Convolutional Neural Network Classification of Rest EEG Signals among People with Epilepsy, Psychogenic Non Epileptic Seizures and Control Subjects
Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learn...
Saved in:
Published in | International journal of environmental research and public health Vol. 19; no. 23; p. 15733 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.11.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learning to differentiate three classes: subjects with epileptic seizures (ES), subjects with non-epileptic psychogenic seizures (PNES) and control subjects (CS), analyzed by non-invasive low-density interictal scalp EEG recordings. The EEGs of 42 patients with new-onset ES, 42 patients with PNES video recorded and 19 patients with CS all with normal interictal EEG on visual inspection, were analyzed in the study; none of them was taking psychotropic drugs before registration. The processing pipeline applies empirical mode decomposition (EMD) to 5s EEG segments of 19 channels in order to extract enhanced features learned automatically from the customized convolutional neural network (CNN). The resulting CNN has been shown to perform well during classification, with an accuracy of 85.7%; these results encourage the use of deep processing systems to assist clinicians in difficult clinical settings. |
---|---|
AbstractList | Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learning to differentiate three classes: subjects with epileptic seizures (ES), subjects with non-epileptic psychogenic seizures (PNES) and control subjects (CS), analyzed by non-invasive low-density interictal scalp EEG recordings. The EEGs of 42 patients with new-onset ES, 42 patients with PNES video recorded and 19 patients with CS all with normal interictal EEG on visual inspection, were analyzed in the study; none of them was taking psychotropic drugs before registration. The processing pipeline applies empirical mode decomposition (EMD) to 5s EEG segments of 19 channels in order to extract enhanced features learned automatically from the customized convolutional neural network (CNN). The resulting CNN has been shown to perform well during classification, with an accuracy of 85.7%; these results encourage the use of deep processing systems to assist clinicians in difficult clinical settings. Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learning to differentiate three classes: subjects with epileptic seizures (ES), subjects with non-epileptic psychogenic seizures (PNES) and control subjects (CS), analyzed by non-invasive low-density interictal scalp EEG recordings. The EEGs of 42 patients with new-onset ES, 42 patients with PNES video recorded and 19 patients with CS all with normal interictal EEG on visual inspection, were analyzed in the study; none of them was taking psychotropic drugs before registration. The processing pipeline applies empirical mode decomposition (EMD) to 5s EEG segments of 19 channels in order to extract enhanced features learned automatically from the customized convolutional neural network (CNN). The resulting CNN has been shown to perform well during classification, with an accuracy of 85.7%; these results encourage the use of deep processing systems to assist clinicians in difficult clinical settings.Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learning to differentiate three classes: subjects with epileptic seizures (ES), subjects with non-epileptic psychogenic seizures (PNES) and control subjects (CS), analyzed by non-invasive low-density interictal scalp EEG recordings. The EEGs of 42 patients with new-onset ES, 42 patients with PNES video recorded and 19 patients with CS all with normal interictal EEG on visual inspection, were analyzed in the study; none of them was taking psychotropic drugs before registration. The processing pipeline applies empirical mode decomposition (EMD) to 5s EEG segments of 19 channels in order to extract enhanced features learned automatically from the customized convolutional neural network (CNN). The resulting CNN has been shown to perform well during classification, with an accuracy of 85.7%; these results encourage the use of deep processing systems to assist clinicians in difficult clinical settings. |
Author | Cianci, Vittoria Pascarella, Angelo Mammone, Nadia Mandic, Danilo Gasparini, Sara Aguglia, Umberto Mammì, Anna Morabito, Francesco Carlo Lo Giudice, Michele Ferlazzo, Edoardo |
AuthorAffiliation | 3 Regional Epilepsy Center, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli” of Reggio Calabria, 89100 Reggio Calabria, Italy 2 Department of Science Medical and Surgery, University of Catanzaro, 88100 Catanzaro, Italy 4 Department of Civil, Energy, Environmental and Material Engineering (DICEAM), University “Mediterranea” of Reggio Calabria, 89100 Reggio Calabria, Italy 5 Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK 1 Department of Information Engineering, Infrastructure and Sustainable Energy (DIIES), University “Mediterranea” of Reggio Calabria, 89100 Reggio Calabria, Italy |
AuthorAffiliation_xml | – name: 2 Department of Science Medical and Surgery, University of Catanzaro, 88100 Catanzaro, Italy – name: 1 Department of Information Engineering, Infrastructure and Sustainable Energy (DIIES), University “Mediterranea” of Reggio Calabria, 89100 Reggio Calabria, Italy – name: 3 Regional Epilepsy Center, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli” of Reggio Calabria, 89100 Reggio Calabria, Italy – name: 5 Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK – name: 4 Department of Civil, Energy, Environmental and Material Engineering (DICEAM), University “Mediterranea” of Reggio Calabria, 89100 Reggio Calabria, Italy |
Author_xml | – sequence: 1 givenname: Michele orcidid: 0000-0002-2660-0405 surname: Lo Giudice fullname: Lo Giudice, Michele – sequence: 2 givenname: Edoardo surname: Ferlazzo fullname: Ferlazzo, Edoardo – sequence: 3 givenname: Nadia orcidid: 0000-0003-4962-3500 surname: Mammone fullname: Mammone, Nadia – sequence: 4 givenname: Sara surname: Gasparini fullname: Gasparini, Sara – sequence: 5 givenname: Vittoria surname: Cianci fullname: Cianci, Vittoria – sequence: 6 givenname: Angelo orcidid: 0000-0002-0085-9494 surname: Pascarella fullname: Pascarella, Angelo – sequence: 7 givenname: Anna surname: Mammì fullname: Mammì, Anna – sequence: 8 givenname: Danilo orcidid: 0000-0001-8432-3963 surname: Mandic fullname: Mandic, Danilo – sequence: 9 givenname: Francesco Carlo orcidid: 0000-0003-0734-9136 surname: Morabito fullname: Morabito, Francesco Carlo – sequence: 10 givenname: Umberto orcidid: 0000-0002-4574-2951 surname: Aguglia fullname: Aguglia, Umberto |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36497808$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UktvEzEQtlARfZ65IUtcOBC6fux6fUFCUVqQqlKR3i3bO5s4OOvF3m2V_g3-ME7TohKJ09jzPfRpZo7RQRc6QOgtKT4xJotzt4LYL4mkjJSCsVfoiFRVMeFVQQ5evA_RcUqromA1r-QbdMgqLkVd1Efo9zR0d8GPgwud9vgaxvhYhvsQf-Kp1ym51lm9xXFo8Q9IA57NLvHcLbIgYb0O3QLfQOg94Hs3LPGsdx76tPmIb9LGLsMCOmfxddbvkCH_5uAexghZ3jU4Rxhi8Hg-mhXYIZ2i1222hrOneoJuL2a306-Tq--X36ZfriaWUzJMmGi0ragxlnIhTAOmlUYaUVvOmNC2oWCl0LSqGkNBy6YyuU3K1nDRVJydoM872340a2gs5BTaqz66tY4bFbRT_yKdW6pFuFNSsJqVJBt8eDKI4deYB6PWLlnwXncQxqSoKBkjtBZ1pr7fo67CGLcDzCxel5xLRjPr3ctEf6M8rysTyh3BxpBShFZZNzzuJgd0XpFCbc9C7Z1F1p3v6Z6t_6f4A-XEv38 |
CitedBy_id | crossref_primary_10_1109_TNSRE_2023_3288138 crossref_primary_10_1016_j_neunet_2024_106792 crossref_primary_10_1097_WCO_0000000000001245 |
Cites_doi | 10.1016/j.apacoust.2014.08.016 10.1088/1741-2552/ab0ab5 10.1016/j.specom.2016.12.004 10.1016/j.bspc.2017.07.022 10.1109/ICACCI.2016.7732196 10.1016/j.euromechsol.2016.09.009 10.1016/j.neuroimage.2020.116778 10.1016/0013-4694(87)90206-9 10.1109/JSEN.2013.2257742 10.3390/en12020254 10.1016/j.neucom.2018.09.071 10.1186/s40708-020-00107-z 10.3390/e20020043 10.1007/s12559-016-9396-6 10.1136/jnnp.2010.235424 10.3390/e24010102 10.1109/MSP.2013.2267931 10.1016/S0140-6736(18)32596-0 10.1007/978-3-642-35289-8_26 10.1111/ene.13818 10.1098/rspa.1998.0193 10.1016/j.yebeh.2009.02.035 10.1016/j.phrs.2016.02.013 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8C1 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ijerph192315733 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1660-4601 |
ExternalDocumentID | PMC9738351 36497808 10_3390_ijerph192315733 |
Genre | Journal Article |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 A8Z AADQD AAFWJ AAHBH AAYXX ABGAM ABUWG ACGFO ACGOD ACIWK ADBBV AENEX AFKRA AFRAH AFZYC AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN F5P FYUFA GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO Q2X RNS RPM SV3 TR2 UKHRP XSB CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c421t-37dac62bbc2477bdebf9b9b78c4337acd2ec97a266db2ea9d6b37a15fb47d643 |
IEDL.DBID | M48 |
ISSN | 1660-4601 1661-7827 |
IngestDate | Thu Aug 21 18:38:59 EDT 2025 Fri Jul 11 08:48:03 EDT 2025 Fri Jul 25 09:36:03 EDT 2025 Thu Apr 03 07:08:46 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 01:25:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | epilepsy deep learning PNES empirical mode decomposition EEG convolutional neural network |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-37dac62bbc2477bdebf9b9b78c4337acd2ec97a266db2ea9d6b37a15fb47d643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0085-9494 0000-0002-2660-0405 0000-0003-4962-3500 0000-0003-0734-9136 0000-0001-8432-3963 0000-0002-4574-2951 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph192315733 |
PMID | 36497808 |
PQID | 2748544932 |
PQPubID | 54923 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9738351 proquest_miscellaneous_2753312878 proquest_journals_2748544932 pubmed_primary_36497808 crossref_citationtrail_10_3390_ijerph192315733 crossref_primary_10_3390_ijerph192315733 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221126 |
PublicationDateYYYYMMDD | 2022-11-26 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221126 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of environmental research and public health |
PublicationTitleAlternate | Int J Environ Res Public Health |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zeng (ref_11) 2016; 8 Varone (ref_13) 2022; 24 Huang (ref_17) 1998; 454 OBrien (ref_23) 2017; 61 Ahmadi (ref_27) 2020; 7 Ferlazzo (ref_3) 2016; 106 Sharma (ref_19) 2017; 88 Siuly (ref_10) 2016; 11 Noachtar (ref_7) 2009; 15 ref_12 Delorme (ref_16) 2021; 224 Craik (ref_8) 2019; 16 Homan (ref_14) 1987; 66 Hubsch (ref_4) 2011; 82 ref_25 ref_20 (ref_21) 2015; 63 Gasparini (ref_6) 2019; 26 Ali (ref_22) 2015; 89 Brunner (ref_15) 2013; 58 ref_2 ref_29 Mandic (ref_18) 2013; 30 ref_26 Ieracitano (ref_9) 2019; 323 Thijs (ref_1) 2019; 393 Alickovic (ref_28) 2018; 39 ref_5 Labate (ref_24) 2013; 13 |
References_xml | – volume: 89 start-page: 16 year: 2015 ident: ref_22 article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2014.08.016 – volume: 16 start-page: 031001 year: 2019 ident: ref_8 article-title: Deep learning for electroencephalogram (EEG) classification tasks: A review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0ab5 – volume: 88 start-page: 39 year: 2017 ident: ref_19 article-title: Empirical mode decomposition for adaptive AM-FM analysis of speech: A review publication-title: Speech Commun. doi: 10.1016/j.specom.2016.12.004 – ident: ref_5 – volume: 39 start-page: 94 year: 2018 ident: ref_28 article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.07.022 – ident: ref_29 doi: 10.1109/ICACCI.2016.7732196 – volume: 61 start-page: 151 year: 2017 ident: ref_23 article-title: Application of empirical mode decomposition to drive-by bridge damage detection publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2016.09.009 – volume: 224 start-page: 116778 year: 2021 ident: ref_16 article-title: The open EEGLAB portal interface: High-performance computing with EEGLAB publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116778 – volume: 66 start-page: 376 year: 1987 ident: ref_14 article-title: Cerebral location of international 10–20 system electrode placement publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(87)90206-9 – volume: 13 start-page: 2666 year: 2013 ident: ref_24 article-title: Empirical Mode Decomposition vs. Wavelet Decomposition for the Extraction of Respiratory Signal From Single-Channel ECG: A Comparison publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2257742 – ident: ref_20 doi: 10.3390/en12020254 – volume: 323 start-page: 96 year: 2019 ident: ref_9 article-title: A Convolutional Neural Network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.071 – volume: 7 start-page: 1 year: 2020 ident: ref_27 article-title: EEG-based classification of epilepsy and PNES: EEG microstate and functional brain network features publication-title: Brain Inf. doi: 10.1186/s40708-020-00107-z – ident: ref_12 doi: 10.3390/e20020043 – volume: 63 start-page: 2369 year: 2015 ident: ref_21 article-title: Novel downsampling empirical mode decomposition approach for power quality analysis publication-title: IEEE Trans. Ind. Electron. – volume: 58 start-page: 000010151520134182 year: 2013 ident: ref_15 article-title: Eeglab–an open source matlab toolbox for electrophysiological research publication-title: Biomed. Eng. Biomed. Tech. – ident: ref_25 – volume: 8 start-page: 143 year: 2016 ident: ref_11 article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay publication-title: Cogn. Comput. doi: 10.1007/s12559-016-9396-6 – ident: ref_2 – volume: 82 start-page: 955 year: 2011 ident: ref_4 article-title: Clinical classification of psychogenic non-epileptic seizures based on video-EEG analysis and automatic clustering publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2010.235424 – volume: 24 start-page: 102 year: 2022 ident: ref_13 article-title: Permutation entropy-based interpretability of convolutional neural network models for interictal eeg discrimination of subjects with epileptic seizures vs. psychogenic non-epileptic seizures publication-title: Entropy doi: 10.3390/e24010102 – volume: 30 start-page: 74 year: 2013 ident: ref_18 article-title: Empirical Mode Decomposition-Based Time-Frequency Analysis of Multivariate Signals: The Power of Adaptive Data Analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2013.2267931 – volume: 393 start-page: 689 year: 2019 ident: ref_1 article-title: Epilepsy in adults publication-title: Lancet doi: 10.1016/S0140-6736(18)32596-0 – volume: 11 start-page: 141 year: 2016 ident: ref_10 article-title: EEG signal analysis and classification publication-title: IEEE Trans. Neural. Syst. Rehabilit. Eng. – ident: ref_26 doi: 10.1007/978-3-642-35289-8_26 – volume: 26 start-page: 205-e15 year: 2019 ident: ref_6 article-title: Management of psychogenic non-epileptic seizures: A multidisciplinary approach publication-title: Eur. J. Neurol. doi: 10.1111/ene.13818 – volume: 454 start-page: 903 year: 1998 ident: ref_17 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 15 start-page: 22 year: 2009 ident: ref_7 article-title: The role of EEG in epilepsy: A critical review publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2009.02.035 – volume: 106 start-page: 21 year: 2016 ident: ref_3 article-title: Challenges in the pharmacological management of epilepsy and its causes in the elderly publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2016.02.013 |
SSID | ssj0038469 |
Score | 2.3784096 |
Snippet | Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 15733 |
SubjectTerms | Algorithms Classification Convulsions & seizures Electroencephalography - methods Epilepsy Humans Machine learning Neural networks Neural Networks, Computer Rest Seizures |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XJBQRaG029JqKvXAoQGcOHZyQmi1C-KAqgISt8ivlEUo2XZ3K7V_o3-YGTu7dEHtKVLsKE5mMvPN-MsMY5_q3LujQpdJTcx2wUudGF27xAspCydrp3RgW1zIs2txfpPfdAm3SUernNvEYKhdaylHfojRU5ELgXDjePw9oa5RtLvatdBYZescPQ1Ruorh6dwSZ-hbCf5y9EEJekIVS_tkGOYfju48PkeAN1QRcNkrPYOaTxmTf7mg4RZ70WFHOInCfslWfLPNNmPiDeL_RDvsT79tfnb6hJOp-EY4BLY3hB6YxA4KAoG2hq-4AhgMTuFy9I1qKUNoPwRfArMcKE0LgzGajvHk12eI5hJ1Dm94gdfHEVwOXPrR7xmG7qAbB_3Ifwe0SpTmmbxiV8PBVf8s6TovJFakfIpWx2krU2NsKpQyzpu6NKVRhRVZprR1qbel0vjKnUm9Lp00eJrntRHKIcbZZWtN2_g3DKwWuVEOwxiqc-NTbbSsuckN2hWPaK3HDuYvvrJdVXJqjnFfYXRCkqqeSKrH9hcXjGNBjn9P3ZtLsuq-zEn1qEc99nExjN8UbZToxrczmoMgGB23KnrsdRT84l6ZpJ58RziillRiMYHqdS-PNKPbULe7VBniXf72_8t6xzZS-sWC8ySVe2xt-mPm3yPwmZoPQbsfAPYEB5o priority: 102 providerName: ProQuest |
Title | Convolutional Neural Network Classification of Rest EEG Signals among People with Epilepsy, Psychogenic Non Epileptic Seizures and Control Subjects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36497808 https://www.proquest.com/docview/2748544932 https://www.proquest.com/docview/2753312878 https://pubmed.ncbi.nlm.nih.gov/PMC9738351 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1La9wwEB6aBEqglKZPN8miQg891Glty5J9KKVZvAmFLiEP2JuRLLndErzb7G5p8jfyhzMjeZ1Hk4sNlmQLzXjmG3k8H8D7OrXmc6bysKbMdh7lKtSqNqHlQmRG1EYql20xFPsn_PsoHV3TAbULOLs3tCM-qZOz051_f86_4gv_hSJODNk_jX9bnJODKlTdbwXW0C1JojP4wbtPCgk62tzX9rlv0Do8TgSxrRHP5E0P9R_svJs9ecMdDZ7B0xZHsm9e8BvwyDbP4YnfhGP-36IXcNmfNH9b3cLOVIjDnVzmN3N8mJQp5ITDJjU7xBmwothjR-OftD7MURGxA5dlzmjLlhVTNCPT2flH5k0n6h8-cIjjfQtOhx3Z8cUCw3imGsP6PheeoYWiLZ_ZSzgeFMf9_bBlYQgrHkdztEBGVSLWuoq5lNpYXec61zKreJJIVZnYVrlU6OiNjq3KjdB4OUprzaVBvPMKVptJY98AqxRPtTQY0lDNGxsrrUQd6VSjjbGI3ALYWS58WbUVyoko47TESIWEVt4RWgAfugFTX5zj4a5bS0mWSyUrMSLPUs4RwgbwrmvG94s-mqjGThbUBwExOnGZBfDaC7571lJjApC3VKLrQLW7b7c041-uhncuE8S-0dsH77kJ6zH9aRFFYSy2YHV-trDbiH_mugcrciTxmPUjOg72erC2WwwPDntO468ASFUNgQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N8QDSNPF_HQOMBBIPhDWOEycPCKHSrmOjQqxIe4vs2NmKUFLWFjS-Bp-D78idnRQ6BG97ihSfE8t3vvudfb4DeFLG1nRTlQUlRbaLMFOBVqUJrEiS1CSlkcpFW4yS4Ufx9jg-XoOf7V0YCqtsdaJT1KYuaI98F72nNBYC4car6ZeAqkbR6WpbQsOLxYE9_4Yu2-zl_hvk71POB_1xbxg0VQWCQvBwjivKqCLhWhdcSKmN1WWmMy3TQkSRVIXhtsikQsNlNLcqM4nG12FcaiEN2m_87BW4irQZ-XrpYK9V_BGackLbIZq8AA2v9JmEkLC7O_lkcdocmqIEhKtG8C9kezFA8w-LN7gBmw1UZa-9bN2ENVvdgg2_z8f89aXb8KNXV18b8UViyvXhHi64nLmSmxSM5PjP6pJ9wBGwfn-PHU1OKHUzc9WO2HsXyM5oV5j1p6ipprPz58xrZxRx_OEI-_sWHA47spPvizOL3SvDej7cnqESpF2l2R0YXwZL7sJ6VVd2C1ihRKylQa-J0upYrrRKylDHGtWYRXDYgRftxOdFkwSdanF8ztEZIk7lFzjVgWfLDlOf_-PfpDstJ_NGEczy32LbgcfLZlzCdC6jKlsviAYxN-IEmXbgnmf88l9RQiUAu9giV0RiSUDpwVdbqsmpSxOeyQjhdbj9_2E9gmvD8bvD_HB_dHAfrnO63RGGAU92YH1-trAPEHPN9UMn6QzyS15ZvwDOW0Ye |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4aQ0JIaBr_HQOMBBIXZG0cJ04uEEJdy8ZQNbEh7S6yYweKUFLWFjReY0_D23GOnQQ6BHe7ihTbiZXz99n5fA7A0zK2ZpCqLCiJ2S7CTAValSawIklSk5RGKse2mCR7H8Tbk_hkDX62Z2GIVtn6ROeoTV3QHnkfV09pLATCjX7Z0CIOd8evZl8DqiBFf1rbchpeRQ7s2Xdcvs1f7u-irJ9xPh4dD_eCpsJAUAgeLtC6jCoSrnXBhZTaWF1mOtMyLUQUSVUYbotMKgxiRnOrMpNovB3GpRbSYCzHx16BqzKSKZlYOuzYJRGGdULeIYa_AIOw9FmFoigb9KefLX5Ch6woGeFqQPwL5V4ka_4R_cabsNHAVvba69lNWLPVLbjh9_yYP8p0G86HdfWtUWXsTHk_3MURzZkrv0nEJKcLrC7Ze5wBG43esKPpR0rjzFzlI3boSO2MdojZaIZeazY_e8G8p0Z1xxdOcLxvwemwIzv9sTy1OLwybOip9wwdIu0wze_A8WWI5C6sV3Vl7wMrlIi1NLiCohQ7liutkjLUsUaXZhEo9mCn_fB50SREp7ocX3JcGJGk8guS6sHzbsDM5wL5d9ftVpJ54xTm-W8V7sGTrhnNmf7RqMrWS-qD-Bsxg0x7cM8LvntXlFA5wAG2yBWV6DpQqvDVlmr6yaUMz2SEUDvc-v-0HsM1tKn83f7k4AFc53TQIwwDnmzD-uJ0aR8i_FroR07RGeSXbFi_ACccSh8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Neural+Network+Classification+of+Rest+EEG+Signals+among+People+with+Epilepsy%2C+Psychogenic+Non+Epileptic+Seizures+and+Control+Subjects&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Lo+Giudice%2C+Michele&rft.au=Ferlazzo%2C+Edoardo&rft.au=Mammone%2C+Nadia&rft.au=Gasparini%2C+Sara&rft.date=2022-11-26&rft.eissn=1660-4601&rft.volume=19&rft.issue=23&rft_id=info:doi/10.3390%2Fijerph192315733&rft_id=info%3Apmid%2F36497808&rft.externalDocID=36497808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon |