Finite-Time State Estimation for Coupled Markovian Neural Networks With Sensor Nonlinearities

This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov chain with partially unknown transition probabilities is considered. A Luenberger-type state estimator is proposed based on incomplete measuremen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 28; no. 3; pp. 630 - 638
Main Authors Wang, Zhuo, Xu, Yong, Lu, Renquan, Peng, Hui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov chain with partially unknown transition probabilities is considered. A Luenberger-type state estimator is proposed based on incomplete measurements, and the estimation error system is derived by using the Kronecker product. By using the Lyapunov method, sufficient conditions are established, which guarantee that the estimation error system is stochastically finite-time bounded and stochastically finite-time stable, respectively. Then, the estimator gains are obtained via solving a set of coupled linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed new design method.
AbstractList This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov chain with partially unknown transition probabilities is considered. A Luenberger-type state estimator is proposed based on incomplete measurements, and the estimation error system is derived by using the Kronecker product. By using the Lyapunov method, sufficient conditions are established, which guarantee that the estimation error system is stochastically finite-time bounded and stochastically finite-time stable, respectively. Then, the estimator gains are obtained via solving a set of coupled linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed new design method.
This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov chain with partially unknown transition probabilities is considered. A Luenberger-type state estimator is proposed based on incomplete measurements, and the estimation error system is derived by using the Kronecker product. By using the Lyapunov method, sufficient conditions are established, which guarantee that the estimation error system is stochastically finite-time bounded and stochastically finite-time stable, respectively. Then, the estimator gains are obtained via solving a set of coupled linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed new design method.This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov chain with partially unknown transition probabilities is considered. A Luenberger-type state estimator is proposed based on incomplete measurements, and the estimation error system is derived by using the Kronecker product. By using the Lyapunov method, sufficient conditions are established, which guarantee that the estimation error system is stochastically finite-time bounded and stochastically finite-time stable, respectively. Then, the estimator gains are obtained via solving a set of coupled linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed new design method.
Author Hui Peng
Renquan Lu
Zhuo Wang
Yong Xu
Author_xml – sequence: 1
  givenname: Zhuo
  surname: Wang
  fullname: Wang, Zhuo
– sequence: 2
  givenname: Yong
  surname: Xu
  fullname: Xu, Yong
– sequence: 3
  givenname: Renquan
  surname: Lu
  fullname: Lu, Renquan
– sequence: 4
  givenname: Hui
  surname: Peng
  fullname: Peng, Hui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26552097$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1UREvpHwAJReLSS7b2xHaSI1q1BWm7PewiuCDLiSfCbdbe2g6If4_b3e6hB-Yyc_jezOi9t-TIeYeEvGd0xhhtL9bL5WI1A8rEDHhLmWxekRNgEkqomuboMNc_jslZjHc0l6RC8vYNOQYpBNC2PiE_r6yzCcu13WCxSjphcRmT3ehkvSsGH4q5n7YjmuJGh3v_22pXLHEKeswt_fHhPhbfbfpVrNDFTC-9G61DHWyyGN-R14MeI57t-yn5dnW5nn8pF7fXX-efF2XPgaUSaoD8qR56o7HGzlTc9BRML9t26DgVemCNbjWCQWZMV0vKK45iAORNR7E6Jee7vdvgHyaMSW1s7HEctUM_RcUakLISooaMfnqB3vkpuPydAlZzziWXIlMf99TUbdCobciWhL_q2bgMwA7og48x4HBAGFWPAamngNRjQGofUBY1L0S9TU9Op6Dt-H_ph53UIuLhVl0x3gpe_QMzE54U
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TPEL_2022_3205437
crossref_primary_10_1109_TSMC_2019_2961927
crossref_primary_10_1007_s40815_020_00807_y
crossref_primary_10_1109_TASE_2024_3408105
crossref_primary_10_1109_TNNLS_2017_2678681
crossref_primary_10_1109_TSMC_2019_2903203
crossref_primary_10_1109_TSMC_2021_3051156
crossref_primary_10_1007_s11063_023_11416_9
crossref_primary_10_1109_TNNLS_2020_2978898
crossref_primary_10_1109_TCYB_2019_2894024
crossref_primary_10_1109_TNNLS_2022_3180054
crossref_primary_10_1109_TNNLS_2018_2806356
crossref_primary_10_1109_TCYB_2018_2828308
crossref_primary_10_1109_TCYB_2019_2894392
crossref_primary_10_1109_TCYB_2020_2991159
crossref_primary_10_1016_j_ins_2024_120723
crossref_primary_10_1109_ACCESS_2020_2964722
crossref_primary_10_1002_asjc_2354
crossref_primary_10_1109_TCYB_2020_3042613
crossref_primary_10_1007_s12555_018_0202_y
crossref_primary_10_1109_TIE_2019_2893847
crossref_primary_10_1016_j_nahs_2019_01_004
crossref_primary_10_1109_TNSE_2022_3224390
crossref_primary_10_1109_TCYB_2019_2963087
crossref_primary_10_1007_s40815_019_00770_3
crossref_primary_10_3390_s25071962
crossref_primary_10_1016_j_neucom_2016_08_095
crossref_primary_10_1016_j_neucom_2019_08_102
crossref_primary_10_1109_TNNLS_2020_2991151
crossref_primary_10_1109_TSMC_2018_2837047
crossref_primary_10_1002_oca_2944
crossref_primary_10_1109_TSMC_2019_2963220
crossref_primary_10_1016_j_neunet_2022_09_024
crossref_primary_10_1109_TAC_2018_2876094
crossref_primary_10_1109_TNNLS_2020_2986281
crossref_primary_10_1007_s00034_019_01073_6
crossref_primary_10_1109_TNNLS_2022_3183447
crossref_primary_10_1088_1674_1056_ad7e9a
crossref_primary_10_1109_JSEN_2021_3080120
crossref_primary_10_1109_TCYB_2017_2653242
crossref_primary_10_1016_j_ins_2020_06_021
crossref_primary_10_1016_j_fss_2020_06_014
crossref_primary_10_1016_j_neucom_2018_07_096
crossref_primary_10_1109_TFUZZ_2020_3031385
crossref_primary_10_1002_adc2_118
crossref_primary_10_1109_TCYB_2020_3008020
crossref_primary_10_1080_00207179_2024_2441318
crossref_primary_10_1002_rnc_5836
crossref_primary_10_1016_j_chaos_2023_113555
crossref_primary_10_1007_s12555_016_0778_z
crossref_primary_10_1002_asjc_2543
crossref_primary_10_1109_TSMC_2019_2956672
crossref_primary_10_1016_j_amc_2021_126583
crossref_primary_10_1109_TNNLS_2016_2636325
crossref_primary_10_1016_j_neucom_2019_12_038
crossref_primary_10_1002_acs_3146
crossref_primary_10_1109_TSMC_2019_2943882
crossref_primary_10_1016_j_neunet_2022_02_028
crossref_primary_10_1109_TNNLS_2019_2899589
crossref_primary_10_1109_TFUZZ_2020_2999746
crossref_primary_10_1109_TFUZZ_2020_2992632
crossref_primary_10_1109_TIV_2023_3263843
crossref_primary_10_1016_j_neucom_2017_11_067
crossref_primary_10_1016_j_jfranklin_2018_10_031
crossref_primary_10_1109_TSMC_2020_3003368
crossref_primary_10_1016_j_amc_2024_128718
crossref_primary_10_1016_j_neucom_2016_09_012
crossref_primary_10_1002_rnc_4858
crossref_primary_10_1002_rnc_4974
crossref_primary_10_1109_TIE_2019_2937037
crossref_primary_10_1109_TITS_2021_3114284
crossref_primary_10_1049_iet_cta_2017_0111
crossref_primary_10_1016_j_amc_2022_127080
crossref_primary_10_1002_acs_3675
crossref_primary_10_1002_rnc_4938
crossref_primary_10_1109_TSMC_2020_2979860
crossref_primary_10_1007_s40815_019_00773_0
crossref_primary_10_1016_j_neucom_2017_08_011
crossref_primary_10_1002_rnc_6162
crossref_primary_10_3934_math_2021046
crossref_primary_10_1007_s11063_023_11289_y
crossref_primary_10_1109_TNNLS_2018_2873163
crossref_primary_10_1016_j_neunet_2019_09_006
crossref_primary_10_1109_TAC_2017_2649878
crossref_primary_10_1016_j_jfranklin_2017_07_017
crossref_primary_10_1016_j_jfranklin_2018_03_014
crossref_primary_10_1109_TNNLS_2020_3029587
crossref_primary_10_1016_j_isatra_2024_01_022
crossref_primary_10_1109_TCYB_2021_3050510
crossref_primary_10_1109_TFUZZ_2019_2961642
crossref_primary_10_1016_j_automatica_2023_111170
crossref_primary_10_1109_TAC_2023_3293019
crossref_primary_10_1002_rnc_5274
Cites_doi 10.1016/j.automatica.2014.10.065
10.1109/TNN.2011.2163203
10.1109/TNN.2008.2000206
10.1109/TNNLS.2013.2271357
10.1109/TNN.2007.903159
10.1109/TCYB.2014.2357896
10.1109/TNN.2004.841813
10.1016/j.neunet.2014.03.009
10.1109/TFUZZ.2011.2177842
10.1109/TNN.2010.2090669
10.1109/TNNLS.2012.2187926
10.1109/TNNLS.2012.2186824
10.1109/TNNLS.2014.2317880
10.1109/TNN.2006.872355
10.1109/TFUZZ.2010.2060203
10.1016/j.automatica.2013.09.041
10.1109/TSMCB.2008.925745
10.1109/TCSI.2008.2008499
10.1109/TCYB.2015.2417170
10.1007/s12555-014-0576-4
10.1016/j.automatica.2010.02.008
10.1016/j.neunet.2014.10.004
10.1016/j.ins.2013.12.050
10.1109/TAC.2005.847042
10.1016/j.automatica.2009.02.002
10.1109/TNN.2010.2050904
10.1109/TNNLS.2015.2402203
10.1109/TCST.2004.825065
10.1109/TCYB.2014.2317236
10.1109/TNNLS.2014.2347290
10.1109/TNN.2009.2015085
10.1109/TNNLS.2013.2271046
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2015.2490168
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 638
ExternalDocumentID 26552097
10_1109_TNNLS_2015_2490168
7314954
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61320106009; 61320106010; 61503106
  funderid: 10.13039/501100001809
– fundername: China National Funds for Distinguished Young Scientists
  grantid: 61425009
  funderid: 10.13039/501100005153
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c421t-2722237afcdae7ebd34dc02dc699fb405af18a9ae2de1ddb760434e5f2e48b0e3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 17:33:14 EDT 2025
Mon Jun 30 05:41:29 EDT 2025
Mon Mar 03 15:04:25 EST 2025
Tue Jul 01 00:27:21 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Tue Aug 26 16:38:10 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-2722237afcdae7ebd34dc02dc699fb405af18a9ae2de1ddb760434e5f2e48b0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26552097
PQID 2174446465
PQPubID 85436
PageCount 9
ParticipantIDs proquest_journals_2174446465
crossref_primary_10_1109_TNNLS_2015_2490168
pubmed_primary_26552097
ieee_primary_7314954
crossref_citationtrail_10_1109_TNNLS_2015_2490168
proquest_miscellaneous_1826635572
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References bo (ref10) 2014; 10
ref13
ref34
ref12
ref15
ref14
ref30
ref33
ref32
ref2
ref1
ref17
ref16
ref19
ref18
wu (ref7) 2011; 22
ref24
ref23
ref26
ref25
ref20
ref22
liu (ref31) 2008; 38
ref21
ref28
ref27
ref29
ref8
huang (ref11) 2015; 11
ref4
wu (ref9) 2013; 24
ref3
ref5
qi (ref6) 2010; 21
References_xml – ident: ref14
  doi: 10.1016/j.automatica.2014.10.065
– volume: 22
  start-page: 1566
  year: 2011
  ident: ref7
  article-title: Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time delays
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2163203
– ident: ref29
  doi: 10.1109/TNN.2008.2000206
– ident: ref21
  doi: 10.1109/TNNLS.2013.2271357
– ident: ref16
  doi: 10.1109/TNN.2007.903159
– ident: ref34
  doi: 10.1109/TCYB.2014.2357896
– ident: ref28
  doi: 10.1109/TNN.2004.841813
– ident: ref4
  doi: 10.1016/j.neunet.2014.03.009
– ident: ref26
  doi: 10.1109/TFUZZ.2011.2177842
– ident: ref19
  doi: 10.1109/TNN.2010.2090669
– ident: ref20
  doi: 10.1109/TNNLS.2012.2187926
– ident: ref30
  doi: 10.1109/TNNLS.2012.2186824
– ident: ref1
  doi: 10.1109/TNNLS.2014.2317880
– ident: ref27
  doi: 10.1109/TNN.2006.872355
– ident: ref22
  doi: 10.1109/TFUZZ.2010.2060203
– ident: ref23
  doi: 10.1016/j.automatica.2013.09.041
– volume: 38
  start-page: 1314
  year: 2008
  ident: ref31
  article-title: Synchronization and state estimation for discrete-time complex networks with distributed delays
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.925745
– ident: ref5
  doi: 10.1109/TCSI.2008.2008499
– ident: ref32
  doi: 10.1109/TCYB.2015.2417170
– ident: ref12
  doi: 10.1007/s12555-014-0576-4
– ident: ref25
  doi: 10.1016/j.automatica.2010.02.008
– ident: ref8
  doi: 10.1016/j.neunet.2014.10.004
– ident: ref13
  doi: 10.1016/j.ins.2013.12.050
– ident: ref24
  doi: 10.1109/TAC.2005.847042
– volume: 10
  start-page: 1897
  year: 2014
  ident: ref10
  article-title: General observer-based controller design for singular Markovian jump systems
  publication-title: Int J Innov Comput Inf Control
– ident: ref17
  doi: 10.1016/j.automatica.2009.02.002
– volume: 21
  start-page: 1358
  year: 2010
  ident: ref6
  article-title: Exponential H $_\infty $ synchronization of general discrete-time chaotic neural networks with or without time delays
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2050904
– ident: ref33
  doi: 10.1109/TNNLS.2015.2402203
– ident: ref18
  doi: 10.1109/TCST.2004.825065
– ident: ref2
  doi: 10.1109/TCYB.2014.2317236
– ident: ref3
  doi: 10.1109/TNNLS.2014.2347290
– ident: ref15
  doi: 10.1109/TNN.2009.2015085
– volume: 24
  start-page: 345
  year: 2013
  ident: ref9
  article-title: Dissipativity analysis for discrete-time stochastic neural networks with time-varying delays
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2271046
– volume: 11
  start-page: 295
  year: 2015
  ident: ref11
  article-title: Stabilization for a class of Markovian jump linear systems with linear fractional uncertainties
  publication-title: Int J Innov Comput Inf Control
SSID ssj0000605649
Score 2.5129158
Snippet This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 630
SubjectTerms Coupled Markovian neural networks
Error analysis
Estimation error
Linear matrix inequalities
Markov analysis
Markov chains
Markov processes
Mathematical analysis
Matrix methods
Neural networks
sensor nonlinearity
Stability analysis
State estimation
stochastic finite-time boundedness
stochastic finite-time stability
Transition probabilities
Yttrium
Title Finite-Time State Estimation for Coupled Markovian Neural Networks With Sensor Nonlinearities
URI https://ieeexplore.ieee.org/document/7314954
https://www.ncbi.nlm.nih.gov/pubmed/26552097
https://www.proquest.com/docview/2174446465
https://www.proquest.com/docview/1826635572
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9QwEIBHbU9cWqDQLhRkJG7g3dhx7M2xWnVVIchlt2IvKErsiVpRbapuwqG_vh7nIRUB4hYptpNoxvE39jwAPkrUZSEKw0spkCutNJ8rq3liRWVipWmJJm-LTF9eqS-bZLMHn8dYGEQMzmc4pctwlu9q29JW2czExPNqH_a94dbFao37KZHnch1oVwotuYzNZoiRidLZOsu-rsiRK5l6e8NjDtXpkzohJxDzZEkKNVb-jpth2VkewbfhhTtvk5_Ttimn9uG3XI7_-0XP4bDnT3beKcwL2MPtSzgaajuwfqofw4_lDdEopxARFoiUXfi_QRfoyDzpskXd3t2iYxTtU__yWsYo0YcfO-s8y3fs-01zzVbeTvatsy4lR3EfMri-gqvlxXpxyftSDNwqKRouDXGEKSrrCjRYulg5G0lndZpWpYe-ohJzSvQtHQrnSqMjFStMKolqXkYYv4aDbb3FU2BVpNw89aQlyRathO9EZWccKh0VVZpMQAzSyG2fp5zKZdzmwV6J0jwIMydh5r0wJ_Bp7HPXZen4Z-tjksTYshfCBM4Goef9RN7lZLEpUmH_Xh_G234K0rlKscW63eVkohG3GTmBk05ZxrEHHXvz52e-hWeSOCE4tZ3BQXPf4jtPOU35Pqj3IzYo9Zk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9QwEIBHpRzgQoHyWGjBSNzA29hx7M0RVV0tsM2lW7EXZCXxRFRUm6qbcODX43EeEhWtuEWK7SSacfyNPQ-A9xJ1kYvc8EIK5EorzWeq1DwpRWVipWmJJm-LTC_O1Zd1st6Bj2MsDCIG5zOc0mU4y3d12dJW2ZGJiefVPbjv1_1EdNFa445K5MlcB96VQksuY7MeomSi9GiVZcszcuVKpt7i8KBDlfqkTsgNxPy1KIUqK7cDZ1h45ntwOrxy52_yc9o2xbT8fSOb4_9-02N41BMo-9SpzBPYwc1T2BuqO7B-su_D9_kF8SinIBEWmJSd-P9BF-rIPOuy47q9ukTHKN6n_uX1jFGqDz921vmWb9m3i-YHO_OWsm-ddUk58uuQw_UZnM9PVscL3hdj4KWSouHSEEmYvCpdjgYLFytXRtKVOk2rwmNfXokZpfqWDoVzhdGRihUmlUQ1KyKMn8Pupt7gS2BVpNws9awlyRqthO9EhWccKh3lVZpMQAzSsGWfqZwKZlzaYLFEqQ3CtCRM2wtzAh_GPlddno47W--TJMaWvRAmcDAI3fZTeWvJZlOkxP693o23_SSkk5V8g3W7tWSkEbkZOYEXnbKMYw869urfz3wLDxar06Vdfs6-voaHkqghuLgdwG5z3eKhZ56meBNU_Q8rCvji
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Time+State+Estimation+for+Coupled+Markovian+Neural+Networks+With+Sensor+Nonlinearities&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Zhuo&rft.au=Xu%2C+Yong&rft.au=Lu%2C+Renquan&rft.au=Peng%2C+Hui&rft.date=2017-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=28&rft.issue=3&rft.spage=630&rft_id=info:doi/10.1109%2FTNNLS.2015.2490168&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon