A Novel Object Detection Model Based on Faster R-CNN for Spodoptera frugiperda According to Feeding Trace of Corn Leaves

The conventional method for crop insect detection based on visual judgment of the field is time-consuming, laborious, subjective, and error prone. The early detection and accurate localization of agricultural insect pests can significantly improve the effectiveness of pest control as well as reduce...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 12; no. 2; p. 248
Main Authors Du, Lei, Sun, Yaqin, Chen, Shuo, Feng, Jiedong, Zhao, Yindi, Yan, Zhigang, Zhang, Xuewei, Bian, Yuchen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The conventional method for crop insect detection based on visual judgment of the field is time-consuming, laborious, subjective, and error prone. The early detection and accurate localization of agricultural insect pests can significantly improve the effectiveness of pest control as well as reduce the costs, which has become an urgent demand for crop production. Maize Spodoptera frugiperda is a migratory agricultural pest that has severely decreased the yield of maize, rice, and other kinds of crops worldwide. To monitor the occurrences of maize Spodoptera frugiperda in a timely manner, an end-to-end Spodoptera frugiperda detection model termed the Pest Region-CNN (Pest R-CNN) was proposed based on the Faster Region-CNN (Faster R-CNN) model. Pest R-CNN was carried out according to the feeding traces of maize leaves by Spodoptera frugiperda. The proposed model was trained and validated using high-spatial-resolution red–green–blue (RGB) ortho-images acquired by an unmanned aerial vehicle (UAV). On the basis of the severity of feeding, the degree of Spodoptera frugiperda invasion severity was classified into the four classes of juvenile, minor, moderate, and severe. The degree of severity and specific feed location of S. frugiperda infestation can be determined and depicted in the frame forms using the proposed model. A mean average precision (mAP) of 43.6% was achieved by the proposed model on the test dataset, showing the great potential of deep learning object detection in pest monitoring. Compared with the Faster R-CNN and YOLOv5 model, the detection accuracy of the proposed model increased by 12% and 19%, respectively. Further ablation studies showed the effectives of channel and spatial attention, group convolution, deformable convolution, and the multi-scale aggregation strategy in the aspect of improving the accuracy of detection. The design methods of the object detection architecture could provide reference for other research. This is the first step in applying deep-learning object detection to S. frugiperda feeding trace, enabling the application of high-spatial-resolution RGB images obtained by UAVs to S. frugiperda-infested object detection. The proposed model will be beneficial with respect to S. frugiperda pest stress monitoring to realize precision pest control.
AbstractList The conventional method for crop insect detection based on visual judgment of the field is time-consuming, laborious, subjective, and error prone. The early detection and accurate localization of agricultural insect pests can significantly improve the effectiveness of pest control as well as reduce the costs, which has become an urgent demand for crop production. Maize Spodoptera frugiperda is a migratory agricultural pest that has severely decreased the yield of maize, rice, and other kinds of crops worldwide. To monitor the occurrences of maize Spodoptera frugiperda in a timely manner, an end-to-end Spodoptera frugiperda detection model termed the Pest Region-CNN (Pest R-CNN) was proposed based on the Faster Region-CNN (Faster R-CNN) model. Pest R-CNN was carried out according to the feeding traces of maize leaves by Spodoptera frugiperda. The proposed model was trained and validated using high-spatial-resolution red–green–blue (RGB) ortho-images acquired by an unmanned aerial vehicle (UAV). On the basis of the severity of feeding, the degree of Spodoptera frugiperda invasion severity was classified into the four classes of juvenile, minor, moderate, and severe. The degree of severity and specific feed location of S. frugiperda infestation can be determined and depicted in the frame forms using the proposed model. A mean average precision (mAP) of 43.6% was achieved by the proposed model on the test dataset, showing the great potential of deep learning object detection in pest monitoring. Compared with the Faster R-CNN and YOLOv5 model, the detection accuracy of the proposed model increased by 12% and 19%, respectively. Further ablation studies showed the effectives of channel and spatial attention, group convolution, deformable convolution, and the multi-scale aggregation strategy in the aspect of improving the accuracy of detection. The design methods of the object detection architecture could provide reference for other research. This is the first step in applying deep-learning object detection to S. frugiperda feeding trace, enabling the application of high-spatial-resolution RGB images obtained by UAVs to S. frugiperda-infested object detection. The proposed model will be beneficial with respect to S. frugiperda pest stress monitoring to realize precision pest control.
Author Du, Lei
Zhao, Yindi
Feng, Jiedong
Zhang, Xuewei
Sun, Yaqin
Yan, Zhigang
Chen, Shuo
Bian, Yuchen
Author_xml – sequence: 1
  givenname: Lei
  surname: Du
  fullname: Du, Lei
– sequence: 2
  givenname: Yaqin
  surname: Sun
  fullname: Sun, Yaqin
– sequence: 3
  givenname: Shuo
  orcidid: 0000-0002-4342-6293
  surname: Chen
  fullname: Chen, Shuo
– sequence: 4
  givenname: Jiedong
  surname: Feng
  fullname: Feng, Jiedong
– sequence: 5
  givenname: Yindi
  surname: Zhao
  fullname: Zhao, Yindi
– sequence: 6
  givenname: Zhigang
  surname: Yan
  fullname: Yan, Zhigang
– sequence: 7
  givenname: Xuewei
  surname: Zhang
  fullname: Zhang, Xuewei
– sequence: 8
  givenname: Yuchen
  surname: Bian
  fullname: Bian, Yuchen
BookMark eNp9UU1v1DAQjVArUdr-Ai6WuHAJ2LFjO8dlYaHSspVKOVsTe7LyKo2D7VTw73G7IKEKdXyY8dN7T_PxqjqZwoRV9ZrRd5x39D3so7fLmJeIrKHlCf2iOmuoUjUVqjn5p35ZXaZ0oCU6xjWVZ9XPFdmFexzJdX9Am8lHzCX5MJGvwRX4AyR0pHw3kDJGclOvdzsyhEi-zcGFuWBAhrjs_YzRAVlZG6Lz057kQDaIj-VtBIskDGQd4kS2CPeYLqrTAcaEl3_yefV98-l2_aXeXn--Wq-2tRUNyzWXQ8fB9bqXraQapOKgFG8Yc7JjOKBiyra9lZbStmesFU43g-1AQdu0aPl5dXX0dQEOZo7-DuIvE8CbRyDEvYGYvR3RKI1CagW0t0z0rdaImjrXAxuQYwfF6-3Ra47hx4IpmzufLI4jTBiWZBoptBYtpU2hvnlCPYQlTmXSwirtCyVbUVjdkWVjSCniYKzP8LD-HMGPhlHzcGLznxMXLX-i_Tvcc6rfryau4w
CitedBy_id crossref_primary_10_3390_agriculture14091567
crossref_primary_10_1007_s13744_024_01146_5
crossref_primary_10_3390_s24144448
crossref_primary_10_1080_17538947_2022_2163514
crossref_primary_10_3390_horticulturae8060520
crossref_primary_10_1155_2022_1759542
crossref_primary_10_3389_fpls_2023_1268167
crossref_primary_10_3390_agronomy13041158
crossref_primary_10_1016_j_compag_2022_107204
crossref_primary_10_3390_agriculture13091664
crossref_primary_10_3389_fpls_2023_1204569
crossref_primary_10_1038_s41598_024_56142_x
crossref_primary_10_3390_agriculture12122160
crossref_primary_10_1007_s11554_024_01505_w
crossref_primary_10_1016_j_ecolind_2022_109698
crossref_primary_10_1016_j_indic_2023_100285
crossref_primary_10_1021_acsagscitech_4c00633
crossref_primary_10_1007_s11042_023_16578_1
crossref_primary_10_1016_j_compag_2024_109120
crossref_primary_10_3390_pr12091833
crossref_primary_10_1109_ACCESS_2023_3343566
crossref_primary_10_1109_JSTARS_2024_3497576
crossref_primary_10_3390_agriengineering5040145
crossref_primary_10_1109_ACCESS_2022_3184110
crossref_primary_10_3390_app131810441
crossref_primary_10_1016_j_compag_2023_108515
Cites_doi 10.1016/j.biosystemseng.2015.11.005
10.3390/s18061901
10.1109/CAC.2018.8623234
10.1016/j.compag.2019.105174
10.1186/s13007-019-0475-z
10.1016/j.rse.2013.01.002
10.1016/j.compag.2018.03.032
10.1094/PDIS-04-10-0256
10.1007/978-3-030-10728-4_11
10.3390/rs9040308
10.1002/ps.4003
10.1016/j.compag.2012.08.008
10.1016/j.compag.2018.02.016
10.2135/tppj2019.03.0006
10.1016/j.compag.2017.08.005
10.1094/PDIS-03-15-0340-FE
10.3390/f6030594
10.3389/fpls.2018.01162
10.1007/s13593-014-0246-1
10.1109/CCECE.2017.7946594
10.1002/ps.6098
10.1080/23311932.2019.1641902
10.1109/ACCESS.2018.2844405
10.1016/j.biosystemseng.2018.02.008
10.3390/insects11110805
10.3390/s18030868
10.3390/rs70302971
10.1007/s13355-019-00642-0
10.1002/ps.5845
10.1155/2017/2917536
10.3390/s17092022
10.1016/j.compag.2020.105222
10.1109/LGRS.2017.2743715
10.1016/j.neucom.2017.06.023
10.1186/s13007-015-0048-8
10.1111/jen.12565
10.1038/s41598-019-43171-0
10.1016/j.jaridenv.2019.02.005
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
DOA
DOI 10.3390/agriculture12020248
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database

CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_78e4687a0bc14b588ee80ddba1fe3e9a
10_3390_agriculture12020248
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c421t-36f93adb8b65608a673a773211d691efe717c5bc6c005b1154d82fc9a7a525ec3
IEDL.DBID BENPR
ISSN 2077-0472
IngestDate Wed Aug 27 01:26:49 EDT 2025
Fri Jul 11 05:42:21 EDT 2025
Mon Jun 30 06:27:00 EDT 2025
Tue Jul 01 02:12:43 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-36f93adb8b65608a673a773211d691efe717c5bc6c005b1154d82fc9a7a525ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4342-6293
OpenAccessLink https://www.proquest.com/docview/2632147654?pq-origsite=%requestingapplication%
PQID 2632147654
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_78e4687a0bc14b588ee80ddba1fe3e9a
proquest_miscellaneous_2648845002
proquest_journals_2632147654
crossref_citationtrail_10_3390_agriculture12020248
crossref_primary_10_3390_agriculture12020248
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_29) 2016; 72
Assefa (ref_43) 2019; 5
Kamilaris (ref_6) 2018; 147
ref_13
ref_35
Hayashi (ref_8) 2019; 54
Lu (ref_15) 2017; 267
Wang (ref_12) 2017; 2017
Mirik (ref_25) 2011; 95
Cheng (ref_19) 2017; 141
ref_39
Wang (ref_22) 2020; 169
Selvaraj (ref_16) 2019; 15
Bateman (ref_2) 2018; 142
Sarkowi (ref_4) 2021; 32
Sousa (ref_30) 2015; 38
Wen (ref_9) 2012; 89
Too (ref_11) 2019; 161
Wang (ref_10) 2018; 51
Wu (ref_38) 2019; 2
Zhang (ref_14) 2018; 6
ref_23
Escorihuela (ref_32) 2018; 11
Liu (ref_7) 2016; 141
Martinelli (ref_26) 2015; 35
Liebisch (ref_36) 2015; 11
ref_20
ref_41
ref_1
Tetila (ref_37) 2017; 14
Roosjen (ref_40) 2020; 76
Deng (ref_18) 2018; 169
Li (ref_21) 2020; 169
Salvador (ref_33) 2019; 164
ref_28
Lehmann (ref_31) 2015; 6
ref_27
Matese (ref_42) 2015; 7
Meddens (ref_34) 2013; 132
Mahlein (ref_3) 2016; 100
Bieganowski (ref_5) 2021; 77
Li (ref_17) 2019; 9
Fuentes (ref_24) 2018; 9
References_xml – volume: 141
  start-page: 82
  year: 2016
  ident: ref_7
  article-title: Detection of aphids in wheat fields using a computer vision technique
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2015.11.005
– ident: ref_27
  doi: 10.3390/s18061901
– ident: ref_39
  doi: 10.1109/CAC.2018.8623234
– volume: 169
  start-page: 105174
  year: 2020
  ident: ref_21
  article-title: Crop pest recognition in natural scenes using convolutional neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105174
– volume: 15
  start-page: 92
  year: 2019
  ident: ref_16
  article-title: AI-powered banana diseases and pest detection
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0475-z
– volume: 132
  start-page: 49
  year: 2013
  ident: ref_34
  article-title: Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.002
– volume: 161
  start-page: 272
  year: 2019
  ident: ref_11
  article-title: A comparative study of fine-tuning deep learning models for plant disease identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.032
– volume: 95
  start-page: 4
  year: 2011
  ident: ref_25
  article-title: Satellite remote sensing of wheat infected by wheat streak mosaic virus
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-04-10-0256
– ident: ref_20
  doi: 10.1007/978-3-030-10728-4_11
– ident: ref_41
  doi: 10.3390/rs9040308
– volume: 32
  start-page: 27
  year: 2021
  ident: ref_4
  article-title: The Fall Armyworm (faw) Spodoptera frugiperda: A Review on Biology, Life History, Invasion, Dispersion and Control
  publication-title: Outlooks Pest Manag.
– volume: 38
  start-page: 40
  year: 2015
  ident: ref_30
  article-title: Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 72
  start-page: 335
  year: 2016
  ident: ref_29
  article-title: Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.4003
– volume: 89
  start-page: 110
  year: 2012
  ident: ref_9
  article-title: Image-based orchard insect automated identification and classification method
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2012.08.008
– volume: 147
  start-page: 70
  year: 2018
  ident: ref_6
  article-title: Deep learning in agriculture: A survey
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.016
– volume: 2
  start-page: 1
  year: 2019
  ident: ref_38
  article-title: Autonomous detection of plant disease symptoms directly from aerial imagery
  publication-title: Plant Phenome J.
  doi: 10.2135/tppj2019.03.0006
– volume: 141
  start-page: 351
  year: 2017
  ident: ref_19
  article-title: Pest identification via deep residual learning in complex background
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.08.005
– volume: 100
  start-page: 241
  year: 2016
  ident: ref_3
  article-title: Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-03-15-0340-FE
– ident: ref_35
– volume: 6
  start-page: 594
  year: 2015
  ident: ref_31
  article-title: Analysis of Unmanned Aerial System-Based CIR Images in Forestry—A New Perspective to Monitor Pest Infestation Levels
  publication-title: Forests
  doi: 10.3390/f6030594
– volume: 9
  start-page: 1162
  year: 2018
  ident: ref_24
  article-title: High-Performance Deep Neural Network-Based Tomato Plant Diseases and Pests Diagnosis System With Refinement Filter Bank
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01162
– volume: 35
  start-page: 1
  year: 2015
  ident: ref_26
  article-title: Advanced methods of plant disease detection. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0246-1
– ident: ref_13
  doi: 10.1109/CCECE.2017.7946594
– volume: 77
  start-page: 1109
  year: 2021
  ident: ref_5
  article-title: Sensor-based outdoor monitoring of insects in arable crops for their precise control
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.6098
– volume: 5
  start-page: 1641902
  year: 2019
  ident: ref_43
  article-title: Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review
  publication-title: Cogent Food Agric.
  doi: 10.1080/23311932.2019.1641902
– volume: 6
  start-page: 30370
  year: 2018
  ident: ref_14
  article-title: Identification of maize leaf diseases using improved deep convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2844405
– volume: 169
  start-page: 139
  year: 2018
  ident: ref_18
  article-title: Research on insect pest image detection and recognition based on bio-inspired methods
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.02.008
– ident: ref_1
  doi: 10.3390/insects11110805
– ident: ref_28
  doi: 10.3390/s18030868
– volume: 7
  start-page: 2971
  year: 2015
  ident: ref_42
  article-title: Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture
  publication-title: Remote Sens.
  doi: 10.3390/rs70302971
– volume: 51
  start-page: 85
  year: 2018
  ident: ref_10
  article-title: A cognitive vision method for insect pest image segmentation
  publication-title: IFAC-PapersOnLine
– volume: 54
  start-page: 487
  year: 2019
  ident: ref_8
  article-title: Automated machine learning for identification of pest aphid species (Hemiptera: Aphididae)
  publication-title: Appl. Entomol. Zool.
  doi: 10.1007/s13355-019-00642-0
– volume: 76
  start-page: 2994
  year: 2020
  ident: ref_40
  article-title: Deep learning for automated detection of Drosophila suzukii: Potential for UAV-based monitoring
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.5845
– volume: 2017
  start-page: 2917536
  year: 2017
  ident: ref_12
  article-title: Automatic image-based plant disease severity estimation using deep learning
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2017/2917536
– ident: ref_23
  doi: 10.3390/s17092022
– volume: 169
  start-page: 105222
  year: 2020
  ident: ref_22
  article-title: Fusing multi-scale context-aware information representation for automatic in-field pest detection and recognition
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105222
– volume: 14
  start-page: 2190
  year: 2017
  ident: ref_37
  article-title: Identification of soybean foliar diseases using unmanned aerial vehicle images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2743715
– volume: 267
  start-page: 378
  year: 2017
  ident: ref_15
  article-title: Identification of rice diseases using deep convolutional neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.023
– volume: 11
  start-page: 9
  year: 2015
  ident: ref_36
  article-title: Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach
  publication-title: Plant Methods
  doi: 10.1186/s13007-015-0048-8
– volume: 142
  start-page: 805
  year: 2018
  ident: ref_2
  article-title: Assessment of potential biopesticide options for managing fall armyworm (Spodoptera frugiperda) in Africa
  publication-title: J. Appl. Entomol.
  doi: 10.1111/jen.12565
– volume: 9
  start-page: 7024
  year: 2019
  ident: ref_17
  article-title: Automatic localization and count of agricultural crop pests based on an improved deep learning pipeline
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43171-0
– volume: 164
  start-page: 29
  year: 2019
  ident: ref_33
  article-title: Desert locust detection using Earth observation satellite data in Mauritania
  publication-title: J. Arid. Environ.
  doi: 10.1016/j.jaridenv.2019.02.005
– volume: 11
  start-page: 140
  year: 2018
  ident: ref_32
  article-title: SMOS based high resolution soil moisture estimates for desert locust preventive management
  publication-title: Remote Sens. Appl. Soc. Environ.
SSID ssj0000913806
Score 2.3976836
Snippet The conventional method for crop insect detection based on visual judgment of the field is time-consuming, laborious, subjective, and error prone. The early...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 248
SubjectTerms Ablation
Accuracy
agriculture
Cereal crops
Classification
Color imagery
Convolution
Corn
Costs
Crop diseases
Crop production
Crop yield
Crops
data collection
Datasets
Deep learning
Deformation effects
Error detection
Feeding
Formability
Generalized linear models
Image acquisition
Insects
juveniles
Laboratories
Localization
Machine learning
maize Spodoptera frugiperda
migratory behavior
Model accuracy
Monitoring
object detection
Object recognition
Pest control
Pests
Plant diseases
Remote sensing
rice
Spodoptera frugiperda
Unmanned aerial vehicles
Vegetation
Visual fields
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPMXSFg0SR6KuY8dxjtuFVYVgkYBKvUVje1whrZJVmq34-R0n6VIEggu3PJzImtc3k9jfCPEmpL6PDlWGkb1JOx0zV7kyw1LlhY_K09Ab8NPanJ3rDxfFxZ1WX2lN2EgPPArupLSkjS1x7rzUrrCWyM5DcCgjKaqG1Igx704xNcTgSio7NyPNkOK6_gQvu4nMgiQX_InK6xcoGhj7fwvIA8qsHomHU3oIi3Faj8U9ap6IB4ufb30qfixg3V7TBj679A0F3lE_LKdqIPU128Ap41IAPl1hIkGAL9lyvQbOTeHrlmvQbdpyDLHbXX7fUhcQUr-ILiEY9C2sRjADhjBP0EZYtl0DHwmv6eqZOF-9_7Y8y6b-CZnXuewzZWKlMDjrEsOORVMqLFkHUgZTSYrEpZwvnDeeXdElXp5g8-grLLHIC_LquTho2oZeCAhOSa-cijZHbfjIcd6EASvikODRz0R-K8raT-TiqcfFpuYiI8m__oP8Z-Lt_qHtyK3x9-GnSUf7oYkYe7jA5lJP5lL_y1xm4uhWw_XkrVd14qyXujSFnonX-9vsZ-nnCTbU7tIYDnW6YAB5-T_mcSju52kjxbD--0gc9N2Ojjm96d2rwZJvAGSz_AQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Object Detection Model Based on Faster R-CNN for Spodoptera frugiperda According to Feeding Trace of Corn Leaves
URI https://www.proquest.com/docview/2632147654
https://www.proquest.com/docview/2648845002
https://doaj.org/article/78e4687a0bc14b588ee80ddba1fe3e9a
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLegu8AB8SnKxmQkjkRrYidxTqgtqyYEBQ0m7RY92y8VUpWENJ325_Ne6nZCoN2S2PHBz-_T9u8nxHvPvI8WVAQVaZO2uopsYfMIcpWkrlIOB27Ar8vs4kp_vk6vQ8FtE45V7m3iYKh947hGfsa44rHOs1R_bH9HzBrFu6uBQuOhOCITbMxIHM3Ol98vD1UWRr00k2wHN6Qovz-DVRdALTCmxJ8hvf5ySQNy_z-GefA2i6fiSQgT5XQn12fiAdbPxePp3agvxO1ULpsbXMtvlmsp8hP2w7GqWjK_2VrOyD95Sa8LYDAEeRnNl0tJMar80VIu2vLVY1l129WvFjsPknkjOvZksm_kYufUJLkyh7Kp5LzpavkF4QY3L8XV4vzn_CIKPAqR00ncRyqrCgXeGstIOwayXEFOsohjnxUxVkgpnUutyxyppGV8Hm-SyhWQQ5qk6NQrMaqbGl8L6a2KnbKqMgnojJ4sxU_goUAyDQ7cWCT7qSxdABlnrot1SckGz3_5n_kfiw-Hn9odxsb93Wcso0NXBsgePjTdqgz6VuYGdWZymFgXa5sag2gm3luIK1RYwFic7CVcBq3dlHdrbCzeHZpJ33gTBWpsttyHTJ5OyZG8uX-IY_Eo4asSwwnvEzHquy2-pQCmt6dhlZ4OBYA_Rs70kw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6V9AAcEKsIFBgkuGE1nhlvB4SStFFKU4NKK_VmZnmOkCI7OE6BP8Vv5D3HTpFAvfXmZTyy3rx1lu9j7I0j3kejpadztCZlVO6ZxESejqQIbC4tNNyAJ2k4PVcfL4KLHfa7OwtD2yo7n9g4aldamiPfJ1xxX0VhoD4sv3vEGkWrqx2FxkYtjuHXDyzZVu-PDnB83woxOTwbT72WVcCzSvi1J8M8kdqZ2BDuTKzDSOoI_8z3XZj4kAMWODYwNrSooIbQalwscpvoSAciACux31tsV8lwIHpsd3SYfj7dzuoQymY8CDfwRlImg309r1oQDfAF5maCmIb-CoENU8A_gaCJbpP77F6blvLhRo8esB0oHrK7w6teH7GfQ56Wl7DgnwzN3fADqJttXAUnPrUFH2E8dBxvJ5rAF_ipN05Tjjkx_7LE2ndJR515Xq3n35ZQOc2Jp6KiyMnrkk82QZRj6LTAy5yPy6rgM9CXsHrMzm9Ewk9YrygLeMq4M9K30sg8FlqFeGUwX9NOJ4CuyGrbZ6ITZWZbUHPi1lhkWNyQ_LP_yL_P3m0_Wm4wPa5vPqIx2jYlQO7mQVnNs9a-sygGFcaRHhjrKxPEMUA8cM5oPwcJie6zvW6Es9ZLrLIrne6z19vXaN-0aKMLKNfUBl2sCjBwPbu-i1fs9vTsZJbNjtLj5-yOoGMaze7yPdarqzW8wOSpNi9bjeXs600byR8ETy_k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVEJwQKwiUGCQ4IaVeMbrAaEstVpaTFWo1Js7y5sIKbKD4xT4a_w63nOcFAnUW29exiPrzVtn-T7G3ljifdRKesqhNQU6cJ5OdeypWIrQOGmg5Qb8lEcHZ8HH8_B8h_3enIWhbZUbn9g6alsZmiMfEK64H8RRGAxcty3iZJp9WHz3iEGKVlo3dBprFTmCXz-wfFu-P5ziWL8VItv_OjnwOoYBzwTCbzwZuVQqqxNNGDSJimKpYvxL37dR6oMDLHZMqE1kUFk1IdfYRDiTqliFIgQjsd9bbDemqqjHdsf7-cnpdoaHEDeTYbSGOpIyHQ7UrO4ANcAXmKcJYh36Kxy2rAH_BIU20mX32b0uReWjtU49YDtQPmR3R1e9PmI_RzyvLmHOP2uax-FTaNotXSUnbrU5H2NstBxvM0VADPzUm-Q5x_yYf1lgHbygY8_c1avZtwXUVnHirKgpivKm4tk6oHIMowZ45fikqkt-DOoSlo_Z2Y1I-AnrlVUJTxm3WvpGaukSoYIIrzTmbsqqFNAtGWX6TGxEWZgO4Jx4NuYFFjok_-I_8u-zd9uPFmt8j-ubj2mMtk0JnLt9UNWzorP1Ik4giJJYDbXxAx0mCUAytFYr34GEVPXZ3maEi85jLIsr_e6z19vXaOu0gKNKqFbUBt1tEGIQe3Z9F6_YbTSO4vgwP3rO7gg6sdFuNN9jvaZewQvMoxr9slNYzi5u2kb-AONTNBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Object+Detection+Model+Based+on+Faster+R-CNN+for+Spodoptera+frugiperda+According+to+Feeding+Trace+of+Corn+Leaves&rft.jtitle=Agriculture+%28Basel%29&rft.au=Du%2C+Lei&rft.au=Sun%2C+Yaqin&rft.au=Chen%2C+Shuo&rft.au=Feng%2C+Jiedong&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=12&rft.issue=2&rft.spage=248&rft_id=info:doi/10.3390%2Fagriculture12020248&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon