Finite-Time State Estimation for Coupled Markovian Neural Networks With Sensor Nonlinearities
This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov chain with partially unknown transition probabilities is considered. A Luenberger-type state estimator is proposed based on incomplete measuremen...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 28; no. 3; pp. 630 - 638 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov chain with partially unknown transition probabilities is considered. A Luenberger-type state estimator is proposed based on incomplete measurements, and the estimation error system is derived by using the Kronecker product. By using the Lyapunov method, sufficient conditions are established, which guarantee that the estimation error system is stochastically finite-time bounded and stochastically finite-time stable, respectively. Then, the estimator gains are obtained via solving a set of coupled linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed new design method. |
---|---|
AbstractList | This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov chain with partially unknown transition probabilities is considered. A Luenberger-type state estimator is proposed based on incomplete measurements, and the estimation error system is derived by using the Kronecker product. By using the Lyapunov method, sufficient conditions are established, which guarantee that the estimation error system is stochastically finite-time bounded and stochastically finite-time stable, respectively. Then, the estimator gains are obtained via solving a set of coupled linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed new design method. This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov chain with partially unknown transition probabilities is considered. A Luenberger-type state estimator is proposed based on incomplete measurements, and the estimation error system is derived by using the Kronecker product. By using the Lyapunov method, sufficient conditions are established, which guarantee that the estimation error system is stochastically finite-time bounded and stochastically finite-time stable, respectively. Then, the estimator gains are obtained via solving a set of coupled linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed new design method.This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov chain with partially unknown transition probabilities is considered. A Luenberger-type state estimator is proposed based on incomplete measurements, and the estimation error system is derived by using the Kronecker product. By using the Lyapunov method, sufficient conditions are established, which guarantee that the estimation error system is stochastically finite-time bounded and stochastically finite-time stable, respectively. Then, the estimator gains are obtained via solving a set of coupled linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed new design method. |
Author | Hui Peng Renquan Lu Zhuo Wang Yong Xu |
Author_xml | – sequence: 1 givenname: Zhuo surname: Wang fullname: Wang, Zhuo – sequence: 2 givenname: Yong surname: Xu fullname: Xu, Yong – sequence: 3 givenname: Renquan surname: Lu fullname: Lu, Renquan – sequence: 4 givenname: Hui surname: Peng fullname: Peng, Hui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26552097$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhS1UREvpHwAJReLSS7b2xHaSI1q1BWm7PewiuCDLiSfCbdbe2g6If4_b3e6hB-Yyc_jezOi9t-TIeYeEvGd0xhhtL9bL5WI1A8rEDHhLmWxekRNgEkqomuboMNc_jslZjHc0l6RC8vYNOQYpBNC2PiE_r6yzCcu13WCxSjphcRmT3ehkvSsGH4q5n7YjmuJGh3v_22pXLHEKeswt_fHhPhbfbfpVrNDFTC-9G61DHWyyGN-R14MeI57t-yn5dnW5nn8pF7fXX-efF2XPgaUSaoD8qR56o7HGzlTc9BRML9t26DgVemCNbjWCQWZMV0vKK45iAORNR7E6Jee7vdvgHyaMSW1s7HEctUM_RcUakLISooaMfnqB3vkpuPydAlZzziWXIlMf99TUbdCobciWhL_q2bgMwA7og48x4HBAGFWPAamngNRjQGofUBY1L0S9TU9Op6Dt-H_ph53UIuLhVl0x3gpe_QMzE54U |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TPEL_2022_3205437 crossref_primary_10_1109_TSMC_2019_2961927 crossref_primary_10_1007_s40815_020_00807_y crossref_primary_10_1109_TASE_2024_3408105 crossref_primary_10_1109_TNNLS_2017_2678681 crossref_primary_10_1109_TSMC_2019_2903203 crossref_primary_10_1109_TSMC_2021_3051156 crossref_primary_10_1007_s11063_023_11416_9 crossref_primary_10_1109_TNNLS_2020_2978898 crossref_primary_10_1109_TCYB_2019_2894024 crossref_primary_10_1109_TNNLS_2022_3180054 crossref_primary_10_1109_TNNLS_2018_2806356 crossref_primary_10_1109_TCYB_2018_2828308 crossref_primary_10_1109_TCYB_2019_2894392 crossref_primary_10_1109_TCYB_2020_2991159 crossref_primary_10_1016_j_ins_2024_120723 crossref_primary_10_1109_ACCESS_2020_2964722 crossref_primary_10_1002_asjc_2354 crossref_primary_10_1109_TCYB_2020_3042613 crossref_primary_10_1007_s12555_018_0202_y crossref_primary_10_1109_TIE_2019_2893847 crossref_primary_10_1016_j_nahs_2019_01_004 crossref_primary_10_1109_TNSE_2022_3224390 crossref_primary_10_1109_TCYB_2019_2963087 crossref_primary_10_1007_s40815_019_00770_3 crossref_primary_10_3390_s25071962 crossref_primary_10_1016_j_neucom_2016_08_095 crossref_primary_10_1016_j_neucom_2019_08_102 crossref_primary_10_1109_TNNLS_2020_2991151 crossref_primary_10_1109_TSMC_2018_2837047 crossref_primary_10_1002_oca_2944 crossref_primary_10_1109_TSMC_2019_2963220 crossref_primary_10_1016_j_neunet_2022_09_024 crossref_primary_10_1109_TAC_2018_2876094 crossref_primary_10_1109_TNNLS_2020_2986281 crossref_primary_10_1007_s00034_019_01073_6 crossref_primary_10_1109_TNNLS_2022_3183447 crossref_primary_10_1088_1674_1056_ad7e9a crossref_primary_10_1109_JSEN_2021_3080120 crossref_primary_10_1109_TCYB_2017_2653242 crossref_primary_10_1016_j_ins_2020_06_021 crossref_primary_10_1016_j_fss_2020_06_014 crossref_primary_10_1016_j_neucom_2018_07_096 crossref_primary_10_1109_TFUZZ_2020_3031385 crossref_primary_10_1002_adc2_118 crossref_primary_10_1109_TCYB_2020_3008020 crossref_primary_10_1080_00207179_2024_2441318 crossref_primary_10_1002_rnc_5836 crossref_primary_10_1016_j_chaos_2023_113555 crossref_primary_10_1007_s12555_016_0778_z crossref_primary_10_1002_asjc_2543 crossref_primary_10_1109_TSMC_2019_2956672 crossref_primary_10_1016_j_amc_2021_126583 crossref_primary_10_1109_TNNLS_2016_2636325 crossref_primary_10_1016_j_neucom_2019_12_038 crossref_primary_10_1002_acs_3146 crossref_primary_10_1109_TSMC_2019_2943882 crossref_primary_10_1016_j_neunet_2022_02_028 crossref_primary_10_1109_TNNLS_2019_2899589 crossref_primary_10_1109_TFUZZ_2020_2999746 crossref_primary_10_1109_TFUZZ_2020_2992632 crossref_primary_10_1109_TIV_2023_3263843 crossref_primary_10_1016_j_neucom_2017_11_067 crossref_primary_10_1016_j_jfranklin_2018_10_031 crossref_primary_10_1109_TSMC_2020_3003368 crossref_primary_10_1016_j_amc_2024_128718 crossref_primary_10_1016_j_neucom_2016_09_012 crossref_primary_10_1002_rnc_4858 crossref_primary_10_1002_rnc_4974 crossref_primary_10_1109_TIE_2019_2937037 crossref_primary_10_1109_TITS_2021_3114284 crossref_primary_10_1049_iet_cta_2017_0111 crossref_primary_10_1016_j_amc_2022_127080 crossref_primary_10_1002_acs_3675 crossref_primary_10_1002_rnc_4938 crossref_primary_10_1109_TSMC_2020_2979860 crossref_primary_10_1007_s40815_019_00773_0 crossref_primary_10_1016_j_neucom_2017_08_011 crossref_primary_10_1002_rnc_6162 crossref_primary_10_3934_math_2021046 crossref_primary_10_1007_s11063_023_11289_y crossref_primary_10_1109_TNNLS_2018_2873163 crossref_primary_10_1016_j_neunet_2019_09_006 crossref_primary_10_1109_TAC_2017_2649878 crossref_primary_10_1016_j_jfranklin_2017_07_017 crossref_primary_10_1016_j_jfranklin_2018_03_014 crossref_primary_10_1109_TNNLS_2020_3029587 crossref_primary_10_1016_j_isatra_2024_01_022 crossref_primary_10_1109_TCYB_2021_3050510 crossref_primary_10_1109_TFUZZ_2019_2961642 crossref_primary_10_1016_j_automatica_2023_111170 crossref_primary_10_1109_TAC_2023_3293019 crossref_primary_10_1002_rnc_5274 |
Cites_doi | 10.1016/j.automatica.2014.10.065 10.1109/TNN.2011.2163203 10.1109/TNN.2008.2000206 10.1109/TNNLS.2013.2271357 10.1109/TNN.2007.903159 10.1109/TCYB.2014.2357896 10.1109/TNN.2004.841813 10.1016/j.neunet.2014.03.009 10.1109/TFUZZ.2011.2177842 10.1109/TNN.2010.2090669 10.1109/TNNLS.2012.2187926 10.1109/TNNLS.2012.2186824 10.1109/TNNLS.2014.2317880 10.1109/TNN.2006.872355 10.1109/TFUZZ.2010.2060203 10.1016/j.automatica.2013.09.041 10.1109/TSMCB.2008.925745 10.1109/TCSI.2008.2008499 10.1109/TCYB.2015.2417170 10.1007/s12555-014-0576-4 10.1016/j.automatica.2010.02.008 10.1016/j.neunet.2014.10.004 10.1016/j.ins.2013.12.050 10.1109/TAC.2005.847042 10.1016/j.automatica.2009.02.002 10.1109/TNN.2010.2050904 10.1109/TNNLS.2015.2402203 10.1109/TCST.2004.825065 10.1109/TCYB.2014.2317236 10.1109/TNNLS.2014.2347290 10.1109/TNN.2009.2015085 10.1109/TNNLS.2013.2271046 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2015.2490168 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 638 |
ExternalDocumentID | 26552097 10_1109_TNNLS_2015_2490168 7314954 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61320106009; 61320106010; 61503106 funderid: 10.13039/501100001809 – fundername: China National Funds for Distinguished Young Scientists grantid: 61425009 funderid: 10.13039/501100005153 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c421t-2722237afcdae7ebd34dc02dc699fb405af18a9ae2de1ddb760434e5f2e48b0e3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 17:33:14 EDT 2025 Mon Jun 30 05:41:29 EDT 2025 Mon Mar 03 15:04:25 EST 2025 Tue Jul 01 00:27:21 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Tue Aug 26 16:38:10 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-2722237afcdae7ebd34dc02dc699fb405af18a9ae2de1ddb760434e5f2e48b0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26552097 |
PQID | 2174446465 |
PQPubID | 85436 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2174446465 crossref_primary_10_1109_TNNLS_2015_2490168 pubmed_primary_26552097 ieee_primary_7314954 crossref_citationtrail_10_1109_TNNLS_2015_2490168 proquest_miscellaneous_1826635572 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | bo (ref10) 2014; 10 ref13 ref34 ref12 ref15 ref14 ref30 ref33 ref32 ref2 ref1 ref17 ref16 ref19 ref18 wu (ref7) 2011; 22 ref24 ref23 ref26 ref25 ref20 ref22 liu (ref31) 2008; 38 ref21 ref28 ref27 ref29 ref8 huang (ref11) 2015; 11 ref4 wu (ref9) 2013; 24 ref3 ref5 qi (ref6) 2010; 21 |
References_xml | – ident: ref14 doi: 10.1016/j.automatica.2014.10.065 – volume: 22 start-page: 1566 year: 2011 ident: ref7 article-title: Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time delays publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2163203 – ident: ref29 doi: 10.1109/TNN.2008.2000206 – ident: ref21 doi: 10.1109/TNNLS.2013.2271357 – ident: ref16 doi: 10.1109/TNN.2007.903159 – ident: ref34 doi: 10.1109/TCYB.2014.2357896 – ident: ref28 doi: 10.1109/TNN.2004.841813 – ident: ref4 doi: 10.1016/j.neunet.2014.03.009 – ident: ref26 doi: 10.1109/TFUZZ.2011.2177842 – ident: ref19 doi: 10.1109/TNN.2010.2090669 – ident: ref20 doi: 10.1109/TNNLS.2012.2187926 – ident: ref30 doi: 10.1109/TNNLS.2012.2186824 – ident: ref1 doi: 10.1109/TNNLS.2014.2317880 – ident: ref27 doi: 10.1109/TNN.2006.872355 – ident: ref22 doi: 10.1109/TFUZZ.2010.2060203 – ident: ref23 doi: 10.1016/j.automatica.2013.09.041 – volume: 38 start-page: 1314 year: 2008 ident: ref31 article-title: Synchronization and state estimation for discrete-time complex networks with distributed delays publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2008.925745 – ident: ref5 doi: 10.1109/TCSI.2008.2008499 – ident: ref32 doi: 10.1109/TCYB.2015.2417170 – ident: ref12 doi: 10.1007/s12555-014-0576-4 – ident: ref25 doi: 10.1016/j.automatica.2010.02.008 – ident: ref8 doi: 10.1016/j.neunet.2014.10.004 – ident: ref13 doi: 10.1016/j.ins.2013.12.050 – ident: ref24 doi: 10.1109/TAC.2005.847042 – volume: 10 start-page: 1897 year: 2014 ident: ref10 article-title: General observer-based controller design for singular Markovian jump systems publication-title: Int J Innov Comput Inf Control – ident: ref17 doi: 10.1016/j.automatica.2009.02.002 – volume: 21 start-page: 1358 year: 2010 ident: ref6 article-title: Exponential H $_\infty $ synchronization of general discrete-time chaotic neural networks with or without time delays publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2050904 – ident: ref33 doi: 10.1109/TNNLS.2015.2402203 – ident: ref18 doi: 10.1109/TCST.2004.825065 – ident: ref2 doi: 10.1109/TCYB.2014.2317236 – ident: ref3 doi: 10.1109/TNNLS.2014.2347290 – ident: ref15 doi: 10.1109/TNN.2009.2015085 – volume: 24 start-page: 345 year: 2013 ident: ref9 article-title: Dissipativity analysis for discrete-time stochastic neural networks with time-varying delays publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2271046 – volume: 11 start-page: 295 year: 2015 ident: ref11 article-title: Stabilization for a class of Markovian jump linear systems with linear fractional uncertainties publication-title: Int J Innov Comput Inf Control |
SSID | ssj0000605649 |
Score | 2.5129158 |
Snippet | This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 630 |
SubjectTerms | Coupled Markovian neural networks Error analysis Estimation error Linear matrix inequalities Markov analysis Markov chains Markov processes Mathematical analysis Matrix methods Neural networks sensor nonlinearity Stability analysis State estimation stochastic finite-time boundedness stochastic finite-time stability Transition probabilities Yttrium |
Title | Finite-Time State Estimation for Coupled Markovian Neural Networks With Sensor Nonlinearities |
URI | https://ieeexplore.ieee.org/document/7314954 https://www.ncbi.nlm.nih.gov/pubmed/26552097 https://www.proquest.com/docview/2174446465 https://www.proquest.com/docview/1826635572 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9QwEIBHbU9cWqDQLhRkJG7g3dhx7M2xWnVVIchlt2IvKErsiVpRbapuwqG_vh7nIRUB4hYptpNoxvE39jwAPkrUZSEKw0spkCutNJ8rq3liRWVipWmJJm-LTF9eqS-bZLMHn8dYGEQMzmc4pctwlu9q29JW2czExPNqH_a94dbFao37KZHnch1oVwotuYzNZoiRidLZOsu-rsiRK5l6e8NjDtXpkzohJxDzZEkKNVb-jpth2VkewbfhhTtvk5_Ttimn9uG3XI7_-0XP4bDnT3beKcwL2MPtSzgaajuwfqofw4_lDdEopxARFoiUXfi_QRfoyDzpskXd3t2iYxTtU__yWsYo0YcfO-s8y3fs-01zzVbeTvatsy4lR3EfMri-gqvlxXpxyftSDNwqKRouDXGEKSrrCjRYulg5G0lndZpWpYe-ohJzSvQtHQrnSqMjFStMKolqXkYYv4aDbb3FU2BVpNw89aQlyRathO9EZWccKh0VVZpMQAzSyG2fp5zKZdzmwV6J0jwIMydh5r0wJ_Bp7HPXZen4Z-tjksTYshfCBM4Goef9RN7lZLEpUmH_Xh_G234K0rlKscW63eVkohG3GTmBk05ZxrEHHXvz52e-hWeSOCE4tZ3BQXPf4jtPOU35Pqj3IzYo9Zk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9QwEIBHpRzgQoHyWGjBSNzA29hx7M0RVV0tsM2lW7EXZCXxRFRUm6qbcODX43EeEhWtuEWK7SSacfyNPQ-A9xJ1kYvc8EIK5EorzWeq1DwpRWVipWmJJm-LTC_O1Zd1st6Bj2MsDCIG5zOc0mU4y3d12dJW2ZGJiefVPbjv1_1EdNFa445K5MlcB96VQksuY7MeomSi9GiVZcszcuVKpt7i8KBDlfqkTsgNxPy1KIUqK7cDZ1h45ntwOrxy52_yc9o2xbT8fSOb4_9-02N41BMo-9SpzBPYwc1T2BuqO7B-su_D9_kF8SinIBEWmJSd-P9BF-rIPOuy47q9ukTHKN6n_uX1jFGqDz921vmWb9m3i-YHO_OWsm-ddUk58uuQw_UZnM9PVscL3hdj4KWSouHSEEmYvCpdjgYLFytXRtKVOk2rwmNfXokZpfqWDoVzhdGRihUmlUQ1KyKMn8Pupt7gS2BVpNws9awlyRqthO9EhWccKh3lVZpMQAzSsGWfqZwKZlzaYLFEqQ3CtCRM2wtzAh_GPlddno47W--TJMaWvRAmcDAI3fZTeWvJZlOkxP693o23_SSkk5V8g3W7tWSkEbkZOYEXnbKMYw869urfz3wLDxar06Vdfs6-voaHkqghuLgdwG5z3eKhZ56meBNU_Q8rCvji |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Time+State+Estimation+for+Coupled+Markovian+Neural+Networks+With+Sensor+Nonlinearities&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Zhuo&rft.au=Xu%2C+Yong&rft.au=Lu%2C+Renquan&rft.au=Peng%2C+Hui&rft.date=2017-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=28&rft.issue=3&rft.spage=630&rft_id=info:doi/10.1109%2FTNNLS.2015.2490168&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |