45
– ident: ref_48
  doi: 10.1109/CVPR.2009.5206848
– volume: 5
  start-page: 866
  year: 2018
  ident: ref_3
  article-title: Crop disease detection using machine learning: Indian agriculture
  publication-title: Int. Res. J. Eng. Technol.
– ident: ref_25
  doi: 10.3390/plants8110468
– ident: ref_14
  doi: 10.1109/CVPR.2017.243
– ident: ref_53
– ident: ref_30
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_31
  article-title: Gradient-Based Learning Applied to Document Recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 10
  start-page: 941
  year: 2019
  ident: ref_13
  article-title: Convolutional Neural Networks for the Automatic Identification of Plant Diseases
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00941
– ident: ref_47
– volume: 27
  start-page: 221
  year: 1987
  ident: ref_7
  article-title: Simplifying Decision Trees
  publication-title: Int. J. Man-Mach. Stud.
  doi: 10.1016/S0020-7373(87)80053-6
– ident: ref_44
– ident: ref_16
  doi: 10.1109/CVPR42600.2020.01070
– ident: ref_24
  doi: 10.3389/fpls.2016.01419
– ident: ref_28
  doi: 10.1016/j.compag.2020.105446
– volume: 58
  start-page: 644
  year: 2020
  ident: ref_18
  article-title: Model Averaging and Its Use in Economics
  publication-title: J. Econ. Lit.
  doi: 10.1257/jel.20191385
– ident: ref_54
– ident: ref_46
– ident: ref_12
– ident: ref_22
  doi: 10.1109/ICDI3C.2018.00017
– ident: ref_11
  doi: 10.1109/IC3INA.2018.8629518
– ident: ref_15
– volume: 8
  start-page: 1110
  year: 2020
  ident: ref_38
  article-title: Detection of Apple Leaf Diseases Using Faster R-CNN
  publication-title: Düzce Üniversitesi Bilim Teknol. Derg.
  doi: 10.29130/dubited.648387
– ident: ref_8
  doi: 10.1109/CCIS.2011.6045027
– ident: ref_43
– ident: ref_57
– ident: ref_20
  doi: 10.1016/j.compag.2010.06.009
SSID ssj0000913806
Score 2.5592968
Snippet The automatic detection of diseases in plants is necessary, as it reduces the tedious work of monitoring large farms and it will detect the disease at an early...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 617
SubjectTerms Accuracy
Agriculture
Algorithms
apple scab
Apples
Artificial neural networks
automatic detection
Automation
Classification
convolutional neural network
Crop diseases
Crops
data collection
Datasets
Deep learning
DenseNet121
Disease detection
EfficientNetB7
Farms
Fruit trees
Fruits
Leaves
Machine learning
Medical imaging
Model accuracy
Neural networks
Plant diseases
Rust fungi
Support vector machines
transfer learning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9UUfilrF0yoRfDT0sl9JnqSftKUWKS30LcxmJ0WQ5Ly79u_vzN7elaL0KZDdLMnszvfkNwDfutIQatfmtQ5tbrrK5uhcl3cVFr72lbex3dvPC3dybc5u7E0KuM1TWeVKJkZBHYZWYuS7bPrKzz3Mnz-mf3PpGiXZ1dRC4wVssgiuqhFs7h9d_LpcR1kE9bKauCXckGb_fhdvZwnUgsT1EQ3-RCVF5P5_BHPUNsevYSuZidnecl_fwAb1b-HV3uOq23B6uMytZIe0iPVUffa7z8SqpOyc8J7mWawH4HGaZgdDf59OGa8rkBzxEmvA38H18dHVwUmeGiPkrVHFIrcFTZxnPWK8LmvldCgVaUPKIwZUbDTpjlWT1V3F6saQFcMJC6WCR6e91-9h1A89fYCsDrZydSgnxPS1AZGZtMPAbgzpMhTtGNSKNk2bUMOlecWfhr0HIWjzH4KO4fv6oekSNOP56ftC9PVUQbyON4bZbZMYqDHknEL-OGQ_2tngNSFZjcEaL287hp3VljWJDefN46EZw9f1MDOQZEWwp-GO5zjJxArs_cfnl_gEL5UUtMRa3R0YLWZ39JktkoX_ko7dA4ey4nI
  priority: 102
  providerName: ProQuest
Title Disease Detection in Apple Leaves Using Deep Convolutional Neural Network
URI https://www.proquest.com/docview/2554331538
https://www.proquest.com/docview/2636452290
https://doaj.org/article/4e662aa29a27465db3eae53ad54b487e
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8RADB5EL3oQn7i-qODR4nZebY8-UdFFRMFbyXRSEaS77K7-fpNpd1UUvXgqdKbDkMzkS0j6RYj9KtUIypZxrnwZ6yozMVhbxVUGictd5kxo93bTsxcP-urRPH5q9cU1YQ09cCO4Q43WSgCZA8VP1ninENAo8EY7craRrS9h3qdgKtjgPFFZ1zY0Q4ri-kN4GrZkFsghDyP3FygKjP3fDHJAmfMlsdi6h9FRs61lMYP1ilg4-lh1VVyeNjmV6BTHoY6qjp7riL1JjK4R3nAUhToAGsdBdNKv39rTResyFUd4hNrvNfFwfnZ_chG3DRHiUstkHJsEu9YRfmin0lxa5VOJSqN0AJ5EZBJVESQZVWUEMxoNO0yQSOkdWOWcWhezdb_GDRHl3mQ292kXyZ8wHoAuZwWeJapSn5QdISeyKcqWLZybVrwUFDWwQIsfBNoRB9OPBg1Zxu_Tj1no06nMdB1ekP6LVv_FX_rviO2Jyor2-o0KipP4TzAy5h2xNx2mi8PZEKix_0pzLGdgme5-8z_2sSXmJZe7hErebTE7Hr7iDvkrY7cr5o7Perd3u-GIvgP_p-ui
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbK9gAcEE912wJBghtRk3klOSDUdlvt0u0KoVbqLcxknAoJJcvutog_xW_EzmMrBOqtp0jJxEo8tsceez4DvC0ThVaaIsykL0JVpjq0xpRhmdrYZS51umn3djoz43P16UJfbMDv_iwMl1X2NrEx1L4ueI98j1xfPtxD-vlx_iPkrlGcXe1baLRicYK_flLItvwwGdH8vhPi-OjscBx2XQXCQol4FeoYI-PICCsnk0wY6ROBUqFw1noryOOQJdl1LcuUbLVCzV6HjYXwzhrpnCS692BTSROJAWweHM0-f1nv6jDKZhqZFt5Iyizas5eLDkQDOdRij-GvJbDpFPDPQtCsbseP4VHnlgb7rRw9gQ2snsLD_Ruqz2AyanM5wQhXTf1WFXyrAvZiMZiivcZl0NQf0HOcB4d1dd1JNdFlCJDm0tScP4fzO2HZCxhUdYVbEGRepybzSYQ0n9pbS0ahtJ7CJpSJj4shiJ43edGhlHOzjO85RSvM0Pw_DB3C-_VL8xak4_bhB8z09VBG2G5u1IvLvFPYXKExwtLPWYrbjfZOokUtrdfK8dcOYbefsrxT-2V-I6RDeLN-TArLWRhbYX1FYwxnfhlmf_t2Eq_h_vjsdJpPJ7OTHXgguJimqRPehcFqcYUvyRtauVedCAbw9a6l_g-K-h1a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkLwgPgrCgOMBG9EbezYSR4Q2tZVKxvVhJi0t2DHlwkJJaXthvhqfDrunKQTAu1tT5Fi5xSfz-c73_l3AG-qNEGrTBnlypdRUmU6ssZUUZXZ2OUuczqUe_s0N4enycczfbYFv_u7MJxW2evEoKh9U_IZ-YhMX77cQ-tzVHVpESeT6YfFj4grSHGktS-n0YrIEf76Se7b6v1sQnP9VsrpwZf9w6irMBCViYzXkY5xbBwp5MSpNJdG-VSiSlA6a72VZH2oinS8VlVGejtBzRaIjaX0zhrlnCK6t2A7Za9oANt7B_OTz5sTHkbczMamhTpSKh-P7PmyA9RAdrvYevhrOwxVA_7ZFMJON70P9zoTVey2MvUAtrB-CHd3r6g-gtmkjeuICa5DLlctvtWCLVoUx2gvcSVCLgK140LsN_VlJ-FEl-FAwiPknz-G0xth2RMY1E2NT0HkXmcm9-kYaW61t5YURGU9uVCoUh-XQ5A9b4qyQyznwhnfC_JcmKHFfxg6hHebjxYtYMf13feY6ZuujLYdXjTL86JbvEWCxkhLg7PkwxvtnUKLWlmvE8d_O4SdfsqKTgWsiiuBHcLrTTMtXo7I2BqbC-pjOArMkPvPrifxCm6TtBfHs_nRc7gjOa8mpAzvwGC9vMAXZBit3ctOAgV8vWmh_wOmUiGP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disease+Detection+in+Apple+Leaves+Using+Deep+Convolutional+Neural+Network&rft.jtitle=Agriculture+%28Basel%29&rft.au=Bansal%2C+Prakhar&rft.au=Kumar%2C+Rahul&rft.au=Kumar%2C+Somesh&rft.date=2021-07-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=11&rft.issue=7&rft.spage=617&rft_id=info:doi/10.3390%2Fagriculture11070617&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriculture11070617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon