A Novel Object Detection Model Based on Faster R-CNN for Spodoptera frugiperda According to Feeding Trace of Corn Leaves
The conventional method for crop insect detection based on visual judgment of the field is time-consuming, laborious, subjective, and error prone. The early detection and accurate localization of agricultural insect pests can significantly improve the effectiveness of pest control as well as reduce...
Saved in:
Published in | Agriculture (Basel) Vol. 12; no. 2; p. 248 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The conventional method for crop insect detection based on visual judgment of the field is time-consuming, laborious, subjective, and error prone. The early detection and accurate localization of agricultural insect pests can significantly improve the effectiveness of pest control as well as reduce the costs, which has become an urgent demand for crop production. Maize Spodoptera frugiperda is a migratory agricultural pest that has severely decreased the yield of maize, rice, and other kinds of crops worldwide. To monitor the occurrences of maize Spodoptera frugiperda in a timely manner, an end-to-end Spodoptera frugiperda detection model termed the Pest Region-CNN (Pest R-CNN) was proposed based on the Faster Region-CNN (Faster R-CNN) model. Pest R-CNN was carried out according to the feeding traces of maize leaves by Spodoptera frugiperda. The proposed model was trained and validated using high-spatial-resolution red–green–blue (RGB) ortho-images acquired by an unmanned aerial vehicle (UAV). On the basis of the severity of feeding, the degree of Spodoptera frugiperda invasion severity was classified into the four classes of juvenile, minor, moderate, and severe. The degree of severity and specific feed location of S. frugiperda infestation can be determined and depicted in the frame forms using the proposed model. A mean average precision (mAP) of 43.6% was achieved by the proposed model on the test dataset, showing the great potential of deep learning object detection in pest monitoring. Compared with the Faster R-CNN and YOLOv5 model, the detection accuracy of the proposed model increased by 12% and 19%, respectively. Further ablation studies showed the effectives of channel and spatial attention, group convolution, deformable convolution, and the multi-scale aggregation strategy in the aspect of improving the accuracy of detection. The design methods of the object detection architecture could provide reference for other research. This is the first step in applying deep-learning object detection to S. frugiperda feeding trace, enabling the application of high-spatial-resolution RGB images obtained by UAVs to S. frugiperda-infested object detection. The proposed model will be beneficial with respect to S. frugiperda pest stress monitoring to realize precision pest control. |
---|---|
AbstractList | The conventional method for crop insect detection based on visual judgment of the field is time-consuming, laborious, subjective, and error prone. The early detection and accurate localization of agricultural insect pests can significantly improve the effectiveness of pest control as well as reduce the costs, which has become an urgent demand for crop production. Maize Spodoptera frugiperda is a migratory agricultural pest that has severely decreased the yield of maize, rice, and other kinds of crops worldwide. To monitor the occurrences of maize Spodoptera frugiperda in a timely manner, an end-to-end Spodoptera frugiperda detection model termed the Pest Region-CNN (Pest R-CNN) was proposed based on the Faster Region-CNN (Faster R-CNN) model. Pest R-CNN was carried out according to the feeding traces of maize leaves by Spodoptera frugiperda. The proposed model was trained and validated using high-spatial-resolution red–green–blue (RGB) ortho-images acquired by an unmanned aerial vehicle (UAV). On the basis of the severity of feeding, the degree of Spodoptera frugiperda invasion severity was classified into the four classes of juvenile, minor, moderate, and severe. The degree of severity and specific feed location of S. frugiperda infestation can be determined and depicted in the frame forms using the proposed model. A mean average precision (mAP) of 43.6% was achieved by the proposed model on the test dataset, showing the great potential of deep learning object detection in pest monitoring. Compared with the Faster R-CNN and YOLOv5 model, the detection accuracy of the proposed model increased by 12% and 19%, respectively. Further ablation studies showed the effectives of channel and spatial attention, group convolution, deformable convolution, and the multi-scale aggregation strategy in the aspect of improving the accuracy of detection. The design methods of the object detection architecture could provide reference for other research. This is the first step in applying deep-learning object detection to S. frugiperda feeding trace, enabling the application of high-spatial-resolution RGB images obtained by UAVs to S. frugiperda-infested object detection. The proposed model will be beneficial with respect to S. frugiperda pest stress monitoring to realize precision pest control. |
Author | Du, Lei Zhao, Yindi Feng, Jiedong Zhang, Xuewei Sun, Yaqin Yan, Zhigang Chen, Shuo Bian, Yuchen |
Author_xml | – sequence: 1 givenname: Lei surname: Du fullname: Du, Lei – sequence: 2 givenname: Yaqin surname: Sun fullname: Sun, Yaqin – sequence: 3 givenname: Shuo orcidid: 0000-0002-4342-6293 surname: Chen fullname: Chen, Shuo – sequence: 4 givenname: Jiedong surname: Feng fullname: Feng, Jiedong – sequence: 5 givenname: Yindi surname: Zhao fullname: Zhao, Yindi – sequence: 6 givenname: Zhigang surname: Yan fullname: Yan, Zhigang – sequence: 7 givenname: Xuewei surname: Zhang fullname: Zhang, Xuewei – sequence: 8 givenname: Yuchen surname: Bian fullname: Bian, Yuchen |
BookMark | eNp9UU1v1DAQjVArUdr-Ai6WuHAJ2LFjO8dlYaHSspVKOVsTe7LyKo2D7VTw73G7IKEKdXyY8dN7T_PxqjqZwoRV9ZrRd5x39D3so7fLmJeIrKHlCf2iOmuoUjUVqjn5p35ZXaZ0oCU6xjWVZ9XPFdmFexzJdX9Am8lHzCX5MJGvwRX4AyR0pHw3kDJGclOvdzsyhEi-zcGFuWBAhrjs_YzRAVlZG6Lz057kQDaIj-VtBIskDGQd4kS2CPeYLqrTAcaEl3_yefV98-l2_aXeXn--Wq-2tRUNyzWXQ8fB9bqXraQapOKgFG8Yc7JjOKBiyra9lZbStmesFU43g-1AQdu0aPl5dXX0dQEOZo7-DuIvE8CbRyDEvYGYvR3RKI1CagW0t0z0rdaImjrXAxuQYwfF6-3Ra47hx4IpmzufLI4jTBiWZBoptBYtpU2hvnlCPYQlTmXSwirtCyVbUVjdkWVjSCniYKzP8LD-HMGPhlHzcGLznxMXLX-i_Tvcc6rfryau4w |
CitedBy_id | crossref_primary_10_3390_agriculture14091567 crossref_primary_10_1007_s13744_024_01146_5 crossref_primary_10_3390_s24144448 crossref_primary_10_1080_17538947_2022_2163514 crossref_primary_10_3390_horticulturae8060520 crossref_primary_10_1155_2022_1759542 crossref_primary_10_3389_fpls_2023_1268167 crossref_primary_10_3390_agronomy13041158 crossref_primary_10_1016_j_compag_2022_107204 crossref_primary_10_3390_agriculture13091664 crossref_primary_10_3389_fpls_2023_1204569 crossref_primary_10_1038_s41598_024_56142_x crossref_primary_10_3390_agriculture12122160 crossref_primary_10_1007_s11554_024_01505_w crossref_primary_10_1016_j_ecolind_2022_109698 crossref_primary_10_1016_j_indic_2023_100285 crossref_primary_10_1021_acsagscitech_4c00633 crossref_primary_10_1007_s11042_023_16578_1 crossref_primary_10_1016_j_compag_2024_109120 crossref_primary_10_3390_pr12091833 crossref_primary_10_1109_ACCESS_2023_3343566 crossref_primary_10_1109_JSTARS_2024_3497576 crossref_primary_10_3390_agriengineering5040145 crossref_primary_10_1109_ACCESS_2022_3184110 crossref_primary_10_3390_app131810441 crossref_primary_10_1016_j_compag_2023_108515 |
Cites_doi | 10.1016/j.biosystemseng.2015.11.005 10.3390/s18061901 10.1109/CAC.2018.8623234 10.1016/j.compag.2019.105174 10.1186/s13007-019-0475-z 10.1016/j.rse.2013.01.002 10.1016/j.compag.2018.03.032 10.1094/PDIS-04-10-0256 10.1007/978-3-030-10728-4_11 10.3390/rs9040308 10.1002/ps.4003 10.1016/j.compag.2012.08.008 10.1016/j.compag.2018.02.016 10.2135/tppj2019.03.0006 10.1016/j.compag.2017.08.005 10.1094/PDIS-03-15-0340-FE 10.3390/f6030594 10.3389/fpls.2018.01162 10.1007/s13593-014-0246-1 10.1109/CCECE.2017.7946594 10.1002/ps.6098 10.1080/23311932.2019.1641902 10.1109/ACCESS.2018.2844405 10.1016/j.biosystemseng.2018.02.008 10.3390/insects11110805 10.3390/s18030868 10.3390/rs70302971 10.1007/s13355-019-00642-0 10.1002/ps.5845 10.1155/2017/2917536 10.3390/s17092022 10.1016/j.compag.2020.105222 10.1109/LGRS.2017.2743715 10.1016/j.neucom.2017.06.023 10.1186/s13007-015-0048-8 10.1111/jen.12565 10.1038/s41598-019-43171-0 10.1016/j.jaridenv.2019.02.005 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 DOA |
DOI | 10.3390/agriculture12020248 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_78e4687a0bc14b588ee80ddba1fe3e9a 10_3390_agriculture12020248 |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c421t-36f93adb8b65608a673a773211d691efe717c5bc6c005b1154d82fc9a7a525ec3 |
IEDL.DBID | BENPR |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:26:49 EDT 2025 Fri Jul 11 05:42:21 EDT 2025 Mon Jun 30 06:27:00 EDT 2025 Tue Jul 01 02:12:43 EDT 2025 Thu Apr 24 22:52:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-36f93adb8b65608a673a773211d691efe717c5bc6c005b1154d82fc9a7a525ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4342-6293 |
OpenAccessLink | https://www.proquest.com/docview/2632147654?pq-origsite=%requestingapplication% |
PQID | 2632147654 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_78e4687a0bc14b588ee80ddba1fe3e9a proquest_miscellaneous_2648845002 proquest_journals_2632147654 crossref_citationtrail_10_3390_agriculture12020248 crossref_primary_10_3390_agriculture12020248 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhang (ref_29) 2016; 72 Assefa (ref_43) 2019; 5 Kamilaris (ref_6) 2018; 147 ref_13 ref_35 Hayashi (ref_8) 2019; 54 Lu (ref_15) 2017; 267 Wang (ref_12) 2017; 2017 Mirik (ref_25) 2011; 95 Cheng (ref_19) 2017; 141 ref_39 Wang (ref_22) 2020; 169 Selvaraj (ref_16) 2019; 15 Bateman (ref_2) 2018; 142 Sarkowi (ref_4) 2021; 32 Sousa (ref_30) 2015; 38 Wen (ref_9) 2012; 89 Too (ref_11) 2019; 161 Wang (ref_10) 2018; 51 Wu (ref_38) 2019; 2 Zhang (ref_14) 2018; 6 ref_23 Escorihuela (ref_32) 2018; 11 Liu (ref_7) 2016; 141 Martinelli (ref_26) 2015; 35 Liebisch (ref_36) 2015; 11 ref_20 ref_41 ref_1 Tetila (ref_37) 2017; 14 Roosjen (ref_40) 2020; 76 Deng (ref_18) 2018; 169 Li (ref_21) 2020; 169 Salvador (ref_33) 2019; 164 ref_28 Lehmann (ref_31) 2015; 6 ref_27 Matese (ref_42) 2015; 7 Meddens (ref_34) 2013; 132 Mahlein (ref_3) 2016; 100 Bieganowski (ref_5) 2021; 77 Li (ref_17) 2019; 9 Fuentes (ref_24) 2018; 9 |
References_xml | – volume: 141 start-page: 82 year: 2016 ident: ref_7 article-title: Detection of aphids in wheat fields using a computer vision technique publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2015.11.005 – ident: ref_27 doi: 10.3390/s18061901 – ident: ref_39 doi: 10.1109/CAC.2018.8623234 – volume: 169 start-page: 105174 year: 2020 ident: ref_21 article-title: Crop pest recognition in natural scenes using convolutional neural networks publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105174 – volume: 15 start-page: 92 year: 2019 ident: ref_16 article-title: AI-powered banana diseases and pest detection publication-title: Plant Methods doi: 10.1186/s13007-019-0475-z – volume: 132 start-page: 49 year: 2013 ident: ref_34 article-title: Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.002 – volume: 161 start-page: 272 year: 2019 ident: ref_11 article-title: A comparative study of fine-tuning deep learning models for plant disease identification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.032 – volume: 95 start-page: 4 year: 2011 ident: ref_25 article-title: Satellite remote sensing of wheat infected by wheat streak mosaic virus publication-title: Plant Dis. doi: 10.1094/PDIS-04-10-0256 – ident: ref_20 doi: 10.1007/978-3-030-10728-4_11 – ident: ref_41 doi: 10.3390/rs9040308 – volume: 32 start-page: 27 year: 2021 ident: ref_4 article-title: The Fall Armyworm (faw) Spodoptera frugiperda: A Review on Biology, Life History, Invasion, Dispersion and Control publication-title: Outlooks Pest Manag. – volume: 38 start-page: 40 year: 2015 ident: ref_30 article-title: Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 72 start-page: 335 year: 2016 ident: ref_29 article-title: Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale publication-title: Pest Manag. Sci. doi: 10.1002/ps.4003 – volume: 89 start-page: 110 year: 2012 ident: ref_9 article-title: Image-based orchard insect automated identification and classification method publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2012.08.008 – volume: 147 start-page: 70 year: 2018 ident: ref_6 article-title: Deep learning in agriculture: A survey publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.016 – volume: 2 start-page: 1 year: 2019 ident: ref_38 article-title: Autonomous detection of plant disease symptoms directly from aerial imagery publication-title: Plant Phenome J. doi: 10.2135/tppj2019.03.0006 – volume: 141 start-page: 351 year: 2017 ident: ref_19 article-title: Pest identification via deep residual learning in complex background publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.08.005 – volume: 100 start-page: 241 year: 2016 ident: ref_3 article-title: Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping publication-title: Plant Dis. doi: 10.1094/PDIS-03-15-0340-FE – ident: ref_35 – volume: 6 start-page: 594 year: 2015 ident: ref_31 article-title: Analysis of Unmanned Aerial System-Based CIR Images in Forestry—A New Perspective to Monitor Pest Infestation Levels publication-title: Forests doi: 10.3390/f6030594 – volume: 9 start-page: 1162 year: 2018 ident: ref_24 article-title: High-Performance Deep Neural Network-Based Tomato Plant Diseases and Pests Diagnosis System With Refinement Filter Bank publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01162 – volume: 35 start-page: 1 year: 2015 ident: ref_26 article-title: Advanced methods of plant disease detection. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0246-1 – ident: ref_13 doi: 10.1109/CCECE.2017.7946594 – volume: 77 start-page: 1109 year: 2021 ident: ref_5 article-title: Sensor-based outdoor monitoring of insects in arable crops for their precise control publication-title: Pest Manag. Sci. doi: 10.1002/ps.6098 – volume: 5 start-page: 1641902 year: 2019 ident: ref_43 article-title: Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review publication-title: Cogent Food Agric. doi: 10.1080/23311932.2019.1641902 – volume: 6 start-page: 30370 year: 2018 ident: ref_14 article-title: Identification of maize leaf diseases using improved deep convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2844405 – volume: 169 start-page: 139 year: 2018 ident: ref_18 article-title: Research on insect pest image detection and recognition based on bio-inspired methods publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.02.008 – ident: ref_1 doi: 10.3390/insects11110805 – ident: ref_28 doi: 10.3390/s18030868 – volume: 7 start-page: 2971 year: 2015 ident: ref_42 article-title: Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture publication-title: Remote Sens. doi: 10.3390/rs70302971 – volume: 51 start-page: 85 year: 2018 ident: ref_10 article-title: A cognitive vision method for insect pest image segmentation publication-title: IFAC-PapersOnLine – volume: 54 start-page: 487 year: 2019 ident: ref_8 article-title: Automated machine learning for identification of pest aphid species (Hemiptera: Aphididae) publication-title: Appl. Entomol. Zool. doi: 10.1007/s13355-019-00642-0 – volume: 76 start-page: 2994 year: 2020 ident: ref_40 article-title: Deep learning for automated detection of Drosophila suzukii: Potential for UAV-based monitoring publication-title: Pest Manag. Sci. doi: 10.1002/ps.5845 – volume: 2017 start-page: 2917536 year: 2017 ident: ref_12 article-title: Automatic image-based plant disease severity estimation using deep learning publication-title: Comput. Intell. Neurosci. doi: 10.1155/2017/2917536 – ident: ref_23 doi: 10.3390/s17092022 – volume: 169 start-page: 105222 year: 2020 ident: ref_22 article-title: Fusing multi-scale context-aware information representation for automatic in-field pest detection and recognition publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105222 – volume: 14 start-page: 2190 year: 2017 ident: ref_37 article-title: Identification of soybean foliar diseases using unmanned aerial vehicle images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2743715 – volume: 267 start-page: 378 year: 2017 ident: ref_15 article-title: Identification of rice diseases using deep convolutional neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.023 – volume: 11 start-page: 9 year: 2015 ident: ref_36 article-title: Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach publication-title: Plant Methods doi: 10.1186/s13007-015-0048-8 – volume: 142 start-page: 805 year: 2018 ident: ref_2 article-title: Assessment of potential biopesticide options for managing fall armyworm (Spodoptera frugiperda) in Africa publication-title: J. Appl. Entomol. doi: 10.1111/jen.12565 – volume: 9 start-page: 7024 year: 2019 ident: ref_17 article-title: Automatic localization and count of agricultural crop pests based on an improved deep learning pipeline publication-title: Sci. Rep. doi: 10.1038/s41598-019-43171-0 – volume: 164 start-page: 29 year: 2019 ident: ref_33 article-title: Desert locust detection using Earth observation satellite data in Mauritania publication-title: J. Arid. Environ. doi: 10.1016/j.jaridenv.2019.02.005 – volume: 11 start-page: 140 year: 2018 ident: ref_32 article-title: SMOS based high resolution soil moisture estimates for desert locust preventive management publication-title: Remote Sens. Appl. Soc. Environ. |
SSID | ssj0000913806 |
Score | 2.3976836 |
Snippet | The conventional method for crop insect detection based on visual judgment of the field is time-consuming, laborious, subjective, and error prone. The early... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 248 |
SubjectTerms | Ablation Accuracy agriculture Cereal crops Classification Color imagery Convolution Corn Costs Crop diseases Crop production Crop yield Crops data collection Datasets Deep learning Deformation effects Error detection Feeding Formability Generalized linear models Image acquisition Insects juveniles Laboratories Localization Machine learning maize Spodoptera frugiperda migratory behavior Model accuracy Monitoring object detection Object recognition Pest control Pests Plant diseases Remote sensing rice Spodoptera frugiperda Unmanned aerial vehicles Vegetation Visual fields |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPMXSFg0SR6KuY8dxjtuFVYVgkYBKvUVje1whrZJVmq34-R0n6VIEggu3PJzImtc3k9jfCPEmpL6PDlWGkb1JOx0zV7kyw1LlhY_K09Ab8NPanJ3rDxfFxZ1WX2lN2EgPPArupLSkjS1x7rzUrrCWyM5DcCgjKaqG1Igx704xNcTgSio7NyPNkOK6_gQvu4nMgiQX_InK6xcoGhj7fwvIA8qsHomHU3oIi3Faj8U9ap6IB4ufb30qfixg3V7TBj679A0F3lE_LKdqIPU128Ap41IAPl1hIkGAL9lyvQbOTeHrlmvQbdpyDLHbXX7fUhcQUr-ILiEY9C2sRjADhjBP0EZYtl0DHwmv6eqZOF-9_7Y8y6b-CZnXuewzZWKlMDjrEsOORVMqLFkHUgZTSYrEpZwvnDeeXdElXp5g8-grLLHIC_LquTho2oZeCAhOSa-cijZHbfjIcd6EASvikODRz0R-K8raT-TiqcfFpuYiI8m__oP8Z-Lt_qHtyK3x9-GnSUf7oYkYe7jA5lJP5lL_y1xm4uhWw_XkrVd14qyXujSFnonX-9vsZ-nnCTbU7tIYDnW6YAB5-T_mcSju52kjxbD--0gc9N2Ojjm96d2rwZJvAGSz_AQ priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel Object Detection Model Based on Faster R-CNN for Spodoptera frugiperda According to Feeding Trace of Corn Leaves |
URI | https://www.proquest.com/docview/2632147654 https://www.proquest.com/docview/2648845002 https://doaj.org/article/78e4687a0bc14b588ee80ddba1fe3e9a |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLegu8AB8SnKxmQkjkRrYidxTqgtqyYEBQ0m7RY92y8VUpWENJ325_Ne6nZCoN2S2PHBz-_T9u8nxHvPvI8WVAQVaZO2uopsYfMIcpWkrlIOB27Ar8vs4kp_vk6vQ8FtE45V7m3iYKh947hGfsa44rHOs1R_bH9HzBrFu6uBQuOhOCITbMxIHM3Ol98vD1UWRr00k2wHN6Qovz-DVRdALTCmxJ8hvf5ySQNy_z-GefA2i6fiSQgT5XQn12fiAdbPxePp3agvxO1ULpsbXMtvlmsp8hP2w7GqWjK_2VrOyD95Sa8LYDAEeRnNl0tJMar80VIu2vLVY1l129WvFjsPknkjOvZksm_kYufUJLkyh7Kp5LzpavkF4QY3L8XV4vzn_CIKPAqR00ncRyqrCgXeGstIOwayXEFOsohjnxUxVkgpnUutyxyppGV8Hm-SyhWQQ5qk6NQrMaqbGl8L6a2KnbKqMgnojJ4sxU_goUAyDQ7cWCT7qSxdABlnrot1SckGz3_5n_kfiw-Hn9odxsb93Wcso0NXBsgePjTdqgz6VuYGdWZymFgXa5sag2gm3luIK1RYwFic7CVcBq3dlHdrbCzeHZpJ33gTBWpsttyHTJ5OyZG8uX-IY_Eo4asSwwnvEzHquy2-pQCmt6dhlZ4OBYA_Rs70kw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6V9AAcEKsIFBgkuGE1nhlvB4SStFFKU4NKK_VmZnmOkCI7OE6BP8Vv5D3HTpFAvfXmZTyy3rx1lu9j7I0j3kejpadztCZlVO6ZxESejqQIbC4tNNyAJ2k4PVcfL4KLHfa7OwtD2yo7n9g4aldamiPfJ1xxX0VhoD4sv3vEGkWrqx2FxkYtjuHXDyzZVu-PDnB83woxOTwbT72WVcCzSvi1J8M8kdqZ2BDuTKzDSOoI_8z3XZj4kAMWODYwNrSooIbQalwscpvoSAciACux31tsV8lwIHpsd3SYfj7dzuoQymY8CDfwRlImg309r1oQDfAF5maCmIb-CoENU8A_gaCJbpP77F6blvLhRo8esB0oHrK7w6teH7GfQ56Wl7DgnwzN3fADqJttXAUnPrUFH2E8dBxvJ5rAF_ipN05Tjjkx_7LE2ndJR515Xq3n35ZQOc2Jp6KiyMnrkk82QZRj6LTAy5yPy6rgM9CXsHrMzm9Ewk9YrygLeMq4M9K30sg8FlqFeGUwX9NOJ4CuyGrbZ6ITZWZbUHPi1lhkWNyQ_LP_yL_P3m0_Wm4wPa5vPqIx2jYlQO7mQVnNs9a-sygGFcaRHhjrKxPEMUA8cM5oPwcJie6zvW6Es9ZLrLIrne6z19vXaN-0aKMLKNfUBl2sCjBwPbu-i1fs9vTsZJbNjtLj5-yOoGMaze7yPdarqzW8wOSpNi9bjeXs600byR8ETy_k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVEJwQKwiUGCQ4IaVeMbrAaEstVpaTFWo1Js7y5sIKbKD4xT4a_w63nOcFAnUW29exiPrzVtn-T7G3ljifdRKesqhNQU6cJ5OdeypWIrQOGmg5Qb8lEcHZ8HH8_B8h_3enIWhbZUbn9g6alsZmiMfEK64H8RRGAxcty3iZJp9WHz3iEGKVlo3dBprFTmCXz-wfFu-P5ziWL8VItv_OjnwOoYBzwTCbzwZuVQqqxNNGDSJimKpYvxL37dR6oMDLHZMqE1kUFk1IdfYRDiTqliFIgQjsd9bbDemqqjHdsf7-cnpdoaHEDeTYbSGOpIyHQ7UrO4ANcAXmKcJYh36Kxy2rAH_BIU20mX32b0uReWjtU49YDtQPmR3R1e9PmI_RzyvLmHOP2uax-FTaNotXSUnbrU5H2NstBxvM0VADPzUm-Q5x_yYf1lgHbygY8_c1avZtwXUVnHirKgpivKm4tk6oHIMowZ45fikqkt-DOoSlo_Z2Y1I-AnrlVUJTxm3WvpGaukSoYIIrzTmbsqqFNAtGWX6TGxEWZgO4Jx4NuYFFjok_-I_8u-zd9uPFmt8j-ubj2mMtk0JnLt9UNWzorP1Ik4giJJYDbXxAx0mCUAytFYr34GEVPXZ3maEi85jLIsr_e6z19vXaOu0gKNKqFbUBt1tEGIQe3Z9F6_YbTSO4vgwP3rO7gg6sdFuNN9jvaZewQvMoxr9slNYzi5u2kb-AONTNBk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Object+Detection+Model+Based+on+Faster+R-CNN+for+Spodoptera+frugiperda+According+to+Feeding+Trace+of+Corn+Leaves&rft.jtitle=Agriculture+%28Basel%29&rft.au=Du%2C+Lei&rft.au=Sun%2C+Yaqin&rft.au=Chen%2C+Shuo&rft.au=Feng%2C+Jiedong&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=12&rft.issue=2&rft.spage=248&rft_id=info:doi/10.3390%2Fagriculture12020248&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |