Experimental Models of Hepatocellular Carcinoma—A Preclinical Perspective

Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Alt...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 13; no. 15; p. 3651
Main Authors Blidisel, Alexandru, Marcovici, Iasmina, Coricovac, Dorina, Hut, Florin, Dehelean, Cristina Adriana, Cretu, Octavian Marius
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.07.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
AbstractList Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Simple SummaryHepatocellular carcinoma (HCC) is characterized by a broad molecular and genetic heterogeneity, which makes it a challenging subject in terms of the underlying mechanisms, response and resistance to treatment, and finding novel therapeutic options. Nowadays, new experimental models (3D in vitro models, in vivo mouse and non-mouse models, and computational studies) allow more detailed studies of hepatocellular carcinoma pathogenesis and treatment. Here, we provide insights into the current preclinical models frequently applied for the study of hepatocellular carcinoma.AbstractHepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Author Hut, Florin
Marcovici, Iasmina
Coricovac, Dorina
Cretu, Octavian Marius
Blidisel, Alexandru
Dehelean, Cristina Adriana
AuthorAffiliation 2 Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; iasmina.marcovici@umft.ro
1 Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; blidy@umft.ro (A.B.); florin.hut@umft.ro (F.H.); octavian.cretu@umft.ro (O.M.C.)
3 Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
AuthorAffiliation_xml – name: 1 Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; blidy@umft.ro (A.B.); florin.hut@umft.ro (F.H.); octavian.cretu@umft.ro (O.M.C.)
– name: 2 Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; iasmina.marcovici@umft.ro
– name: 3 Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
Author_xml – sequence: 1
  givenname: Alexandru
  surname: Blidisel
  fullname: Blidisel, Alexandru
– sequence: 2
  givenname: Iasmina
  surname: Marcovici
  fullname: Marcovici, Iasmina
– sequence: 3
  givenname: Dorina
  orcidid: 0000-0002-5760-8872
  surname: Coricovac
  fullname: Coricovac, Dorina
– sequence: 4
  givenname: Florin
  surname: Hut
  fullname: Hut, Florin
– sequence: 5
  givenname: Cristina Adriana
  surname: Dehelean
  fullname: Dehelean, Cristina Adriana
– sequence: 6
  givenname: Octavian Marius
  surname: Cretu
  fullname: Cretu, Octavian Marius
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34359553$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9KHTEYxYMoatV1d2XATTe3Tv5PNoJctBav1EVdh0zmmxrJTabJjNidD9En7JM0l2tFL5hFEsjvHM7J9wFthxgAoY-4_kKpqk-sCRZSxhRzKjjeQvuklmQmhGLbr-576Cjn-7osSrEUchftUUa54pzuo6vzxwGSW0IYja-uYwc-V7GvLmEwY7Tg_eRNquYmWRfi0vx9-nNW3SSw3gVni-SmJBjAju4BDtFOb3yGo-fzAN1enP-YX84W379-m58tZpYRPM6IbGiPrQXCGKaCGNGR1jZNQ1rOO9wb1chOtFxR0UuCa9Uy1XPoFWFgZafoATpd-w5Tu4TOluzJeD2UGib91tE4_fYluDv9Mz7ohjKmpCgGn58NUvw1QR710uVVVxMgTlkTzhUrGyMFPd5A7-OUQqm3ohpJKCWsUJ9eJ3qJ8v-fC3CyBmyKOSfoXxBc69Uw9cYwi4JvKKwbzejiqpLz7-r-AYdvpfQ
CitedBy_id crossref_primary_10_1016_j_yexcr_2022_113042
crossref_primary_10_3390_ijms252111339
crossref_primary_10_3892_ol_2024_14737
crossref_primary_10_3390_biomedicines12010087
crossref_primary_10_1016_j_clinre_2024_102418
crossref_primary_10_3389_fonc_2022_988956
crossref_primary_10_1016_j_phrs_2024_107560
crossref_primary_10_1177_15330338241285097
crossref_primary_10_1016_j_canlet_2022_216048
crossref_primary_10_1016_j_biopha_2023_115256
crossref_primary_10_1016_j_jddst_2024_106490
crossref_primary_10_1007_s13770_023_00576_3
crossref_primary_10_3389_fbioe_2025_1564543
crossref_primary_10_3390_medicina60050716
crossref_primary_10_1016_j_bbamcr_2023_119557
crossref_primary_10_3390_ijms24065203
crossref_primary_10_1002_cam4_6163
crossref_primary_10_3389_fmolb_2024_1430794
crossref_primary_10_1016_j_yexcr_2021_112987
crossref_primary_10_1186_s13578_024_01287_5
crossref_primary_10_3390_biology13060455
crossref_primary_10_3390_pathogens12070940
crossref_primary_10_3390_bioengineering10060673
crossref_primary_10_1007_s12551_024_01260_z
crossref_primary_10_2174_0118715206289468240130051102
crossref_primary_10_1590_s0004_2803_230302023_58
crossref_primary_10_1016_j_apmt_2024_102307
crossref_primary_10_1038_s41598_024_77658_2
crossref_primary_10_1177_15330338231154090
crossref_primary_10_3389_fphar_2022_1000608
crossref_primary_10_3390_ijms24054529
crossref_primary_10_1016_j_gastha_2023_07_012
crossref_primary_10_3390_biomedicines12071624
crossref_primary_10_3390_cells11142129
crossref_primary_10_1080_14786419_2022_2098958
crossref_primary_10_1016_j_yexmp_2021_104715
crossref_primary_10_3390_medicina58060784
crossref_primary_10_1016_j_mtcomm_2024_109318
crossref_primary_10_3390_cancers16142591
crossref_primary_10_3389_fbioe_2023_1189726
crossref_primary_10_3389_fcell_2024_1536854
crossref_primary_10_1016_j_onano_2023_100159
crossref_primary_10_1038_s41420_024_02285_9
crossref_primary_10_1016_j_ooc_2021_100014
crossref_primary_10_1111_fcp_13032
crossref_primary_10_3390_cells13201726
Cites_doi 10.3390/cancers11111792
10.1007/s42242-020-00074-8
10.1146/annurev-bioeng-060418-052305
10.1038/s41416-020-0993-5
10.1186/s12918-016-0318-8
10.3390/ijms19010181
10.3389/fonc.2020.627701
10.1016/j.bbcan.2020.188391
10.1016/j.bbrc.2019.02.015
10.3389/fphar.2018.00006
10.4254/wjh.v13.i4.393
10.1016/S0140-6736(18)30010-2
10.21873/anticanres.14540
10.1152/ajpgi.00199.2012
10.7150/ijms.19033
10.14218/JCTH.2020.00001
10.1038/s41598-017-10828-7
10.4103/jcar.JCar_9_16
10.15586/hepatocellularcarcinoma.2019
10.1002/jcp.24683
10.1039/C4RA12269K
10.4252/wjsc.v11.i12.1065
10.2147/OTT.S176903
10.1016/j.jhep.2016.05.035
10.1038/s43018-020-0102-y
10.1038/emm.2017.164
10.1088/1758-5082/6/2/022001
10.1038/s41698-020-0121-2
10.1016/j.tranon.2014.10.006
10.1088/1748-605X/aa8c51
10.1016/j.biomaterials.2018.09.026
10.1590/0102-6720201700040011
10.1177/1010428317695923
10.18632/oncotarget.9986
10.1038/srep21174
10.3389/fcell.2020.00166
10.3390/cancers12123636
10.1517/17425255.2012.685159
10.7150/ijbs.15165
10.1038/s41568-018-0007-6
10.1186/s12935-021-01981-1
10.1039/C8LC00852C
10.1016/B978-0-12-416002-6.00011-0
10.1016/j.biotechadv.2016.11.002
10.5732/cjc.011.10047
10.1126/sciadv.1700764
10.1016/j.clinre.2015.07.006
10.5402/2012/828701
10.3892/ol.2016.5141
10.1007/978-1-61779-965-5_6
10.1148/ryai.2019180021
10.1002/mc.21844
10.1016/j.biocel.2011.06.011
10.1002/bit.26297
10.1186/s13046-018-0752-0
10.1101/762351
10.1056/NEJMra1713263
10.2147/CMAR.S302565
10.1016/j.tranon.2019.04.020
10.18632/oncotarget.21030
10.3748/wjg.14.1720
10.1152/physiol.00036.2016
10.3748/wjg.v22.i41.9069
10.5487/TR.2014.30.1.001
10.1016/j.neo.2018.05.008
10.1002/ame2.12100
10.3390/cancers11101487
10.1016/j.biomaterials.2020.120416
10.1016/j.jsbmb.2011.12.004
10.5114/aoms.2020.93739
10.3748/wjg.v26.i37.5617
10.1136/gutjnl-2017-315201
10.1186/s13045-019-0832-4
10.1038/s41598-021-84384-6
10.3389/fonc.2018.00429
10.3892/or.2020.7630
10.1016/j.celrep.2018.07.001
10.1016/j.jvir.2018.01.769
10.1016/j.csbj.2014.11.005
10.1293/tox.25.189
10.1002/ijc.29703
10.1177/2374289519873088
10.3748/wjg.v25.i25.3136
10.3748/wjg.v26.i16.1888
10.1007/s10616-014-9761-9
10.1016/j.jhep.2018.06.009
10.1111/j.1365-2613.2009.00656.x
10.1016/j.reth.2021.03.002
10.1007/978-3-319-50478-0_21
10.15252/emmm.201606857
10.1089/gtmb.2019.0242
10.1007/978-1-60761-688-7_6
10.1016/j.bbadis.2018.08.009
10.18632/oncotarget.4202
10.3390/cancers11111706
10.1007/s00280-013-2120-2
10.3727/105221618X15337408678723
10.1186/s12938-020-0752-0
10.1016/j.jhep.2008.01.008
10.1371/journal.pone.0171215
10.1158/0008-5472.CAN-11-2786
10.1504/IJBRA.2012.045956
10.1016/j.jhepr.2020.100198
10.3390/genes10110935
10.3389/fimmu.2021.643310
10.3389/fbioe.2016.00012
10.1038/cddis.2013.557
10.1371/journal.pone.0132072
10.1016/j.jhep.2019.08.017
10.1002/bit.21599
10.1007/978-3-030-21540-8
10.1177/1087057117696795
10.2147/JHC.S272213
10.3389/fonc.2020.593741
10.1158/1078-0432.CCR-17-0853
10.1186/s12885-018-4302-0
10.1371/journal.pone.0245939
10.1007/s13206-020-4201-8
10.3727/096504013X13747716581336
10.3748/wjg.v26.i42.6679
10.3390/nano11020481
10.1080/20002297.2020.1773122
10.1186/s12876-016-0423-6
10.1002/mco2.29
10.1111/aor.13880
10.3390/ma12182945
10.1016/j.trecan.2020.03.012
10.3350/cmh.2015.21.1.49
10.1038/s41575-018-0033-6
10.1016/j.tranon.2021.101015
10.1186/s13046-015-0196-8
10.1080/15476278.2017.1322243
10.1016/j.canlet.2019.12.007
10.3390/scipharm88030032
10.1016/B978-0-12-812431-4.00051-8
10.1016/S0065-230X(10)06004-5
10.1038/nprot.2015.080
10.3390/mi10100676
10.3389/fonc.2020.01696
10.1038/s41598-019-44022-8
10.4251/wjgo.v13.i6.509
10.1021/acs.chemrestox.9b00335
10.1200/CCI.20.00049
10.1007/s00204-011-0733-y
10.1200/JCO.2019.37.4_suppl.265
10.1158/0008-5472.CAN-11-3317
10.2147/JHC.S156701
10.1002/cam4.1664
10.1016/j.suronc.2016.03.002
10.3390/cancers11081098
10.3390/v13050830
10.1038/s41568-018-0104-6
10.1158/1078-0432.CCR-19-2923
10.1038/s41379-020-00671-z
10.1242/dmm.008367
10.1067/j.cpradiol.2015.04.004
10.1038/aps.2014.122
10.1186/s13244-021-00977-9
10.7554/eLife.50740
10.1293/tox.22.11
10.1093/gastro/goaa066
10.1126/science.aaz3023
10.1007/s00204-019-02576-6
10.3390/ijms21155461
10.1021/acsnano.0c00468
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/cancers13153651
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
Biological Sciences
ProQuest research library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 2072-6694
ExternalDocumentID PMC8344976
34359553
10_3390_cancers13153651
Genre Journal Article
Review
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
TUS
NPM
PQGLB
3V.
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c421t-2783f1cce2441362a6d2bc8882b55d1fa987d6b5936f72109b49f5ef924ec7d93
IEDL.DBID M48
ISSN 2072-6694
IngestDate Thu Aug 21 14:10:18 EDT 2025
Fri Jul 11 10:10:13 EDT 2025
Fri Jul 25 11:59:27 EDT 2025
Mon Jul 21 06:06:09 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Tue Jul 01 01:27:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords artificial intelligence algorithms
mouse models
3D tumor spheroids
organoids
organ-on-a-chip
in silico
machine learning
2D cell lines
hepatocellular carcinoma
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-2783f1cce2441362a6d2bc8882b55d1fa987d6b5936f72109b49f5ef924ec7d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to this paper.
ORCID 0000-0002-5760-8872
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers13153651
PMID 34359553
PQID 2558723324
PQPubID 2032421
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8344976
proquest_miscellaneous_2559425542
proquest_journals_2558723324
pubmed_primary_34359553
crossref_primary_10_3390_cancers13153651
crossref_citationtrail_10_3390_cancers13153651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210721
PublicationDateYYYYMMDD 2021-07-21
PublicationDate_xml – month: 7
  year: 2021
  text: 20210721
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cancers
PublicationTitleAlternate Cancers (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Koledova (ref_43) 2017; 1612
ref_139
Zhao (ref_157) 2015; 34
Ehrlich (ref_109) 2019; 21
Clark (ref_18) 2015; 44
Fiorini (ref_85) 2020; 8
ref_13
Santos (ref_116) 2017; 39
Vij (ref_21) 2021; 13
Sato (ref_187) 2019; 9
Hoekstra (ref_64) 2011; 43
Wang (ref_79) 2017; 13
Rijal (ref_88) 2017; 3
Wang (ref_28) 2021; 12
Miki (ref_70) 2012; 131
ref_95
Katt (ref_35) 2016; 4
Shi (ref_61) 2020; 44
Mohammed (ref_126) 2018; 17
Huang (ref_174) 2020; 471
Schulze (ref_22) 2016; 65
Sharifi (ref_111) 2020; 3
ref_17
Azuaje (ref_175) 2019; 3
Mountcastle (ref_69) 2020; 12
Costa (ref_91) 2016; 34
Mabrouk (ref_173) 2012; 8
Akkina (ref_142) 2013; 23
Nakayama (ref_164) 2020; 1
Song (ref_87) 2018; 37
Khawar (ref_11) 2018; 20
Xiao (ref_162) 2020; 6
Lu (ref_110) 2018; 18
Walrath (ref_135) 2010; 106
Luo (ref_127) 2013; 20
Zhang (ref_117) 2019; 1865
Li (ref_152) 2016; 7
Villanueva (ref_5) 2019; 380
Huiting (ref_159) 2015; 3
ref_121
ref_124
Kronemberger (ref_93) 2021; 45
Maronpot (ref_119) 2009; 22
Wei (ref_57) 2015; 36
Blair (ref_156) 2017; 176
Nuciforo (ref_102) 2018; 24
Khalaf (ref_26) 2018; 5
Abajian (ref_188) 2018; 29
Qiu (ref_49) 2015; 67
Qiu (ref_47) 2016; 6
ref_158
Liu (ref_58) 2017; 14
Shuichi (ref_71) 2019; 37
Goyak (ref_54) 2010; 640
Zhang (ref_113) 2007; 30
Neureiter (ref_9) 2019; 25
Zhai (ref_63) 2013; 71
Nagy (ref_176) 2020; 4
Sonntag (ref_67) 2014; 5
Hassell (ref_99) 2019; 19
Inokawa (ref_25) 2016; 12
Vinken (ref_51) 2015; 1250
ref_160
Liu (ref_114) 2013; 304
Guerin (ref_118) 2020; 9
Kolenda (ref_89) 2016; 14
Kim (ref_153) 2020; 3
Ghouri (ref_15) 2017; 16
Tenen (ref_29) 2021; 9
ref_83
ref_149
Xie (ref_66) 2021; 265
Sedlik (ref_140) 2020; 5
Malik (ref_19) 2021; 10
Sun (ref_81) 2020; 10
Ma (ref_82) 2018; 185
Sacan (ref_167) 2012; 910
Connor (ref_7) 2018; 69
Augustine (ref_104) 2021; 14
ref_146
Nguyen (ref_165) 2012; 5
Iqbal (ref_177) 2021; 21
ref_84
Andersson (ref_65) 2012; 8
Sabzevari (ref_144) 2020; 40
Trisilowati (ref_147) 2012; 2012
Ravi (ref_45) 2015; 230
Morshid (ref_189) 2019; 1
Fang (ref_92) 2017; 22
Heindryckx (ref_122) 2009; 90
Lai (ref_179) 2020; 26
Cassar (ref_161) 2020; 33
Saito (ref_191) 2021; 34
Kimlin (ref_38) 2013; 52
Jung (ref_76) 2017; 7
ref_50
Rocha (ref_125) 2014; 34
Gargiulo (ref_115) 2018; 8
Sun (ref_172) 2020; 24
Reiberger (ref_134) 2015; 10
Kourou (ref_181) 2015; 13
Tomc (ref_77) 2019; 93
Newell (ref_6) 2008; 48
Ciccarelli (ref_151) 2018; 11
ref_56
Martin (ref_138) 2008; 14
ref_55
He (ref_123) 2015; 6
Geh (ref_16) 2021; 8
Rashidi (ref_182) 2019; 6
Coulouarn (ref_75) 2012; 72
Langhans (ref_96) 2018; 9
ref_180
Grande (ref_186) 2020; 26
Bartlett (ref_42) 2014; 7
Chen (ref_150) 2019; 2019
Duval (ref_39) 2017; 32
Wang (ref_44) 2014; 6
Rebouissou (ref_2) 2020; 72
Chaicharoenaudomrung (ref_97) 2019; 11
Brown (ref_128) 2018; 15
Fasolino (ref_73) 2018; 13
ref_169
Jung (ref_130) 2014; 30
Wang (ref_106) 2016; 5
Grandhi (ref_14) 2016; 25
Zhao (ref_145) 2018; 67
ref_168
Tian (ref_141) 2020; 10
ref_171
Damelin (ref_52) 2008; 99
Rolver (ref_86) 2019; 2019
Zou (ref_184) 2021; 12
Chaudhary (ref_185) 2018; 24
Lee (ref_74) 2014; 4
Chen (ref_132) 2019; 12
Ho (ref_178) 2020; 367
Adam (ref_53) 2016; 12
Yang (ref_59) 2018; 7
Hirschfield (ref_4) 2018; 50
Nault (ref_24) 2016; 40
Wu (ref_107) 2020; 19
Silva (ref_10) 2020; 26
Lin (ref_62) 2012; 86
Qi (ref_131) 2019; 2019
Bae (ref_105) 2020; 14
ref_36
ref_34
Takai (ref_78) 2016; 6
ref_31
ref_30
Fan (ref_12) 2019; 12
Porter (ref_90) 2020; 123
Forner (ref_1) 2018; 391
Zhao (ref_33) 2020; 1874
Kersten (ref_129) 2017; 9
ref_37
Nuciforo (ref_101) 2021; 3
Press (ref_155) 2021; 13
Santos (ref_27) 2021; 2021
Drost (ref_94) 2018; 18
Hoshi (ref_60) 2019; 513
Liu (ref_154) 2020; 14
Holzinger (ref_166) 2016; Volume 9605
Chen (ref_72) 2014; 2014
Roemer (ref_183) 2016; 176
Bresnahan (ref_133) 2020; 26
Niu (ref_23) 2016; 22
ref_103
Bozward (ref_20) 2021; 12
ref_108
Huang (ref_190) 2021; 10
Yamashita (ref_192) 2021; 17
Gu (ref_68) 2015; 21
ref_46
Taymour (ref_80) 2021; 11
Wrighton (ref_163) 2019; 8
Lo (ref_100) 2020; 1
Thoolen (ref_148) 2012; 25
Chiew (ref_41) 2017; 114
ref_3
Datta (ref_98) 2020; 4
Ju (ref_137) 2016; 138
Rogers (ref_120) 2018; 19
ref_48
Ghavimi (ref_8) 2020; 8
Liu (ref_170) 2017; 8
Chedid (ref_32) 2017; 30
Leung (ref_40) 2011; 23
Li (ref_112) 2021; 13
Singh (ref_136) 2012; 72
Yin (ref_143) 2020; 10
References_xml – ident: ref_149
  doi: 10.3390/cancers11111792
– volume: 3
  start-page: 189
  year: 2020
  ident: ref_111
  article-title: A hepatocellular carcinoma–bone metastasis-on-a-chip model for studying thymoquinone-loaded anticancer nanoparticles
  publication-title: Bio-Des. Manuf.
  doi: 10.1007/s42242-020-00074-8
– volume: 21
  start-page: 219
  year: 2019
  ident: ref_109
  article-title: Challenges and Opportunities in the Design of Liver-on-Chip Microdevices
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-060418-052305
– volume: 5
  start-page: 119
  year: 2020
  ident: ref_140
  article-title: Humanized Mouse Models to Evaluate Cancer Immunotherapeutics
  publication-title: Annu. Rev. Cancer Biol.
– volume: 123
  start-page: 1209
  year: 2020
  ident: ref_90
  article-title: Current concepts in tumour-derived organoids
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-020-0993-5
– ident: ref_168
  doi: 10.1186/s12918-016-0318-8
– ident: ref_103
  doi: 10.3390/ijms19010181
– volume: 10
  start-page: 1
  year: 2021
  ident: ref_19
  article-title: “Complimenting the Complement”: Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.627701
– volume: 1874
  start-page: 188391
  year: 2020
  ident: ref_33
  article-title: Lenvatinib for hepatocellular carcinoma: From preclinical mechanisms to anti-cancer therapy
  publication-title: Biochim. Biophys. Acta Rev. Cancer
  doi: 10.1016/j.bbcan.2020.188391
– volume: 513
  start-page: 1
  year: 2019
  ident: ref_60
  article-title: Lenvatinib induces death of human hepatocellular carcinoma cells harboring an activated FGF signaling pathway through inhibition of FGFR–MAPK cascades
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.02.015
– volume: 9
  start-page: 1
  year: 2018
  ident: ref_96
  article-title: Three-dimensional in vitro cell culture models in drug discovery and drug repositioning
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00006
– volume: 13
  start-page: 393
  year: 2021
  ident: ref_21
  article-title: Pathologic and molecular features of hepatocellular carcinoma: An update
  publication-title: World J. Hepatol.
  doi: 10.4254/wjh.v13.i4.393
– volume: 391
  start-page: 1301
  year: 2018
  ident: ref_1
  article-title: Hepatocellular carcinoma
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30010-2
– volume: 40
  start-page: 5329
  year: 2020
  ident: ref_144
  article-title: The development of next-generation PBMC humanized mice for preclinical investigation of cancer immunotherapeutic agents
  publication-title: Anticancer Res.
  doi: 10.21873/anticanres.14540
– volume: 176
  start-page: 139
  year: 2016
  ident: ref_183
  article-title: Supervised Machine Learning in Oncology: A Clinician’s Guide
  publication-title: Physiol. Behav.
– volume: 304
  start-page: G449
  year: 2013
  ident: ref_114
  article-title: Animal models of chronic liver diseases
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00199.2012
– volume: 14
  start-page: 523
  year: 2017
  ident: ref_58
  article-title: Synergistic antitumor effect of sorafenib in combination with ATM inhibitor in hepatocellular carcinoma cells
  publication-title: Int. J. Med. Sci.
  doi: 10.7150/ijms.19033
– volume: 8
  start-page: 168
  year: 2020
  ident: ref_8
  article-title: Management and treatment of hepatocellular carcinoma with immunotherapy: A review of current and future options
  publication-title: J. Clin. Transl. Hepatol.
  doi: 10.14218/JCTH.2020.00001
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_76
  article-title: Cell Spheroids with Enhanced Aggressiveness to Mimic Human Liver Cancer in Vitro and in Vivo
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-10828-7
– volume: 16
  start-page: 1
  year: 2017
  ident: ref_15
  article-title: Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis
  publication-title: J. Carcinog.
  doi: 10.4103/jcar.JCar_9_16
– ident: ref_31
  doi: 10.15586/hepatocellularcarcinoma.2019
– volume: 230
  start-page: 16
  year: 2015
  ident: ref_45
  article-title: 3D cell culture systems: Advantages and applications
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.24683
– volume: 4
  start-page: 61005
  year: 2014
  ident: ref_74
  article-title: A three-dimensional co-culture of HepG2 spheroids and fibroblasts using double-layered fibrous scaffolds incorporated with hydrogel micropatterns
  publication-title: RSC Adv.
  doi: 10.1039/C4RA12269K
– volume: 12
  start-page: 1
  year: 2021
  ident: ref_28
  article-title: Advances of Fibroblast Growth Factor/Receptor Signaling Pathway in Hepatocellular Carcinoma and its Pharmacotherapeutic Targets
  publication-title: Front. Pharmacol.
– ident: ref_56
– volume: 2019
  start-page: 9367082
  year: 2019
  ident: ref_150
  article-title: Identification of the Potential Metabolic Pathways Involved in the Hepatic Tumorigenesis of Rat Diethylnitrosamine-Induced Hepatocellular Carcinoma via 1 H NMR-Based Metabolomic Analysis
  publication-title: Biomed. Res. Int.
– volume: 11
  start-page: 1065
  year: 2019
  ident: ref_97
  article-title: Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling
  publication-title: World J. Stem Cells
  doi: 10.4252/wjsc.v11.i12.1065
– volume: 3
  start-page: 1069
  year: 2015
  ident: ref_159
  article-title: The Zebrafish as a Tool to Cancer Drug Discovery Current Challenges in Drug Discovery HHS Public Access
  publication-title: Austin J. Pharmacol. Ther.
– volume: 11
  start-page: 7143
  year: 2018
  ident: ref_151
  article-title: Tumoral response and tumoral phenotypic changes in a rat model of diethylnitrosamine-induced hepatocellular carcinoma after salirasib and sorafenib administration
  publication-title: Onco. Targets. Ther.
  doi: 10.2147/OTT.S176903
– volume: 65
  start-page: 1031
  year: 2016
  ident: ref_22
  article-title: Genetic profiling of hepatocellular carcinoma using next-generation sequencing
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2016.05.035
– ident: ref_83
– volume: 1
  start-page: 761
  year: 2020
  ident: ref_100
  article-title: Applications of organoids for cancer biology and precision medicine
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0102-y
– volume: 50
  start-page: e419
  year: 2018
  ident: ref_4
  article-title: In vitro modeling of hepatocellular carcinoma molecular subtypes for anti-cancer drug assessment
  publication-title: Exp. Mol. Med.
  doi: 10.1038/emm.2017.164
– volume: 23
  start-page: 1
  year: 2011
  ident: ref_40
  article-title: Chitosan-Alginate Scaffold Culture System for Hepatocellular Carcinoma Increases Malignancy and Drug Resistance
  publication-title: Bone
– volume: 6
  start-page: 022001
  year: 2014
  ident: ref_44
  article-title: Three-dimensional in vitro cancer models: A short review
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/6/2/022001
– volume: 4
  start-page: 18
  year: 2020
  ident: ref_98
  article-title: 3D bioprinting for reconstituting the cancer microenvironment
  publication-title: NPJ Precis. Oncol.
  doi: 10.1038/s41698-020-0121-2
– ident: ref_13
– volume: 7
  start-page: 657
  year: 2014
  ident: ref_42
  article-title: Personalized in vitro cancer modeling—Fantasy or reality?
  publication-title: Transl. Oncol.
  doi: 10.1016/j.tranon.2014.10.006
– volume: 13
  start-page: 015017
  year: 2018
  ident: ref_73
  article-title: HepG2 and human healthy hepatocyte in vitro culture and co-culture in PCL electrospun platforms
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/aa8c51
– volume: 185
  start-page: 310
  year: 2018
  ident: ref_82
  article-title: Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.09.026
– volume: 30
  start-page: 272
  year: 2017
  ident: ref_32
  article-title: Hepatocellular Carcinoma: Diagnosis and Operative Management
  publication-title: ABCD Arq. Bras. Cir. Dig.
  doi: 10.1590/0102-6720201700040011
– volume: 39
  start-page: 1010428317695923
  year: 2017
  ident: ref_116
  article-title: Animal models as a tool in hepatocellular carcinoma research: A Review
  publication-title: Tumor Biol.
  doi: 10.1177/1010428317695923
– volume: 7
  start-page: 47173
  year: 2016
  ident: ref_152
  article-title: Characterization of metastatic tumor antigen 1 and its interaction with hepatitis B virus X protein in NF-κB signaling and tumor progression in a woodchuck hepatocellular carcinoma model
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9986
– volume: 6
  start-page: 1
  year: 2016
  ident: ref_78
  article-title: Three-dimensional Organotypic Culture Models of Human Hepatocellular Carcinoma
  publication-title: Sci. Rep.
  doi: 10.1038/srep21174
– volume: 8
  start-page: 1
  year: 2020
  ident: ref_85
  article-title: Modeling Cell Communication in Cancer With Organoids: Making the Complex Simple
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.00166
– ident: ref_95
  doi: 10.3390/cancers12123636
– volume: 8
  start-page: 909
  year: 2012
  ident: ref_65
  article-title: The HepaRG cell line: A unique in vitro tool for understanding drug metabolism and toxicology in human
  publication-title: Expert Opin. Drug Metab. Toxicol.
  doi: 10.1517/17425255.2012.685159
– volume: 12
  start-page: 964
  year: 2016
  ident: ref_53
  article-title: Selecting cells for bioartificial liver devices and the importance of a 3D culture environment: A functional comparison between the hepaRG and C3A cell lines
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.15165
– volume: 18
  start-page: 407
  year: 2018
  ident: ref_94
  article-title: Organoids in cancer research
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0007-6
– volume: 21
  start-page: 1
  year: 2021
  ident: ref_177
  article-title: Clinical applications of artificial intelligence and machine learning in cancer diagnosis: Looking into the future
  publication-title: Cancer Cell Int.
  doi: 10.1186/s12935-021-01981-1
– volume: 18
  start-page: 3379
  year: 2018
  ident: ref_110
  article-title: Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing
  publication-title: Lab Chip
  doi: 10.1039/C8LC00852C
– ident: ref_84
  doi: 10.1016/B978-0-12-416002-6.00011-0
– volume: 34
  start-page: 1427
  year: 2016
  ident: ref_91
  article-title: 3D tumor spheroids: An overview on the tools and techniques used for their analysis
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2016.11.002
– volume: 30
  start-page: 149
  year: 2007
  ident: ref_113
  article-title: Mouse models for cancer research
  publication-title: Chinese J. Cancer.
  doi: 10.5732/cjc.011.10047
– ident: ref_46
  doi: 10.15586/hepatocellularcarcinoma.2019
– volume: 3
  start-page: 1
  year: 2017
  ident: ref_88
  article-title: A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700764
– volume: 40
  start-page: 9
  year: 2016
  ident: ref_24
  article-title: TERT promoter mutations in primary liver tumors
  publication-title: Clin. Res. Hepatol. Gastroenterol.
  doi: 10.1016/j.clinre.2015.07.006
– volume: 2012
  start-page: 1
  year: 2012
  ident: ref_147
  article-title: In Silico Experimental Modeling of Cancer Treatment
  publication-title: ISRN Oncol.
  doi: 10.5402/2012/828701
– volume: 12
  start-page: 3662
  year: 2016
  ident: ref_25
  article-title: Molecular alterations in the carcinogenesis and progression of hepatocellular carcinoma: Tumor factors and background liver factors (Review)
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2016.5141
– volume: 910
  start-page: 87
  year: 2012
  ident: ref_167
  article-title: Applications and limitations of in silico models in drug discovery
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-965-5_6
– volume: 1
  start-page: e180021
  year: 2019
  ident: ref_189
  article-title: A Machine Learning Model to Predict Hepatocellular Carcinoma Response to Transcatheter Arterial Chemoembolization
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.2019180021
– volume: 52
  start-page: 167
  year: 2013
  ident: ref_38
  article-title: In vitro three-dimensional (3D) models in cancer research: An update
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.21844
– volume: 43
  start-page: 1483
  year: 2011
  ident: ref_64
  article-title: The HepaRG cell line is suitable for bioartificial liver application
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2011.06.011
– volume: 114
  start-page: 1865
  year: 2017
  ident: ref_41
  article-title: Bioengineered three-dimensional co-culture of cancer cells and endothelial cells: A model system for dual analysis of tumor growth and angiogenesis
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26297
– volume: 37
  start-page: 1
  year: 2018
  ident: ref_87
  article-title: Patient-derived multicellular tumor spheroids towards optimized treatment for patients with hepatocellular carcinoma
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-018-0752-0
– ident: ref_146
  doi: 10.1101/762351
– volume: 380
  start-page: 1450
  year: 2019
  ident: ref_5
  article-title: Hepato-cellular carcinoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1713263
– volume: 13
  start-page: 2455
  year: 2021
  ident: ref_112
  article-title: Application of animal models in cancer research: Recent progress and future prospects
  publication-title: Cancer Manag. Res.
  doi: 10.2147/CMAR.S302565
– volume: 12
  start-page: 987
  year: 2019
  ident: ref_132
  article-title: Cancer Immunotherapies and Humanized Mouse Drug Testing Platforms
  publication-title: Transl. Oncol.
  doi: 10.1016/j.tranon.2019.04.020
– volume: 8
  start-page: 86168
  year: 2017
  ident: ref_170
  article-title: In silico and in vitro identification of inhibitory activities of sorafenib on histone deacetylases in hepatocellular carcinoma cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.21030
– volume: 14
  start-page: 1720
  year: 2008
  ident: ref_138
  article-title: Tumor suppressor and hepatocellular carcinoma
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.14.1720
– volume: 32
  start-page: 266
  year: 2017
  ident: ref_39
  article-title: Modeling physiological events in 2D vs. 3D cell culture
  publication-title: Physiology
  doi: 10.1152/physiol.00036.2016
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_86
  article-title: Assessing cell viability and death in 3d spheroid cultures of cancer cells
  publication-title: J. Vis. Exp.
– volume: 22
  start-page: 9069
  year: 2016
  ident: ref_23
  article-title: Genetic alterations in hepatocellular carcinoma: An update
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v22.i41.9069
– volume: 30
  start-page: 1
  year: 2014
  ident: ref_130
  article-title: Human tumor xenograft models for preclinical assessment of anticancer drug development
  publication-title: Toxicol. Res.
  doi: 10.5487/TR.2014.30.1.001
– volume: 8
  start-page: 347
  year: 2019
  ident: ref_163
  article-title: There Is Something Fishy About Liver Cancer: Zebrafish Models of Hepatocellular Carcinoma
  publication-title: CMGH
– volume: 20
  start-page: 800
  year: 2018
  ident: ref_11
  article-title: Three Dimensional Mixed-Cell Spheroids Mimic Stroma-Mediated Chemoresistance and Invasive Migration in hepatocellular carcinoma
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2018.05.008
– volume: 3
  start-page: 98
  year: 2020
  ident: ref_153
  article-title: Suitability of the woodchuck HCC as a preclinical model for evaluation of intra-arterial therapies
  publication-title: Anim. Model. Exp. Med.
  doi: 10.1002/ame2.12100
– ident: ref_121
  doi: 10.3390/cancers11101487
– volume: 265
  start-page: 120416
  year: 2021
  ident: ref_66
  article-title: Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120416
– volume: 131
  start-page: 68
  year: 2012
  ident: ref_70
  article-title: The advantages of co-culture over mono cell culture in simulating in vivo environment
  publication-title: J. Steroid Biochem. Mol. Biol.
  doi: 10.1016/j.jsbmb.2011.12.004
– volume: 17
  start-page: 218
  year: 2018
  ident: ref_126
  article-title: Effects of free and nanoparticulate curcumin on chemically induced liver carcinoma in an animal model
  publication-title: Arch. Med. Sci.
  doi: 10.5114/aoms.2020.93739
– volume: 26
  start-page: 5617
  year: 2020
  ident: ref_186
  article-title: Application of artificial intelligence in the diagnosis and treatment of hepatocellular carcinoma: A review
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v26.i37.5617
– volume: 67
  start-page: 1845
  year: 2018
  ident: ref_145
  article-title: Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-315201
– volume: 12
  start-page: 1
  year: 2019
  ident: ref_12
  article-title: Emerging organoid models: Leaping forward in cancer research
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-019-0832-4
– volume: 11
  start-page: 1
  year: 2021
  ident: ref_80
  article-title: 3D bioprinting of hepatocytes: Core–shell structured co-cultures with fibroblasts for enhanced functionality
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84384-6
– volume: 10
  start-page: 4568
  year: 2020
  ident: ref_143
  article-title: Humanized mouse model: A review on preclinical applications for cancer immunotherapy
  publication-title: Am. J. Cancer Res.
– volume: 8
  start-page: 429
  year: 2018
  ident: ref_115
  article-title: Next-generation in vivo modeling of human cancers
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2018.00429
– volume: 44
  start-page: 457
  year: 2020
  ident: ref_61
  article-title: Aspirin inhibits hepatocellular carcinoma cell proliferation in vitro and in vivo via inducing cell cycle arrest and apoptosis
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2020.7630
– volume: 24
  start-page: 1363
  year: 2018
  ident: ref_102
  article-title: Organoid Models of Human Liver Cancers Derived from Tumor Needle Biopsies
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.07.001
– volume: 34
  start-page: 7029
  year: 2014
  ident: ref_125
  article-title: The N-nitrosodiethylamine mouse model: Sketching a timeline of evolution of chemically-induced hepatic lesions
  publication-title: Anticancer Res.
– volume: 29
  start-page: 850
  year: 2018
  ident: ref_188
  article-title: Predicting Treatment Response to Intra-arterial Therapies of Hepatocellular Carcinoma using Supervised Machine Learning—An Artificial Intelligence Concept
  publication-title: J. Vasc. Interv. Radiol.
  doi: 10.1016/j.jvir.2018.01.769
– volume: 13
  start-page: 8
  year: 2015
  ident: ref_181
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.11.005
– volume: 25
  start-page: 189
  year: 2012
  ident: ref_148
  article-title: Comparative histomorphological review of rat and human hepatocellular proliferative lesions
  publication-title: J. Toxicol. Pathol.
  doi: 10.1293/tox.25.189
– volume: 138
  start-page: 1601
  year: 2016
  ident: ref_137
  article-title: Transgenic mouse models generated by hydrodynamic transfection for genetic studies of liver cancer and preclinical testing of anti-cancer therapy
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.29703
– volume: 6
  start-page: 2374289519873088
  year: 2019
  ident: ref_182
  article-title: Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods
  publication-title: Acad. Pathol.
  doi: 10.1177/2374289519873088
– volume: 25
  start-page: 3136
  year: 2019
  ident: ref_9
  article-title: Hepatocellular carcinoma: Therapeutic advances in signaling, epigenetic and immune targets
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v25.i25.3136
– volume: 2014
  start-page: 764981
  year: 2014
  ident: ref_72
  article-title: Hepatic stellate cell coculture enables sorafenib resistance in Huh7 cells through HGF/c-Met/Akt and Jak2/Stat3 pathways
  publication-title: Biomed. Res. Int.
– volume: 26
  start-page: 1888
  year: 2020
  ident: ref_10
  article-title: Sequencing of systemic treatment for hepatocellular carcinoma: Second line competitors
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v26.i16.1888
– volume: 67
  start-page: 1
  year: 2015
  ident: ref_49
  article-title: Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B
  publication-title: Cytotechnology
  doi: 10.1007/s10616-014-9761-9
– volume: 69
  start-page: 840
  year: 2018
  ident: ref_7
  article-title: Mutational landscape of a chemically-induced mouse model of liver cancer
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2018.06.009
– volume: 90
  start-page: 367
  year: 2009
  ident: ref_122
  article-title: Experimental mouse models for hepatocellular carcinoma research
  publication-title: Int. J. Exp. Pathol.
  doi: 10.1111/j.1365-2613.2009.00656.x
– volume: 1250
  start-page: 1
  year: 2015
  ident: ref_51
  article-title: Culture and Functional Characterization of Human Hepatoma HepG2 Cells María
  publication-title: Protoc. Vitr. Hepatocyte Res.
– volume: 17
  start-page: 34
  year: 2021
  ident: ref_192
  article-title: Liver cancer stem cells: Recent progress in basic and clinical research
  publication-title: Regen. Ther.
  doi: 10.1016/j.reth.2021.03.002
– volume: Volume 9605
  start-page: 415
  year: 2016
  ident: ref_166
  article-title: Machine learning for In Silico modeling of tumor growth
  publication-title: Machine Learning for Health Informatics
  doi: 10.1007/978-3-319-50478-0_21
– volume: 9
  start-page: 137
  year: 2017
  ident: ref_129
  article-title: Genetically engineered mouse models in oncology research and cancer medicine
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201606857
– volume: 24
  start-page: 296
  year: 2020
  ident: ref_172
  article-title: In Silico Identification of Crucial Genes and Specific Pathways in Hepatocellular Cancer
  publication-title: Genet. Test. Mol. Biomark.
  doi: 10.1089/gtmb.2019.0242
– volume: 640
  start-page: 115
  year: 2010
  ident: ref_54
  article-title: Hepatocyte Differentiation
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60761-688-7_6
– volume: 1865
  start-page: 993
  year: 2019
  ident: ref_117
  article-title: Animal models for hepatocellular carcinoma
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2018.08.009
– volume: 6
  start-page: 23306
  year: 2015
  ident: ref_123
  article-title: Mouse models of liver cancer: Progress and recommendations
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4202
– ident: ref_30
  doi: 10.3390/cancers11111706
– volume: 71
  start-page: 1255
  year: 2013
  ident: ref_63
  article-title: Sorafenib enhances the chemotherapeutic efficacy of S-1 against hepatocellular carcinoma through downregulation of transcription factor E2F-1
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-013-2120-2
– ident: ref_180
– volume: 19
  start-page: 61
  year: 2018
  ident: ref_120
  article-title: Stress of strains: Inbred mice in liver research
  publication-title: Gene Expr.
  doi: 10.3727/105221618X15337408678723
– volume: 19
  start-page: 9
  year: 2020
  ident: ref_107
  article-title: Organ-on-a-chip: Recent breakthroughs and future prospects
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-020-0752-0
– volume: 6
  start-page: 1
  year: 2016
  ident: ref_47
  article-title: Hepatocellular carcinoma cell lines retain the genomic and transcriptomic landscapes of primary human cancers
  publication-title: Sci. Rep.
– volume: 48
  start-page: 858
  year: 2008
  ident: ref_6
  article-title: Experimental models of hepatocellular carcinoma
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2008.01.008
– ident: ref_55
  doi: 10.1371/journal.pone.0171215
– volume: 72
  start-page: 2695
  year: 2012
  ident: ref_136
  article-title: Genetically engineered mouse models: Closing the gap between preclinical data and trial outcomes
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-2786
– volume: 8
  start-page: 141
  year: 2012
  ident: ref_173
  article-title: Discovering best candidates for Hepatocellular Carcinoma (HCC) by in-silico techniques and tools
  publication-title: Int. J. Bioinform. Res. Appl.
  doi: 10.1504/IJBRA.2012.045956
– volume: 3
  start-page: 100198
  year: 2021
  ident: ref_101
  article-title: Organoids to model liver disease
  publication-title: JHEP Rep.
  doi: 10.1016/j.jhepr.2020.100198
– ident: ref_158
  doi: 10.3390/genes10110935
– volume: 12
  start-page: 1
  year: 2021
  ident: ref_20
  article-title: Natural Killer Cells and Regulatory T Cells Cross Talk in Hepatocellular Carcinoma: Exploring Therapeutic Options for the Next Decade
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.643310
– volume: 4
  start-page: 12
  year: 2016
  ident: ref_35
  article-title: In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2016.00012
– volume: 5
  start-page: e1030-12
  year: 2014
  ident: ref_67
  article-title: Pro-apoptotic Sorafenib signaling in murine hepatocytes depends on malignancy and is associated with PUMA expression in vitro and in vivo
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2013.557
– ident: ref_171
  doi: 10.1371/journal.pone.0132072
– volume: 72
  start-page: 215
  year: 2020
  ident: ref_2
  article-title: Advances in molecular classification and precision oncology in hepatocellular carcinoma
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2019.08.017
– volume: 99
  start-page: 644
  year: 2008
  ident: ref_52
  article-title: Cells for bioartificial liver devices: The human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21599
– ident: ref_3
  doi: 10.1007/978-3-030-21540-8
– volume: 22
  start-page: 456
  year: 2017
  ident: ref_92
  article-title: Three-Dimensional Cell Cultures in Drug Discovery and Development
  publication-title: SLAS Discov.
  doi: 10.1177/1087057117696795
– volume: 8
  start-page: 223
  year: 2021
  ident: ref_16
  article-title: NAFLD-Associated HCC: Progress and Opportunities
  publication-title: J. Hepatocell. Carcinoma
  doi: 10.2147/JHC.S272213
– volume: 10
  start-page: 1
  year: 2021
  ident: ref_190
  article-title: Development and Validation of a Machine Learning Prognostic Model for Hepatocellular Carcinoma Recurrence After Surgical Resection
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.593741
– volume: 24
  start-page: 1248
  year: 2018
  ident: ref_185
  article-title: Deep Learning based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0853
– ident: ref_169
  doi: 10.1186/s12885-018-4302-0
– ident: ref_48
  doi: 10.1371/journal.pone.0245939
– volume: 14
  start-page: 137
  year: 2020
  ident: ref_105
  article-title: Recent Advances in 3D Bioprinted Tumor Microenvironment
  publication-title: Biochip J.
  doi: 10.1007/s13206-020-4201-8
– volume: 20
  start-page: 517
  year: 2013
  ident: ref_127
  article-title: Two-stage model of chemically induced hepatocellular carcinoma in mouse
  publication-title: Oncol. Res.
  doi: 10.3727/096504013X13747716581336
– volume: 176
  start-page: 139
  year: 2017
  ident: ref_156
  article-title: Transarterial Chemoembolization in a Woodchuck Model of Hepatocellular Carcinoma William
  publication-title: Physiol. Behav.
– volume: 26
  start-page: 6679
  year: 2020
  ident: ref_179
  article-title: Prognostic role of artificial intelligence among patients with hepatocellular cancer: A systematic review
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v26.i42.6679
– ident: ref_37
  doi: 10.3390/nano11020481
– volume: 12
  start-page: 1773122
  year: 2020
  ident: ref_69
  article-title: A review of co-culture models to study the oral microenvironment and disease
  publication-title: J. Oral Microbiol.
  doi: 10.1080/20002297.2020.1773122
– volume: 5
  start-page: 196
  year: 2016
  ident: ref_106
  article-title: A 3D bioprinting liver tumor model for drug screening
  publication-title: World J. Pharm. Pharm. Sci.
– ident: ref_139
  doi: 10.1186/s12876-016-0423-6
– volume: 1
  start-page: 140
  year: 2020
  ident: ref_164
  article-title: Transgenic zebrafish for modeling hepatocellular carcinoma
  publication-title: MedComm
  doi: 10.1002/mco2.29
– volume: 45
  start-page: 548
  year: 2021
  ident: ref_93
  article-title: Spheroids and organoids as humanized 3D scaffold-free engineered tissues for SARS-CoV-2 viral infection and drug screening
  publication-title: Artif. Organs.
  doi: 10.1111/aor.13880
– volume: 2019
  start-page: 2
  year: 2019
  ident: ref_131
  article-title: An oncogenic hepatocyte-induced orthotopic mouse model of hepatocellular cancer arising in the setting of hepatic inflammation and fibrosis
  publication-title: J. Vis. Exp.
– ident: ref_108
  doi: 10.3390/ma12182945
– volume: 6
  start-page: 569
  year: 2020
  ident: ref_162
  article-title: Zebrafish Xenografts for Drug Discovery and Personalized Medicine
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2020.03.012
– volume: 21
  start-page: 49
  year: 2015
  ident: ref_68
  article-title: Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells
  publication-title: Clin. Mol. Hepatol.
  doi: 10.3350/cmh.2015.21.1.49
– volume: 15
  start-page: 536
  year: 2018
  ident: ref_128
  article-title: Mouse models of hepatocellular carcinoma: An overview and highlights for immunotherapy research
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-018-0033-6
– volume: 1612
  start-page: 325
  year: 2017
  ident: ref_43
  article-title: 3D Cell Culture: An Introduction
  publication-title: Methods Mol. Biol.
– volume: 14
  start-page: 101015
  year: 2021
  ident: ref_104
  article-title: 3D Bioprinted cancer models: Revolutionizing personalized cancer therapy
  publication-title: Transl. Oncol.
  doi: 10.1016/j.tranon.2021.101015
– volume: 34
  start-page: 1
  year: 2015
  ident: ref_157
  article-title: A fresh look at zebrafish from the perspective of cancer research
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-015-0196-8
– volume: 13
  start-page: 83
  year: 2017
  ident: ref_79
  article-title: Microenvironment of a tumor-organoid system enhances hepatocellular carcinoma malignancyrelated hallmarks
  publication-title: Organogenesis
  doi: 10.1080/15476278.2017.1322243
– volume: 471
  start-page: 61
  year: 2020
  ident: ref_174
  article-title: Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.12.007
– ident: ref_34
  doi: 10.3390/scipharm88030032
– ident: ref_160
  doi: 10.1016/B978-0-12-812431-4.00051-8
– volume: 106
  start-page: 113
  year: 2010
  ident: ref_135
  article-title: Genetically engineered mouse models in cancer research
  publication-title: Adv. Cancer Res.
  doi: 10.1016/S0065-230X(10)06004-5
– volume: 10
  start-page: 1264
  year: 2015
  ident: ref_134
  article-title: An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.080
– ident: ref_50
  doi: 10.3390/mi10100676
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_141
  article-title: Humanized Rodent Models for Cancer Research
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.01696
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_187
  article-title: Machine-learning Approach for the Development of a Novel Predictive Model for the Diagnosis of Hepatocellular Carcinoma
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-44022-8
– volume: 13
  start-page: 509
  year: 2021
  ident: ref_155
  article-title: Application of the woodchuck animal model for the treatment of hepatitis B virus-induced liver cancer
  publication-title: World J. Gastrointest Oncol.
  doi: 10.4251/wjgo.v13.i6.509
– volume: 33
  start-page: 95
  year: 2020
  ident: ref_161
  article-title: Use of Zebrafish in Drug Discovery Toxicology
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.9b00335
– volume: 4
  start-page: 799
  year: 2020
  ident: ref_176
  article-title: Machine Learning in Oncology: What Should Clinicians Know?
  publication-title: JCO Clin. Cancer Inform.
  doi: 10.1200/CCI.20.00049
– volume: 86
  start-page: 87
  year: 2012
  ident: ref_62
  article-title: Comparative analysis of phase I and II enzyme activities in 5 hepatic cell lines identifies Huh-7 and HCC-T cells with the highest potential to study drug metabolism
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-011-0733-y
– volume: 37
  start-page: 265
  year: 2019
  ident: ref_71
  article-title: The effect of hepatic stellate cells on hepatocellular carcinoma progression
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2019.37.4_suppl.265
– volume: 72
  start-page: 2533
  year: 2012
  ident: ref_75
  article-title: Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-3317
– volume: 5
  start-page: 61
  year: 2018
  ident: ref_26
  article-title: Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance
  publication-title: J. Hepatocell. Carcinoma
  doi: 10.2147/JHC.S156701
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_81
  article-title: Application of a 3D Bioprinted Hepatocellular Carcinoma Cell Model in Antitumor Drug Research
  publication-title: Front. Oncol.
– volume: 7
  start-page: 4570
  year: 2018
  ident: ref_59
  article-title: Apatinib targets both tumor and endothelial cells in hepatocellular carcinoma
  publication-title: Cancer Med.
  doi: 10.1002/cam4.1664
– volume: 25
  start-page: 74
  year: 2016
  ident: ref_14
  article-title: Hepatocellular carcinoma: From diagnosis to treatment
  publication-title: Surg. Oncol.
  doi: 10.1016/j.suronc.2016.03.002
– ident: ref_36
  doi: 10.3390/cancers11081098
– ident: ref_17
  doi: 10.3390/v13050830
– volume: 19
  start-page: 65
  year: 2019
  ident: ref_99
  article-title: Modelling cancer in microfluidic human organs-on-chips
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0104-6
– volume: 26
  start-page: 5276
  year: 2020
  ident: ref_133
  article-title: Mouse Models of Oncoimmunology in Hepatocellular Carcinoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-19-2923
– volume: 34
  start-page: 417
  year: 2021
  ident: ref_191
  article-title: Prediction of early recurrence of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning
  publication-title: Mod. Pathol.
  doi: 10.1038/s41379-020-00671-z
– volume: 5
  start-page: 63
  year: 2012
  ident: ref_165
  article-title: An inducible kras V12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening
  publication-title: DMM Dis. Model. Mech.
  doi: 10.1242/dmm.008367
– volume: 44
  start-page: 479
  year: 2015
  ident: ref_18
  article-title: Hepatocellular Carcinoma: Review of Epidemiology, Screening, Imaging Diagnosis, Response Assessment, and Treatment
  publication-title: Curr. Probl. Diagn. Radiol.
  doi: 10.1067/j.cpradiol.2015.04.004
– volume: 14
  start-page: 910
  year: 2016
  ident: ref_89
  article-title: 2D and 3D cell cultures—A comparison of different types of cancer cell cultures
  publication-title: Arch. Med. Sci.
– volume: 36
  start-page: 241
  year: 2015
  ident: ref_57
  article-title: Sorafenib inhibits proliferation and invasion of human hepatocellular carcinoma cells via up-regulation of p53 and suppressing FoxM1
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2014.122
– volume: 2021
  start-page: 8837811
  year: 2021
  ident: ref_27
  article-title: Liver Cancer: Therapeutic Challenges and the Importance of Experimental Models
  publication-title: Can. J. Gastroenterol. Hepatol.
– volume: 12
  start-page: 31
  year: 2021
  ident: ref_184
  article-title: Current updates in machine learning in the prediction of therapeutic outcome of hepatocellular carcinoma: What should we know?
  publication-title: Insights Imaging
  doi: 10.1186/s13244-021-00977-9
– volume: 9
  start-page: 1
  year: 2020
  ident: ref_118
  article-title: Preclinical murine tumor models: A structural and functional perspective
  publication-title: Elife
  doi: 10.7554/eLife.50740
– volume: 22
  start-page: 11
  year: 2009
  ident: ref_119
  article-title: Biological basis of differential susceptibility to hepatocarcinogenesis among mouse strains
  publication-title: J. Toxicol. Pathol.
  doi: 10.1293/tox.22.11
– volume: 9
  start-page: 1
  year: 2021
  ident: ref_29
  article-title: Metabolic alterations and vulnerabilities in hepatocellular carcinoma
  publication-title: Gastroenterol. Rep.
  doi: 10.1093/gastro/goaa066
– volume: 3
  start-page: 1
  year: 2019
  ident: ref_175
  article-title: Artificial intelligence for precision oncology: Beyond patient stratification
  publication-title: NPJ Precis. Oncol.
– volume: 23
  start-page: 1
  year: 2013
  ident: ref_142
  article-title: New generation humanized mice for virus research: Comparative aspects and future prospects
  publication-title: Virology
– volume: 367
  start-page: 982
  year: 2020
  ident: ref_178
  article-title: Artificial intelligence in cancer therapy
  publication-title: Science
  doi: 10.1126/science.aaz3023
– volume: 93
  start-page: 3321
  year: 2019
  ident: ref_77
  article-title: Development of in vitro 3D cell model from hepatocellular carcinoma (HepG2) cell line and its application for genotoxicity testing
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-019-02576-6
– ident: ref_124
  doi: 10.3390/ijms21155461
– volume: 14
  start-page: 4698
  year: 2020
  ident: ref_154
  article-title: Nanoparticle Uptake in a Spontaneous and Immunocompetent Woodchuck Liver Cancer Model
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00468
SSID ssj0000331767
Score 2.455391
SecondaryResourceType review_article
Snippet Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor...
Simple SummaryHepatocellular carcinoma (HCC) is characterized by a broad molecular and genetic heterogeneity, which makes it a challenging subject in terms of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3651
SubjectTerms Animal models
Artificial intelligence
Computer applications
DNA methylation
Hepatocellular carcinoma
Kinases
Liver cancer
Molecular modelling
Mutation
Prediction models
Public health
Review
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58gAgivq0vKnjwEt00bdOeRGVlUVYWUfBW2jRBYW3Xfdz9Ef5Cf4kz22x1Fb0Vkj6YaWbmm2TmAzgKOdeRMpyhb82YL_2IpZk0zMgY7WSOAGDcp7t9G7Ye_OvH4NEm3Ab2WOXEJo4NdV4qypGfYugbSU-g_z_rvTJijaLdVUuhMQvzaIIjBF_zF83bzl2dZWkI9I-hrHr6CMT3p4qE2R9wgUs9DPi0O_oVY_48KvnN91ytwLINGt3zSsurMKOLNVho223xNViqkm9uVVO0DjfNb337XaI76w7c0uB4DzE25erp8Kl7STxCRfmSfry9n7sdtH22TNLtfJVgbsDDVfP-ssUsawJTvseHjKgzDFdKo-Pm6J7SMPcyhUDXy4Ig5yaNI5mHGTH5GYR_jTjzYxNog0BMK5nHYhPmirLQ2-Bi7KHyFMVkjPF1jJeRUPj0NBMK44qGAycT4SXKthQnZotugtCCpJ38kLYDx_UNvaqbxt9T9ybaSOyyGiRfP4EDh_UwLgiSXFrocjSeE6MhCnzPga1KefW7hE91yIFwQE6ptZ5AzbanR4rnp3HTbeIjwdBt5__P2oVFjw69NCTz-B7MDfsjvY9RyzA7sL_mJ-uF798
  priority: 102
  providerName: ProQuest
Title Experimental Models of Hepatocellular Carcinoma—A Preclinical Perspective
URI https://www.ncbi.nlm.nih.gov/pubmed/34359553
https://www.proquest.com/docview/2558723324
https://www.proquest.com/docview/2559425542
https://pubmed.ncbi.nlm.nih.gov/PMC8344976
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD54AfFFvFsvo4IPvkSXNG3aBxGV6RQmQxzsrbRpgsJsdZug_95zum46L-BbIWkCX3JyztfmnA_gIODchNpyhr41ZVLJkCWpssyqCM_JDAlAWae7dRs0O_Km63c_5YAqAAe_UjvSk-r0e0dvL--naPAnxDiRsh9rwqc_4B5ab0Dp1PPolhRZaauK9ctj2UNXWSrKiroSLAgiOSr189sY017qR-j5_QblF5d0uQxLVSzpno0WfwVmTL4KC63qb_kaXDe-lO93SfWsN3AL6zbRBQ0L-mRPd1DdC5ITyounhJ25bTwAq1xJt_2Zh7kOncvG_UWTVdIJTEvBh4z0MyzX2qD35uijkiATqUa2K1Lfz7hNolBlQUpyfhY5YD1KZWR9Y5GNGa2yyNuAubzIzRa4GIDoLEFQrLXSRPgYehpHT1JPY3BRd-BoDFWsq7riJG_Ri5FfELbxN2wdOJy88DwqqfF3190x9vF4a8RIgkIlPIwEHdifNKNVEG5JborXsk-Ep5EvhQObo6WazOVJSkb2PQfU1CJOOlDF7emW_PGhrLxNoiQYv23_Y94dWBR0_aWumOC7MDfsv5o9jF-GaQ3mzxu37bsazF51ea3cpR9DjPIK
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VqVSQEIIWiqGFRSoSl6XeH9vxAaH-pEpJE0WolXpz7fWuilTs0KRC3HgInoOH4kmYiX_aFMGtt0i7tqOZ3Zn5dmfmA9gKhbBd4wRH35pxHekuT7PIcRfFaCdzBADzPt3DUdg_0R9Pg9Ml-NXUwlBaZWMT54Y6Lw2dkW9j6NuNpEL__2HylRNrFN2uNhQa1bIY2O_fELJN3x_uo37fSHnQO97r85pVgBstxYwTtYQTxlh0bALNdxrmMjMIBGUWBLlwKaLwPMyI6c4hPPLjTMcusA6BijVRTs2X0OQva4VQpgPLu73R-FN7quMr9MdhVPUQUir2tw0p73IqFJqWMBCL7u-vmPZ2auYNX3fwCB7WQSrbqVbVY1iyxSqsDOtr-FV4UB32saqGaQ0GvRs8AYzo1S6mrHQ4PkFMT3cDlOzK9oi3qCi_pL9__NxhY7S1dVkmG1-XfD6BkzuR51PoFGVhnwHDWMfkKYrJOadtjD-7yuDb00wZjGN8D941wktM3cKcmDQuEoQyJO3klrQ9eNs-MKm6d_x76kajjaTextPketF58Lodxg1IkksLW17N58Ro-AItPVivlNd-S2mqew6UB9GCWtsJ1Nx7caT4fD5v8k38JxgqPv__33oF9_rHw6Pk6HA0eAH3JSXc-BGXYgM6s8sru4kR0yx7WS9TBmd3vTP-AMnuLAU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatwwEB7CBkKhlDbpj9M0USGFXtS1JNtaH0rJzy5JNlmW0kBuri1LtJDY2-yG0lsfok_Tx-mTdGb9k2xKesttQbK9zEgz80kz8wFsR0LYnnGCo2_NeKCDHk8z7bjTMdrJHAHAvE_3ySg6OA2OzsKzJfjd1MJQWmVjE-eGOi8NnZF3MfTtaanQ_3ddnRYx3h98mHzjxCBFN60NnUa1RIb2x3eEb9P3h_uo6zdSDvqf9g54zTDATSDFjBPNhBPGWHRyAk15GuUyMwgKZRaGuXApIvI8yoj1ziFU8uMsiF1oHYIWa3ROjZjQ_C9rREV-B5Z3-6Pxx_aEx1fomyNd9RNSKva7hhR5ORUKzUwUikVX-E98eztN84bfGzyGR3XAynaqFfYElmyxCisn9ZX8KjysDv5YVc-0BsP-Dc4ARlRr51NWOhyfIL6newJKfGV7xGFUlBfpn5-_dtgY7W5dosnG1-WfT-H0XuT5DDpFWdgXwDDuMXmKYnLOBTbGnz1l8O1ppgzGNL4H7xrhJaZuZ06sGucJwhqSdnJL2h68bR-YVJ087p660Wgjqbf0NLlegB68bodxM5Lk0sKWV_M5MRrBMJAePK-U135LBVQDHSoP9IJa2wnU6HtxpPj6Zd7wm7hQMGxc___f2oIV3BHJ8eFo-BIeSMq98TWXYgM6s8sr-wqDp1m2Wa9SBp_ve2P8BW_fMDo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+Models+of+Hepatocellular+Carcinoma-A+Preclinical+Perspective&rft.jtitle=Cancers&rft.au=Blidisel%2C+Alexandru&rft.au=Marcovici%2C+Iasmina&rft.au=Coricovac%2C+Dorina&rft.au=Hut%2C+Florin&rft.date=2021-07-21&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=13&rft.issue=15&rft_id=info:doi/10.3390%2Fcancers13153651&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon