Convolutional Neural Network Classification of Rest EEG Signals among People with Epilepsy, Psychogenic Non Epileptic Seizures and Control Subjects

Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learn...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 19; no. 23; p. 15733
Main Authors Lo Giudice, Michele, Ferlazzo, Edoardo, Mammone, Nadia, Gasparini, Sara, Cianci, Vittoria, Pascarella, Angelo, Mammì, Anna, Mandic, Danilo, Morabito, Francesco Carlo, Aguglia, Umberto
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learning to differentiate three classes: subjects with epileptic seizures (ES), subjects with non-epileptic psychogenic seizures (PNES) and control subjects (CS), analyzed by non-invasive low-density interictal scalp EEG recordings. The EEGs of 42 patients with new-onset ES, 42 patients with PNES video recorded and 19 patients with CS all with normal interictal EEG on visual inspection, were analyzed in the study; none of them was taking psychotropic drugs before registration. The processing pipeline applies empirical mode decomposition (EMD) to 5s EEG segments of 19 channels in order to extract enhanced features learned automatically from the customized convolutional neural network (CNN). The resulting CNN has been shown to perform well during classification, with an accuracy of 85.7%; these results encourage the use of deep processing systems to assist clinicians in difficult clinical settings.
AbstractList Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learning to differentiate three classes: subjects with epileptic seizures (ES), subjects with non-epileptic psychogenic seizures (PNES) and control subjects (CS), analyzed by non-invasive low-density interictal scalp EEG recordings. The EEGs of 42 patients with new-onset ES, 42 patients with PNES video recorded and 19 patients with CS all with normal interictal EEG on visual inspection, were analyzed in the study; none of them was taking psychotropic drugs before registration. The processing pipeline applies empirical mode decomposition (EMD) to 5s EEG segments of 19 channels in order to extract enhanced features learned automatically from the customized convolutional neural network (CNN). The resulting CNN has been shown to perform well during classification, with an accuracy of 85.7%; these results encourage the use of deep processing systems to assist clinicians in difficult clinical settings.
Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learning to differentiate three classes: subjects with epileptic seizures (ES), subjects with non-epileptic psychogenic seizures (PNES) and control subjects (CS), analyzed by non-invasive low-density interictal scalp EEG recordings. The EEGs of 42 patients with new-onset ES, 42 patients with PNES video recorded and 19 patients with CS all with normal interictal EEG on visual inspection, were analyzed in the study; none of them was taking psychotropic drugs before registration. The processing pipeline applies empirical mode decomposition (EMD) to 5s EEG segments of 19 channels in order to extract enhanced features learned automatically from the customized convolutional neural network (CNN). The resulting CNN has been shown to perform well during classification, with an accuracy of 85.7%; these results encourage the use of deep processing systems to assist clinicians in difficult clinical settings.Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learning to differentiate three classes: subjects with epileptic seizures (ES), subjects with non-epileptic psychogenic seizures (PNES) and control subjects (CS), analyzed by non-invasive low-density interictal scalp EEG recordings. The EEGs of 42 patients with new-onset ES, 42 patients with PNES video recorded and 19 patients with CS all with normal interictal EEG on visual inspection, were analyzed in the study; none of them was taking psychotropic drugs before registration. The processing pipeline applies empirical mode decomposition (EMD) to 5s EEG segments of 19 channels in order to extract enhanced features learned automatically from the customized convolutional neural network (CNN). The resulting CNN has been shown to perform well during classification, with an accuracy of 85.7%; these results encourage the use of deep processing systems to assist clinicians in difficult clinical settings.
Author Cianci, Vittoria
Pascarella, Angelo
Mammone, Nadia
Mandic, Danilo
Gasparini, Sara
Aguglia, Umberto
Mammì, Anna
Morabito, Francesco Carlo
Lo Giudice, Michele
Ferlazzo, Edoardo
AuthorAffiliation 3 Regional Epilepsy Center, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli” of Reggio Calabria, 89100 Reggio Calabria, Italy
2 Department of Science Medical and Surgery, University of Catanzaro, 88100 Catanzaro, Italy
4 Department of Civil, Energy, Environmental and Material Engineering (DICEAM), University “Mediterranea” of Reggio Calabria, 89100 Reggio Calabria, Italy
5 Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
1 Department of Information Engineering, Infrastructure and Sustainable Energy (DIIES), University “Mediterranea” of Reggio Calabria, 89100 Reggio Calabria, Italy
AuthorAffiliation_xml – name: 2 Department of Science Medical and Surgery, University of Catanzaro, 88100 Catanzaro, Italy
– name: 1 Department of Information Engineering, Infrastructure and Sustainable Energy (DIIES), University “Mediterranea” of Reggio Calabria, 89100 Reggio Calabria, Italy
– name: 3 Regional Epilepsy Center, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli” of Reggio Calabria, 89100 Reggio Calabria, Italy
– name: 5 Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
– name: 4 Department of Civil, Energy, Environmental and Material Engineering (DICEAM), University “Mediterranea” of Reggio Calabria, 89100 Reggio Calabria, Italy
Author_xml – sequence: 1
  givenname: Michele
  orcidid: 0000-0002-2660-0405
  surname: Lo Giudice
  fullname: Lo Giudice, Michele
– sequence: 2
  givenname: Edoardo
  surname: Ferlazzo
  fullname: Ferlazzo, Edoardo
– sequence: 3
  givenname: Nadia
  orcidid: 0000-0003-4962-3500
  surname: Mammone
  fullname: Mammone, Nadia
– sequence: 4
  givenname: Sara
  surname: Gasparini
  fullname: Gasparini, Sara
– sequence: 5
  givenname: Vittoria
  surname: Cianci
  fullname: Cianci, Vittoria
– sequence: 6
  givenname: Angelo
  orcidid: 0000-0002-0085-9494
  surname: Pascarella
  fullname: Pascarella, Angelo
– sequence: 7
  givenname: Anna
  surname: Mammì
  fullname: Mammì, Anna
– sequence: 8
  givenname: Danilo
  orcidid: 0000-0001-8432-3963
  surname: Mandic
  fullname: Mandic, Danilo
– sequence: 9
  givenname: Francesco Carlo
  orcidid: 0000-0003-0734-9136
  surname: Morabito
  fullname: Morabito, Francesco Carlo
– sequence: 10
  givenname: Umberto
  orcidid: 0000-0002-4574-2951
  surname: Aguglia
  fullname: Aguglia, Umberto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36497808$$D View this record in MEDLINE/PubMed
BookMark eNp1UktvEzEQtlARfZ65IUtcOBC6fux6fUFCUVqQqlKR3i3bO5s4OOvF3m2V_g3-ME7TohKJ09jzPfRpZo7RQRc6QOgtKT4xJotzt4LYL4mkjJSCsVfoiFRVMeFVQQ5evA_RcUqromA1r-QbdMgqLkVd1Efo9zR0d8GPgwud9vgaxvhYhvsQf-Kp1ym51lm9xXFo8Q9IA57NLvHcLbIgYb0O3QLfQOg94Hs3LPGsdx76tPmIb9LGLsMCOmfxddbvkCH_5uAexghZ3jU4Rxhi8Hg-mhXYIZ2i1222hrOneoJuL2a306-Tq--X36ZfriaWUzJMmGi0ragxlnIhTAOmlUYaUVvOmNC2oWCl0LSqGkNBy6YyuU3K1nDRVJydoM872340a2gs5BTaqz66tY4bFbRT_yKdW6pFuFNSsJqVJBt8eDKI4deYB6PWLlnwXncQxqSoKBkjtBZ1pr7fo67CGLcDzCxel5xLRjPr3ctEf6M8rysTyh3BxpBShFZZNzzuJgd0XpFCbc9C7Z1F1p3v6Z6t_6f4A-XEv38
CitedBy_id crossref_primary_10_1109_TNSRE_2023_3288138
crossref_primary_10_1016_j_neunet_2024_106792
crossref_primary_10_1097_WCO_0000000000001245
Cites_doi 10.1016/j.apacoust.2014.08.016
10.1088/1741-2552/ab0ab5
10.1016/j.specom.2016.12.004
10.1016/j.bspc.2017.07.022
10.1109/ICACCI.2016.7732196
10.1016/j.euromechsol.2016.09.009
10.1016/j.neuroimage.2020.116778
10.1016/0013-4694(87)90206-9
10.1109/JSEN.2013.2257742
10.3390/en12020254
10.1016/j.neucom.2018.09.071
10.1186/s40708-020-00107-z
10.3390/e20020043
10.1007/s12559-016-9396-6
10.1136/jnnp.2010.235424
10.3390/e24010102
10.1109/MSP.2013.2267931
10.1016/S0140-6736(18)32596-0
10.1007/978-3-642-35289-8_26
10.1111/ene.13818
10.1098/rspa.1998.0193
10.1016/j.yebeh.2009.02.035
10.1016/j.phrs.2016.02.013
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ijerph192315733
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database ProQuest
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1660-4601
ExternalDocumentID PMC9738351
36497808
10_3390_ijerph192315733
Genre Journal Article
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABGAM
ABUWG
ACGFO
ACGOD
ACIWK
ADBBV
AENEX
AFKRA
AFRAH
AFZYC
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
FYUFA
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
Q2X
RNS
RPM
SV3
TR2
UKHRP
XSB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c421t-37dac62bbc2477bdebf9b9b78c4337acd2ec97a266db2ea9d6b37a15fb47d643
IEDL.DBID M48
ISSN 1660-4601
1661-7827
IngestDate Thu Aug 21 18:38:59 EDT 2025
Fri Jul 11 08:48:03 EDT 2025
Fri Jul 25 09:36:03 EDT 2025
Thu Apr 03 07:08:46 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Tue Jul 01 01:25:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords epilepsy
deep learning
PNES
empirical mode decomposition
EEG
convolutional neural network
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-37dac62bbc2477bdebf9b9b78c4337acd2ec97a266db2ea9d6b37a15fb47d643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0085-9494
0000-0002-2660-0405
0000-0003-4962-3500
0000-0003-0734-9136
0000-0001-8432-3963
0000-0002-4574-2951
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph192315733
PMID 36497808
PQID 2748544932
PQPubID 54923
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9738351
proquest_miscellaneous_2753312878
proquest_journals_2748544932
pubmed_primary_36497808
crossref_citationtrail_10_3390_ijerph192315733
crossref_primary_10_3390_ijerph192315733
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221126
PublicationDateYYYYMMDD 2022-11-26
PublicationDate_xml – month: 11
  year: 2022
  text: 20221126
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of environmental research and public health
PublicationTitleAlternate Int J Environ Res Public Health
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zeng (ref_11) 2016; 8
Varone (ref_13) 2022; 24
Huang (ref_17) 1998; 454
OBrien (ref_23) 2017; 61
Ahmadi (ref_27) 2020; 7
Ferlazzo (ref_3) 2016; 106
Sharma (ref_19) 2017; 88
Siuly (ref_10) 2016; 11
Noachtar (ref_7) 2009; 15
ref_12
Delorme (ref_16) 2021; 224
Craik (ref_8) 2019; 16
Homan (ref_14) 1987; 66
Hubsch (ref_4) 2011; 82
ref_25
ref_20
(ref_21) 2015; 63
Gasparini (ref_6) 2019; 26
Ali (ref_22) 2015; 89
Brunner (ref_15) 2013; 58
ref_2
ref_29
Mandic (ref_18) 2013; 30
ref_26
Ieracitano (ref_9) 2019; 323
Thijs (ref_1) 2019; 393
Alickovic (ref_28) 2018; 39
ref_5
Labate (ref_24) 2013; 13
References_xml – volume: 89
  start-page: 16
  year: 2015
  ident: ref_22
  article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2014.08.016
– volume: 16
  start-page: 031001
  year: 2019
  ident: ref_8
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: A review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
– volume: 88
  start-page: 39
  year: 2017
  ident: ref_19
  article-title: Empirical mode decomposition for adaptive AM-FM analysis of speech: A review
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2016.12.004
– ident: ref_5
– volume: 39
  start-page: 94
  year: 2018
  ident: ref_28
  article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.07.022
– ident: ref_29
  doi: 10.1109/ICACCI.2016.7732196
– volume: 61
  start-page: 151
  year: 2017
  ident: ref_23
  article-title: Application of empirical mode decomposition to drive-by bridge damage detection
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2016.09.009
– volume: 224
  start-page: 116778
  year: 2021
  ident: ref_16
  article-title: The open EEGLAB portal interface: High-performance computing with EEGLAB
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116778
– volume: 66
  start-page: 376
  year: 1987
  ident: ref_14
  article-title: Cerebral location of international 10–20 system electrode placement
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(87)90206-9
– volume: 13
  start-page: 2666
  year: 2013
  ident: ref_24
  article-title: Empirical Mode Decomposition vs. Wavelet Decomposition for the Extraction of Respiratory Signal From Single-Channel ECG: A Comparison
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2257742
– ident: ref_20
  doi: 10.3390/en12020254
– volume: 323
  start-page: 96
  year: 2019
  ident: ref_9
  article-title: A Convolutional Neural Network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.071
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_27
  article-title: EEG-based classification of epilepsy and PNES: EEG microstate and functional brain network features
  publication-title: Brain Inf.
  doi: 10.1186/s40708-020-00107-z
– ident: ref_12
  doi: 10.3390/e20020043
– volume: 63
  start-page: 2369
  year: 2015
  ident: ref_21
  article-title: Novel downsampling empirical mode decomposition approach for power quality analysis
  publication-title: IEEE Trans. Ind. Electron.
– volume: 58
  start-page: 000010151520134182
  year: 2013
  ident: ref_15
  article-title: Eeglab–an open source matlab toolbox for electrophysiological research
  publication-title: Biomed. Eng. Biomed. Tech.
– ident: ref_25
– volume: 8
  start-page: 143
  year: 2016
  ident: ref_11
  article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-016-9396-6
– ident: ref_2
– volume: 82
  start-page: 955
  year: 2011
  ident: ref_4
  article-title: Clinical classification of psychogenic non-epileptic seizures based on video-EEG analysis and automatic clustering
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2010.235424
– volume: 24
  start-page: 102
  year: 2022
  ident: ref_13
  article-title: Permutation entropy-based interpretability of convolutional neural network models for interictal eeg discrimination of subjects with epileptic seizures vs. psychogenic non-epileptic seizures
  publication-title: Entropy
  doi: 10.3390/e24010102
– volume: 30
  start-page: 74
  year: 2013
  ident: ref_18
  article-title: Empirical Mode Decomposition-Based Time-Frequency Analysis of Multivariate Signals: The Power of Adaptive Data Analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2267931
– volume: 393
  start-page: 689
  year: 2019
  ident: ref_1
  article-title: Epilepsy in adults
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32596-0
– volume: 11
  start-page: 141
  year: 2016
  ident: ref_10
  article-title: EEG signal analysis and classification
  publication-title: IEEE Trans. Neural. Syst. Rehabilit. Eng.
– ident: ref_26
  doi: 10.1007/978-3-642-35289-8_26
– volume: 26
  start-page: 205-e15
  year: 2019
  ident: ref_6
  article-title: Management of psychogenic non-epileptic seizures: A multidisciplinary approach
  publication-title: Eur. J. Neurol.
  doi: 10.1111/ene.13818
– volume: 454
  start-page: 903
  year: 1998
  ident: ref_17
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 15
  start-page: 22
  year: 2009
  ident: ref_7
  article-title: The role of EEG in epilepsy: A critical review
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2009.02.035
– volume: 106
  start-page: 21
  year: 2016
  ident: ref_3
  article-title: Challenges in the pharmacological management of epilepsy and its causes in the elderly
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2016.02.013
SSID ssj0038469
Score 2.3784096
Snippet Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 15733
SubjectTerms Algorithms
Classification
Convulsions & seizures
Electroencephalography - methods
Epilepsy
Humans
Machine learning
Neural networks
Neural Networks, Computer
Rest
Seizures
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XJBQRaG029JqKvXAoQGcOHZyQmi1C-KAqgISt8ivlEUo2XZ3K7V_o3-YGTu7dEHtKVLsKE5mMvPN-MsMY5_q3LujQpdJTcx2wUudGF27xAspCydrp3RgW1zIs2txfpPfdAm3SUernNvEYKhdaylHfojRU5ELgXDjePw9oa5RtLvatdBYZescPQ1Ruorh6dwSZ-hbCf5y9EEJekIVS_tkGOYfju48PkeAN1QRcNkrPYOaTxmTf7mg4RZ70WFHOInCfslWfLPNNmPiDeL_RDvsT79tfnb6hJOp-EY4BLY3hB6YxA4KAoG2hq-4AhgMTuFy9I1qKUNoPwRfArMcKE0LgzGajvHk12eI5hJ1Dm94gdfHEVwOXPrR7xmG7qAbB_3Ifwe0SpTmmbxiV8PBVf8s6TovJFakfIpWx2krU2NsKpQyzpu6NKVRhRVZprR1qbel0vjKnUm9Lp00eJrntRHKIcbZZWtN2_g3DKwWuVEOwxiqc-NTbbSsuckN2hWPaK3HDuYvvrJdVXJqjnFfYXRCkqqeSKrH9hcXjGNBjn9P3ZtLsuq-zEn1qEc99nExjN8UbZToxrczmoMgGB23KnrsdRT84l6ZpJ58RziillRiMYHqdS-PNKPbULe7VBniXf72_8t6xzZS-sWC8ySVe2xt-mPm3yPwmZoPQbsfAPYEB5o
  priority: 102
  providerName: ProQuest
Title Convolutional Neural Network Classification of Rest EEG Signals among People with Epilepsy, Psychogenic Non Epileptic Seizures and Control Subjects
URI https://www.ncbi.nlm.nih.gov/pubmed/36497808
https://www.proquest.com/docview/2748544932
https://www.proquest.com/docview/2753312878
https://pubmed.ncbi.nlm.nih.gov/PMC9738351
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1La9wwEB6aBEqglKZPN8miQg891Glty5J9KKVZvAmFLiEP2JuRLLndErzb7G5p8jfyhzMjeZ1Hk4sNlmQLzXjmG3k8H8D7OrXmc6bysKbMdh7lKtSqNqHlQmRG1EYql20xFPsn_PsoHV3TAbULOLs3tCM-qZOz051_f86_4gv_hSJODNk_jX9bnJODKlTdbwXW0C1JojP4wbtPCgk62tzX9rlv0Do8TgSxrRHP5E0P9R_svJs9ecMdDZ7B0xZHsm9e8BvwyDbP4YnfhGP-36IXcNmfNH9b3cLOVIjDnVzmN3N8mJQp5ITDJjU7xBmwothjR-OftD7MURGxA5dlzmjLlhVTNCPT2flH5k0n6h8-cIjjfQtOhx3Z8cUCw3imGsP6PheeoYWiLZ_ZSzgeFMf9_bBlYQgrHkdztEBGVSLWuoq5lNpYXec61zKreJJIVZnYVrlU6OiNjq3KjdB4OUprzaVBvPMKVptJY98AqxRPtTQY0lDNGxsrrUQd6VSjjbGI3ALYWS58WbUVyoko47TESIWEVt4RWgAfugFTX5zj4a5bS0mWSyUrMSLPUs4RwgbwrmvG94s-mqjGThbUBwExOnGZBfDaC7571lJjApC3VKLrQLW7b7c041-uhncuE8S-0dsH77kJ6zH9aRFFYSy2YHV-trDbiH_mugcrciTxmPUjOg72erC2WwwPDntO468ASFUNgQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N8QDSNPF_HQOMBBIPhDWOEycPCKHSrmOjQqxIe4vs2NmKUFLWFjS-Bp-D78idnRQ6BG97ihSfE8t3vvudfb4DeFLG1nRTlQUlRbaLMFOBVqUJrEiS1CSlkcpFW4yS4Ufx9jg-XoOf7V0YCqtsdaJT1KYuaI98F72nNBYC4car6ZeAqkbR6WpbQsOLxYE9_4Yu2-zl_hvk71POB_1xbxg0VQWCQvBwjivKqCLhWhdcSKmN1WWmMy3TQkSRVIXhtsikQsNlNLcqM4nG12FcaiEN2m_87BW4irQZ-XrpYK9V_BGackLbIZq8AA2v9JmEkLC7O_lkcdocmqIEhKtG8C9kezFA8w-LN7gBmw1UZa-9bN2ENVvdgg2_z8f89aXb8KNXV18b8UViyvXhHi64nLmSmxSM5PjP6pJ9wBGwfn-PHU1OKHUzc9WO2HsXyM5oV5j1p6ipprPz58xrZxRx_OEI-_sWHA47spPvizOL3SvDej7cnqESpF2l2R0YXwZL7sJ6VVd2C1ihRKylQa-J0upYrrRKylDHGtWYRXDYgRftxOdFkwSdanF8ztEZIk7lFzjVgWfLDlOf_-PfpDstJ_NGEczy32LbgcfLZlzCdC6jKlsviAYxN-IEmXbgnmf88l9RQiUAu9giV0RiSUDpwVdbqsmpSxOeyQjhdbj9_2E9gmvD8bvD_HB_dHAfrnO63RGGAU92YH1-trAPEHPN9UMn6QzyS15ZvwDOW0Ye
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4aQ0JIaBr_HQOMBBIXZG0cJ04uEEJdy8ZQNbEh7S6yYweKUFLWFjReY0_D23GOnQQ6BHe7ihTbiZXz99n5fA7A0zK2ZpCqLCiJ2S7CTAValSawIklSk5RGKse2mCR7H8Tbk_hkDX62Z2GIVtn6ROeoTV3QHnkfV09pLATCjX7Z0CIOd8evZl8DqiBFf1rbchpeRQ7s2Xdcvs1f7u-irJ9xPh4dD_eCpsJAUAgeLtC6jCoSrnXBhZTaWF1mOtMyLUQUSVUYbotMKgxiRnOrMpNovB3GpRbSYCzHx16BqzKSKZlYOuzYJRGGdULeIYa_AIOw9FmFoigb9KefLX5Ch6woGeFqQPwL5V4ka_4R_cabsNHAVvba69lNWLPVLbjh9_yYP8p0G86HdfWtUWXsTHk_3MURzZkrv0nEJKcLrC7Ze5wBG43esKPpR0rjzFzlI3boSO2MdojZaIZeazY_e8G8p0Z1xxdOcLxvwemwIzv9sTy1OLwybOip9wwdIu0wze_A8WWI5C6sV3Vl7wMrlIi1NLiCohQ7liutkjLUsUaXZhEo9mCn_fB50SREp7ocX3JcGJGk8guS6sHzbsDM5wL5d9ftVpJ54xTm-W8V7sGTrhnNmf7RqMrWS-qD-Bsxg0x7cM8LvntXlFA5wAG2yBWV6DpQqvDVlmr6yaUMz2SEUDvc-v-0HsM1tKn83f7k4AFc53TQIwwDnmzD-uJ0aR8i_FroR07RGeSXbFi_ACccSh8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Neural+Network+Classification+of+Rest+EEG+Signals+among+People+with+Epilepsy%2C+Psychogenic+Non+Epileptic+Seizures+and+Control+Subjects&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Lo+Giudice%2C+Michele&rft.au=Ferlazzo%2C+Edoardo&rft.au=Mammone%2C+Nadia&rft.au=Gasparini%2C+Sara&rft.date=2022-11-26&rft.eissn=1660-4601&rft.volume=19&rft.issue=23&rft_id=info:doi/10.3390%2Fijerph192315733&rft_id=info%3Apmid%2F36497808&rft.externalDocID=36497808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon