A Lightweight Attention-Based Convolutional Neural Networks for Tomato Leaf Disease Classification

Plant diseases pose a significant challenge for food production and safety. Therefore, it is indispensable to correctly identify plant diseases for timely intervention to protect crops from massive losses. The application of computer vision technology in phytopathology has increased exponentially du...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 12; no. 2; p. 228
Main Authors Bhujel, Anil, Kim, Na-Eun, Arulmozhi, Elanchezhian, Basak, Jayanta Kumar, Kim, Hyeon-Tae
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant diseases pose a significant challenge for food production and safety. Therefore, it is indispensable to correctly identify plant diseases for timely intervention to protect crops from massive losses. The application of computer vision technology in phytopathology has increased exponentially due to automatic and accurate disease detection capability. However, a deep convolutional neural network (CNN) requires high computational resources, limiting its portability. In this study, a lightweight convolutional neural network was designed by incorporating different attention modules to improve the performance of the models. The models were trained, validated, and tested using tomato leaf disease datasets split into an 8:1:1 ratio. The efficacy of the various attention modules in plant disease classification was compared in terms of the performance and computational complexity of the models. The performance of the models was evaluated using the standard classification accuracy metrics (precision, recall, and F1 score). The results showed that CNN with attention mechanism improved the interclass precision and recall, thus increasing the overall accuracy (>1.1%). Moreover, the lightweight model significantly reduced network parameters (~16 times) and complexity (~23 times) compared to the standard ResNet50 model. However, amongst the proposed lightweight models, the model with attention mechanism nominally increased the network complexity and parameters compared to the model without attention modules, thereby producing better detection accuracy. Although all the attention modules enhanced the performance of CNN, the convolutional block attention module (CBAM) was the best (average accuracy 99.69%), followed by the self-attention (SA) mechanism (average accuracy 99.34%).
AbstractList Plant diseases pose a significant challenge for food production and safety. Therefore, it is indispensable to correctly identify plant diseases for timely intervention to protect crops from massive losses. The application of computer vision technology in phytopathology has increased exponentially due to automatic and accurate disease detection capability. However, a deep convolutional neural network (CNN) requires high computational resources, limiting its portability. In this study, a lightweight convolutional neural network was designed by incorporating different attention modules to improve the performance of the models. The models were trained, validated, and tested using tomato leaf disease datasets split into an 8:1:1 ratio. The efficacy of the various attention modules in plant disease classification was compared in terms of the performance and computational complexity of the models. The performance of the models was evaluated using the standard classification accuracy metrics (precision, recall, and F1 score). The results showed that CNN with attention mechanism improved the interclass precision and recall, thus increasing the overall accuracy (>1.1%). Moreover, the lightweight model significantly reduced network parameters (~16 times) and complexity (~23 times) compared to the standard ResNet50 model. However, amongst the proposed lightweight models, the model with attention mechanism nominally increased the network complexity and parameters compared to the model without attention modules, thereby producing better detection accuracy. Although all the attention modules enhanced the performance of CNN, the convolutional block attention module (CBAM) was the best (average accuracy 99.69%), followed by the self-attention (SA) mechanism (average accuracy 99.34%).
Author Kim, Na-Eun
Kim, Hyeon-Tae
Arulmozhi, Elanchezhian
Bhujel, Anil
Basak, Jayanta Kumar
Author_xml – sequence: 1
  givenname: Anil
  surname: Bhujel
  fullname: Bhujel, Anil
– sequence: 2
  givenname: Na-Eun
  surname: Kim
  fullname: Kim, Na-Eun
– sequence: 3
  givenname: Elanchezhian
  surname: Arulmozhi
  fullname: Arulmozhi, Elanchezhian
– sequence: 4
  givenname: Jayanta Kumar
  surname: Basak
  fullname: Basak, Jayanta Kumar
– sequence: 5
  givenname: Hyeon-Tae
  orcidid: 0000-0003-0788-1536
  surname: Kim
  fullname: Kim, Hyeon-Tae
BookMark eNp9kU2LFDEQhhtZwXXdX-ClwYuX1nx1J30cx6-FQS_rOVSSypgx01mTtIv_3u4ZBVnEFKSK4nlfqKqnzcWUJmya55S84nwkr2Gfg51jnTNSRpZg6lFzyYiUHRGSXfxVP2muSzmQ5Y2UKzJcNmbT7sL-a73H9W83teJUQ5q6N1DQtds0_UhxXjsQ208451Oq9yl_K61Pub1NR6ip3SH49m0ouMjabYRSgg8WVuGz5rGHWPD6d75qvrx_d7v92O0-f7jZbnadFYzWjhnbe26poJZI4LKXjMJIVD-MTqITAr1DY4BwpYihRhkcemuN454SNyK_am7Ovi7BQd_lcIT8UycI-tRIea8h12AjasmV60FJypQT1gnw1oM0YhC99IqZxevl2esup-8zlqqPoViMESZMc9FsEEqJngxiQV88QA9pzsu6VoozKuRA2UKNZ8rmVEpGr22op_XUDCFqSvR6TP2PYy5a_kD7Z7j_qX4BeUepkQ
CitedBy_id crossref_primary_10_3390_su14148915
crossref_primary_10_1007_s13369_024_09192_2
crossref_primary_10_1098_rsta_2022_0169
crossref_primary_10_3390_app12168182
crossref_primary_10_1007_s11042_024_18867_9
crossref_primary_10_3390_agriculture14010142
crossref_primary_10_1016_j_compag_2025_110128
crossref_primary_10_3390_agronomy12102487
crossref_primary_10_3390_agriculture13030737
crossref_primary_10_1007_s00521_024_10409_6
crossref_primary_10_3390_electronics12214431
crossref_primary_10_1016_j_mex_2025_103159
crossref_primary_10_3390_agronomy14102227
crossref_primary_10_1016_j_jksuci_2023_101669
crossref_primary_10_1016_j_heliyon_2024_e34845
crossref_primary_10_1155_2022_1759542
crossref_primary_10_1007_s00521_024_10454_1
crossref_primary_10_3390_agriculture12101727
crossref_primary_10_1007_s00521_024_09488_2
crossref_primary_10_1371_journal_pone_0273057
crossref_primary_10_15625_2525_2518_18914
crossref_primary_10_1016_j_compag_2024_108722
crossref_primary_10_3389_fpls_2023_1120724
crossref_primary_10_1109_ACCESS_2022_3200688
crossref_primary_10_31857_S2500208224010121
crossref_primary_10_3390_s22155866
crossref_primary_10_1007_s10489_023_04583_8
crossref_primary_10_3390_jimaging9020053
crossref_primary_10_3390_electronics11193174
crossref_primary_10_1016_j_rineng_2025_103922
crossref_primary_10_3390_asi6010027
crossref_primary_10_3390_plants11212935
crossref_primary_10_3390_s23218685
crossref_primary_10_1142_S0218001422570063
crossref_primary_10_3390_electronics12040827
crossref_primary_10_3390_s22166079
crossref_primary_10_3390_su15043343
crossref_primary_10_1007_s10462_023_10610_4
crossref_primary_10_1111_jph_13423
crossref_primary_10_1016_j_ins_2024_120338
crossref_primary_10_3389_fpls_2023_1230886
crossref_primary_10_3389_fpls_2023_1251888
crossref_primary_10_3390_agriculture12081084
crossref_primary_10_3389_fpls_2024_1445418
crossref_primary_10_3390_horticulturae9091034
crossref_primary_10_3390_agriculture13061140
crossref_primary_10_3103_S1060992X23040100
crossref_primary_10_1016_j_eja_2024_127400
crossref_primary_10_1109_TAI_2023_3307662
crossref_primary_10_3390_app12125919
crossref_primary_10_1038_s41598_022_21498_5
crossref_primary_10_1155_2022_6504616
crossref_primary_10_1080_14498596_2024_2355225
crossref_primary_10_1016_j_dcan_2025_03_005
crossref_primary_10_1109_ACCESS_2024_3492037
crossref_primary_10_3390_electronics11081266
crossref_primary_10_1007_s11042_024_19858_6
crossref_primary_10_3390_agronomy15010195
crossref_primary_10_1371_journal_pone_0286732
crossref_primary_10_3389_fpls_2023_1330527
crossref_primary_10_3390_agriculture12101623
crossref_primary_10_1371_journal_pone_0315031
crossref_primary_10_3390_rs15051181
crossref_primary_10_3390_app13084928
crossref_primary_10_3389_fpls_2024_1467811
crossref_primary_10_3389_fpls_2022_957961
crossref_primary_10_3390_horticulturae9020149
crossref_primary_10_3390_computers13120323
crossref_primary_10_3390_computation11020020
crossref_primary_10_5423_PPJ_OA_02_2023_0034
crossref_primary_10_1049_ipr2_13094
crossref_primary_10_1109_TNSE_2024_3350640
crossref_primary_10_3390_plants13121621
crossref_primary_10_1109_ACCESS_2023_3320686
crossref_primary_10_1109_ACCESS_2024_3401733
crossref_primary_10_1016_j_compag_2022_106915
crossref_primary_10_1080_00051144_2023_2241792
crossref_primary_10_1016_j_compag_2025_110071
crossref_primary_10_3390_s23073751
crossref_primary_10_1016_j_compag_2022_107407
Cites_doi 10.1007/BF00344251
10.1145/3065386
10.1109/CVPR.2016.90
10.3390/s21237987
10.1007/s00217-012-1844-2
10.1080/08839514.2017.1315516
10.3390/agriculture11070651
10.3906/elk-2105-115
10.1007/s41348-022-00578-8
10.1007/978-3-030-01234-2_1
10.1155/2018/6710865
10.3389/fpls.2016.01419
10.1109/CVPR.2019.00326
10.1155/2017/2917536
10.1016/j.biosystemseng.2016.01.017
10.3389/fpls.2020.601250
10.1016/j.compag.2020.105341
10.1016/j.procs.2018.07.070
10.1016/j.compag.2021.106279
10.1016/j.compag.2018.01.009
10.1109/TPAMI.2019.2913372
10.1016/j.compag.2020.105951
10.1109/IC3.2018.8530532
10.1162/neco.1989.1.4.541
10.3390/app10041245
10.3389/fpls.2020.600854
10.34133/2019/9237136
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
DOA
DOI 10.3390/agriculture12020228
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_738d5a87128d4cd4afcfa7b46457f82b
10_3390_agriculture12020228
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c421t-2bc5f3c141c07a375721a908569d7ed44efdebba03880b1b8be65ccbd3f10d9e3
IEDL.DBID BENPR
ISSN 2077-0472
IngestDate Wed Aug 27 01:03:49 EDT 2025
Fri Jul 11 02:00:33 EDT 2025
Mon Jun 30 12:27:40 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Tue Jul 01 02:12:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-2bc5f3c141c07a375721a908569d7ed44efdebba03880b1b8be65ccbd3f10d9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0788-1536
OpenAccessLink https://www.proquest.com/docview/2632147612?pq-origsite=%requestingapplication%
PQID 2632147612
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_738d5a87128d4cd4afcfa7b46457f82b
proquest_miscellaneous_2648845064
proquest_journals_2632147612
crossref_citationtrail_10_3390_agriculture12020228
crossref_primary_10_3390_agriculture12020228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_35
ref_33
ref_10
Zhang (ref_34) 2018; 2018
ref_31
Krizhevsky (ref_7) 2017; 60
ref_30
Lee (ref_17) 2020; 11
Garcia (ref_9) 2016; 144
ref_18
Rangarajan (ref_22) 2018; 133
Liu (ref_2) 2020; 11
ref_15
Zeng (ref_16) 2020; 172
Brahimi (ref_21) 2017; 31
Fukushima (ref_5) 1980; 36
Le (ref_36) 2021; 181
Abbas (ref_32) 2021; 187
Yilma (ref_19) 2021; 29
ref_24
Wang (ref_3) 2017; 2017
ref_23
Ramamurthy (ref_37) 2019; 86
Toda (ref_11) 2019; 2019
LeCun (ref_6) 1989; 1
ref_1
ref_29
ref_28
ref_27
Gomes (ref_8) 2012; 235
ref_26
Ferentinos (ref_13) 2018; 145
Yang (ref_20) 2020; 11
Hu (ref_25) 2020; 42
Mohanty (ref_12) 2016; 7
ref_4
References_xml – ident: ref_28
– ident: ref_30
– volume: 36
  start-page: 193
  year: 1980
  ident: ref_5
  article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_7
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: ref_24
  doi: 10.1109/CVPR.2016.90
– ident: ref_35
  doi: 10.3390/s21237987
– volume: 86
  start-page: 105933
  year: 2019
  ident: ref_37
  article-title: Attention embedded residual CNN for disease detection in tomato leaves
  publication-title: Appl. Soft Comput. J.
– volume: 235
  start-page: 989
  year: 2012
  ident: ref_8
  article-title: Applications of computer vision techniques in the agriculture and food industry: A review
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-012-1844-2
– volume: 31
  start-page: 299
  year: 2017
  ident: ref_21
  article-title: Deep Learning for Tomato Diseases: Classification and Symptoms Visualization
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2017.1315516
– ident: ref_18
  doi: 10.3390/agriculture11070651
– ident: ref_14
– volume: 29
  start-page: 2869
  year: 2021
  ident: ref_19
  article-title: Attention augmented residual network for tomato disease detection and classification
  publication-title: Turkish J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-2105-115
– ident: ref_1
– ident: ref_10
  doi: 10.1007/s41348-022-00578-8
– ident: ref_15
  doi: 10.1007/978-3-030-01234-2_1
– volume: 2018
  start-page: 6710865
  year: 2018
  ident: ref_34
  article-title: Can deep learning identify tomato leaf disease?
  publication-title: Adv. Multimed.
  doi: 10.1155/2018/6710865
– volume: 7
  start-page: 1
  year: 2016
  ident: ref_12
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– ident: ref_26
  doi: 10.1109/CVPR.2019.00326
– volume: 2017
  start-page: 2917536
  year: 2017
  ident: ref_3
  article-title: Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2017/2917536
– volume: 144
  start-page: 52
  year: 2016
  ident: ref_9
  article-title: A review on the main challenges in automatic plant disease identification based on visible range images
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.01.017
– volume: 11
  start-page: 1
  year: 2020
  ident: ref_17
  article-title: Attention-Based Recurrent Neural Network for Plant Disease Classification
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.601250
– ident: ref_4
– ident: ref_31
– volume: 172
  start-page: 105341
  year: 2020
  ident: ref_16
  article-title: Crop leaf disease recognition based on Self-Attention convolutional neural network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105341
– ident: ref_29
– ident: ref_27
– volume: 133
  start-page: 1040
  year: 2018
  ident: ref_22
  article-title: Tomato crop disease classification using pre-trained deep learning algorithm
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.07.070
– volume: 187
  start-page: 106279
  year: 2021
  ident: ref_32
  article-title: Tomato plant disease detection using transfer learning with C-GAN synthetic images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106279
– volume: 145
  start-page: 311
  year: 2018
  ident: ref_13
  article-title: Deep learning models for plant disease detection and diagnosis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.01.009
– volume: 42
  start-page: 2011
  year: 2020
  ident: ref_25
  article-title: Squeeze-and-Excitation Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2913372
– volume: 181
  start-page: 105951
  year: 2021
  ident: ref_36
  article-title: Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105951
– ident: ref_23
  doi: 10.1109/IC3.2018.8530532
– volume: 1
  start-page: 541
  year: 1989
  ident: ref_6
  article-title: Backpropagation applied to digit recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 11
  start-page: 1
  year: 2020
  ident: ref_2
  article-title: Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network
  publication-title: Front. Plant Sci.
– ident: ref_33
  doi: 10.3390/app10041245
– volume: 11
  start-page: 1
  year: 2020
  ident: ref_20
  article-title: Fine-Grained Image Classification for Crop Disease Based on Attention Mechanism
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.600854
– volume: 2019
  start-page: 9237136
  year: 2019
  ident: ref_11
  article-title: How Convolutional Neural Networks Diagnose Plant Disease
  publication-title: Plant Phenomics
  doi: 10.34133/2019/9237136
SSID ssj0000913806
Score 2.5381937
Snippet Plant diseases pose a significant challenge for food production and safety. Therefore, it is indispensable to correctly identify plant diseases for timely...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 228
SubjectTerms Accuracy
agriculture
Artificial neural networks
attention module
Classification
Complexity
Computer applications
Computer vision
convolutional neural networks
Data collection
Datasets
Deep learning
Design
Disease detection
foliar diseases
Food production
Food safety
Leaves
lightweight network
Mathematical models
Modules
Neural networks
Parameters
Performance enhancement
Plant diseases
plant pathology
Plant protection
Recall
tomato disease
Tomatoes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EoyEiMRK1jJ47HtlBVqDC1UrfITxaUoDaFv8_ZSUsRCBamSIltOefz3Xf26TuEbhxTQiSWRJljPGKAECLFJY2ctCKRWc-YUCXi8Skdz9jDPJlvlfryOWE1PXAtuC6nmYFOHOyoYdow6bSTXPkLOe6yWHnrCz5vK5gKNlgQmvXSmmaIQlzflc-LhszCEgj4Pe3LF1cUGPu_GeTgZUYHaL-Bh7hfT-sQ7djiCO31P0c9RqqPJz6ifg-HmrhfVXXGYjQAh2TwsCzeGnWCgTz3RniEZO8lBoiKpyWg1BJPrHT4rr6fwaE2ps8aCgt1gmaj--lwHDWVEiLNYlJFsdKJo5owonsgaZ5AXCcFoKlUGG4NY9YZq5QM1C-KqEzZNNFaGepIzwhLT1GrKAt7hjCNM6s5iJlzzZwSIPXMxDYFq6mdoEkbxWuh5bqhEffVLF5yCCe8pPMfJN1Gt5tOrzWLxu_NB341Nk09BXZ4AYqRN4qR_6UYbdRZr2Xe7Mtl7tnpCeMA69roevMZdpS_JpGFLVe-DRg15on8zv9jHhdo1_9UnendQa1qsbKXAGQqdRV09gOrDPUt
  priority: 102
  providerName: Directory of Open Access Journals
Title A Lightweight Attention-Based Convolutional Neural Networks for Tomato Leaf Disease Classification
URI https://www.proquest.com/docview/2632147612
https://www.proquest.com/docview/2648845064
https://doaj.org/article/738d5a87128d4cd4afcfa7b46457f82b
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_q-aIPxbaKZ61soY9dvCSb7Oap3FlFihURBd_Cfvoiid7F-u87s9k7EYtPgWSyLDOzs_PFbwB-BGHquvQZV0FILtBD4Ebqggft61KriXNxSsTf8-r0Wvy5KW9Swm2R2iqXNjEaatdZypEfEq54JjDozn_dP3CaGkXV1TRCYw3W0QQrNYL12fH5xeUqy0Kol2pSDXBDBcb3h_p2nkAtfIaBP8G_vLqSInL_G8Mcb5uTLfiY3EQ2HeT6CT749jNsTl9W_QJmys4osn6KyU027fuhc5HP8GJy7Khr_yW1woUIgyM-YtP3gqGryq469FY7duZ1YL-HOg2LMzKpeygKbBuuT46vjk55mpjArciznufGlqGwmcjsBDkuS4zvdI1eVVU76Z0QPjhvjI4QMCYzyviqtNa4ImQTV_tiB0Zt1_pdYEWuvJVCBymtCKZWTiiX-wqtpw11UY4hXzKtsQlOnKZa3DUYVhCnm_9wegw_Vz_dD2ga75PPSBorUoLCji-6-W2TTlYjC-VQqyTK3wnrcMc2aGmoYiuDys0Y9peybNL5XDQv2jSG76vPeLKoXKJb3z0SDRo3QYB-e-8v8RU2aLtDL_c-jPr5o_-GrkpvDpI-HsRQ_xnS3e5m
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioYCR4EbUxHbi-IDQbh_a0u0Koa3UW_CzF5SU3ZSKP8VvZOwkWyRQbz1F2ngtazyeh2fyfQDvPNdS5i5LSs9FwjFCSLRQLPHKyVyVqbWRJeJkUcxO-eez_GwLfg_fwoS2ysEmRkNtGxPuyHcDrnjGMemmny5-JIE1KlRXBwqNTi2O3a8rTNnWH4_2cX_fU3p4sNybJT2rQGI4zdqEapN7ZjKemRRXJXLMgZTEyKOQVjjLufPWaa0iTIrOdKldkRujLfNZaqVjOO8d2OasSOkItqcHiy9fN7c6AWWzTIsO3ogxme6q81UPouEyirEZDbzvf7nAyBTwjyOI3u3wITzow1Iy6fToEWy5-jHcn1zP-gT0hMxDJn8VL1PJpG27Tslkio7Qkr2m_tmrMU4UMD_iIzaZrwmGxmTZYHTckLlTnux3dSESOTlDt1JUkKdweiuyfAajuqndcyCMls4IrrwQhnstS8tLS12B1tp4yfIx0EFolenhywOLxvcK05gg6eo_kh7Dh82fLjr0jpuHT8NubIYG6O34Q7M6r_qTXAlWWtRigY7dcmNxxcYroUOFWPiS6jHsDHtZ9fZgXV1r7xjebl7jSQ7lGVW75jKMQWPKA4Dgi5uneAN3Z8uTeTU_Why_hHth6V0f-Q6M2tWle4VhUqtf97pJ4NttH4c_DaYrfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFSoFFghtW4vXaax8QSppGLQ1RhVqpN7PPXpBdErcVf41fx8zaTpFAvfVkKd6MVrPz3Bl_A_DeC10UqYuj3AsZCYwQIi1VEnnlilTlY2vDlIivy-zgVHw5S8-24Hf_LQy1VfY2MRhqWxu6Ix8RrngsMOnmI9-1RRzP5p8vfkY0QYoqrf04jVZEjtyva0zf1p8OZ3jWHzif75_sHUTdhIHICB43Edcm9YmJRWzGuEOZYj6kCoxCssJKZ4Vw3jqtVYBM0bHOtctSY7RNfDy2hUuQ7j3YlpQVDWB7ur88_ra54SHEzXyctVBHSVKMR-p81QFquJhjnMZpBvxf7jBMDfjHKQRPN38Mj7oQlU1amXoCW656Cg8nN1SfgZ6wBWX11-FilU2apu2ajKboFC3bq6urTqSREOF_hEdoOF8zDJPZSY2Rcs0WTnk2a2tELMznpM6lICzP4fROePkCBlVduZfAEp47I4XyUhrhdZFbkVvuMrTcxhdJOgTeM600HZQ5TdT4UWJKQ5wu_8PpIXzc_OmiRfK4ffmUTmOzlGC4ww_16rzstLqUSW5RoiU6eSuMxR0br6SmarH0OddD2O3Psuxsw7q8keQhvNu8Rq2mUo2qXH1Ja9CwCgIT3LmdxFu4j2pQLg6XR6_gAe28bSnfhUGzunSvMWJq9JtONBl8v2tt-AOJ7i-y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lightweight+Attention-Based+Convolutional+Neural+Networks+for+Tomato+Leaf+Disease+Classification&rft.jtitle=Agriculture+%28Basel%29&rft.au=Bhujel%2C+Anil&rft.au=Kim%2C+Na-Eun&rft.au=Arulmozhi%2C+Elanchezhian&rft.au=Basak%2C+Jayanta+Kumar&rft.date=2022-02-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=12&rft.issue=2&rft.spage=228&rft_id=info:doi/10.3390%2Fagriculture12020228&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriculture12020228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon