Natural Gas Consumption Monitoring Based on k-NN Algorithm and Consumption Prediction Framework Based on Backpropagation Neural Network
With increasing consumption of primary energy and deterioration of the global environment, clean energy sources with large reserves, such as natural gas, have gradually gained a higher proportion of the global energy consumption structure. Monitoring and predicting consumption data play a crucial ro...
Saved in:
Published in | Buildings (Basel) Vol. 14; no. 3; p. 627 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With increasing consumption of primary energy and deterioration of the global environment, clean energy sources with large reserves, such as natural gas, have gradually gained a higher proportion of the global energy consumption structure. Monitoring and predicting consumption data play a crucial role in reducing energy waste and improving energy supply efficiency. However, owing to factors such as high monitoring device costs, safety risks associated with device installation, and low efficiency of manual meter reading, monitoring natural gas consumption data at the household level is challenging. Moreover, there is a lack of methods for predicting natural gas consumption at the household level in residential areas, which hinders the provision of accurate services to households and gas companies. Therefore, this study proposes a gas consumption monitoring method based on the K-nearest neighbours (KNN) algorithm. Using households in a residential area in Xi’an as research subjects, the feasibility of this monitoring method was validated, achieving a model recognition accuracy of 100%, indicating the applicability of the KNN algorithm for monitoring natural gas consumption data. In addition, this study proposes a framework for a natural gas consumption prediction system based on a backpropagation (BP) neural network. |
---|---|
AbstractList | With increasing consumption of primary energy and deterioration of the global environment, clean energy sources with large reserves, such as natural gas, have gradually gained a higher proportion of the global energy consumption structure. Monitoring and predicting consumption data play a crucial role in reducing energy waste and improving energy supply efficiency. However, owing to factors such as high monitoring device costs, safety risks associated with device installation, and low efficiency of manual meter reading, monitoring natural gas consumption data at the household level is challenging. Moreover, there is a lack of methods for predicting natural gas consumption at the household level in residential areas, which hinders the provision of accurate services to households and gas companies. Therefore, this study proposes a gas consumption monitoring method based on the K-nearest neighbours (KNN) algorithm. Using households in a residential area in Xi’an as research subjects, the feasibility of this monitoring method was validated, achieving a model recognition accuracy of 100%, indicating the applicability of the KNN algorithm for monitoring natural gas consumption data. In addition, this study proposes a framework for a natural gas consumption prediction system based on a backpropagation (BP) neural network. |
Audience | Academic |
Author | Dong, Yanan Yang, Yijun Liu, Yuanzhao Zhang, Jipeng Hou, Yaolong Chang, Han Wei, Chenlin Lee, Inhee Wang, Xueting Zhang, Di |
Author_xml | – sequence: 1 givenname: Yaolong orcidid: 0000-0002-1237-7521 surname: Hou fullname: Hou, Yaolong – sequence: 2 givenname: Xueting orcidid: 0009-0009-9044-0387 surname: Wang fullname: Wang, Xueting – sequence: 3 givenname: Han surname: Chang fullname: Chang, Han – sequence: 4 givenname: Yanan surname: Dong fullname: Dong, Yanan – sequence: 5 givenname: Di surname: Zhang fullname: Zhang, Di – sequence: 6 givenname: Chenlin surname: Wei fullname: Wei, Chenlin – sequence: 7 givenname: Inhee surname: Lee fullname: Lee, Inhee – sequence: 8 givenname: Yijun surname: Yang fullname: Yang, Yijun – sequence: 9 givenname: Yuanzhao surname: Liu fullname: Liu, Yuanzhao – sequence: 10 givenname: Jipeng surname: Zhang fullname: Zhang, Jipeng |
BookMark | eNp1kdGO1CAUholZE9dxH8C7Jl53BQqUXs5O3HWTtXqh1-QUaGWmLSPQbHwCX1u2o9lVI1xw8uf_fg6cl-hs9rNF6DXBl1XV4Lfd4kbj5iEShissaP0MnVNc85JXuDl7Ur9AFzHucV6SU8rZOfrRQloCjMUNxGLn57hMx-T8XHzws0s-5NTiCqI1RdYOZdsW23HIcvo6FTCbP5BPwRqn1_I6wGTvfTg8wlegD8fgjzDAamntem9r04PvFXrewxjtxa9zg75cv_u8e1_efby53W3vSs0oSSXDghkmwFYV0Maynoiul1xzIrHtOemYFj3tGJGG285KaiojSM2Y0RSaGqoNuj3lGg97dQxugvBdeXBqFXwYFITk9GiV7bgRNbG9YQ0T1EomeCdt1wFgzXMLG_TmlJWf9W2xMam9X8Kc21e0aSStmWzq7Lo8uQbIoW7ufQqg8zZ2cjoPsndZ39ZSUsZYLTJQnwAdfIzB9kq7tP5ZBt2oCFYPU1f_TD2T5C_y9wP_z_wEXw22vg |
CitedBy_id | crossref_primary_10_3390_app14156728 |
Cites_doi | 10.1016/j.enpol.2007.02.030 10.1007/s00704-017-2206-6 10.1016/j.enpol.2012.10.046 10.20944/preprints201812.0225.v1 10.1016/0957-1787(93)90006-I 10.1016/j.atmosenv.2005.01.009 10.1016/j.energy.2006.12.005 10.2307/1909771 10.2991/febm-18.2018.9 10.1016/j.resourpol.2021.102172 10.25007/ajnu.v8n4a464 10.1016/j.jngse.2020.103532 10.1016/j.eswa.2009.01.062 10.1016/S0893-6080(97)00014-2 10.1016/j.envint.2021.107066 10.1016/j.eneco.2007.01.015 10.1111/j.1539-6924.1994.tb00066.x 10.1109/MLBDBI51377.2020.00091 10.1007/s12053-012-9180-8 10.1016/j.jngse.2021.103930 10.1016/j.enpol.2007.03.001 10.1126/science.1090228 10.1016/j.ngib.2017.07.014 10.1016/S0140-6736(22)01540-9 10.1016/j.apenergy.2006.09.012 10.18178/JOCET.2017.5.4.392 10.1016/j.energy.2021.122090 10.1007/s10651-012-0192-5 10.1016/j.enbuild.2022.111848 10.1109/ACIRS49895.2020.9162619 10.1007/s12182-010-0017-9 10.1016/j.gloenvcha.2021.102386 10.3390/engproc2022020032 10.1016/j.enpol.2008.09.051 10.1016/j.physa.2005.02.066 10.1016/j.jhydrol.2010.09.003 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L.- L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.3390/buildings14030627 |
DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-5309 |
ExternalDocumentID | oai_doaj_org_article_eb5d671efd49462e8465b8ebbaa0c5ae A788244476 10_3390_buildings14030627 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | .4S 2XV 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHM ITC KQ8 L6V M7S MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PTHSS PYCSY TUS PMFND 8FD ABUWG AZQEC DWQXO FR3 GNUQQ KR7 L.- PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c421t-4064d46ae33a29e4f16bf85c5180ef51b4c6f2b418d5ebe82d3d61744dc2a97a3 |
IEDL.DBID | BENPR |
ISSN | 2075-5309 |
IngestDate | Wed Aug 27 01:11:42 EDT 2025 Fri Jul 25 09:37:01 EDT 2025 Tue Jun 10 21:10:47 EDT 2025 Tue Jul 01 01:45:05 EDT 2025 Thu Apr 24 23:00:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-4064d46ae33a29e4f16bf85c5180ef51b4c6f2b418d5ebe82d3d61744dc2a97a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1237-7521 0009-0009-9044-0387 |
OpenAccessLink | https://www.proquest.com/docview/2998274897?pq-origsite=%requestingapplication% |
PQID | 2998274897 |
PQPubID | 2032422 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eb5d671efd49462e8465b8ebbaa0c5ae proquest_journals_2998274897 gale_infotracacademiconefile_A788244476 crossref_citationtrail_10_3390_buildings14030627 crossref_primary_10_3390_buildings14030627 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Buildings (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Akpan (ref_6) 2012; 2 Li (ref_43) 2020; 83 Long (ref_3) 2022; 260 Read (ref_11) 1994; 14 Reymond (ref_26) 2007; 35 ref_14 Ma (ref_24) 2010; 7 Tang (ref_5) 2013; 52 Thaler (ref_39) 2005; 355 Ma (ref_51) 2017; 4 Dai (ref_46) 1997; 10 ref_25 ref_23 Romanello (ref_12) 2022; 400 ref_20 ref_28 Gelo (ref_40) 2006; 57 Balestra (ref_34) 1966; 34 Cook (ref_15) 2005; 39 Ortiz (ref_2) 2013; 6 Karl (ref_8) 2003; 302 Karsoliya (ref_47) 2012; 3 Ugursal (ref_37) 2008; 85 Wei (ref_38) 2022; 238 ref_33 Meng (ref_1) 2018; 133 Su (ref_29) 2017; 5 ref_32 ref_31 Mensi (ref_22) 2021; 73 ref_30 Wang (ref_27) 2014; 34 Thatcher (ref_18) 2007; 32 Berzosa (ref_36) 2007; 29 Ghose (ref_48) 2010; 394 Asaad (ref_50) 2019; 8 Bonneuil (ref_13) 2021; 71 Liu (ref_4) 2023; 3 Thaler (ref_41) 2007; 35 Hu (ref_49) 2009; 36 Zhou (ref_19) 2024; 1 (ref_21) 1993; 3 ref_45 ref_42 Fang (ref_10) 2011; 41 Isaac (ref_17) 2009; 37 Thurston (ref_16) 2022; 160 Qin (ref_7) 2014; 33 Liu (ref_35) 2021; 90 Bill (ref_9) 2007; 54 Alhajraf (ref_44) 2012; 19 |
References_xml | – volume: 35 start-page: 4169 year: 2007 ident: ref_26 article-title: European Key Issues Concerning Natural Gas: Dependence and Vulnerability publication-title: Energy Policy doi: 10.1016/j.enpol.2007.02.030 – volume: 133 start-page: 521 year: 2018 ident: ref_1 article-title: The effects of climate change on heating energy consumption of office buildings in different climate zones in China publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-017-2206-6 – volume: 52 start-page: 797 year: 2013 ident: ref_5 article-title: Depletion of Fossil Fuels and Anthropogenic Climate Change—A Review publication-title: Energy Policy doi: 10.1016/j.enpol.2012.10.046 – ident: ref_23 doi: 10.20944/preprints201812.0225.v1 – volume: 3 start-page: 145 year: 1993 ident: ref_21 article-title: Natural Gas for Electric Power Generation: Advantages, Availability and Reliability publication-title: Util. Policy doi: 10.1016/0957-1787(93)90006-I – volume: 39 start-page: 2553 year: 2005 ident: ref_15 article-title: The Curious Case of the Date of Introduction of Leaded Fuel to Australia: Implications for the History of Southern Hemisphere Atmospheric Lead Pollution publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2005.01.009 – volume: 32 start-page: 1647 year: 2007 ident: ref_18 article-title: Modelling Changes to Electricity Demand Load Duration Curves as a Consequence of Predicted Climate Change for Australia publication-title: Energy doi: 10.1016/j.energy.2006.12.005 – volume: 34 start-page: 585 year: 1966 ident: ref_34 article-title: Pooling Cross Section and Time Series Data in the Estimation of a Dynamic Model: The Demand for Natural Gas publication-title: Econometrica doi: 10.2307/1909771 – volume: 57 start-page: 80 year: 2006 ident: ref_40 article-title: Econometric Modelling of Gas Demand publication-title: Ekon. Pregl. – volume: 3 start-page: 80 year: 2023 ident: ref_4 article-title: The relationship between temperature changes and energy consumption publication-title: West. China – ident: ref_25 doi: 10.2991/febm-18.2018.9 – volume: 73 start-page: 102172 year: 2021 ident: ref_22 article-title: Dynamic Frequency Relationships and Volatility Spillovers in Natural Gas, Crude Oil, Gas Oil, Gasoline, and Heating Oil Markets: Implications for Portfolio Management publication-title: Resour. Policy doi: 10.1016/j.resourpol.2021.102172 – ident: ref_42 – volume: 8 start-page: 216 year: 2019 ident: ref_50 article-title: Back Propagation Neural Network(BPNN) and Sigmoid Activation Function in Multi-Layer Networks publication-title: Acad. J. Nawroz Univ. doi: 10.25007/ajnu.v8n4a464 – volume: 83 start-page: 103532 year: 2020 ident: ref_43 article-title: Residential gas supply, gas losses and CO2 emissions in China publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103532 – volume: 36 start-page: 9969 year: 2009 ident: ref_49 article-title: Using BPNN and DEMATEL to Modify Importance–Performance Analysis Model—A Study of the Computer Industry publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.01.062 – volume: 10 start-page: 1505 year: 1997 ident: ref_46 article-title: Effects of Learning Parameters on Learning Procedure and Performance of a BPNN publication-title: Neural Netw. doi: 10.1016/S0893-6080(97)00014-2 – volume: 2 start-page: 21 year: 2012 ident: ref_6 article-title: The Contribution of Energy Consumption to Climate Change: A Feasible Policy Direction publication-title: Int. J. Energy Econ. Policy – volume: 41 start-page: 1385 year: 2011 ident: ref_10 article-title: Global warming, carbon emissions and uncertainty publication-title: Sci. China Press. – volume: 160 start-page: 107066 year: 2022 ident: ref_16 article-title: Fossil Fuel Combustion and PM2.5 Mass Air Pollution Associations with Mortality publication-title: Environ. Int. doi: 10.1016/j.envint.2021.107066 – volume: 29 start-page: 710 year: 2007 ident: ref_36 article-title: Modeling and Forecasting Industrial End-Use Natural Gas Consumption publication-title: Energy Econ. doi: 10.1016/j.eneco.2007.01.015 – volume: 14 start-page: 971 year: 1994 ident: ref_11 article-title: What Do People Know About Global Climate Change? 2. Survey Studies of Educated Laypeople publication-title: Risk Anal. doi: 10.1111/j.1539-6924.1994.tb00066.x – ident: ref_32 doi: 10.1109/MLBDBI51377.2020.00091 – ident: ref_45 – ident: ref_20 – volume: 34 start-page: 121 year: 2014 ident: ref_27 article-title: Developing Rules and Prospect of Natural Gas Utilization in China publication-title: Nat. Gas Ind. – volume: 1 start-page: 1 year: 2024 ident: ref_19 article-title: Climate change and carbon neutrality publication-title: Chin. J. Nat. – volume: 6 start-page: 239 year: 2013 ident: ref_2 article-title: Revisiting Energy Efficiency Fundamentals publication-title: Energy Effic. doi: 10.1007/s12053-012-9180-8 – ident: ref_28 – ident: ref_30 – volume: 90 start-page: 103930 year: 2021 ident: ref_35 article-title: Natural Gas Consumption Forecasting: A Discussion on Forecasting History and Future Challenges publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2021.103930 – volume: 35 start-page: 4271 year: 2007 ident: ref_41 article-title: Forecasting Risks of Natural Gas Consumption in Slovenia publication-title: Energy Policy doi: 10.1016/j.enpol.2007.03.001 – volume: 54 start-page: 44 year: 2007 ident: ref_9 article-title: Climate change 2007: The physical science basis: Summary for policymakers publication-title: N. Y. Rev. Books – volume: 3 start-page: 714 year: 2012 ident: ref_47 article-title: Approximating Number of Hidden Layer Neurons in Multiple Hidden Layer BPNN Architecture publication-title: Int. J. Eng. Trends Technol. – volume: 302 start-page: 1719 year: 2003 ident: ref_8 article-title: Modern Global Climate Change publication-title: Science doi: 10.1126/science.1090228 – ident: ref_14 – volume: 4 start-page: 91 year: 2017 ident: ref_51 article-title: Natural Gas and Energy Revolution: A Case Study of Sichuan–Chongqing Gas Province publication-title: Nat. Gas Ind. B doi: 10.1016/j.ngib.2017.07.014 – volume: 400 start-page: 1619 year: 2022 ident: ref_12 article-title: The 2022 Report of the Lancet Countdown on Health and Climate Change: Health at the Mercy of Fossil Fuels publication-title: Lancet doi: 10.1016/S0140-6736(22)01540-9 – volume: 85 start-page: 271 year: 2008 ident: ref_37 article-title: Comparison of Neural Network, Conditional Demand Analysis, and Engineering Approaches for Modeling End-Use Energy Consumption in the Residential Sector publication-title: Appl. Energy doi: 10.1016/j.apenergy.2006.09.012 – volume: 5 start-page: 328 year: 2017 ident: ref_29 article-title: Status and Development Trend Analysis of China’s Natural Gas Metering Technology publication-title: J. Clean Energy Technol. doi: 10.18178/JOCET.2017.5.4.392 – volume: 238 start-page: 122090 year: 2022 ident: ref_38 article-title: Data Complexity of Daily Natural Gas Consumption: Measurement and Impact on Forecasting Performance publication-title: Energy doi: 10.1016/j.energy.2021.122090 – volume: 19 start-page: 393 year: 2012 ident: ref_44 article-title: Prediction of non-methane hydrocarbons in Kuwait using regression and Bayesian kriged Kalman model publication-title: Environ. Ecol. Stat. doi: 10.1007/s10651-012-0192-5 – volume: 260 start-page: 14 year: 2022 ident: ref_3 article-title: A review of energy efficiency evaluation technologies in cloud data centers publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.111848 – ident: ref_31 doi: 10.1109/ACIRS49895.2020.9162619 – volume: 7 start-page: 132 year: 2010 ident: ref_24 article-title: Analysis of the Supply-Demand Status of China’s Natural Gas to 2020 publication-title: Pet. Sci. doi: 10.1007/s12182-010-0017-9 – volume: 71 start-page: 102386 year: 2021 ident: ref_13 article-title: Early Warnings and Emerging Accountability: Total’s Responses to Global Warming, 1971–2021 publication-title: Glob. Environ. Chang. doi: 10.1016/j.gloenvcha.2021.102386 – ident: ref_33 doi: 10.3390/engproc2022020032 – volume: 37 start-page: 507 year: 2009 ident: ref_17 article-title: Modeling global residential sector energy demand for heating and air conditioning in the context of climate change publication-title: Energy Policy doi: 10.1016/j.enpol.2008.09.051 – volume: 355 start-page: 46 year: 2005 ident: ref_39 article-title: Prediction of Energy Consumption and Risk of Excess Demand in a Distribution System publication-title: Phys. Stat. Mech. Its Appl. doi: 10.1016/j.physa.2005.02.066 – volume: 394 start-page: 296 year: 2010 ident: ref_48 article-title: Prediction of Water Table Depth in Western Region, Orissa Using BPNN and RBFN Neural Networks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.09.003 – volume: 33 start-page: 874 year: 2014 ident: ref_7 article-title: Climate change science and sustainable human development publication-title: Prog. Geography. |
SSID | ssj0000852254 |
Score | 2.2813776 |
Snippet | With increasing consumption of primary energy and deterioration of the global environment, clean energy sources with large reserves, such as natural gas, have... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 627 |
SubjectTerms | Algorithms Back propagation networks BP neural network Clean energy Climate change Emissions Energy consumption Energy management systems energy shortage Energy shortages Energy sources Green technology Households instrument monitoring K-nearest neighbors algorithm KNN Monitoring Monitoring methods Natural gas natural gas consumption Neural networks Nuclear energy Residential areas |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA7SJ30QtYqnVfIgCMLSTTLJZh_vitcidPHBQt_C5Mcqtl6ld_4N_ttOkr16RbQvvi0h2c3mm8nMkMk3jL1JQeHY-tj45HUDnrCwFmQDWiWBQkZV6pCdDubkDD6c6_OdUl85J6zSA9eFO6RXRNOJNEbowchE9lJ7m7xHbIPGlHdfsnk7wdTXmn1Fggr1GFNRXH_opyrT60xQl7l5bxmiwtf_t125mJrlI_Zw8hH5vM7tMbuXVk_Ygx3mwH32c8BCmMGPcc2PyjXKovu86mjuxBdkoCKntotmGPj88jM1b75847iKt4Z8vM6HNeVxuU3V-j14geGCJkr7TsGQZzYP-u5Q08efsrPl-09HJ81UU6EJIMWGwkUDEQwmpVD2CUZh_Gh10MK2adTCQzCj9CBs1ISvJbAiOTkAMUjsO1TP2N7qapWeM55sK4NSImLrQfem7wPYfC0E0Hrpccba7QK7MBGO57oXl44Cj4yJ-wOTGXt3M-R7Zdv4V-dFRu2mYybKLg0kPm4SH3eX-MzY24y5y-pMkws43UqgX8zEWG7eUQgCAJ2ZsYOtWLhJz9eOjLmVmcCne_E_ZvOS3ZfkNNUctwO2t7n-kV6R07Pxr4t8_wJpRgSW priority: 102 providerName: Directory of Open Access Journals |
Title | Natural Gas Consumption Monitoring Based on k-NN Algorithm and Consumption Prediction Framework Based on Backpropagation Neural Network |
URI | https://www.proquest.com/docview/2998274897 https://doaj.org/article/eb5d671efd49462e8465b8ebbaa0c5ae |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBZNcmkPpU_qNjU6FAqFJStppNWeih3ihEKXUBrITei1KSSxU9v9DfnbGWllp6E0t0UrsY9vNJoZjb4h5FP0wva1C5WLTlbgEAutgVcgRWSW8SByHbLvnTo5g2_n8rwE3FYlrXKjE7OiDgufYuQHqDY1T1Qpzdeb31WqGpV2V0sJjR2yhypYo_O1Nz3qTn9soyxoUKDAwrCdKdC_P3Cl2vQqEdUljt4HC1Lm7f-fds5LzuwFeV5sRToZwH1JnsT5K_LsLwbB1-S2s5k4gx7bFT3MxymzDqDDXE2d6BQXqkCx7bLqOjq5usDm9a9raufhwZDTZdq0yZezTcrW_eCp9Zf4oqh_MpY0sXrgc7shjfwNOZsd_Tw8qUpthcoDZ2t0GxUEUDYKYXkboWfK9Vp6yXQde8kceNVzB0wHiThrBC2gsQMQPLdtY8VbsjtfzOM7QqOuuReCBVs7kK1qWw86HQ8Bqx13dkTqzQ82vhCPp_oXVwYdkISJ-QeTEfmyHXIzsG481nmaUNt2TITZuWGxvDBl_hmUxKAaFvsALSge0eySTkfnrK29tHFEPifMTZrW-HLeltMJ-ImJIMtMGnRFAKBRI7K_EQtT5vvK3Evn-8dvfyBPOZpFQxbbPtldL__Ej2jWrN2Y7OjZ8bhI8DgHB-4AYMD91w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKWQALxFMdKOAFCAkpamxfJ84CoZnCdErbiEUrdWf8SpFaZsrMIMQX8Dd8I9dOMqVCdNdd5NiJ7fv241xCXgYnTJNbn9lgZQYWaaEU8AykCMww7kXKQ3ZQF5Mj-Hgsj9fI7_4uTDxW2evEpKj9zMU18i1Um4pHqJTy3fm3LGaNirurfQqNli32ws8fGLIt3u6-R_q-4nz84XB7knVZBTIHnC0xYCrAQ2GCEIZXARpW2EZJJ5nKQyOZBVc03AJTXuIIFXbXo5kH8I6bqjQCv3uD3AQhqihRaryzWtNB9wXFA9rNU3yfb9kut_UiwuJFROBL5i9lCfifLUgGbnyP3O08UzpsWek-WQvTB-TOX3iFD8mv2iSYDrpjFnQ7Xd5MGoe2miFWoiM0i55i2WlW13R4doLFyy9fqZn6S00-zeMWUXoc9wfELhqPjDvFjqK2S5xDI4YI_rduD60_IkfXMuePyfp0Ng0bhAaVcycE8ya3IKuiqhyoeBkFjLLcmgHJ-wnWroM5j9k2zjSGO5Em-h-aDMibVZPzFuPjqsqjSLVVxQjPnQpm8xPdSbtGvvdFyULjoYKCB3TypFXBWmNyJ00YkNeR5joqEeycM91dCBxihOPSwxIDHwAoiwHZ7NlCd9ploS9k4cnVr1-QW5PDg329v1vvPSW3OTpk7fm5TbK-nH8Pz9ChWtrniYsp-XzdYvMHc-U3oQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QOMmChv4AYSEFDWxjxPnAU3ttrIxiCrEpL0Z3zKkjXa0RYhfsP_Er-PYSTomxN72Fjl24uTc7ePvEPLSW67r1LjEeCMSMEgLKYElILjPdMYcj3XIPlb5_hG8PxbHa-R3dxYmpFV2OjEqajezYY18gGpTsgCVUgzqNi1isjvePv-ehApSYae1K6fRsMih__UTw7fF24NdpPUrxsZ7n3f2k7bCQGKBZUsMnnJwkGvPuWalhzrLTS2FFZlMfS0yAzavmYFMOoFfK3HqDk0-gLNMl4Xm-NxbZL3AqCjtkfXRXjX5tFrhQWcGhQWarVTOy3Rg2krXiwCSF_CBrxjDWDPgf5YhmrvxBrnX-ql02DDWfbLmpw_I3b_QCx-Si0pH0A76Ti_oTjzKGfUPbfRE6ERHaCQdxbbTpKro8OwEm5dfv1E9dVeGTOZhwyhejrt0scvBI21PcaKo-yIf0YAogu-tmhT2R-ToRv76Y9Kbzqb-CaFepsxynjmdGhBlXpYWZDiaAloaZnSfpN0PVrYFPQ-1N84UBj-BJuofmvTJm9WQ8wbx47rOo0C1VccA1h0bZvMT1cq-QilweZH52kEJOfPo8gkjvTFap1Zo3yevA81VUCk4OavbkxH4iQGcSw0LDIMAoMj7ZLNjC9XqmoW6lIyn199-QW6jyKgPB9XhM3KHoXfWJNNtkt5y_sNvoXe1NM9bNqbky01Lzh_SfT0z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+Gas+Consumption+Monitoring+Based+on+k-NN+Algorithm+and+Consumption+Prediction+Framework+Based+on+Backpropagation+Neural+Network&rft.jtitle=Buildings+%28Basel%29&rft.au=Hou%2C+Yaolong&rft.au=Wang%2C+Xueting&rft.au=Chang%2C+Han&rft.au=Dong%2C+Yanan&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.issn=2075-5309&rft.eissn=2075-5309&rft.volume=14&rft.issue=3&rft_id=info:doi/10.3390%2Fbuildings14030627&rft.externalDocID=A788244476 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon |