Natural Gas Consumption Monitoring Based on k-NN Algorithm and Consumption Prediction Framework Based on Backpropagation Neural Network

With increasing consumption of primary energy and deterioration of the global environment, clean energy sources with large reserves, such as natural gas, have gradually gained a higher proportion of the global energy consumption structure. Monitoring and predicting consumption data play a crucial ro...

Full description

Saved in:
Bibliographic Details
Published inBuildings (Basel) Vol. 14; no. 3; p. 627
Main Authors Hou, Yaolong, Wang, Xueting, Chang, Han, Dong, Yanan, Zhang, Di, Wei, Chenlin, Lee, Inhee, Yang, Yijun, Liu, Yuanzhao, Zhang, Jipeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With increasing consumption of primary energy and deterioration of the global environment, clean energy sources with large reserves, such as natural gas, have gradually gained a higher proportion of the global energy consumption structure. Monitoring and predicting consumption data play a crucial role in reducing energy waste and improving energy supply efficiency. However, owing to factors such as high monitoring device costs, safety risks associated with device installation, and low efficiency of manual meter reading, monitoring natural gas consumption data at the household level is challenging. Moreover, there is a lack of methods for predicting natural gas consumption at the household level in residential areas, which hinders the provision of accurate services to households and gas companies. Therefore, this study proposes a gas consumption monitoring method based on the K-nearest neighbours (KNN) algorithm. Using households in a residential area in Xi’an as research subjects, the feasibility of this monitoring method was validated, achieving a model recognition accuracy of 100%, indicating the applicability of the KNN algorithm for monitoring natural gas consumption data. In addition, this study proposes a framework for a natural gas consumption prediction system based on a backpropagation (BP) neural network.
AbstractList With increasing consumption of primary energy and deterioration of the global environment, clean energy sources with large reserves, such as natural gas, have gradually gained a higher proportion of the global energy consumption structure. Monitoring and predicting consumption data play a crucial role in reducing energy waste and improving energy supply efficiency. However, owing to factors such as high monitoring device costs, safety risks associated with device installation, and low efficiency of manual meter reading, monitoring natural gas consumption data at the household level is challenging. Moreover, there is a lack of methods for predicting natural gas consumption at the household level in residential areas, which hinders the provision of accurate services to households and gas companies. Therefore, this study proposes a gas consumption monitoring method based on the K-nearest neighbours (KNN) algorithm. Using households in a residential area in Xi’an as research subjects, the feasibility of this monitoring method was validated, achieving a model recognition accuracy of 100%, indicating the applicability of the KNN algorithm for monitoring natural gas consumption data. In addition, this study proposes a framework for a natural gas consumption prediction system based on a backpropagation (BP) neural network.
Audience Academic
Author Dong, Yanan
Yang, Yijun
Liu, Yuanzhao
Zhang, Jipeng
Hou, Yaolong
Chang, Han
Wei, Chenlin
Lee, Inhee
Wang, Xueting
Zhang, Di
Author_xml – sequence: 1
  givenname: Yaolong
  orcidid: 0000-0002-1237-7521
  surname: Hou
  fullname: Hou, Yaolong
– sequence: 2
  givenname: Xueting
  orcidid: 0009-0009-9044-0387
  surname: Wang
  fullname: Wang, Xueting
– sequence: 3
  givenname: Han
  surname: Chang
  fullname: Chang, Han
– sequence: 4
  givenname: Yanan
  surname: Dong
  fullname: Dong, Yanan
– sequence: 5
  givenname: Di
  surname: Zhang
  fullname: Zhang, Di
– sequence: 6
  givenname: Chenlin
  surname: Wei
  fullname: Wei, Chenlin
– sequence: 7
  givenname: Inhee
  surname: Lee
  fullname: Lee, Inhee
– sequence: 8
  givenname: Yijun
  surname: Yang
  fullname: Yang, Yijun
– sequence: 9
  givenname: Yuanzhao
  surname: Liu
  fullname: Liu, Yuanzhao
– sequence: 10
  givenname: Jipeng
  surname: Zhang
  fullname: Zhang, Jipeng
BookMark eNp1kdGO1CAUholZE9dxH8C7Jl53BQqUXs5O3HWTtXqh1-QUaGWmLSPQbHwCX1u2o9lVI1xw8uf_fg6cl-hs9rNF6DXBl1XV4Lfd4kbj5iEShissaP0MnVNc85JXuDl7Ur9AFzHucV6SU8rZOfrRQloCjMUNxGLn57hMx-T8XHzws0s-5NTiCqI1RdYOZdsW23HIcvo6FTCbP5BPwRqn1_I6wGTvfTg8wlegD8fgjzDAamntem9r04PvFXrewxjtxa9zg75cv_u8e1_efby53W3vSs0oSSXDghkmwFYV0Maynoiul1xzIrHtOemYFj3tGJGG285KaiojSM2Y0RSaGqoNuj3lGg97dQxugvBdeXBqFXwYFITk9GiV7bgRNbG9YQ0T1EomeCdt1wFgzXMLG_TmlJWf9W2xMam9X8Kc21e0aSStmWzq7Lo8uQbIoW7ufQqg8zZ2cjoPsndZ39ZSUsZYLTJQnwAdfIzB9kq7tP5ZBt2oCFYPU1f_TD2T5C_y9wP_z_wEXw22vg
CitedBy_id crossref_primary_10_3390_app14156728
Cites_doi 10.1016/j.enpol.2007.02.030
10.1007/s00704-017-2206-6
10.1016/j.enpol.2012.10.046
10.20944/preprints201812.0225.v1
10.1016/0957-1787(93)90006-I
10.1016/j.atmosenv.2005.01.009
10.1016/j.energy.2006.12.005
10.2307/1909771
10.2991/febm-18.2018.9
10.1016/j.resourpol.2021.102172
10.25007/ajnu.v8n4a464
10.1016/j.jngse.2020.103532
10.1016/j.eswa.2009.01.062
10.1016/S0893-6080(97)00014-2
10.1016/j.envint.2021.107066
10.1016/j.eneco.2007.01.015
10.1111/j.1539-6924.1994.tb00066.x
10.1109/MLBDBI51377.2020.00091
10.1007/s12053-012-9180-8
10.1016/j.jngse.2021.103930
10.1016/j.enpol.2007.03.001
10.1126/science.1090228
10.1016/j.ngib.2017.07.014
10.1016/S0140-6736(22)01540-9
10.1016/j.apenergy.2006.09.012
10.18178/JOCET.2017.5.4.392
10.1016/j.energy.2021.122090
10.1007/s10651-012-0192-5
10.1016/j.enbuild.2022.111848
10.1109/ACIRS49895.2020.9162619
10.1007/s12182-010-0017-9
10.1016/j.gloenvcha.2021.102386
10.3390/engproc2022020032
10.1016/j.enpol.2008.09.051
10.1016/j.physa.2005.02.066
10.1016/j.jhydrol.2010.09.003
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L.-
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.3390/buildings14030627
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-5309
ExternalDocumentID oai_doaj_org_article_eb5d671efd49462e8465b8ebbaa0c5ae
A788244476
10_3390_buildings14030627
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
2XV
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHM
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PYCSY
TUS
PMFND
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
KR7
L.-
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c421t-4064d46ae33a29e4f16bf85c5180ef51b4c6f2b418d5ebe82d3d61744dc2a97a3
IEDL.DBID BENPR
ISSN 2075-5309
IngestDate Wed Aug 27 01:11:42 EDT 2025
Fri Jul 25 09:37:01 EDT 2025
Tue Jun 10 21:10:47 EDT 2025
Tue Jul 01 01:45:05 EDT 2025
Thu Apr 24 23:00:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-4064d46ae33a29e4f16bf85c5180ef51b4c6f2b418d5ebe82d3d61744dc2a97a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1237-7521
0009-0009-9044-0387
OpenAccessLink https://www.proquest.com/docview/2998274897?pq-origsite=%requestingapplication%
PQID 2998274897
PQPubID 2032422
ParticipantIDs doaj_primary_oai_doaj_org_article_eb5d671efd49462e8465b8ebbaa0c5ae
proquest_journals_2998274897
gale_infotracacademiconefile_A788244476
crossref_citationtrail_10_3390_buildings14030627
crossref_primary_10_3390_buildings14030627
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Buildings (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Akpan (ref_6) 2012; 2
Li (ref_43) 2020; 83
Long (ref_3) 2022; 260
Read (ref_11) 1994; 14
Reymond (ref_26) 2007; 35
ref_14
Ma (ref_24) 2010; 7
Tang (ref_5) 2013; 52
Thaler (ref_39) 2005; 355
Ma (ref_51) 2017; 4
Dai (ref_46) 1997; 10
ref_25
ref_23
Romanello (ref_12) 2022; 400
ref_20
ref_28
Gelo (ref_40) 2006; 57
Balestra (ref_34) 1966; 34
Cook (ref_15) 2005; 39
Ortiz (ref_2) 2013; 6
Karl (ref_8) 2003; 302
Karsoliya (ref_47) 2012; 3
Ugursal (ref_37) 2008; 85
Wei (ref_38) 2022; 238
ref_33
Meng (ref_1) 2018; 133
Su (ref_29) 2017; 5
ref_32
ref_31
Mensi (ref_22) 2021; 73
ref_30
Wang (ref_27) 2014; 34
Thatcher (ref_18) 2007; 32
Berzosa (ref_36) 2007; 29
Ghose (ref_48) 2010; 394
Asaad (ref_50) 2019; 8
Bonneuil (ref_13) 2021; 71
Liu (ref_4) 2023; 3
Thaler (ref_41) 2007; 35
Hu (ref_49) 2009; 36
Zhou (ref_19) 2024; 1
(ref_21) 1993; 3
ref_45
ref_42
Fang (ref_10) 2011; 41
Isaac (ref_17) 2009; 37
Thurston (ref_16) 2022; 160
Qin (ref_7) 2014; 33
Liu (ref_35) 2021; 90
Bill (ref_9) 2007; 54
Alhajraf (ref_44) 2012; 19
References_xml – volume: 35
  start-page: 4169
  year: 2007
  ident: ref_26
  article-title: European Key Issues Concerning Natural Gas: Dependence and Vulnerability
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2007.02.030
– volume: 133
  start-page: 521
  year: 2018
  ident: ref_1
  article-title: The effects of climate change on heating energy consumption of office buildings in different climate zones in China
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-017-2206-6
– volume: 52
  start-page: 797
  year: 2013
  ident: ref_5
  article-title: Depletion of Fossil Fuels and Anthropogenic Climate Change—A Review
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.10.046
– ident: ref_23
  doi: 10.20944/preprints201812.0225.v1
– volume: 3
  start-page: 145
  year: 1993
  ident: ref_21
  article-title: Natural Gas for Electric Power Generation: Advantages, Availability and Reliability
  publication-title: Util. Policy
  doi: 10.1016/0957-1787(93)90006-I
– volume: 39
  start-page: 2553
  year: 2005
  ident: ref_15
  article-title: The Curious Case of the Date of Introduction of Leaded Fuel to Australia: Implications for the History of Southern Hemisphere Atmospheric Lead Pollution
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.01.009
– volume: 32
  start-page: 1647
  year: 2007
  ident: ref_18
  article-title: Modelling Changes to Electricity Demand Load Duration Curves as a Consequence of Predicted Climate Change for Australia
  publication-title: Energy
  doi: 10.1016/j.energy.2006.12.005
– volume: 34
  start-page: 585
  year: 1966
  ident: ref_34
  article-title: Pooling Cross Section and Time Series Data in the Estimation of a Dynamic Model: The Demand for Natural Gas
  publication-title: Econometrica
  doi: 10.2307/1909771
– volume: 57
  start-page: 80
  year: 2006
  ident: ref_40
  article-title: Econometric Modelling of Gas Demand
  publication-title: Ekon. Pregl.
– volume: 3
  start-page: 80
  year: 2023
  ident: ref_4
  article-title: The relationship between temperature changes and energy consumption
  publication-title: West. China
– ident: ref_25
  doi: 10.2991/febm-18.2018.9
– volume: 73
  start-page: 102172
  year: 2021
  ident: ref_22
  article-title: Dynamic Frequency Relationships and Volatility Spillovers in Natural Gas, Crude Oil, Gas Oil, Gasoline, and Heating Oil Markets: Implications for Portfolio Management
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2021.102172
– ident: ref_42
– volume: 8
  start-page: 216
  year: 2019
  ident: ref_50
  article-title: Back Propagation Neural Network(BPNN) and Sigmoid Activation Function in Multi-Layer Networks
  publication-title: Acad. J. Nawroz Univ.
  doi: 10.25007/ajnu.v8n4a464
– volume: 83
  start-page: 103532
  year: 2020
  ident: ref_43
  article-title: Residential gas supply, gas losses and CO2 emissions in China
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103532
– volume: 36
  start-page: 9969
  year: 2009
  ident: ref_49
  article-title: Using BPNN and DEMATEL to Modify Importance–Performance Analysis Model—A Study of the Computer Industry
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.01.062
– volume: 10
  start-page: 1505
  year: 1997
  ident: ref_46
  article-title: Effects of Learning Parameters on Learning Procedure and Performance of a BPNN
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(97)00014-2
– volume: 2
  start-page: 21
  year: 2012
  ident: ref_6
  article-title: The Contribution of Energy Consumption to Climate Change: A Feasible Policy Direction
  publication-title: Int. J. Energy Econ. Policy
– volume: 41
  start-page: 1385
  year: 2011
  ident: ref_10
  article-title: Global warming, carbon emissions and uncertainty
  publication-title: Sci. China Press.
– volume: 160
  start-page: 107066
  year: 2022
  ident: ref_16
  article-title: Fossil Fuel Combustion and PM2.5 Mass Air Pollution Associations with Mortality
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2021.107066
– volume: 29
  start-page: 710
  year: 2007
  ident: ref_36
  article-title: Modeling and Forecasting Industrial End-Use Natural Gas Consumption
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2007.01.015
– volume: 14
  start-page: 971
  year: 1994
  ident: ref_11
  article-title: What Do People Know About Global Climate Change? 2. Survey Studies of Educated Laypeople
  publication-title: Risk Anal.
  doi: 10.1111/j.1539-6924.1994.tb00066.x
– ident: ref_32
  doi: 10.1109/MLBDBI51377.2020.00091
– ident: ref_45
– ident: ref_20
– volume: 34
  start-page: 121
  year: 2014
  ident: ref_27
  article-title: Developing Rules and Prospect of Natural Gas Utilization in China
  publication-title: Nat. Gas Ind.
– volume: 1
  start-page: 1
  year: 2024
  ident: ref_19
  article-title: Climate change and carbon neutrality
  publication-title: Chin. J. Nat.
– volume: 6
  start-page: 239
  year: 2013
  ident: ref_2
  article-title: Revisiting Energy Efficiency Fundamentals
  publication-title: Energy Effic.
  doi: 10.1007/s12053-012-9180-8
– ident: ref_28
– ident: ref_30
– volume: 90
  start-page: 103930
  year: 2021
  ident: ref_35
  article-title: Natural Gas Consumption Forecasting: A Discussion on Forecasting History and Future Challenges
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2021.103930
– volume: 35
  start-page: 4271
  year: 2007
  ident: ref_41
  article-title: Forecasting Risks of Natural Gas Consumption in Slovenia
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2007.03.001
– volume: 54
  start-page: 44
  year: 2007
  ident: ref_9
  article-title: Climate change 2007: The physical science basis: Summary for policymakers
  publication-title: N. Y. Rev. Books
– volume: 3
  start-page: 714
  year: 2012
  ident: ref_47
  article-title: Approximating Number of Hidden Layer Neurons in Multiple Hidden Layer BPNN Architecture
  publication-title: Int. J. Eng. Trends Technol.
– volume: 302
  start-page: 1719
  year: 2003
  ident: ref_8
  article-title: Modern Global Climate Change
  publication-title: Science
  doi: 10.1126/science.1090228
– ident: ref_14
– volume: 4
  start-page: 91
  year: 2017
  ident: ref_51
  article-title: Natural Gas and Energy Revolution: A Case Study of Sichuan–Chongqing Gas Province
  publication-title: Nat. Gas Ind. B
  doi: 10.1016/j.ngib.2017.07.014
– volume: 400
  start-page: 1619
  year: 2022
  ident: ref_12
  article-title: The 2022 Report of the Lancet Countdown on Health and Climate Change: Health at the Mercy of Fossil Fuels
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)01540-9
– volume: 85
  start-page: 271
  year: 2008
  ident: ref_37
  article-title: Comparison of Neural Network, Conditional Demand Analysis, and Engineering Approaches for Modeling End-Use Energy Consumption in the Residential Sector
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2006.09.012
– volume: 5
  start-page: 328
  year: 2017
  ident: ref_29
  article-title: Status and Development Trend Analysis of China’s Natural Gas Metering Technology
  publication-title: J. Clean Energy Technol.
  doi: 10.18178/JOCET.2017.5.4.392
– volume: 238
  start-page: 122090
  year: 2022
  ident: ref_38
  article-title: Data Complexity of Daily Natural Gas Consumption: Measurement and Impact on Forecasting Performance
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122090
– volume: 19
  start-page: 393
  year: 2012
  ident: ref_44
  article-title: Prediction of non-methane hydrocarbons in Kuwait using regression and Bayesian kriged Kalman model
  publication-title: Environ. Ecol. Stat.
  doi: 10.1007/s10651-012-0192-5
– volume: 260
  start-page: 14
  year: 2022
  ident: ref_3
  article-title: A review of energy efficiency evaluation technologies in cloud data centers
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.111848
– ident: ref_31
  doi: 10.1109/ACIRS49895.2020.9162619
– volume: 7
  start-page: 132
  year: 2010
  ident: ref_24
  article-title: Analysis of the Supply-Demand Status of China’s Natural Gas to 2020
  publication-title: Pet. Sci.
  doi: 10.1007/s12182-010-0017-9
– volume: 71
  start-page: 102386
  year: 2021
  ident: ref_13
  article-title: Early Warnings and Emerging Accountability: Total’s Responses to Global Warming, 1971–2021
  publication-title: Glob. Environ. Chang.
  doi: 10.1016/j.gloenvcha.2021.102386
– ident: ref_33
  doi: 10.3390/engproc2022020032
– volume: 37
  start-page: 507
  year: 2009
  ident: ref_17
  article-title: Modeling global residential sector energy demand for heating and air conditioning in the context of climate change
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.09.051
– volume: 355
  start-page: 46
  year: 2005
  ident: ref_39
  article-title: Prediction of Energy Consumption and Risk of Excess Demand in a Distribution System
  publication-title: Phys. Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2005.02.066
– volume: 394
  start-page: 296
  year: 2010
  ident: ref_48
  article-title: Prediction of Water Table Depth in Western Region, Orissa Using BPNN and RBFN Neural Networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.09.003
– volume: 33
  start-page: 874
  year: 2014
  ident: ref_7
  article-title: Climate change science and sustainable human development
  publication-title: Prog. Geography.
SSID ssj0000852254
Score 2.2813776
Snippet With increasing consumption of primary energy and deterioration of the global environment, clean energy sources with large reserves, such as natural gas, have...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 627
SubjectTerms Algorithms
Back propagation networks
BP neural network
Clean energy
Climate change
Emissions
Energy consumption
Energy management systems
energy shortage
Energy shortages
Energy sources
Green technology
Households
instrument monitoring
K-nearest neighbors algorithm
KNN
Monitoring
Monitoring methods
Natural gas
natural gas consumption
Neural networks
Nuclear energy
Residential areas
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA7SJ30QtYqnVfIgCMLSTTLJZh_vitcidPHBQt_C5Mcqtl6ld_4N_ttOkr16RbQvvi0h2c3mm8nMkMk3jL1JQeHY-tj45HUDnrCwFmQDWiWBQkZV6pCdDubkDD6c6_OdUl85J6zSA9eFO6RXRNOJNEbowchE9lJ7m7xHbIPGlHdfsnk7wdTXmn1Fggr1GFNRXH_opyrT60xQl7l5bxmiwtf_t125mJrlI_Zw8hH5vM7tMbuXVk_Ygx3mwH32c8BCmMGPcc2PyjXKovu86mjuxBdkoCKntotmGPj88jM1b75847iKt4Z8vM6HNeVxuU3V-j14geGCJkr7TsGQZzYP-u5Q08efsrPl-09HJ81UU6EJIMWGwkUDEQwmpVD2CUZh_Gh10MK2adTCQzCj9CBs1ISvJbAiOTkAMUjsO1TP2N7qapWeM55sK4NSImLrQfem7wPYfC0E0Hrpccba7QK7MBGO57oXl44Cj4yJ-wOTGXt3M-R7Zdv4V-dFRu2mYybKLg0kPm4SH3eX-MzY24y5y-pMkws43UqgX8zEWG7eUQgCAJ2ZsYOtWLhJz9eOjLmVmcCne_E_ZvOS3ZfkNNUctwO2t7n-kV6R07Pxr4t8_wJpRgSW
  priority: 102
  providerName: Directory of Open Access Journals
Title Natural Gas Consumption Monitoring Based on k-NN Algorithm and Consumption Prediction Framework Based on Backpropagation Neural Network
URI https://www.proquest.com/docview/2998274897
https://doaj.org/article/eb5d671efd49462e8465b8ebbaa0c5ae
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBZNcmkPpU_qNjU6FAqFJStppNWeih3ihEKXUBrITei1KSSxU9v9DfnbGWllp6E0t0UrsY9vNJoZjb4h5FP0wva1C5WLTlbgEAutgVcgRWSW8SByHbLvnTo5g2_n8rwE3FYlrXKjE7OiDgufYuQHqDY1T1Qpzdeb31WqGpV2V0sJjR2yhypYo_O1Nz3qTn9soyxoUKDAwrCdKdC_P3Cl2vQqEdUljt4HC1Lm7f-fds5LzuwFeV5sRToZwH1JnsT5K_LsLwbB1-S2s5k4gx7bFT3MxymzDqDDXE2d6BQXqkCx7bLqOjq5usDm9a9raufhwZDTZdq0yZezTcrW_eCp9Zf4oqh_MpY0sXrgc7shjfwNOZsd_Tw8qUpthcoDZ2t0GxUEUDYKYXkboWfK9Vp6yXQde8kceNVzB0wHiThrBC2gsQMQPLdtY8VbsjtfzOM7QqOuuReCBVs7kK1qWw86HQ8Bqx13dkTqzQ82vhCPp_oXVwYdkISJ-QeTEfmyHXIzsG481nmaUNt2TITZuWGxvDBl_hmUxKAaFvsALSge0eySTkfnrK29tHFEPifMTZrW-HLeltMJ-ImJIMtMGnRFAKBRI7K_EQtT5vvK3Evn-8dvfyBPOZpFQxbbPtldL__Ej2jWrN2Y7OjZ8bhI8DgHB-4AYMD91w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKWQALxFMdKOAFCAkpamxfJ84CoZnCdErbiEUrdWf8SpFaZsrMIMQX8Dd8I9dOMqVCdNdd5NiJ7fv241xCXgYnTJNbn9lgZQYWaaEU8AykCMww7kXKQ3ZQF5Mj-Hgsj9fI7_4uTDxW2evEpKj9zMU18i1Um4pHqJTy3fm3LGaNirurfQqNli32ws8fGLIt3u6-R_q-4nz84XB7knVZBTIHnC0xYCrAQ2GCEIZXARpW2EZJJ5nKQyOZBVc03AJTXuIIFXbXo5kH8I6bqjQCv3uD3AQhqihRaryzWtNB9wXFA9rNU3yfb9kut_UiwuJFROBL5i9lCfifLUgGbnyP3O08UzpsWek-WQvTB-TOX3iFD8mv2iSYDrpjFnQ7Xd5MGoe2miFWoiM0i55i2WlW13R4doLFyy9fqZn6S00-zeMWUXoc9wfELhqPjDvFjqK2S5xDI4YI_rduD60_IkfXMuePyfp0Ng0bhAaVcycE8ya3IKuiqhyoeBkFjLLcmgHJ-wnWroM5j9k2zjSGO5Em-h-aDMibVZPzFuPjqsqjSLVVxQjPnQpm8xPdSbtGvvdFyULjoYKCB3TypFXBWmNyJ00YkNeR5joqEeycM91dCBxihOPSwxIDHwAoiwHZ7NlCd9ploS9k4cnVr1-QW5PDg329v1vvPSW3OTpk7fm5TbK-nH8Pz9ChWtrniYsp-XzdYvMHc-U3oQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QOMmChv4AYSEFDWxjxPnAU3ttrIxiCrEpL0Z3zKkjXa0RYhfsP_Er-PYSTomxN72Fjl24uTc7ePvEPLSW67r1LjEeCMSMEgLKYElILjPdMYcj3XIPlb5_hG8PxbHa-R3dxYmpFV2OjEqajezYY18gGpTsgCVUgzqNi1isjvePv-ehApSYae1K6fRsMih__UTw7fF24NdpPUrxsZ7n3f2k7bCQGKBZUsMnnJwkGvPuWalhzrLTS2FFZlMfS0yAzavmYFMOoFfK3HqDk0-gLNMl4Xm-NxbZL3AqCjtkfXRXjX5tFrhQWcGhQWarVTOy3Rg2krXiwCSF_CBrxjDWDPgf5YhmrvxBrnX-ql02DDWfbLmpw_I3b_QCx-Si0pH0A76Ti_oTjzKGfUPbfRE6ERHaCQdxbbTpKro8OwEm5dfv1E9dVeGTOZhwyhejrt0scvBI21PcaKo-yIf0YAogu-tmhT2R-ToRv76Y9Kbzqb-CaFepsxynjmdGhBlXpYWZDiaAloaZnSfpN0PVrYFPQ-1N84UBj-BJuofmvTJm9WQ8wbx47rOo0C1VccA1h0bZvMT1cq-QilweZH52kEJOfPo8gkjvTFap1Zo3yevA81VUCk4OavbkxH4iQGcSw0LDIMAoMj7ZLNjC9XqmoW6lIyn199-QW6jyKgPB9XhM3KHoXfWJNNtkt5y_sNvoXe1NM9bNqbky01Lzh_SfT0z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+Gas+Consumption+Monitoring+Based+on+k-NN+Algorithm+and+Consumption+Prediction+Framework+Based+on+Backpropagation+Neural+Network&rft.jtitle=Buildings+%28Basel%29&rft.au=Hou%2C+Yaolong&rft.au=Wang%2C+Xueting&rft.au=Chang%2C+Han&rft.au=Dong%2C+Yanan&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.issn=2075-5309&rft.eissn=2075-5309&rft.volume=14&rft.issue=3&rft_id=info:doi/10.3390%2Fbuildings14030627&rft.externalDocID=A788244476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon