Experimental Models of Hepatocellular Carcinoma—A Preclinical Perspective
Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Alt...
Saved in:
Published in | Cancers Vol. 13; no. 15; p. 3651 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research. |
---|---|
AbstractList | Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research. Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research. Simple SummaryHepatocellular carcinoma (HCC) is characterized by a broad molecular and genetic heterogeneity, which makes it a challenging subject in terms of the underlying mechanisms, response and resistance to treatment, and finding novel therapeutic options. Nowadays, new experimental models (3D in vitro models, in vivo mouse and non-mouse models, and computational studies) allow more detailed studies of hepatocellular carcinoma pathogenesis and treatment. Here, we provide insights into the current preclinical models frequently applied for the study of hepatocellular carcinoma.AbstractHepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research. |
Author | Hut, Florin Marcovici, Iasmina Coricovac, Dorina Cretu, Octavian Marius Blidisel, Alexandru Dehelean, Cristina Adriana |
AuthorAffiliation | 2 Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; iasmina.marcovici@umft.ro 1 Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; blidy@umft.ro (A.B.); florin.hut@umft.ro (F.H.); octavian.cretu@umft.ro (O.M.C.) 3 Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania |
AuthorAffiliation_xml | – name: 1 Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; blidy@umft.ro (A.B.); florin.hut@umft.ro (F.H.); octavian.cretu@umft.ro (O.M.C.) – name: 2 Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; iasmina.marcovici@umft.ro – name: 3 Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania |
Author_xml | – sequence: 1 givenname: Alexandru surname: Blidisel fullname: Blidisel, Alexandru – sequence: 2 givenname: Iasmina surname: Marcovici fullname: Marcovici, Iasmina – sequence: 3 givenname: Dorina orcidid: 0000-0002-5760-8872 surname: Coricovac fullname: Coricovac, Dorina – sequence: 4 givenname: Florin surname: Hut fullname: Hut, Florin – sequence: 5 givenname: Cristina Adriana surname: Dehelean fullname: Dehelean, Cristina Adriana – sequence: 6 givenname: Octavian Marius surname: Cretu fullname: Cretu, Octavian Marius |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34359553$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9KHTEYxYMoatV1d2XATTe3Tv5PNoJctBav1EVdh0zmmxrJTabJjNidD9En7JM0l2tFL5hFEsjvHM7J9wFthxgAoY-4_kKpqk-sCRZSxhRzKjjeQvuklmQmhGLbr-576Cjn-7osSrEUchftUUa54pzuo6vzxwGSW0IYja-uYwc-V7GvLmEwY7Tg_eRNquYmWRfi0vx9-nNW3SSw3gVni-SmJBjAju4BDtFOb3yGo-fzAN1enP-YX84W379-m58tZpYRPM6IbGiPrQXCGKaCGNGR1jZNQ1rOO9wb1chOtFxR0UuCa9Uy1XPoFWFgZafoATpd-w5Tu4TOluzJeD2UGib91tE4_fYluDv9Mz7ohjKmpCgGn58NUvw1QR710uVVVxMgTlkTzhUrGyMFPd5A7-OUQqm3ohpJKCWsUJ9eJ3qJ8v-fC3CyBmyKOSfoXxBc69Uw9cYwi4JvKKwbzejiqpLz7-r-AYdvpfQ |
CitedBy_id | crossref_primary_10_1016_j_yexcr_2022_113042 crossref_primary_10_3390_ijms252111339 crossref_primary_10_3892_ol_2024_14737 crossref_primary_10_3390_biomedicines12010087 crossref_primary_10_1016_j_clinre_2024_102418 crossref_primary_10_3389_fonc_2022_988956 crossref_primary_10_1016_j_phrs_2024_107560 crossref_primary_10_1177_15330338241285097 crossref_primary_10_1016_j_canlet_2022_216048 crossref_primary_10_1016_j_biopha_2023_115256 crossref_primary_10_1016_j_jddst_2024_106490 crossref_primary_10_1007_s13770_023_00576_3 crossref_primary_10_3389_fbioe_2025_1564543 crossref_primary_10_3390_medicina60050716 crossref_primary_10_1016_j_bbamcr_2023_119557 crossref_primary_10_3390_ijms24065203 crossref_primary_10_1002_cam4_6163 crossref_primary_10_3389_fmolb_2024_1430794 crossref_primary_10_1016_j_yexcr_2021_112987 crossref_primary_10_1186_s13578_024_01287_5 crossref_primary_10_3390_biology13060455 crossref_primary_10_3390_pathogens12070940 crossref_primary_10_3390_bioengineering10060673 crossref_primary_10_1007_s12551_024_01260_z crossref_primary_10_2174_0118715206289468240130051102 crossref_primary_10_1590_s0004_2803_230302023_58 crossref_primary_10_1016_j_apmt_2024_102307 crossref_primary_10_1038_s41598_024_77658_2 crossref_primary_10_1177_15330338231154090 crossref_primary_10_3389_fphar_2022_1000608 crossref_primary_10_3390_ijms24054529 crossref_primary_10_1016_j_gastha_2023_07_012 crossref_primary_10_3390_biomedicines12071624 crossref_primary_10_3390_cells11142129 crossref_primary_10_1080_14786419_2022_2098958 crossref_primary_10_1016_j_yexmp_2021_104715 crossref_primary_10_3390_medicina58060784 crossref_primary_10_1016_j_mtcomm_2024_109318 crossref_primary_10_3390_cancers16142591 crossref_primary_10_3389_fbioe_2023_1189726 crossref_primary_10_3389_fcell_2024_1536854 crossref_primary_10_1016_j_onano_2023_100159 crossref_primary_10_1038_s41420_024_02285_9 crossref_primary_10_1016_j_ooc_2021_100014 crossref_primary_10_1111_fcp_13032 crossref_primary_10_3390_cells13201726 |
Cites_doi | 10.3390/cancers11111792 10.1007/s42242-020-00074-8 10.1146/annurev-bioeng-060418-052305 10.1038/s41416-020-0993-5 10.1186/s12918-016-0318-8 10.3390/ijms19010181 10.3389/fonc.2020.627701 10.1016/j.bbcan.2020.188391 10.1016/j.bbrc.2019.02.015 10.3389/fphar.2018.00006 10.4254/wjh.v13.i4.393 10.1016/S0140-6736(18)30010-2 10.21873/anticanres.14540 10.1152/ajpgi.00199.2012 10.7150/ijms.19033 10.14218/JCTH.2020.00001 10.1038/s41598-017-10828-7 10.4103/jcar.JCar_9_16 10.15586/hepatocellularcarcinoma.2019 10.1002/jcp.24683 10.1039/C4RA12269K 10.4252/wjsc.v11.i12.1065 10.2147/OTT.S176903 10.1016/j.jhep.2016.05.035 10.1038/s43018-020-0102-y 10.1038/emm.2017.164 10.1088/1758-5082/6/2/022001 10.1038/s41698-020-0121-2 10.1016/j.tranon.2014.10.006 10.1088/1748-605X/aa8c51 10.1016/j.biomaterials.2018.09.026 10.1590/0102-6720201700040011 10.1177/1010428317695923 10.18632/oncotarget.9986 10.1038/srep21174 10.3389/fcell.2020.00166 10.3390/cancers12123636 10.1517/17425255.2012.685159 10.7150/ijbs.15165 10.1038/s41568-018-0007-6 10.1186/s12935-021-01981-1 10.1039/C8LC00852C 10.1016/B978-0-12-416002-6.00011-0 10.1016/j.biotechadv.2016.11.002 10.5732/cjc.011.10047 10.1126/sciadv.1700764 10.1016/j.clinre.2015.07.006 10.5402/2012/828701 10.3892/ol.2016.5141 10.1007/978-1-61779-965-5_6 10.1148/ryai.2019180021 10.1002/mc.21844 10.1016/j.biocel.2011.06.011 10.1002/bit.26297 10.1186/s13046-018-0752-0 10.1101/762351 10.1056/NEJMra1713263 10.2147/CMAR.S302565 10.1016/j.tranon.2019.04.020 10.18632/oncotarget.21030 10.3748/wjg.14.1720 10.1152/physiol.00036.2016 10.3748/wjg.v22.i41.9069 10.5487/TR.2014.30.1.001 10.1016/j.neo.2018.05.008 10.1002/ame2.12100 10.3390/cancers11101487 10.1016/j.biomaterials.2020.120416 10.1016/j.jsbmb.2011.12.004 10.5114/aoms.2020.93739 10.3748/wjg.v26.i37.5617 10.1136/gutjnl-2017-315201 10.1186/s13045-019-0832-4 10.1038/s41598-021-84384-6 10.3389/fonc.2018.00429 10.3892/or.2020.7630 10.1016/j.celrep.2018.07.001 10.1016/j.jvir.2018.01.769 10.1016/j.csbj.2014.11.005 10.1293/tox.25.189 10.1002/ijc.29703 10.1177/2374289519873088 10.3748/wjg.v25.i25.3136 10.3748/wjg.v26.i16.1888 10.1007/s10616-014-9761-9 10.1016/j.jhep.2018.06.009 10.1111/j.1365-2613.2009.00656.x 10.1016/j.reth.2021.03.002 10.1007/978-3-319-50478-0_21 10.15252/emmm.201606857 10.1089/gtmb.2019.0242 10.1007/978-1-60761-688-7_6 10.1016/j.bbadis.2018.08.009 10.18632/oncotarget.4202 10.3390/cancers11111706 10.1007/s00280-013-2120-2 10.3727/105221618X15337408678723 10.1186/s12938-020-0752-0 10.1016/j.jhep.2008.01.008 10.1371/journal.pone.0171215 10.1158/0008-5472.CAN-11-2786 10.1504/IJBRA.2012.045956 10.1016/j.jhepr.2020.100198 10.3390/genes10110935 10.3389/fimmu.2021.643310 10.3389/fbioe.2016.00012 10.1038/cddis.2013.557 10.1371/journal.pone.0132072 10.1016/j.jhep.2019.08.017 10.1002/bit.21599 10.1007/978-3-030-21540-8 10.1177/1087057117696795 10.2147/JHC.S272213 10.3389/fonc.2020.593741 10.1158/1078-0432.CCR-17-0853 10.1186/s12885-018-4302-0 10.1371/journal.pone.0245939 10.1007/s13206-020-4201-8 10.3727/096504013X13747716581336 10.3748/wjg.v26.i42.6679 10.3390/nano11020481 10.1080/20002297.2020.1773122 10.1186/s12876-016-0423-6 10.1002/mco2.29 10.1111/aor.13880 10.3390/ma12182945 10.1016/j.trecan.2020.03.012 10.3350/cmh.2015.21.1.49 10.1038/s41575-018-0033-6 10.1016/j.tranon.2021.101015 10.1186/s13046-015-0196-8 10.1080/15476278.2017.1322243 10.1016/j.canlet.2019.12.007 10.3390/scipharm88030032 10.1016/B978-0-12-812431-4.00051-8 10.1016/S0065-230X(10)06004-5 10.1038/nprot.2015.080 10.3390/mi10100676 10.3389/fonc.2020.01696 10.1038/s41598-019-44022-8 10.4251/wjgo.v13.i6.509 10.1021/acs.chemrestox.9b00335 10.1200/CCI.20.00049 10.1007/s00204-011-0733-y 10.1200/JCO.2019.37.4_suppl.265 10.1158/0008-5472.CAN-11-3317 10.2147/JHC.S156701 10.1002/cam4.1664 10.1016/j.suronc.2016.03.002 10.3390/cancers11081098 10.3390/v13050830 10.1038/s41568-018-0104-6 10.1158/1078-0432.CCR-19-2923 10.1038/s41379-020-00671-z 10.1242/dmm.008367 10.1067/j.cpradiol.2015.04.004 10.1038/aps.2014.122 10.1186/s13244-021-00977-9 10.7554/eLife.50740 10.1293/tox.22.11 10.1093/gastro/goaa066 10.1126/science.aaz3023 10.1007/s00204-019-02576-6 10.3390/ijms21155461 10.1021/acsnano.0c00468 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/cancers13153651 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection Biological Sciences ProQuest research library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 2072-6694 |
ExternalDocumentID | PMC8344976 34359553 10_3390_cancers13153651 |
Genre | Journal Article Review |
GroupedDBID | --- 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GUQSH GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM TUS NPM PQGLB 3V. 7T5 7TO 7XB 8FK H94 MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c421t-2783f1cce2441362a6d2bc8882b55d1fa987d6b5936f72109b49f5ef924ec7d93 |
IEDL.DBID | M48 |
ISSN | 2072-6694 |
IngestDate | Thu Aug 21 14:10:18 EDT 2025 Fri Jul 11 10:10:13 EDT 2025 Fri Jul 25 11:59:27 EDT 2025 Mon Jul 21 06:06:09 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Tue Jul 01 01:27:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | artificial intelligence algorithms mouse models 3D tumor spheroids organoids organ-on-a-chip in silico machine learning 2D cell lines hepatocellular carcinoma |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-2783f1cce2441362a6d2bc8882b55d1fa987d6b5936f72109b49f5ef924ec7d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this paper. |
ORCID | 0000-0002-5760-8872 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers13153651 |
PMID | 34359553 |
PQID | 2558723324 |
PQPubID | 2032421 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8344976 proquest_miscellaneous_2559425542 proquest_journals_2558723324 pubmed_primary_34359553 crossref_primary_10_3390_cancers13153651 crossref_citationtrail_10_3390_cancers13153651 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210721 |
PublicationDateYYYYMMDD | 2021-07-21 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210721 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Cancers |
PublicationTitleAlternate | Cancers (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Koledova (ref_43) 2017; 1612 ref_139 Zhao (ref_157) 2015; 34 Ehrlich (ref_109) 2019; 21 Clark (ref_18) 2015; 44 Fiorini (ref_85) 2020; 8 ref_13 Santos (ref_116) 2017; 39 Vij (ref_21) 2021; 13 Sato (ref_187) 2019; 9 Hoekstra (ref_64) 2011; 43 Wang (ref_79) 2017; 13 Rijal (ref_88) 2017; 3 Wang (ref_28) 2021; 12 Miki (ref_70) 2012; 131 ref_95 Katt (ref_35) 2016; 4 Shi (ref_61) 2020; 44 Mohammed (ref_126) 2018; 17 Huang (ref_174) 2020; 471 Schulze (ref_22) 2016; 65 Sharifi (ref_111) 2020; 3 ref_17 Azuaje (ref_175) 2019; 3 Mountcastle (ref_69) 2020; 12 Costa (ref_91) 2016; 34 Mabrouk (ref_173) 2012; 8 Akkina (ref_142) 2013; 23 Nakayama (ref_164) 2020; 1 Song (ref_87) 2018; 37 Khawar (ref_11) 2018; 20 Xiao (ref_162) 2020; 6 Lu (ref_110) 2018; 18 Walrath (ref_135) 2010; 106 Luo (ref_127) 2013; 20 Zhang (ref_117) 2019; 1865 Li (ref_152) 2016; 7 Villanueva (ref_5) 2019; 380 Huiting (ref_159) 2015; 3 ref_121 ref_124 Kronemberger (ref_93) 2021; 45 Maronpot (ref_119) 2009; 22 Wei (ref_57) 2015; 36 Blair (ref_156) 2017; 176 Nuciforo (ref_102) 2018; 24 Khalaf (ref_26) 2018; 5 Abajian (ref_188) 2018; 29 Qiu (ref_49) 2015; 67 Qiu (ref_47) 2016; 6 ref_158 Liu (ref_58) 2017; 14 Shuichi (ref_71) 2019; 37 Goyak (ref_54) 2010; 640 Zhang (ref_113) 2007; 30 Neureiter (ref_9) 2019; 25 Zhai (ref_63) 2013; 71 Nagy (ref_176) 2020; 4 Sonntag (ref_67) 2014; 5 Hassell (ref_99) 2019; 19 Inokawa (ref_25) 2016; 12 Vinken (ref_51) 2015; 1250 ref_160 Liu (ref_114) 2013; 304 Guerin (ref_118) 2020; 9 Kolenda (ref_89) 2016; 14 Kim (ref_153) 2020; 3 Ghouri (ref_15) 2017; 16 Tenen (ref_29) 2021; 9 ref_83 ref_149 Xie (ref_66) 2021; 265 Sedlik (ref_140) 2020; 5 Malik (ref_19) 2021; 10 Sun (ref_81) 2020; 10 Ma (ref_82) 2018; 185 Sacan (ref_167) 2012; 910 Connor (ref_7) 2018; 69 Augustine (ref_104) 2021; 14 ref_146 Nguyen (ref_165) 2012; 5 Iqbal (ref_177) 2021; 21 ref_84 Andersson (ref_65) 2012; 8 Sabzevari (ref_144) 2020; 40 Trisilowati (ref_147) 2012; 2012 Ravi (ref_45) 2015; 230 Morshid (ref_189) 2019; 1 Fang (ref_92) 2017; 22 Heindryckx (ref_122) 2009; 90 Lai (ref_179) 2020; 26 Cassar (ref_161) 2020; 33 Saito (ref_191) 2021; 34 Kimlin (ref_38) 2013; 52 Jung (ref_76) 2017; 7 ref_50 Rocha (ref_125) 2014; 34 Gargiulo (ref_115) 2018; 8 Sun (ref_172) 2020; 24 Reiberger (ref_134) 2015; 10 Kourou (ref_181) 2015; 13 Tomc (ref_77) 2019; 93 Newell (ref_6) 2008; 48 Ciccarelli (ref_151) 2018; 11 ref_56 Martin (ref_138) 2008; 14 ref_55 He (ref_123) 2015; 6 Geh (ref_16) 2021; 8 Rashidi (ref_182) 2019; 6 Coulouarn (ref_75) 2012; 72 Langhans (ref_96) 2018; 9 ref_180 Grande (ref_186) 2020; 26 Bartlett (ref_42) 2014; 7 Chen (ref_150) 2019; 2019 Duval (ref_39) 2017; 32 Wang (ref_44) 2014; 6 Rebouissou (ref_2) 2020; 72 Chaicharoenaudomrung (ref_97) 2019; 11 Brown (ref_128) 2018; 15 Fasolino (ref_73) 2018; 13 ref_169 Jung (ref_130) 2014; 30 Wang (ref_106) 2016; 5 Grandhi (ref_14) 2016; 25 Zhao (ref_145) 2018; 67 ref_168 Tian (ref_141) 2020; 10 ref_171 Damelin (ref_52) 2008; 99 Rolver (ref_86) 2019; 2019 Zou (ref_184) 2021; 12 Chaudhary (ref_185) 2018; 24 Lee (ref_74) 2014; 4 Chen (ref_132) 2019; 12 Ho (ref_178) 2020; 367 Adam (ref_53) 2016; 12 Yang (ref_59) 2018; 7 Hirschfield (ref_4) 2018; 50 Nault (ref_24) 2016; 40 Wu (ref_107) 2020; 19 Silva (ref_10) 2020; 26 Lin (ref_62) 2012; 86 Qi (ref_131) 2019; 2019 Bae (ref_105) 2020; 14 ref_36 ref_34 Takai (ref_78) 2016; 6 ref_31 ref_30 Fan (ref_12) 2019; 12 Porter (ref_90) 2020; 123 Forner (ref_1) 2018; 391 Zhao (ref_33) 2020; 1874 Kersten (ref_129) 2017; 9 ref_37 Nuciforo (ref_101) 2021; 3 Press (ref_155) 2021; 13 Santos (ref_27) 2021; 2021 Drost (ref_94) 2018; 18 Hoshi (ref_60) 2019; 513 Liu (ref_154) 2020; 14 Holzinger (ref_166) 2016; Volume 9605 Chen (ref_72) 2014; 2014 Roemer (ref_183) 2016; 176 Bresnahan (ref_133) 2020; 26 Niu (ref_23) 2016; 22 ref_103 Bozward (ref_20) 2021; 12 ref_108 Huang (ref_190) 2021; 10 Yamashita (ref_192) 2021; 17 Gu (ref_68) 2015; 21 ref_46 Taymour (ref_80) 2021; 11 Wrighton (ref_163) 2019; 8 Lo (ref_100) 2020; 1 Thoolen (ref_148) 2012; 25 Chiew (ref_41) 2017; 114 ref_3 Datta (ref_98) 2020; 4 Ju (ref_137) 2016; 138 Rogers (ref_120) 2018; 19 ref_48 Ghavimi (ref_8) 2020; 8 Liu (ref_170) 2017; 8 Chedid (ref_32) 2017; 30 Leung (ref_40) 2011; 23 Li (ref_112) 2021; 13 Singh (ref_136) 2012; 72 Yin (ref_143) 2020; 10 |
References_xml | – ident: ref_149 doi: 10.3390/cancers11111792 – volume: 3 start-page: 189 year: 2020 ident: ref_111 article-title: A hepatocellular carcinoma–bone metastasis-on-a-chip model for studying thymoquinone-loaded anticancer nanoparticles publication-title: Bio-Des. Manuf. doi: 10.1007/s42242-020-00074-8 – volume: 21 start-page: 219 year: 2019 ident: ref_109 article-title: Challenges and Opportunities in the Design of Liver-on-Chip Microdevices publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-060418-052305 – volume: 5 start-page: 119 year: 2020 ident: ref_140 article-title: Humanized Mouse Models to Evaluate Cancer Immunotherapeutics publication-title: Annu. Rev. Cancer Biol. – volume: 123 start-page: 1209 year: 2020 ident: ref_90 article-title: Current concepts in tumour-derived organoids publication-title: Br. J. Cancer doi: 10.1038/s41416-020-0993-5 – ident: ref_168 doi: 10.1186/s12918-016-0318-8 – ident: ref_103 doi: 10.3390/ijms19010181 – volume: 10 start-page: 1 year: 2021 ident: ref_19 article-title: “Complimenting the Complement”: Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma publication-title: Front. Oncol. doi: 10.3389/fonc.2020.627701 – volume: 1874 start-page: 188391 year: 2020 ident: ref_33 article-title: Lenvatinib for hepatocellular carcinoma: From preclinical mechanisms to anti-cancer therapy publication-title: Biochim. Biophys. Acta Rev. Cancer doi: 10.1016/j.bbcan.2020.188391 – volume: 513 start-page: 1 year: 2019 ident: ref_60 article-title: Lenvatinib induces death of human hepatocellular carcinoma cells harboring an activated FGF signaling pathway through inhibition of FGFR–MAPK cascades publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.02.015 – volume: 9 start-page: 1 year: 2018 ident: ref_96 article-title: Three-dimensional in vitro cell culture models in drug discovery and drug repositioning publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00006 – volume: 13 start-page: 393 year: 2021 ident: ref_21 article-title: Pathologic and molecular features of hepatocellular carcinoma: An update publication-title: World J. Hepatol. doi: 10.4254/wjh.v13.i4.393 – volume: 391 start-page: 1301 year: 2018 ident: ref_1 article-title: Hepatocellular carcinoma publication-title: Lancet doi: 10.1016/S0140-6736(18)30010-2 – volume: 40 start-page: 5329 year: 2020 ident: ref_144 article-title: The development of next-generation PBMC humanized mice for preclinical investigation of cancer immunotherapeutic agents publication-title: Anticancer Res. doi: 10.21873/anticanres.14540 – volume: 176 start-page: 139 year: 2016 ident: ref_183 article-title: Supervised Machine Learning in Oncology: A Clinician’s Guide publication-title: Physiol. Behav. – volume: 304 start-page: G449 year: 2013 ident: ref_114 article-title: Animal models of chronic liver diseases publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00199.2012 – volume: 14 start-page: 523 year: 2017 ident: ref_58 article-title: Synergistic antitumor effect of sorafenib in combination with ATM inhibitor in hepatocellular carcinoma cells publication-title: Int. J. Med. Sci. doi: 10.7150/ijms.19033 – volume: 8 start-page: 168 year: 2020 ident: ref_8 article-title: Management and treatment of hepatocellular carcinoma with immunotherapy: A review of current and future options publication-title: J. Clin. Transl. Hepatol. doi: 10.14218/JCTH.2020.00001 – volume: 7 start-page: 1 year: 2017 ident: ref_76 article-title: Cell Spheroids with Enhanced Aggressiveness to Mimic Human Liver Cancer in Vitro and in Vivo publication-title: Sci. Rep. doi: 10.1038/s41598-017-10828-7 – volume: 16 start-page: 1 year: 2017 ident: ref_15 article-title: Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis publication-title: J. Carcinog. doi: 10.4103/jcar.JCar_9_16 – ident: ref_31 doi: 10.15586/hepatocellularcarcinoma.2019 – volume: 230 start-page: 16 year: 2015 ident: ref_45 article-title: 3D cell culture systems: Advantages and applications publication-title: J. Cell. Physiol. doi: 10.1002/jcp.24683 – volume: 4 start-page: 61005 year: 2014 ident: ref_74 article-title: A three-dimensional co-culture of HepG2 spheroids and fibroblasts using double-layered fibrous scaffolds incorporated with hydrogel micropatterns publication-title: RSC Adv. doi: 10.1039/C4RA12269K – volume: 12 start-page: 1 year: 2021 ident: ref_28 article-title: Advances of Fibroblast Growth Factor/Receptor Signaling Pathway in Hepatocellular Carcinoma and its Pharmacotherapeutic Targets publication-title: Front. Pharmacol. – ident: ref_56 – volume: 2019 start-page: 9367082 year: 2019 ident: ref_150 article-title: Identification of the Potential Metabolic Pathways Involved in the Hepatic Tumorigenesis of Rat Diethylnitrosamine-Induced Hepatocellular Carcinoma via 1 H NMR-Based Metabolomic Analysis publication-title: Biomed. Res. Int. – volume: 11 start-page: 1065 year: 2019 ident: ref_97 article-title: Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling publication-title: World J. Stem Cells doi: 10.4252/wjsc.v11.i12.1065 – volume: 3 start-page: 1069 year: 2015 ident: ref_159 article-title: The Zebrafish as a Tool to Cancer Drug Discovery Current Challenges in Drug Discovery HHS Public Access publication-title: Austin J. Pharmacol. Ther. – volume: 11 start-page: 7143 year: 2018 ident: ref_151 article-title: Tumoral response and tumoral phenotypic changes in a rat model of diethylnitrosamine-induced hepatocellular carcinoma after salirasib and sorafenib administration publication-title: Onco. Targets. Ther. doi: 10.2147/OTT.S176903 – volume: 65 start-page: 1031 year: 2016 ident: ref_22 article-title: Genetic profiling of hepatocellular carcinoma using next-generation sequencing publication-title: J. Hepatol. doi: 10.1016/j.jhep.2016.05.035 – ident: ref_83 – volume: 1 start-page: 761 year: 2020 ident: ref_100 article-title: Applications of organoids for cancer biology and precision medicine publication-title: Nat. Cancer doi: 10.1038/s43018-020-0102-y – volume: 50 start-page: e419 year: 2018 ident: ref_4 article-title: In vitro modeling of hepatocellular carcinoma molecular subtypes for anti-cancer drug assessment publication-title: Exp. Mol. Med. doi: 10.1038/emm.2017.164 – volume: 23 start-page: 1 year: 2011 ident: ref_40 article-title: Chitosan-Alginate Scaffold Culture System for Hepatocellular Carcinoma Increases Malignancy and Drug Resistance publication-title: Bone – volume: 6 start-page: 022001 year: 2014 ident: ref_44 article-title: Three-dimensional in vitro cancer models: A short review publication-title: Biofabrication doi: 10.1088/1758-5082/6/2/022001 – volume: 4 start-page: 18 year: 2020 ident: ref_98 article-title: 3D bioprinting for reconstituting the cancer microenvironment publication-title: NPJ Precis. Oncol. doi: 10.1038/s41698-020-0121-2 – ident: ref_13 – volume: 7 start-page: 657 year: 2014 ident: ref_42 article-title: Personalized in vitro cancer modeling—Fantasy or reality? publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2014.10.006 – volume: 13 start-page: 015017 year: 2018 ident: ref_73 article-title: HepG2 and human healthy hepatocyte in vitro culture and co-culture in PCL electrospun platforms publication-title: Biomed. Mater. doi: 10.1088/1748-605X/aa8c51 – volume: 185 start-page: 310 year: 2018 ident: ref_82 article-title: Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.09.026 – volume: 30 start-page: 272 year: 2017 ident: ref_32 article-title: Hepatocellular Carcinoma: Diagnosis and Operative Management publication-title: ABCD Arq. Bras. Cir. Dig. doi: 10.1590/0102-6720201700040011 – volume: 39 start-page: 1010428317695923 year: 2017 ident: ref_116 article-title: Animal models as a tool in hepatocellular carcinoma research: A Review publication-title: Tumor Biol. doi: 10.1177/1010428317695923 – volume: 7 start-page: 47173 year: 2016 ident: ref_152 article-title: Characterization of metastatic tumor antigen 1 and its interaction with hepatitis B virus X protein in NF-κB signaling and tumor progression in a woodchuck hepatocellular carcinoma model publication-title: Oncotarget doi: 10.18632/oncotarget.9986 – volume: 6 start-page: 1 year: 2016 ident: ref_78 article-title: Three-dimensional Organotypic Culture Models of Human Hepatocellular Carcinoma publication-title: Sci. Rep. doi: 10.1038/srep21174 – volume: 8 start-page: 1 year: 2020 ident: ref_85 article-title: Modeling Cell Communication in Cancer With Organoids: Making the Complex Simple publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.00166 – ident: ref_95 doi: 10.3390/cancers12123636 – volume: 8 start-page: 909 year: 2012 ident: ref_65 article-title: The HepaRG cell line: A unique in vitro tool for understanding drug metabolism and toxicology in human publication-title: Expert Opin. Drug Metab. Toxicol. doi: 10.1517/17425255.2012.685159 – volume: 12 start-page: 964 year: 2016 ident: ref_53 article-title: Selecting cells for bioartificial liver devices and the importance of a 3D culture environment: A functional comparison between the hepaRG and C3A cell lines publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.15165 – volume: 18 start-page: 407 year: 2018 ident: ref_94 article-title: Organoids in cancer research publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0007-6 – volume: 21 start-page: 1 year: 2021 ident: ref_177 article-title: Clinical applications of artificial intelligence and machine learning in cancer diagnosis: Looking into the future publication-title: Cancer Cell Int. doi: 10.1186/s12935-021-01981-1 – volume: 18 start-page: 3379 year: 2018 ident: ref_110 article-title: Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing publication-title: Lab Chip doi: 10.1039/C8LC00852C – ident: ref_84 doi: 10.1016/B978-0-12-416002-6.00011-0 – volume: 34 start-page: 1427 year: 2016 ident: ref_91 article-title: 3D tumor spheroids: An overview on the tools and techniques used for their analysis publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.11.002 – volume: 30 start-page: 149 year: 2007 ident: ref_113 article-title: Mouse models for cancer research publication-title: Chinese J. Cancer. doi: 10.5732/cjc.011.10047 – ident: ref_46 doi: 10.15586/hepatocellularcarcinoma.2019 – volume: 3 start-page: 1 year: 2017 ident: ref_88 article-title: A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening publication-title: Sci. Adv. doi: 10.1126/sciadv.1700764 – volume: 40 start-page: 9 year: 2016 ident: ref_24 article-title: TERT promoter mutations in primary liver tumors publication-title: Clin. Res. Hepatol. Gastroenterol. doi: 10.1016/j.clinre.2015.07.006 – volume: 2012 start-page: 1 year: 2012 ident: ref_147 article-title: In Silico Experimental Modeling of Cancer Treatment publication-title: ISRN Oncol. doi: 10.5402/2012/828701 – volume: 12 start-page: 3662 year: 2016 ident: ref_25 article-title: Molecular alterations in the carcinogenesis and progression of hepatocellular carcinoma: Tumor factors and background liver factors (Review) publication-title: Oncol. Lett. doi: 10.3892/ol.2016.5141 – volume: 910 start-page: 87 year: 2012 ident: ref_167 article-title: Applications and limitations of in silico models in drug discovery publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-965-5_6 – volume: 1 start-page: e180021 year: 2019 ident: ref_189 article-title: A Machine Learning Model to Predict Hepatocellular Carcinoma Response to Transcatheter Arterial Chemoembolization publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.2019180021 – volume: 52 start-page: 167 year: 2013 ident: ref_38 article-title: In vitro three-dimensional (3D) models in cancer research: An update publication-title: Mol. Carcinog. doi: 10.1002/mc.21844 – volume: 43 start-page: 1483 year: 2011 ident: ref_64 article-title: The HepaRG cell line is suitable for bioartificial liver application publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2011.06.011 – volume: 114 start-page: 1865 year: 2017 ident: ref_41 article-title: Bioengineered three-dimensional co-culture of cancer cells and endothelial cells: A model system for dual analysis of tumor growth and angiogenesis publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26297 – volume: 37 start-page: 1 year: 2018 ident: ref_87 article-title: Patient-derived multicellular tumor spheroids towards optimized treatment for patients with hepatocellular carcinoma publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-018-0752-0 – ident: ref_146 doi: 10.1101/762351 – volume: 380 start-page: 1450 year: 2019 ident: ref_5 article-title: Hepato-cellular carcinoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1713263 – volume: 13 start-page: 2455 year: 2021 ident: ref_112 article-title: Application of animal models in cancer research: Recent progress and future prospects publication-title: Cancer Manag. Res. doi: 10.2147/CMAR.S302565 – volume: 12 start-page: 987 year: 2019 ident: ref_132 article-title: Cancer Immunotherapies and Humanized Mouse Drug Testing Platforms publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2019.04.020 – volume: 8 start-page: 86168 year: 2017 ident: ref_170 article-title: In silico and in vitro identification of inhibitory activities of sorafenib on histone deacetylases in hepatocellular carcinoma cells publication-title: Oncotarget doi: 10.18632/oncotarget.21030 – volume: 14 start-page: 1720 year: 2008 ident: ref_138 article-title: Tumor suppressor and hepatocellular carcinoma publication-title: World J. Gastroenterol. doi: 10.3748/wjg.14.1720 – volume: 32 start-page: 266 year: 2017 ident: ref_39 article-title: Modeling physiological events in 2D vs. 3D cell culture publication-title: Physiology doi: 10.1152/physiol.00036.2016 – volume: 2019 start-page: 1 year: 2019 ident: ref_86 article-title: Assessing cell viability and death in 3d spheroid cultures of cancer cells publication-title: J. Vis. Exp. – volume: 22 start-page: 9069 year: 2016 ident: ref_23 article-title: Genetic alterations in hepatocellular carcinoma: An update publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v22.i41.9069 – volume: 30 start-page: 1 year: 2014 ident: ref_130 article-title: Human tumor xenograft models for preclinical assessment of anticancer drug development publication-title: Toxicol. Res. doi: 10.5487/TR.2014.30.1.001 – volume: 8 start-page: 347 year: 2019 ident: ref_163 article-title: There Is Something Fishy About Liver Cancer: Zebrafish Models of Hepatocellular Carcinoma publication-title: CMGH – volume: 20 start-page: 800 year: 2018 ident: ref_11 article-title: Three Dimensional Mixed-Cell Spheroids Mimic Stroma-Mediated Chemoresistance and Invasive Migration in hepatocellular carcinoma publication-title: Neoplasia doi: 10.1016/j.neo.2018.05.008 – volume: 3 start-page: 98 year: 2020 ident: ref_153 article-title: Suitability of the woodchuck HCC as a preclinical model for evaluation of intra-arterial therapies publication-title: Anim. Model. Exp. Med. doi: 10.1002/ame2.12100 – ident: ref_121 doi: 10.3390/cancers11101487 – volume: 265 start-page: 120416 year: 2021 ident: ref_66 article-title: Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120416 – volume: 131 start-page: 68 year: 2012 ident: ref_70 article-title: The advantages of co-culture over mono cell culture in simulating in vivo environment publication-title: J. Steroid Biochem. Mol. Biol. doi: 10.1016/j.jsbmb.2011.12.004 – volume: 17 start-page: 218 year: 2018 ident: ref_126 article-title: Effects of free and nanoparticulate curcumin on chemically induced liver carcinoma in an animal model publication-title: Arch. Med. Sci. doi: 10.5114/aoms.2020.93739 – volume: 26 start-page: 5617 year: 2020 ident: ref_186 article-title: Application of artificial intelligence in the diagnosis and treatment of hepatocellular carcinoma: A review publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v26.i37.5617 – volume: 67 start-page: 1845 year: 2018 ident: ref_145 article-title: Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy publication-title: Gut doi: 10.1136/gutjnl-2017-315201 – volume: 12 start-page: 1 year: 2019 ident: ref_12 article-title: Emerging organoid models: Leaping forward in cancer research publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0832-4 – volume: 11 start-page: 1 year: 2021 ident: ref_80 article-title: 3D bioprinting of hepatocytes: Core–shell structured co-cultures with fibroblasts for enhanced functionality publication-title: Sci. Rep. doi: 10.1038/s41598-021-84384-6 – volume: 10 start-page: 4568 year: 2020 ident: ref_143 article-title: Humanized mouse model: A review on preclinical applications for cancer immunotherapy publication-title: Am. J. Cancer Res. – volume: 8 start-page: 429 year: 2018 ident: ref_115 article-title: Next-generation in vivo modeling of human cancers publication-title: Front. Oncol. doi: 10.3389/fonc.2018.00429 – volume: 44 start-page: 457 year: 2020 ident: ref_61 article-title: Aspirin inhibits hepatocellular carcinoma cell proliferation in vitro and in vivo via inducing cell cycle arrest and apoptosis publication-title: Oncol. Rep. doi: 10.3892/or.2020.7630 – volume: 24 start-page: 1363 year: 2018 ident: ref_102 article-title: Organoid Models of Human Liver Cancers Derived from Tumor Needle Biopsies publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.07.001 – volume: 34 start-page: 7029 year: 2014 ident: ref_125 article-title: The N-nitrosodiethylamine mouse model: Sketching a timeline of evolution of chemically-induced hepatic lesions publication-title: Anticancer Res. – volume: 29 start-page: 850 year: 2018 ident: ref_188 article-title: Predicting Treatment Response to Intra-arterial Therapies of Hepatocellular Carcinoma using Supervised Machine Learning—An Artificial Intelligence Concept publication-title: J. Vasc. Interv. Radiol. doi: 10.1016/j.jvir.2018.01.769 – volume: 13 start-page: 8 year: 2015 ident: ref_181 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.11.005 – volume: 25 start-page: 189 year: 2012 ident: ref_148 article-title: Comparative histomorphological review of rat and human hepatocellular proliferative lesions publication-title: J. Toxicol. Pathol. doi: 10.1293/tox.25.189 – volume: 138 start-page: 1601 year: 2016 ident: ref_137 article-title: Transgenic mouse models generated by hydrodynamic transfection for genetic studies of liver cancer and preclinical testing of anti-cancer therapy publication-title: Int. J. Cancer doi: 10.1002/ijc.29703 – volume: 6 start-page: 2374289519873088 year: 2019 ident: ref_182 article-title: Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods publication-title: Acad. Pathol. doi: 10.1177/2374289519873088 – volume: 25 start-page: 3136 year: 2019 ident: ref_9 article-title: Hepatocellular carcinoma: Therapeutic advances in signaling, epigenetic and immune targets publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v25.i25.3136 – volume: 2014 start-page: 764981 year: 2014 ident: ref_72 article-title: Hepatic stellate cell coculture enables sorafenib resistance in Huh7 cells through HGF/c-Met/Akt and Jak2/Stat3 pathways publication-title: Biomed. Res. Int. – volume: 26 start-page: 1888 year: 2020 ident: ref_10 article-title: Sequencing of systemic treatment for hepatocellular carcinoma: Second line competitors publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v26.i16.1888 – volume: 67 start-page: 1 year: 2015 ident: ref_49 article-title: Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B publication-title: Cytotechnology doi: 10.1007/s10616-014-9761-9 – volume: 69 start-page: 840 year: 2018 ident: ref_7 article-title: Mutational landscape of a chemically-induced mouse model of liver cancer publication-title: J. Hepatol. doi: 10.1016/j.jhep.2018.06.009 – volume: 90 start-page: 367 year: 2009 ident: ref_122 article-title: Experimental mouse models for hepatocellular carcinoma research publication-title: Int. J. Exp. Pathol. doi: 10.1111/j.1365-2613.2009.00656.x – volume: 1250 start-page: 1 year: 2015 ident: ref_51 article-title: Culture and Functional Characterization of Human Hepatoma HepG2 Cells María publication-title: Protoc. Vitr. Hepatocyte Res. – volume: 17 start-page: 34 year: 2021 ident: ref_192 article-title: Liver cancer stem cells: Recent progress in basic and clinical research publication-title: Regen. Ther. doi: 10.1016/j.reth.2021.03.002 – volume: Volume 9605 start-page: 415 year: 2016 ident: ref_166 article-title: Machine learning for In Silico modeling of tumor growth publication-title: Machine Learning for Health Informatics doi: 10.1007/978-3-319-50478-0_21 – volume: 9 start-page: 137 year: 2017 ident: ref_129 article-title: Genetically engineered mouse models in oncology research and cancer medicine publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201606857 – volume: 24 start-page: 296 year: 2020 ident: ref_172 article-title: In Silico Identification of Crucial Genes and Specific Pathways in Hepatocellular Cancer publication-title: Genet. Test. Mol. Biomark. doi: 10.1089/gtmb.2019.0242 – volume: 640 start-page: 115 year: 2010 ident: ref_54 article-title: Hepatocyte Differentiation publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60761-688-7_6 – volume: 1865 start-page: 993 year: 2019 ident: ref_117 article-title: Animal models for hepatocellular carcinoma publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2018.08.009 – volume: 6 start-page: 23306 year: 2015 ident: ref_123 article-title: Mouse models of liver cancer: Progress and recommendations publication-title: Oncotarget doi: 10.18632/oncotarget.4202 – ident: ref_30 doi: 10.3390/cancers11111706 – volume: 71 start-page: 1255 year: 2013 ident: ref_63 article-title: Sorafenib enhances the chemotherapeutic efficacy of S-1 against hepatocellular carcinoma through downregulation of transcription factor E2F-1 publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-013-2120-2 – ident: ref_180 – volume: 19 start-page: 61 year: 2018 ident: ref_120 article-title: Stress of strains: Inbred mice in liver research publication-title: Gene Expr. doi: 10.3727/105221618X15337408678723 – volume: 19 start-page: 9 year: 2020 ident: ref_107 article-title: Organ-on-a-chip: Recent breakthroughs and future prospects publication-title: Biomed. Eng. Online doi: 10.1186/s12938-020-0752-0 – volume: 6 start-page: 1 year: 2016 ident: ref_47 article-title: Hepatocellular carcinoma cell lines retain the genomic and transcriptomic landscapes of primary human cancers publication-title: Sci. Rep. – volume: 48 start-page: 858 year: 2008 ident: ref_6 article-title: Experimental models of hepatocellular carcinoma publication-title: J. Hepatol. doi: 10.1016/j.jhep.2008.01.008 – ident: ref_55 doi: 10.1371/journal.pone.0171215 – volume: 72 start-page: 2695 year: 2012 ident: ref_136 article-title: Genetically engineered mouse models: Closing the gap between preclinical data and trial outcomes publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-2786 – volume: 8 start-page: 141 year: 2012 ident: ref_173 article-title: Discovering best candidates for Hepatocellular Carcinoma (HCC) by in-silico techniques and tools publication-title: Int. J. Bioinform. Res. Appl. doi: 10.1504/IJBRA.2012.045956 – volume: 3 start-page: 100198 year: 2021 ident: ref_101 article-title: Organoids to model liver disease publication-title: JHEP Rep. doi: 10.1016/j.jhepr.2020.100198 – ident: ref_158 doi: 10.3390/genes10110935 – volume: 12 start-page: 1 year: 2021 ident: ref_20 article-title: Natural Killer Cells and Regulatory T Cells Cross Talk in Hepatocellular Carcinoma: Exploring Therapeutic Options for the Next Decade publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.643310 – volume: 4 start-page: 12 year: 2016 ident: ref_35 article-title: In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2016.00012 – volume: 5 start-page: e1030-12 year: 2014 ident: ref_67 article-title: Pro-apoptotic Sorafenib signaling in murine hepatocytes depends on malignancy and is associated with PUMA expression in vitro and in vivo publication-title: Cell Death Dis. doi: 10.1038/cddis.2013.557 – ident: ref_171 doi: 10.1371/journal.pone.0132072 – volume: 72 start-page: 215 year: 2020 ident: ref_2 article-title: Advances in molecular classification and precision oncology in hepatocellular carcinoma publication-title: J. Hepatol. doi: 10.1016/j.jhep.2019.08.017 – volume: 99 start-page: 644 year: 2008 ident: ref_52 article-title: Cells for bioartificial liver devices: The human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21599 – ident: ref_3 doi: 10.1007/978-3-030-21540-8 – volume: 22 start-page: 456 year: 2017 ident: ref_92 article-title: Three-Dimensional Cell Cultures in Drug Discovery and Development publication-title: SLAS Discov. doi: 10.1177/1087057117696795 – volume: 8 start-page: 223 year: 2021 ident: ref_16 article-title: NAFLD-Associated HCC: Progress and Opportunities publication-title: J. Hepatocell. Carcinoma doi: 10.2147/JHC.S272213 – volume: 10 start-page: 1 year: 2021 ident: ref_190 article-title: Development and Validation of a Machine Learning Prognostic Model for Hepatocellular Carcinoma Recurrence After Surgical Resection publication-title: Front. Oncol. doi: 10.3389/fonc.2020.593741 – volume: 24 start-page: 1248 year: 2018 ident: ref_185 article-title: Deep Learning based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0853 – ident: ref_169 doi: 10.1186/s12885-018-4302-0 – ident: ref_48 doi: 10.1371/journal.pone.0245939 – volume: 14 start-page: 137 year: 2020 ident: ref_105 article-title: Recent Advances in 3D Bioprinted Tumor Microenvironment publication-title: Biochip J. doi: 10.1007/s13206-020-4201-8 – volume: 20 start-page: 517 year: 2013 ident: ref_127 article-title: Two-stage model of chemically induced hepatocellular carcinoma in mouse publication-title: Oncol. Res. doi: 10.3727/096504013X13747716581336 – volume: 176 start-page: 139 year: 2017 ident: ref_156 article-title: Transarterial Chemoembolization in a Woodchuck Model of Hepatocellular Carcinoma William publication-title: Physiol. Behav. – volume: 26 start-page: 6679 year: 2020 ident: ref_179 article-title: Prognostic role of artificial intelligence among patients with hepatocellular cancer: A systematic review publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v26.i42.6679 – ident: ref_37 doi: 10.3390/nano11020481 – volume: 12 start-page: 1773122 year: 2020 ident: ref_69 article-title: A review of co-culture models to study the oral microenvironment and disease publication-title: J. Oral Microbiol. doi: 10.1080/20002297.2020.1773122 – volume: 5 start-page: 196 year: 2016 ident: ref_106 article-title: A 3D bioprinting liver tumor model for drug screening publication-title: World J. Pharm. Pharm. Sci. – ident: ref_139 doi: 10.1186/s12876-016-0423-6 – volume: 1 start-page: 140 year: 2020 ident: ref_164 article-title: Transgenic zebrafish for modeling hepatocellular carcinoma publication-title: MedComm doi: 10.1002/mco2.29 – volume: 45 start-page: 548 year: 2021 ident: ref_93 article-title: Spheroids and organoids as humanized 3D scaffold-free engineered tissues for SARS-CoV-2 viral infection and drug screening publication-title: Artif. Organs. doi: 10.1111/aor.13880 – volume: 2019 start-page: 2 year: 2019 ident: ref_131 article-title: An oncogenic hepatocyte-induced orthotopic mouse model of hepatocellular cancer arising in the setting of hepatic inflammation and fibrosis publication-title: J. Vis. Exp. – ident: ref_108 doi: 10.3390/ma12182945 – volume: 6 start-page: 569 year: 2020 ident: ref_162 article-title: Zebrafish Xenografts for Drug Discovery and Personalized Medicine publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.03.012 – volume: 21 start-page: 49 year: 2015 ident: ref_68 article-title: Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells publication-title: Clin. Mol. Hepatol. doi: 10.3350/cmh.2015.21.1.49 – volume: 15 start-page: 536 year: 2018 ident: ref_128 article-title: Mouse models of hepatocellular carcinoma: An overview and highlights for immunotherapy research publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-018-0033-6 – volume: 1612 start-page: 325 year: 2017 ident: ref_43 article-title: 3D Cell Culture: An Introduction publication-title: Methods Mol. Biol. – volume: 14 start-page: 101015 year: 2021 ident: ref_104 article-title: 3D Bioprinted cancer models: Revolutionizing personalized cancer therapy publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2021.101015 – volume: 34 start-page: 1 year: 2015 ident: ref_157 article-title: A fresh look at zebrafish from the perspective of cancer research publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-015-0196-8 – volume: 13 start-page: 83 year: 2017 ident: ref_79 article-title: Microenvironment of a tumor-organoid system enhances hepatocellular carcinoma malignancyrelated hallmarks publication-title: Organogenesis doi: 10.1080/15476278.2017.1322243 – volume: 471 start-page: 61 year: 2020 ident: ref_174 article-title: Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.12.007 – ident: ref_34 doi: 10.3390/scipharm88030032 – ident: ref_160 doi: 10.1016/B978-0-12-812431-4.00051-8 – volume: 106 start-page: 113 year: 2010 ident: ref_135 article-title: Genetically engineered mouse models in cancer research publication-title: Adv. Cancer Res. doi: 10.1016/S0065-230X(10)06004-5 – volume: 10 start-page: 1264 year: 2015 ident: ref_134 article-title: An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.080 – ident: ref_50 doi: 10.3390/mi10100676 – volume: 10 start-page: 1 year: 2020 ident: ref_141 article-title: Humanized Rodent Models for Cancer Research publication-title: Front. Oncol. doi: 10.3389/fonc.2020.01696 – volume: 9 start-page: 1 year: 2019 ident: ref_187 article-title: Machine-learning Approach for the Development of a Novel Predictive Model for the Diagnosis of Hepatocellular Carcinoma publication-title: Sci. Rep. doi: 10.1038/s41598-019-44022-8 – volume: 13 start-page: 509 year: 2021 ident: ref_155 article-title: Application of the woodchuck animal model for the treatment of hepatitis B virus-induced liver cancer publication-title: World J. Gastrointest Oncol. doi: 10.4251/wjgo.v13.i6.509 – volume: 33 start-page: 95 year: 2020 ident: ref_161 article-title: Use of Zebrafish in Drug Discovery Toxicology publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.9b00335 – volume: 4 start-page: 799 year: 2020 ident: ref_176 article-title: Machine Learning in Oncology: What Should Clinicians Know? publication-title: JCO Clin. Cancer Inform. doi: 10.1200/CCI.20.00049 – volume: 86 start-page: 87 year: 2012 ident: ref_62 article-title: Comparative analysis of phase I and II enzyme activities in 5 hepatic cell lines identifies Huh-7 and HCC-T cells with the highest potential to study drug metabolism publication-title: Arch. Toxicol. doi: 10.1007/s00204-011-0733-y – volume: 37 start-page: 265 year: 2019 ident: ref_71 article-title: The effect of hepatic stellate cells on hepatocellular carcinoma progression publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2019.37.4_suppl.265 – volume: 72 start-page: 2533 year: 2012 ident: ref_75 article-title: Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-3317 – volume: 5 start-page: 61 year: 2018 ident: ref_26 article-title: Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance publication-title: J. Hepatocell. Carcinoma doi: 10.2147/JHC.S156701 – volume: 10 start-page: 1 year: 2020 ident: ref_81 article-title: Application of a 3D Bioprinted Hepatocellular Carcinoma Cell Model in Antitumor Drug Research publication-title: Front. Oncol. – volume: 7 start-page: 4570 year: 2018 ident: ref_59 article-title: Apatinib targets both tumor and endothelial cells in hepatocellular carcinoma publication-title: Cancer Med. doi: 10.1002/cam4.1664 – volume: 25 start-page: 74 year: 2016 ident: ref_14 article-title: Hepatocellular carcinoma: From diagnosis to treatment publication-title: Surg. Oncol. doi: 10.1016/j.suronc.2016.03.002 – ident: ref_36 doi: 10.3390/cancers11081098 – ident: ref_17 doi: 10.3390/v13050830 – volume: 19 start-page: 65 year: 2019 ident: ref_99 article-title: Modelling cancer in microfluidic human organs-on-chips publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0104-6 – volume: 26 start-page: 5276 year: 2020 ident: ref_133 article-title: Mouse Models of Oncoimmunology in Hepatocellular Carcinoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-19-2923 – volume: 34 start-page: 417 year: 2021 ident: ref_191 article-title: Prediction of early recurrence of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning publication-title: Mod. Pathol. doi: 10.1038/s41379-020-00671-z – volume: 5 start-page: 63 year: 2012 ident: ref_165 article-title: An inducible kras V12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening publication-title: DMM Dis. Model. Mech. doi: 10.1242/dmm.008367 – volume: 44 start-page: 479 year: 2015 ident: ref_18 article-title: Hepatocellular Carcinoma: Review of Epidemiology, Screening, Imaging Diagnosis, Response Assessment, and Treatment publication-title: Curr. Probl. Diagn. Radiol. doi: 10.1067/j.cpradiol.2015.04.004 – volume: 14 start-page: 910 year: 2016 ident: ref_89 article-title: 2D and 3D cell cultures—A comparison of different types of cancer cell cultures publication-title: Arch. Med. Sci. – volume: 36 start-page: 241 year: 2015 ident: ref_57 article-title: Sorafenib inhibits proliferation and invasion of human hepatocellular carcinoma cells via up-regulation of p53 and suppressing FoxM1 publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2014.122 – volume: 2021 start-page: 8837811 year: 2021 ident: ref_27 article-title: Liver Cancer: Therapeutic Challenges and the Importance of Experimental Models publication-title: Can. J. Gastroenterol. Hepatol. – volume: 12 start-page: 31 year: 2021 ident: ref_184 article-title: Current updates in machine learning in the prediction of therapeutic outcome of hepatocellular carcinoma: What should we know? publication-title: Insights Imaging doi: 10.1186/s13244-021-00977-9 – volume: 9 start-page: 1 year: 2020 ident: ref_118 article-title: Preclinical murine tumor models: A structural and functional perspective publication-title: Elife doi: 10.7554/eLife.50740 – volume: 22 start-page: 11 year: 2009 ident: ref_119 article-title: Biological basis of differential susceptibility to hepatocarcinogenesis among mouse strains publication-title: J. Toxicol. Pathol. doi: 10.1293/tox.22.11 – volume: 9 start-page: 1 year: 2021 ident: ref_29 article-title: Metabolic alterations and vulnerabilities in hepatocellular carcinoma publication-title: Gastroenterol. Rep. doi: 10.1093/gastro/goaa066 – volume: 3 start-page: 1 year: 2019 ident: ref_175 article-title: Artificial intelligence for precision oncology: Beyond patient stratification publication-title: NPJ Precis. Oncol. – volume: 23 start-page: 1 year: 2013 ident: ref_142 article-title: New generation humanized mice for virus research: Comparative aspects and future prospects publication-title: Virology – volume: 367 start-page: 982 year: 2020 ident: ref_178 article-title: Artificial intelligence in cancer therapy publication-title: Science doi: 10.1126/science.aaz3023 – volume: 93 start-page: 3321 year: 2019 ident: ref_77 article-title: Development of in vitro 3D cell model from hepatocellular carcinoma (HepG2) cell line and its application for genotoxicity testing publication-title: Arch. Toxicol. doi: 10.1007/s00204-019-02576-6 – ident: ref_124 doi: 10.3390/ijms21155461 – volume: 14 start-page: 4698 year: 2020 ident: ref_154 article-title: Nanoparticle Uptake in a Spontaneous and Immunocompetent Woodchuck Liver Cancer Model publication-title: ACS Nano doi: 10.1021/acsnano.0c00468 |
SSID | ssj0000331767 |
Score | 2.455391 |
SecondaryResourceType | review_article |
Snippet | Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor... Simple SummaryHepatocellular carcinoma (HCC) is characterized by a broad molecular and genetic heterogeneity, which makes it a challenging subject in terms of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3651 |
SubjectTerms | Animal models Artificial intelligence Computer applications DNA methylation Hepatocellular carcinoma Kinases Liver cancer Molecular modelling Mutation Prediction models Public health Review |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58gAgivq0vKnjwEt00bdOeRGVlUVYWUfBW2jRBYW3Xfdz9Ef5Cf4kz22x1Fb0Vkj6YaWbmm2TmAzgKOdeRMpyhb82YL_2IpZk0zMgY7WSOAGDcp7t9G7Ye_OvH4NEm3Ab2WOXEJo4NdV4qypGfYugbSU-g_z_rvTJijaLdVUuhMQvzaIIjBF_zF83bzl2dZWkI9I-hrHr6CMT3p4qE2R9wgUs9DPi0O_oVY_48KvnN91ytwLINGt3zSsurMKOLNVho223xNViqkm9uVVO0DjfNb337XaI76w7c0uB4DzE25erp8Kl7STxCRfmSfry9n7sdtH22TNLtfJVgbsDDVfP-ssUsawJTvseHjKgzDFdKo-Pm6J7SMPcyhUDXy4Ig5yaNI5mHGTH5GYR_jTjzYxNog0BMK5nHYhPmirLQ2-Bi7KHyFMVkjPF1jJeRUPj0NBMK44qGAycT4SXKthQnZotugtCCpJ38kLYDx_UNvaqbxt9T9ybaSOyyGiRfP4EDh_UwLgiSXFrocjSeE6MhCnzPga1KefW7hE91yIFwQE6ptZ5AzbanR4rnp3HTbeIjwdBt5__P2oVFjw69NCTz-B7MDfsjvY9RyzA7sL_mJ-uF798 priority: 102 providerName: ProQuest |
Title | Experimental Models of Hepatocellular Carcinoma—A Preclinical Perspective |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34359553 https://www.proquest.com/docview/2558723324 https://www.proquest.com/docview/2559425542 https://pubmed.ncbi.nlm.nih.gov/PMC8344976 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD54AfFFvFsvo4IPvkSXNG3aBxGV6RQmQxzsrbRpgsJsdZug_95zum46L-BbIWkCX3JyztfmnA_gIODchNpyhr41ZVLJkCWpssyqCM_JDAlAWae7dRs0O_Km63c_5YAqAAe_UjvSk-r0e0dvL--naPAnxDiRsh9rwqc_4B5ab0Dp1PPolhRZaauK9ctj2UNXWSrKiroSLAgiOSr189sY017qR-j5_QblF5d0uQxLVSzpno0WfwVmTL4KC63qb_kaXDe-lO93SfWsN3AL6zbRBQ0L-mRPd1DdC5ITyounhJ25bTwAq1xJt_2Zh7kOncvG_UWTVdIJTEvBh4z0MyzX2qD35uijkiATqUa2K1Lfz7hNolBlQUpyfhY5YD1KZWR9Y5GNGa2yyNuAubzIzRa4GIDoLEFQrLXSRPgYehpHT1JPY3BRd-BoDFWsq7riJG_Ri5FfELbxN2wdOJy88DwqqfF3190x9vF4a8RIgkIlPIwEHdifNKNVEG5JborXsk-Ep5EvhQObo6WazOVJSkb2PQfU1CJOOlDF7emW_PGhrLxNoiQYv23_Y94dWBR0_aWumOC7MDfsv5o9jF-GaQ3mzxu37bsazF51ea3cpR9DjPIK |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VqVSQEIIWiqGFRSoSl6XeH9vxAaH-pEpJE0WolXpz7fWuilTs0KRC3HgInoOH4kmYiX_aFMGtt0i7tqOZ3Zn5dmfmA9gKhbBd4wRH35pxHekuT7PIcRfFaCdzBADzPt3DUdg_0R9Pg9Ml-NXUwlBaZWMT54Y6Lw2dkW9j6NuNpEL__2HylRNrFN2uNhQa1bIY2O_fELJN3x_uo37fSHnQO97r85pVgBstxYwTtYQTxlh0bALNdxrmMjMIBGUWBLlwKaLwPMyI6c4hPPLjTMcusA6BijVRTs2X0OQva4VQpgPLu73R-FN7quMr9MdhVPUQUir2tw0p73IqFJqWMBCL7u-vmPZ2auYNX3fwCB7WQSrbqVbVY1iyxSqsDOtr-FV4UB32saqGaQ0GvRs8AYzo1S6mrHQ4PkFMT3cDlOzK9oi3qCi_pL9__NxhY7S1dVkmG1-XfD6BkzuR51PoFGVhnwHDWMfkKYrJOadtjD-7yuDb00wZjGN8D941wktM3cKcmDQuEoQyJO3klrQ9eNs-MKm6d_x76kajjaTextPketF58Lodxg1IkksLW17N58Ro-AItPVivlNd-S2mqew6UB9GCWtsJ1Nx7caT4fD5v8k38JxgqPv__33oF9_rHw6Pk6HA0eAH3JSXc-BGXYgM6s8sru4kR0yx7WS9TBmd3vTP-AMnuLAU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatwwEB7CBkKhlDbpj9M0USGFXtS1JNtaH0rJzy5JNlmW0kBuri1LtJDY2-yG0lsfok_Tx-mTdGb9k2xKesttQbK9zEgz80kz8wFsR0LYnnGCo2_NeKCDHk8z7bjTMdrJHAHAvE_3ySg6OA2OzsKzJfjd1MJQWmVjE-eGOi8NnZF3MfTtaanQ_3ddnRYx3h98mHzjxCBFN60NnUa1RIb2x3eEb9P3h_uo6zdSDvqf9g54zTDATSDFjBPNhBPGWHRyAk15GuUyMwgKZRaGuXApIvI8yoj1ziFU8uMsiF1oHYIWa3ROjZjQ_C9rREV-B5Z3-6Pxx_aEx1fomyNd9RNSKva7hhR5ORUKzUwUikVX-E98eztN84bfGzyGR3XAynaqFfYElmyxCisn9ZX8KjysDv5YVc-0BsP-Dc4ARlRr51NWOhyfIL6newJKfGV7xGFUlBfpn5-_dtgY7W5dosnG1-WfT-H0XuT5DDpFWdgXwDDuMXmKYnLOBTbGnz1l8O1ppgzGNL4H7xrhJaZuZ06sGucJwhqSdnJL2h68bR-YVJ087p660Wgjqbf0NLlegB68bodxM5Lk0sKWV_M5MRrBMJAePK-U135LBVQDHSoP9IJa2wnU6HtxpPj6Zd7wm7hQMGxc___f2oIV3BHJ8eFo-BIeSMq98TWXYgM6s8sr-wqDp1m2Wa9SBp_ve2P8BW_fMDo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+Models+of+Hepatocellular+Carcinoma-A+Preclinical+Perspective&rft.jtitle=Cancers&rft.au=Blidisel%2C+Alexandru&rft.au=Marcovici%2C+Iasmina&rft.au=Coricovac%2C+Dorina&rft.au=Hut%2C+Florin&rft.date=2021-07-21&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=13&rft.issue=15&rft_id=info:doi/10.3390%2Fcancers13153651&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |