Development of Nonlaboratory-Based Risk Prediction Models for Cardiovascular Diseases Using Conventional and Machine Learning Approaches

Criticism of the implementation of existing risk prediction models (RPMs) for cardiovascular diseases (CVDs) in new populations motivates researchers to develop regional models. The predominant usage of laboratory features in these RPMs is also causing reproducibility issues in low–middle-income cou...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 18; no. 23; p. 12586
Main Authors Sajid, Mirza Rizwan, Almehmadi, Bader A., Sami, Waqas, Alzahrani, Mansour K., Muhammad, Noryanti, Chesneau, Christophe, Hanif, Asif, Khan, Arshad Ali, Shahbaz, Ahmad
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Criticism of the implementation of existing risk prediction models (RPMs) for cardiovascular diseases (CVDs) in new populations motivates researchers to develop regional models. The predominant usage of laboratory features in these RPMs is also causing reproducibility issues in low–middle-income countries (LMICs). Further, conventional logistic regression analysis (LRA) does not consider non-linear associations and interaction terms in developing these RPMs, which might oversimplify the phenomenon. This study aims to develop alternative machine learning (ML)-based RPMs that may perform better at predicting CVD status using nonlaboratory features in comparison to conventional RPMs. The data was based on a case–control study conducted at the Punjab Institute of Cardiology, Pakistan. Data from 460 subjects, aged between 30 and 76 years, with (1:1) gender-based matching, was collected. We tested various ML models to identify the best model/models considering LRA as a baseline RPM. An artificial neural network and a linear support vector machine outperformed the conventional RPM in the majority of performance matrices. The predictive accuracies of the best performed ML-based RPMs were between 80.86 and 81.09% and were found to be higher than 79.56% for the baseline RPM. The discriminating capabilities of the ML-based RPMs were also comparable to baseline RPMs. Further, ML-based RPMs identified substantially different orders of features as compared to baseline RPM. This study concludes that nonlaboratory feature-based RPMs can be a good choice for early risk assessment of CVDs in LMICs. ML-based RPMs can identify better order of features as compared to the conventional approach, which subsequently provided models with improved prognostic capabilities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph182312586