A Lightweight Attention-Based Convolutional Neural Networks for Tomato Leaf Disease Classification
Plant diseases pose a significant challenge for food production and safety. Therefore, it is indispensable to correctly identify plant diseases for timely intervention to protect crops from massive losses. The application of computer vision technology in phytopathology has increased exponentially du...
Saved in:
Published in | Agriculture (Basel) Vol. 12; no. 2; p. 228 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant diseases pose a significant challenge for food production and safety. Therefore, it is indispensable to correctly identify plant diseases for timely intervention to protect crops from massive losses. The application of computer vision technology in phytopathology has increased exponentially due to automatic and accurate disease detection capability. However, a deep convolutional neural network (CNN) requires high computational resources, limiting its portability. In this study, a lightweight convolutional neural network was designed by incorporating different attention modules to improve the performance of the models. The models were trained, validated, and tested using tomato leaf disease datasets split into an 8:1:1 ratio. The efficacy of the various attention modules in plant disease classification was compared in terms of the performance and computational complexity of the models. The performance of the models was evaluated using the standard classification accuracy metrics (precision, recall, and F1 score). The results showed that CNN with attention mechanism improved the interclass precision and recall, thus increasing the overall accuracy (>1.1%). Moreover, the lightweight model significantly reduced network parameters (~16 times) and complexity (~23 times) compared to the standard ResNet50 model. However, amongst the proposed lightweight models, the model with attention mechanism nominally increased the network complexity and parameters compared to the model without attention modules, thereby producing better detection accuracy. Although all the attention modules enhanced the performance of CNN, the convolutional block attention module (CBAM) was the best (average accuracy 99.69%), followed by the self-attention (SA) mechanism (average accuracy 99.34%). |
---|---|
AbstractList | Plant diseases pose a significant challenge for food production and safety. Therefore, it is indispensable to correctly identify plant diseases for timely intervention to protect crops from massive losses. The application of computer vision technology in phytopathology has increased exponentially due to automatic and accurate disease detection capability. However, a deep convolutional neural network (CNN) requires high computational resources, limiting its portability. In this study, a lightweight convolutional neural network was designed by incorporating different attention modules to improve the performance of the models. The models were trained, validated, and tested using tomato leaf disease datasets split into an 8:1:1 ratio. The efficacy of the various attention modules in plant disease classification was compared in terms of the performance and computational complexity of the models. The performance of the models was evaluated using the standard classification accuracy metrics (precision, recall, and F1 score). The results showed that CNN with attention mechanism improved the interclass precision and recall, thus increasing the overall accuracy (>1.1%). Moreover, the lightweight model significantly reduced network parameters (~16 times) and complexity (~23 times) compared to the standard ResNet50 model. However, amongst the proposed lightweight models, the model with attention mechanism nominally increased the network complexity and parameters compared to the model without attention modules, thereby producing better detection accuracy. Although all the attention modules enhanced the performance of CNN, the convolutional block attention module (CBAM) was the best (average accuracy 99.69%), followed by the self-attention (SA) mechanism (average accuracy 99.34%). |
Author | Kim, Na-Eun Kim, Hyeon-Tae Arulmozhi, Elanchezhian Bhujel, Anil Basak, Jayanta Kumar |
Author_xml | – sequence: 1 givenname: Anil surname: Bhujel fullname: Bhujel, Anil – sequence: 2 givenname: Na-Eun surname: Kim fullname: Kim, Na-Eun – sequence: 3 givenname: Elanchezhian surname: Arulmozhi fullname: Arulmozhi, Elanchezhian – sequence: 4 givenname: Jayanta Kumar surname: Basak fullname: Basak, Jayanta Kumar – sequence: 5 givenname: Hyeon-Tae orcidid: 0000-0003-0788-1536 surname: Kim fullname: Kim, Hyeon-Tae |
BookMark | eNp9kU2LFDEQhhtZwXXdX-ClwYuX1nx1J30cx6-FQS_rOVSSypgx01mTtIv_3u4ZBVnEFKSK4nlfqKqnzcWUJmya55S84nwkr2Gfg51jnTNSRpZg6lFzyYiUHRGSXfxVP2muSzmQ5Y2UKzJcNmbT7sL-a73H9W83teJUQ5q6N1DQtds0_UhxXjsQ208451Oq9yl_K61Pub1NR6ip3SH49m0ouMjabYRSgg8WVuGz5rGHWPD6d75qvrx_d7v92O0-f7jZbnadFYzWjhnbe26poJZI4LKXjMJIVD-MTqITAr1DY4BwpYihRhkcemuN454SNyK_am7Ovi7BQd_lcIT8UycI-tRIea8h12AjasmV60FJypQT1gnw1oM0YhC99IqZxevl2esup-8zlqqPoViMESZMc9FsEEqJngxiQV88QA9pzsu6VoozKuRA2UKNZ8rmVEpGr22op_XUDCFqSvR6TP2PYy5a_kD7Z7j_qX4BeUepkQ |
CitedBy_id | crossref_primary_10_3390_su14148915 crossref_primary_10_1007_s13369_024_09192_2 crossref_primary_10_1098_rsta_2022_0169 crossref_primary_10_3390_app12168182 crossref_primary_10_1007_s11042_024_18867_9 crossref_primary_10_3390_agriculture14010142 crossref_primary_10_1016_j_compag_2025_110128 crossref_primary_10_3390_agronomy12102487 crossref_primary_10_3390_agriculture13030737 crossref_primary_10_1007_s00521_024_10409_6 crossref_primary_10_3390_electronics12214431 crossref_primary_10_1016_j_mex_2025_103159 crossref_primary_10_3390_agronomy14102227 crossref_primary_10_1016_j_jksuci_2023_101669 crossref_primary_10_1016_j_heliyon_2024_e34845 crossref_primary_10_1155_2022_1759542 crossref_primary_10_1007_s00521_024_10454_1 crossref_primary_10_3390_agriculture12101727 crossref_primary_10_1007_s00521_024_09488_2 crossref_primary_10_1371_journal_pone_0273057 crossref_primary_10_15625_2525_2518_18914 crossref_primary_10_1016_j_compag_2024_108722 crossref_primary_10_3389_fpls_2023_1120724 crossref_primary_10_1109_ACCESS_2022_3200688 crossref_primary_10_31857_S2500208224010121 crossref_primary_10_3390_s22155866 crossref_primary_10_1007_s10489_023_04583_8 crossref_primary_10_3390_jimaging9020053 crossref_primary_10_3390_electronics11193174 crossref_primary_10_1016_j_rineng_2025_103922 crossref_primary_10_3390_asi6010027 crossref_primary_10_3390_plants11212935 crossref_primary_10_3390_s23218685 crossref_primary_10_1142_S0218001422570063 crossref_primary_10_3390_electronics12040827 crossref_primary_10_3390_s22166079 crossref_primary_10_3390_su15043343 crossref_primary_10_1007_s10462_023_10610_4 crossref_primary_10_1111_jph_13423 crossref_primary_10_1016_j_ins_2024_120338 crossref_primary_10_3389_fpls_2023_1230886 crossref_primary_10_3389_fpls_2023_1251888 crossref_primary_10_3390_agriculture12081084 crossref_primary_10_3389_fpls_2024_1445418 crossref_primary_10_3390_horticulturae9091034 crossref_primary_10_3390_agriculture13061140 crossref_primary_10_3103_S1060992X23040100 crossref_primary_10_1016_j_eja_2024_127400 crossref_primary_10_1109_TAI_2023_3307662 crossref_primary_10_3390_app12125919 crossref_primary_10_1038_s41598_022_21498_5 crossref_primary_10_1155_2022_6504616 crossref_primary_10_1080_14498596_2024_2355225 crossref_primary_10_1016_j_dcan_2025_03_005 crossref_primary_10_1109_ACCESS_2024_3492037 crossref_primary_10_3390_electronics11081266 crossref_primary_10_1007_s11042_024_19858_6 crossref_primary_10_3390_agronomy15010195 crossref_primary_10_1371_journal_pone_0286732 crossref_primary_10_3389_fpls_2023_1330527 crossref_primary_10_3390_agriculture12101623 crossref_primary_10_1371_journal_pone_0315031 crossref_primary_10_3390_rs15051181 crossref_primary_10_3390_app13084928 crossref_primary_10_3389_fpls_2024_1467811 crossref_primary_10_3389_fpls_2022_957961 crossref_primary_10_3390_horticulturae9020149 crossref_primary_10_3390_computers13120323 crossref_primary_10_3390_computation11020020 crossref_primary_10_5423_PPJ_OA_02_2023_0034 crossref_primary_10_1049_ipr2_13094 crossref_primary_10_1109_TNSE_2024_3350640 crossref_primary_10_3390_plants13121621 crossref_primary_10_1109_ACCESS_2023_3320686 crossref_primary_10_1109_ACCESS_2024_3401733 crossref_primary_10_1016_j_compag_2022_106915 crossref_primary_10_1080_00051144_2023_2241792 crossref_primary_10_1016_j_compag_2025_110071 crossref_primary_10_3390_s23073751 crossref_primary_10_1016_j_compag_2022_107407 |
Cites_doi | 10.1007/BF00344251 10.1145/3065386 10.1109/CVPR.2016.90 10.3390/s21237987 10.1007/s00217-012-1844-2 10.1080/08839514.2017.1315516 10.3390/agriculture11070651 10.3906/elk-2105-115 10.1007/s41348-022-00578-8 10.1007/978-3-030-01234-2_1 10.1155/2018/6710865 10.3389/fpls.2016.01419 10.1109/CVPR.2019.00326 10.1155/2017/2917536 10.1016/j.biosystemseng.2016.01.017 10.3389/fpls.2020.601250 10.1016/j.compag.2020.105341 10.1016/j.procs.2018.07.070 10.1016/j.compag.2021.106279 10.1016/j.compag.2018.01.009 10.1109/TPAMI.2019.2913372 10.1016/j.compag.2020.105951 10.1109/IC3.2018.8530532 10.1162/neco.1989.1.4.541 10.3390/app10041245 10.3389/fpls.2020.600854 10.34133/2019/9237136 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 DOA |
DOI | 10.3390/agriculture12020228 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_738d5a87128d4cd4afcfa7b46457f82b 10_3390_agriculture12020228 |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c421t-2bc5f3c141c07a375721a908569d7ed44efdebba03880b1b8be65ccbd3f10d9e3 |
IEDL.DBID | BENPR |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:03:49 EDT 2025 Fri Jul 11 02:00:33 EDT 2025 Mon Jun 30 12:27:40 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Tue Jul 01 02:12:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-2bc5f3c141c07a375721a908569d7ed44efdebba03880b1b8be65ccbd3f10d9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0788-1536 |
OpenAccessLink | https://www.proquest.com/docview/2632147612?pq-origsite=%requestingapplication% |
PQID | 2632147612 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_738d5a87128d4cd4afcfa7b46457f82b proquest_miscellaneous_2648845064 proquest_journals_2632147612 crossref_citationtrail_10_3390_agriculture12020228 crossref_primary_10_3390_agriculture12020228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 ref_35 ref_33 ref_10 Zhang (ref_34) 2018; 2018 ref_31 Krizhevsky (ref_7) 2017; 60 ref_30 Lee (ref_17) 2020; 11 Garcia (ref_9) 2016; 144 ref_18 Rangarajan (ref_22) 2018; 133 Liu (ref_2) 2020; 11 ref_15 Zeng (ref_16) 2020; 172 Brahimi (ref_21) 2017; 31 Fukushima (ref_5) 1980; 36 Le (ref_36) 2021; 181 Abbas (ref_32) 2021; 187 Yilma (ref_19) 2021; 29 ref_24 Wang (ref_3) 2017; 2017 ref_23 Ramamurthy (ref_37) 2019; 86 Toda (ref_11) 2019; 2019 LeCun (ref_6) 1989; 1 ref_1 ref_29 ref_28 ref_27 Gomes (ref_8) 2012; 235 ref_26 Ferentinos (ref_13) 2018; 145 Yang (ref_20) 2020; 11 Hu (ref_25) 2020; 42 Mohanty (ref_12) 2016; 7 ref_4 |
References_xml | – ident: ref_28 – ident: ref_30 – volume: 36 start-page: 193 year: 1980 ident: ref_5 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. doi: 10.1007/BF00344251 – volume: 60 start-page: 84 year: 2017 ident: ref_7 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: ref_24 doi: 10.1109/CVPR.2016.90 – ident: ref_35 doi: 10.3390/s21237987 – volume: 86 start-page: 105933 year: 2019 ident: ref_37 article-title: Attention embedded residual CNN for disease detection in tomato leaves publication-title: Appl. Soft Comput. J. – volume: 235 start-page: 989 year: 2012 ident: ref_8 article-title: Applications of computer vision techniques in the agriculture and food industry: A review publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-012-1844-2 – volume: 31 start-page: 299 year: 2017 ident: ref_21 article-title: Deep Learning for Tomato Diseases: Classification and Symptoms Visualization publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2017.1315516 – ident: ref_18 doi: 10.3390/agriculture11070651 – ident: ref_14 – volume: 29 start-page: 2869 year: 2021 ident: ref_19 article-title: Attention augmented residual network for tomato disease detection and classification publication-title: Turkish J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-2105-115 – ident: ref_1 – ident: ref_10 doi: 10.1007/s41348-022-00578-8 – ident: ref_15 doi: 10.1007/978-3-030-01234-2_1 – volume: 2018 start-page: 6710865 year: 2018 ident: ref_34 article-title: Can deep learning identify tomato leaf disease? publication-title: Adv. Multimed. doi: 10.1155/2018/6710865 – volume: 7 start-page: 1 year: 2016 ident: ref_12 article-title: Using deep learning for image-based plant disease detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01419 – ident: ref_26 doi: 10.1109/CVPR.2019.00326 – volume: 2017 start-page: 2917536 year: 2017 ident: ref_3 article-title: Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning publication-title: Comput. Intell. Neurosci. doi: 10.1155/2017/2917536 – volume: 144 start-page: 52 year: 2016 ident: ref_9 article-title: A review on the main challenges in automatic plant disease identification based on visible range images publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.01.017 – volume: 11 start-page: 1 year: 2020 ident: ref_17 article-title: Attention-Based Recurrent Neural Network for Plant Disease Classification publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.601250 – ident: ref_4 – ident: ref_31 – volume: 172 start-page: 105341 year: 2020 ident: ref_16 article-title: Crop leaf disease recognition based on Self-Attention convolutional neural network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105341 – ident: ref_29 – ident: ref_27 – volume: 133 start-page: 1040 year: 2018 ident: ref_22 article-title: Tomato crop disease classification using pre-trained deep learning algorithm publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.07.070 – volume: 187 start-page: 106279 year: 2021 ident: ref_32 article-title: Tomato plant disease detection using transfer learning with C-GAN synthetic images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106279 – volume: 145 start-page: 311 year: 2018 ident: ref_13 article-title: Deep learning models for plant disease detection and diagnosis publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.01.009 – volume: 42 start-page: 2011 year: 2020 ident: ref_25 article-title: Squeeze-and-Excitation Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2913372 – volume: 181 start-page: 105951 year: 2021 ident: ref_36 article-title: Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105951 – ident: ref_23 doi: 10.1109/IC3.2018.8530532 – volume: 1 start-page: 541 year: 1989 ident: ref_6 article-title: Backpropagation applied to digit recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 11 start-page: 1 year: 2020 ident: ref_2 article-title: Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network publication-title: Front. Plant Sci. – ident: ref_33 doi: 10.3390/app10041245 – volume: 11 start-page: 1 year: 2020 ident: ref_20 article-title: Fine-Grained Image Classification for Crop Disease Based on Attention Mechanism publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.600854 – volume: 2019 start-page: 9237136 year: 2019 ident: ref_11 article-title: How Convolutional Neural Networks Diagnose Plant Disease publication-title: Plant Phenomics doi: 10.34133/2019/9237136 |
SSID | ssj0000913806 |
Score | 2.5381937 |
Snippet | Plant diseases pose a significant challenge for food production and safety. Therefore, it is indispensable to correctly identify plant diseases for timely... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 228 |
SubjectTerms | Accuracy agriculture Artificial neural networks attention module Classification Complexity Computer applications Computer vision convolutional neural networks Data collection Datasets Deep learning Design Disease detection foliar diseases Food production Food safety Leaves lightweight network Mathematical models Modules Neural networks Parameters Performance enhancement Plant diseases plant pathology Plant protection Recall tomato disease Tomatoes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EoyEiMRK1jJ47HtlBVqDC1UrfITxaUoDaFv8_ZSUsRCBamSIltOefz3Xf26TuEbhxTQiSWRJljPGKAECLFJY2ctCKRWc-YUCXi8Skdz9jDPJlvlfryOWE1PXAtuC6nmYFOHOyoYdow6bSTXPkLOe6yWHnrCz5vK5gKNlgQmvXSmmaIQlzflc-LhszCEgj4Pe3LF1cUGPu_GeTgZUYHaL-Bh7hfT-sQ7djiCO31P0c9RqqPJz6ifg-HmrhfVXXGYjQAh2TwsCzeGnWCgTz3RniEZO8lBoiKpyWg1BJPrHT4rr6fwaE2ps8aCgt1gmaj--lwHDWVEiLNYlJFsdKJo5owonsgaZ5AXCcFoKlUGG4NY9YZq5QM1C-KqEzZNNFaGepIzwhLT1GrKAt7hjCNM6s5iJlzzZwSIPXMxDYFq6mdoEkbxWuh5bqhEffVLF5yCCe8pPMfJN1Gt5tOrzWLxu_NB341Nk09BXZ4AYqRN4qR_6UYbdRZr2Xe7Mtl7tnpCeMA69roevMZdpS_JpGFLVe-DRg15on8zv9jHhdo1_9UnendQa1qsbKXAGQqdRV09gOrDPUt priority: 102 providerName: Directory of Open Access Journals |
Title | A Lightweight Attention-Based Convolutional Neural Networks for Tomato Leaf Disease Classification |
URI | https://www.proquest.com/docview/2632147612 https://www.proquest.com/docview/2648845064 https://doaj.org/article/738d5a87128d4cd4afcfa7b46457f82b |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_q-aIPxbaKZ61soY9dvCSb7Oap3FlFihURBd_Cfvoiid7F-u87s9k7EYtPgWSyLDOzs_PFbwB-BGHquvQZV0FILtBD4Ebqggft61KriXNxSsTf8-r0Wvy5KW9Swm2R2iqXNjEaatdZypEfEq54JjDozn_dP3CaGkXV1TRCYw3W0QQrNYL12fH5xeUqy0Kol2pSDXBDBcb3h_p2nkAtfIaBP8G_vLqSInL_G8Mcb5uTLfiY3EQ2HeT6CT749jNsTl9W_QJmys4osn6KyU027fuhc5HP8GJy7Khr_yW1woUIgyM-YtP3gqGryq469FY7duZ1YL-HOg2LMzKpeygKbBuuT46vjk55mpjArciznufGlqGwmcjsBDkuS4zvdI1eVVU76Z0QPjhvjI4QMCYzyviqtNa4ImQTV_tiB0Zt1_pdYEWuvJVCBymtCKZWTiiX-wqtpw11UY4hXzKtsQlOnKZa3DUYVhCnm_9wegw_Vz_dD2ga75PPSBorUoLCji-6-W2TTlYjC-VQqyTK3wnrcMc2aGmoYiuDys0Y9peybNL5XDQv2jSG76vPeLKoXKJb3z0SDRo3QYB-e-8v8RU2aLtDL_c-jPr5o_-GrkpvDpI-HsRQ_xnS3e5m |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioYCR4EbUxHbi-IDQbh_a0u0Koa3UW_CzF5SU3ZSKP8VvZOwkWyRQbz1F2ngtazyeh2fyfQDvPNdS5i5LSs9FwjFCSLRQLPHKyVyVqbWRJeJkUcxO-eez_GwLfg_fwoS2ysEmRkNtGxPuyHcDrnjGMemmny5-JIE1KlRXBwqNTi2O3a8rTNnWH4_2cX_fU3p4sNybJT2rQGI4zdqEapN7ZjKemRRXJXLMgZTEyKOQVjjLufPWaa0iTIrOdKldkRujLfNZaqVjOO8d2OasSOkItqcHiy9fN7c6AWWzTIsO3ogxme6q81UPouEyirEZDbzvf7nAyBTwjyOI3u3wITzow1Iy6fToEWy5-jHcn1zP-gT0hMxDJn8VL1PJpG27Tslkio7Qkr2m_tmrMU4UMD_iIzaZrwmGxmTZYHTckLlTnux3dSESOTlDt1JUkKdweiuyfAajuqndcyCMls4IrrwQhnstS8tLS12B1tp4yfIx0EFolenhywOLxvcK05gg6eo_kh7Dh82fLjr0jpuHT8NubIYG6O34Q7M6r_qTXAlWWtRigY7dcmNxxcYroUOFWPiS6jHsDHtZ9fZgXV1r7xjebl7jSQ7lGVW75jKMQWPKA4Dgi5uneAN3Z8uTeTU_Why_hHth6V0f-Q6M2tWle4VhUqtf97pJ4NttH4c_DaYrfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFSoFFghtW4vXaax8QSppGLQ1RhVqpN7PPXpBdErcVf41fx8zaTpFAvfVkKd6MVrPz3Bl_A_DeC10UqYuj3AsZCYwQIi1VEnnlilTlY2vDlIivy-zgVHw5S8-24Hf_LQy1VfY2MRhqWxu6Ix8RrngsMOnmI9-1RRzP5p8vfkY0QYoqrf04jVZEjtyva0zf1p8OZ3jWHzif75_sHUTdhIHICB43Edcm9YmJRWzGuEOZYj6kCoxCssJKZ4Vw3jqtVYBM0bHOtctSY7RNfDy2hUuQ7j3YlpQVDWB7ur88_ra54SHEzXyctVBHSVKMR-p81QFquJhjnMZpBvxf7jBMDfjHKQRPN38Mj7oQlU1amXoCW656Cg8nN1SfgZ6wBWX11-FilU2apu2ajKboFC3bq6urTqSREOF_hEdoOF8zDJPZSY2Rcs0WTnk2a2tELMznpM6lICzP4fROePkCBlVduZfAEp47I4XyUhrhdZFbkVvuMrTcxhdJOgTeM600HZQ5TdT4UWJKQ5wu_8PpIXzc_OmiRfK4ffmUTmOzlGC4ww_16rzstLqUSW5RoiU6eSuMxR0br6SmarH0OddD2O3Psuxsw7q8keQhvNu8Rq2mUo2qXH1Ja9CwCgIT3LmdxFu4j2pQLg6XR6_gAe28bSnfhUGzunSvMWJq9JtONBl8v2tt-AOJ7i-y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lightweight+Attention-Based+Convolutional+Neural+Networks+for+Tomato+Leaf+Disease+Classification&rft.jtitle=Agriculture+%28Basel%29&rft.au=Bhujel%2C+Anil&rft.au=Kim%2C+Na-Eun&rft.au=Arulmozhi%2C+Elanchezhian&rft.au=Basak%2C+Jayanta+Kumar&rft.date=2022-02-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=12&rft.issue=2&rft.spage=228&rft_id=info:doi/10.3390%2Fagriculture12020228&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriculture12020228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |