Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine

The feasibility of classifying different human activities based on micro-Doppler signatures is investigated. Measured data of 12 human subjects performing seven different activities are collected using a Doppler radar. The seven activities include running, walking, walking while holding a stick, cra...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 47; no. 5; pp. 1328 - 1337
Main Authors Youngwook Kim, Youngwook Kim, Hao Ling, Hao Ling
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The feasibility of classifying different human activities based on micro-Doppler signatures is investigated. Measured data of 12 human subjects performing seven different activities are collected using a Doppler radar. The seven activities include running, walking, walking while holding a stick, crawling, boxing while moving forward, boxing while standing in place, and sitting still. Six features are extracted from the Doppler spectrogram. A support vector machine (SVM) is then trained using the measurement features to classify the activities. A multiclass classification is implemented using a decision-tree structure. Optimal parameters for the SVM are found through a fourfold cross-validation. The resulting classification accuracy is found to be more than 90%. The potentials of classifying human activities over extended time duration, through wall, and at oblique angles with respect to the radar are also investigated and discussed.
AbstractList The feasibility of classifying different human activities based on micro-Doppler signatures is investigated. Measured data of 12 human subjects performing seven different activities are collected using a Doppler radar. The seven activities include running, walking, walking while holding a stick, crawling, boxing while moving forward, boxing while standing in place, and sitting still. Six features are extracted from the Doppler spectrogram. A support vector machine (SVM) is then trained using the measurement features to classify the activities. A multiclass classification is implemented using a decision-tree structure. Optimal parameters for the SVM are found through a fourfold cross-validation. The resulting classification accuracy is found to be more than 90%. The potentials of classifying human activities over extended time duration, through wall, and at oblique angles with respect to the radar are also investigated and discussed.
Author Hao Ling
Youngwook Kim
Author_xml – sequence: 1
  givenname: Youngwook Kim
  surname: Youngwook Kim
  fullname: Youngwook Kim, Youngwook Kim
– sequence: 2
  givenname: Hao Ling
  surname: Hao Ling
  fullname: Hao Ling, Hao Ling
BookMark eNp9kb1uFDEURi0UJDaBB0A0FgVUE_w7Y5dhgQQpERKbUGJ5vNfB0aw92B6kvD1eNqJIkcbXxfmudL9zjI5iioDQa0pOKSX6w_X5980pI0S3hzIl9DO0olKqjvRCHKEVobrvmNLsBTou5Y4QKiQdVujnxbKzEZ-5Gv6Eeo_Xky0l-OBsDSnij7bAFrfPVXA5dZ_SPE-Q8SbcRluXDAXflBBvscWbZZ5TrvgHuJoyvrLuV4jwEj33dirw6mGeoJsvn6_XF93lt_Ov67PLzglGa8eYYlZpPnAyWueUJGzQI4yCD1vK-Tgy5SkDSp0cGCi_1Q4GL4knxHvOt_wEvT_snXP6vUCpZheKg2myEdJSjOp160Qy3ch3T5K850Lqfg--fQTepSXHdoVRchA9Z1I0aDhArZ1SMnjjQv1XXc02TIYSs9dj9nrMXo950NOS9FFyzmFn8_2TmTeHTACA_7xQhPatvL_Bqpy-
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSEN_2024_3355421
crossref_primary_10_1109_TAES_2017_2740098
crossref_primary_10_1049_iet_rsn_2013_0108
crossref_primary_10_1109_TAES_2022_3145303
crossref_primary_10_1109_TGRS_2022_3230977
crossref_primary_10_1109_TAP_2022_3220489
crossref_primary_10_1109_TAES_2016_140682
crossref_primary_10_1109_TGRS_2020_2974749
crossref_primary_10_1109_JSEN_2020_2977685
crossref_primary_10_1109_TAES_2016_150250
crossref_primary_10_1016_j_compeleceng_2025_110198
crossref_primary_10_1109_TAES_2014_130082
crossref_primary_10_1016_j_eswa_2023_121830
crossref_primary_10_1049_iet_rsn_2017_0126
crossref_primary_10_1049_rsn2_12066
crossref_primary_10_1109_JIOT_2023_3309837
crossref_primary_10_3390_s22239402
crossref_primary_10_1109_TAP_2017_2677918
crossref_primary_10_1587_transcom_2021EBP3075
crossref_primary_10_1109_ACCESS_2019_2956952
crossref_primary_10_3390_jimaging11030091
crossref_primary_10_1109_JERM_2019_2893587
crossref_primary_10_1109_TGRS_2024_3363631
crossref_primary_10_1109_ACCESS_2017_2750222
crossref_primary_10_3390_rs11091068
crossref_primary_10_1109_LGRS_2020_2980320
crossref_primary_10_1109_TAES_2015_130595
crossref_primary_10_1109_LGRS_2021_3075940
crossref_primary_10_1109_LSENS_2019_2953022
crossref_primary_10_3390_s16091401
crossref_primary_10_3390_s19112598
crossref_primary_10_1109_ACCESS_2021_3074088
crossref_primary_10_2528_PIERM15050502
crossref_primary_10_3390_rs9060594
crossref_primary_10_1109_ACCESS_2016_2617282
crossref_primary_10_1007_s42835_020_00405_w
crossref_primary_10_1109_TSP_2010_2063027
crossref_primary_10_1109_JSEN_2023_3283778
crossref_primary_10_1109_TAP_2014_2379955
crossref_primary_10_1109_TGRS_2011_2176342
crossref_primary_10_1109_TBME_2015_2453255
crossref_primary_10_1016_j_neucom_2018_11_109
crossref_primary_10_1049_rsn2_12177
crossref_primary_10_3390_rs14092196
crossref_primary_10_1109_ACCESS_2020_3037062
crossref_primary_10_1088_1361_6501_ad9622
crossref_primary_10_1109_TMC_2023_3276930
crossref_primary_10_1109_ACCESS_2020_2971064
crossref_primary_10_1109_LSP_2021_3122355
crossref_primary_10_1109_JSEN_2019_2917375
crossref_primary_10_3390_s22124447
crossref_primary_10_1109_LGRS_2019_2942097
crossref_primary_10_1016_j_patcog_2017_04_024
crossref_primary_10_1109_JSEN_2020_3028362
crossref_primary_10_1080_01431161_2016_1192703
crossref_primary_10_1109_TGRS_2009_2034367
crossref_primary_10_1049_rsn2_12049
crossref_primary_10_1145_3351273
crossref_primary_10_1049_iet_rsn_2019_0618
crossref_primary_10_5573_ieek_2013_50_4_182
crossref_primary_10_1109_ACCESS_2020_2975676
crossref_primary_10_1109_JERM_2017_2735241
crossref_primary_10_1109_LGRS_2015_2452311
crossref_primary_10_1109_ACCESS_2018_2843391
crossref_primary_10_1109_TAES_2019_2914518
crossref_primary_10_1049_iet_rsn_2017_0570
crossref_primary_10_3724_SP_J_1146_2010_00128
crossref_primary_10_1109_ACCESS_2016_2614824
crossref_primary_10_1109_LGRS_2014_2311819
crossref_primary_10_3390_app14167154
crossref_primary_10_2528_PIERM18111509
crossref_primary_10_1109_LSENS_2021_3067215
crossref_primary_10_1109_TBME_2012_2211355
crossref_primary_10_3233_AIS_160388
crossref_primary_10_1109_JSEN_2020_3004252
crossref_primary_10_1109_MAES_2021_3138948
crossref_primary_10_1109_JSEN_2018_2800053
crossref_primary_10_1587_transinf_2017EDL8192
crossref_primary_10_3390_rs8080621
crossref_primary_10_3390_s20174660
crossref_primary_10_1002_mop_32125
crossref_primary_10_1109_LGRS_2018_2873776
crossref_primary_10_1049_rsn2_12147
crossref_primary_10_1109_TBME_2014_2320153
crossref_primary_10_1109_TIM_2023_3304683
crossref_primary_10_1016_j_patcog_2018_07_030
crossref_primary_10_4316_AECE_2020_02015
crossref_primary_10_1109_TAES_2012_6129657
crossref_primary_10_1109_LCOMM_2021_3081135
crossref_primary_10_1109_TMTT_2021_3076055
crossref_primary_10_1109_TAES_2020_2969579
crossref_primary_10_1109_TGRS_2020_3004331
crossref_primary_10_3390_s130405317
crossref_primary_10_1016_j_imu_2020_100472
crossref_primary_10_1049_iet_rsn_2018_5206
crossref_primary_10_1109_TAP_2020_3016184
crossref_primary_10_3390_rs14040867
crossref_primary_10_1016_j_phycom_2014_04_006
crossref_primary_10_1109_JSEN_2020_3046991
crossref_primary_10_1109_JSEN_2021_3071884
crossref_primary_10_1109_MSP_2015_2502784
crossref_primary_10_1049_rsn2_12125
crossref_primary_10_3390_s24144570
crossref_primary_10_1109_TMC_2018_2879075
crossref_primary_10_1109_LGRS_2017_2765341
crossref_primary_10_1109_TMTT_2010_2086467
crossref_primary_10_1002_2014RS005555
crossref_primary_10_1016_j_neucom_2020_07_136
crossref_primary_10_1109_LGRS_2010_2081660
crossref_primary_10_1109_TAP_2013_2291893
crossref_primary_10_1049_sil2_12060
crossref_primary_10_1049_iet_rsn_2012_0327
crossref_primary_10_1109_JSEN_2020_2999548
crossref_primary_10_1109_ACCESS_2019_2951537
crossref_primary_10_1109_TAES_2024_3353148
crossref_primary_10_1109_ACCESS_2023_3330895
crossref_primary_10_1109_TAES_2024_3411594
crossref_primary_10_1049_iet_rsn_2015_0084
crossref_primary_10_26833_ijeg_1380658
crossref_primary_10_3390_s17092090
crossref_primary_10_1016_j_robot_2014_12_003
crossref_primary_10_3390_electronics12020308
crossref_primary_10_1088_1361_6501_ad7b60
crossref_primary_10_3390_s20154172
crossref_primary_10_5515_KJKIEES_2017_28_1_33
crossref_primary_10_1109_TGRS_2009_2037219
crossref_primary_10_1016_j_eswa_2015_06_017
crossref_primary_10_1109_LSENS_2021_3061561
crossref_primary_10_1109_TAES_2017_2739958
crossref_primary_10_1145_3466638
crossref_primary_10_1109_JIOT_2023_3242417
crossref_primary_10_1049_iet_spr_2018_5245
crossref_primary_10_1109_TMC_2023_3310508
crossref_primary_10_1109_LSENS_2018_2866371
crossref_primary_10_1007_s11276_021_02670_7
crossref_primary_10_26866_jees_2024_4_r_235
crossref_primary_10_1109_JSTARS_2022_3158661
crossref_primary_10_1109_TGRS_2022_3228959
crossref_primary_10_1088_1674_1056_21_5_050204
crossref_primary_10_1109_TIM_2023_3298408
crossref_primary_10_1109_ACCESS_2024_3514140
crossref_primary_10_1109_JIOT_2021_3063504
crossref_primary_10_1017_S1759078721000830
crossref_primary_10_1109_ACCESS_2021_3127327
crossref_primary_10_1109_TRS_2023_3310894
crossref_primary_10_1109_ACCESS_2023_3247583
crossref_primary_10_1109_TIP_2011_2166967
crossref_primary_10_1108_SR_04_2017_0060
crossref_primary_10_3389_frsip_2022_864538
crossref_primary_10_3390_rs15174299
crossref_primary_10_3390_s22176363
crossref_primary_10_1109_JSEN_2020_2971626
crossref_primary_10_1109_JSEN_2021_3068388
crossref_primary_10_1109_LGRS_2017_2771405
crossref_primary_10_1109_JSEN_2020_2977170
crossref_primary_10_1109_LAWP_2019_2893358
crossref_primary_10_1109_JSEN_2019_2937989
crossref_primary_10_3390_s16121990
crossref_primary_10_1049_iet_rsn_2019_0585
crossref_primary_10_1049_iet_rsn_2014_0432
crossref_primary_10_1049_iet_rsn_2014_0551
crossref_primary_10_3390_app12084021
crossref_primary_10_3390_s20072001
crossref_primary_10_1007_s11432_015_5327_5
crossref_primary_10_1109_JSEN_2021_3100635
crossref_primary_10_1109_JSEN_2021_3092002
crossref_primary_10_1049_iet_rsn_2019_0225
crossref_primary_10_1109_JSEN_2018_2816594
crossref_primary_10_1587_transcom_2022EBP3040
crossref_primary_10_1155_2017_1320780
crossref_primary_10_1109_TBME_2019_2893528
crossref_primary_10_3390_s19030714
crossref_primary_10_1049_el_2014_2349
crossref_primary_10_1134_S1064226916100120
crossref_primary_10_1109_MMM_2014_2308763
crossref_primary_10_1109_JIOT_2024_3489956
crossref_primary_10_3390_rs14236017
crossref_primary_10_1109_TGRS_2013_2292826
crossref_primary_10_1016_j_sigpro_2024_109505
crossref_primary_10_1109_JSEN_2019_2892073
crossref_primary_10_1109_JSEN_2022_3224083
crossref_primary_10_1109_TGRS_2019_2929096
crossref_primary_10_1007_s00521_022_07665_9
crossref_primary_10_1117_1_3652706
crossref_primary_10_1049_iet_rsn_2014_0254
crossref_primary_10_1049_iet_rsn_2019_0240
crossref_primary_10_1109_JSEN_2023_3267820
crossref_primary_10_1002_mmce_22264
crossref_primary_10_1109_JSEN_2024_3482291
crossref_primary_10_1007_s00521_022_07776_3
crossref_primary_10_1049_iet_rsn_2014_0250
crossref_primary_10_3390_rs13214264
crossref_primary_10_3390_app9173534
crossref_primary_10_2528_PIERB10022206
crossref_primary_10_1109_JIOT_2023_3235808
crossref_primary_10_1109_JBHI_2023_3240895
crossref_primary_10_1109_JIOT_2023_3321056
crossref_primary_10_3390_s17122769
crossref_primary_10_1109_TRS_2024_3396172
crossref_primary_10_1109_LGRS_2016_2515942
crossref_primary_10_3390_rs13030423
crossref_primary_10_1049_ell2_12560
crossref_primary_10_1145_3161415
crossref_primary_10_1049_iet_rsn_2014_0360
crossref_primary_10_1049_joe_2019_0560
crossref_primary_10_1049_joe_2019_0561
crossref_primary_10_3233_AIS_170425
crossref_primary_10_1109_JSEN_2019_2943152
crossref_primary_10_1109_TGRS_2023_3275991
crossref_primary_10_1109_ACCESS_2020_3029247
crossref_primary_10_1109_ACCESS_2019_2926381
crossref_primary_10_1080_09205071_2021_1943002
crossref_primary_10_1109_TMC_2022_3186473
crossref_primary_10_1109_JSEN_2023_3325619
crossref_primary_10_1109_JIOT_2024_3489643
crossref_primary_10_1049_joe_2019_0557
crossref_primary_10_1049_joe_2019_0559
crossref_primary_10_1049_iet_rsn_2015_0113
crossref_primary_10_1049_iet_rsn_2012_0058
crossref_primary_10_1109_TAES_2017_2761229
crossref_primary_10_1109_JSEN_2017_2697077
crossref_primary_10_3390_s21082612
crossref_primary_10_1109_LGRS_2019_2930636
crossref_primary_10_3390_rs13030527
crossref_primary_10_54939_1859_1043_j_mst_95_2024_20_28
crossref_primary_10_1016_j_eswa_2018_02_019
crossref_primary_10_1587_transcom_E97_B_1223
crossref_primary_10_1587_transcom_E95_B_3088
crossref_primary_10_1109_JSEN_2020_3000498
crossref_primary_10_1360_SSI_2023_0040
crossref_primary_10_1109_TGRS_2023_3270365
crossref_primary_10_1109_JSEN_2023_3322684
crossref_primary_10_1109_JSEN_2020_3033278
crossref_primary_10_1109_LGRS_2019_2917301
crossref_primary_10_1049_iet_rsn_2019_0044
crossref_primary_10_1109_JSEN_2023_3242660
crossref_primary_10_1109_LGRS_2014_2336231
crossref_primary_10_1016_j_eswa_2018_03_056
crossref_primary_10_1109_JSEN_2024_3417899
crossref_primary_10_1109_THMS_2021_3131675
crossref_primary_10_1109_JSEN_2024_3439686
crossref_primary_10_3390_s23063185
crossref_primary_10_1109_MMM_2019_2915491
crossref_primary_10_5626_JOK_2016_43_8_848
crossref_primary_10_1109_TII_2021_3049342
crossref_primary_10_1109_TGRS_2022_3189746
crossref_primary_10_1109_LAWP_2018_2839019
crossref_primary_10_1155_2020_8617430
crossref_primary_10_1109_JBHI_2020_3025900
crossref_primary_10_1109_JSEN_2025_3535673
crossref_primary_10_1109_LMWC_2019_2907547
crossref_primary_10_1109_TMTT_2021_3131593
crossref_primary_10_1007_s12652_011_0065_z
crossref_primary_10_1109_ACCESS_2017_2667720
crossref_primary_10_3390_rs11212584
crossref_primary_10_1109_JIOT_2020_3024234
crossref_primary_10_1109_TMTT_2020_3025563
crossref_primary_10_1109_MSP_2015_2496324
crossref_primary_10_1049_iet_rsn_2015_0493
crossref_primary_10_1109_TGRS_2023_3329561
crossref_primary_10_3390_rs9030260
crossref_primary_10_1109_TGRS_2012_2185244
crossref_primary_10_1109_TMTT_2022_3200097
crossref_primary_10_1007_s00779_018_1185_7
crossref_primary_10_1109_TGRS_2018_2884446
crossref_primary_10_1109_LGRS_2015_2491329
crossref_primary_10_1007_s12530_017_9208_6
crossref_primary_10_1109_TAES_2014_140481
crossref_primary_10_1016_j_dsp_2015_06_011
crossref_primary_10_1109_TAES_2021_3068436
crossref_primary_10_1109_LGRS_2019_2919770
crossref_primary_10_3390_rs15082101
crossref_primary_10_3390_s16060885
crossref_primary_10_1049_el_2014_1091
crossref_primary_10_1109_JSEN_2020_3040865
crossref_primary_10_3390_s19224837
crossref_primary_10_1109_TMTT_2017_2650909
crossref_primary_10_1109_JSEN_2022_3216604
crossref_primary_10_1109_TAES_2013_6494415
crossref_primary_10_1109_JSEN_2019_2914365
crossref_primary_10_3390_s21061951
crossref_primary_10_1109_TAES_2019_2910980
crossref_primary_10_1049_iet_rsn_2016_0055
crossref_primary_10_1109_TITS_2018_2865588
crossref_primary_10_3390_s20041210
crossref_primary_10_1109_ACCESS_2021_3051454
crossref_primary_10_1109_LGRS_2020_2993039
crossref_primary_10_1016_j_aeue_2011_01_013
crossref_primary_10_1109_JSEN_2021_3116271
crossref_primary_10_1016_j_sigpro_2020_107565
crossref_primary_10_1109_TGRS_2015_2505409
crossref_primary_10_1109_TMTT_2017_2650911
crossref_primary_10_1109_JSEN_2023_3333407
crossref_primary_10_1109_LGRS_2014_2386896
crossref_primary_10_1109_TMTT_2021_3134992
crossref_primary_10_1109_JSEN_2016_2630726
crossref_primary_10_1049_iet_rsn_2015_0144
crossref_primary_10_1109_TMTT_2015_2495298
crossref_primary_10_3390_s23239563
crossref_primary_10_1109_JETCAS_2018_2822684
crossref_primary_10_1109_TAP_2013_2296325
crossref_primary_10_1109_ACCESS_2023_3322726
crossref_primary_10_1109_JSEN_2023_3299558
crossref_primary_10_1109_JSEN_2020_2967054
crossref_primary_10_1109_JSEN_2019_2895538
crossref_primary_10_1109_TMC_2015_2416186
crossref_primary_10_1049_iet_rsn_2015_0058
crossref_primary_10_1109_JMW_2020_3030722
crossref_primary_10_1049_iet_rsn_2016_0271
crossref_primary_10_1109_TAES_2015_150112
crossref_primary_10_3233_IDA_184361
crossref_primary_10_1109_JIOT_2024_3492721
crossref_primary_10_1109_LGRS_2010_2045473
crossref_primary_10_1049_iet_rsn_2011_0101
crossref_primary_10_1109_TMTT_2018_2829523
crossref_primary_10_1109_JIOT_2019_2929833
crossref_primary_10_1109_JETCAS_2018_2797313
crossref_primary_10_1109_LGRS_2015_2439393
crossref_primary_10_1109_ACCESS_2020_3009123
crossref_primary_10_1109_TAES_2018_2799758
crossref_primary_10_1109_JSEN_2019_2938997
crossref_primary_10_1109_LGRS_2020_3046015
crossref_primary_10_1049_iet_rsn_2015_0173
crossref_primary_10_1016_j_compbiomed_2023_107315
crossref_primary_10_3390_s130506054
crossref_primary_10_1016_j_mstc_2011_03_007
crossref_primary_10_1109_TGRS_2018_2816812
crossref_primary_10_1109_TGRS_2023_3345829
crossref_primary_10_1109_JSEN_2022_3175618
crossref_primary_10_1007_s11760_025_03838_w
crossref_primary_10_1109_TVT_2021_3115877
crossref_primary_10_1109_JERM_2018_2881238
crossref_primary_10_1109_JIOT_2021_3083934
crossref_primary_10_1109_TBME_2016_2566619
crossref_primary_10_1587_transcom_E96_B_2563
crossref_primary_10_1049_rsn2_12227
crossref_primary_10_1109_ACCESS_2016_2547948
crossref_primary_10_1109_JSEN_2021_3106300
crossref_primary_10_2197_ipsjjip_20_396
crossref_primary_10_1109_JSTARS_2015_2451004
crossref_primary_10_1109_JSEN_2023_3310620
crossref_primary_10_1109_LAWP_2010_2041026
crossref_primary_10_1109_TCE_2020_3021398
crossref_primary_10_1049_el_2015_3513
crossref_primary_10_1109_JSEN_2018_2879223
crossref_primary_10_1109_LAWP_2021_3063059
crossref_primary_10_3390_s21217130
crossref_primary_10_1109_JSEN_2014_2314219
crossref_primary_10_1145_3494994
crossref_primary_10_3389_fnins_2023_1233037
crossref_primary_10_3390_s22062287
crossref_primary_10_1049_iet_rsn_2013_0165
crossref_primary_10_1109_TGRS_2014_2322438
crossref_primary_10_1109_TGRS_2014_2345514
crossref_primary_10_1109_TAES_2017_2651678
crossref_primary_10_1109_TGRS_2021_3100482
crossref_primary_10_1109_TIV_2022_3146639
crossref_primary_10_2528_PIERM14100701
crossref_primary_10_3390_rs15071752
crossref_primary_10_1109_TGRS_2014_2355211
crossref_primary_10_1109_LGRS_2016_2628909
crossref_primary_10_1371_journal_pone_0308045
crossref_primary_10_1109_TMC_2017_2691705
crossref_primary_10_1080_01431161_2016_1213924
crossref_primary_10_1109_LGRS_2016_2539386
crossref_primary_10_1109_JBHI_2018_2817258
crossref_primary_10_1109_LSENS_2020_2991367
crossref_primary_10_1109_TGRS_2019_2908758
crossref_primary_10_1109_ACCESS_2021_3085985
crossref_primary_10_3390_life12091414
crossref_primary_10_1016_j_isprsjprs_2014_04_006
crossref_primary_10_1109_JSEN_2022_3171293
crossref_primary_10_4236_ait_2013_32A005
crossref_primary_10_1109_LGRS_2018_2806940
crossref_primary_10_1109_TVT_2016_2616883
crossref_primary_10_2197_ipsjjip_30_66
crossref_primary_10_1109_MAES_2015_7119820
crossref_primary_10_3390_rs14010123
crossref_primary_10_1109_JSYST_2018_2876461
crossref_primary_10_3390_app9112314
crossref_primary_10_1109_JSEN_2021_3118836
crossref_primary_10_1109_JSTARS_2023_3274830
crossref_primary_10_1109_JSEN_2018_2834739
crossref_primary_10_1109_JBHI_2020_2994471
crossref_primary_10_1109_ACCESS_2021_3061424
crossref_primary_10_1186_s13634_019_0648_y
crossref_primary_10_3390_electronics12234772
crossref_primary_10_2528_PIER14012306
crossref_primary_10_1145_3161183
crossref_primary_10_1038_s41598_023_30631_x
crossref_primary_10_1109_JSEN_2016_2538790
crossref_primary_10_1109_COMST_2023_3334269
crossref_primary_10_1109_TBME_2014_2319333
crossref_primary_10_1109_TAES_2023_3344685
crossref_primary_10_1109_TGRS_2012_2217975
crossref_primary_10_1109_TGRS_2012_2216885
crossref_primary_10_1109_JSEN_2019_2946095
crossref_primary_10_1109_TGRS_2020_2985421
crossref_primary_10_1109_LAWP_2019_2904580
crossref_primary_10_1063_5_0055641
crossref_primary_10_1109_TIM_2023_3238749
crossref_primary_10_1109_TAP_2015_2511779
crossref_primary_10_3390_rs9070699
crossref_primary_10_3390_s21010222
crossref_primary_10_1186_s13634_015_0244_8
crossref_primary_10_3390_s24020349
crossref_primary_10_1109_JIOT_2023_3280227
crossref_primary_10_3390_s21134291
crossref_primary_10_1016_j_fss_2010_08_006
crossref_primary_10_1038_s41598_023_45149_5
crossref_primary_10_1109_MMM_2016_2541821
crossref_primary_10_1109_JSEN_2015_2509185
crossref_primary_10_1109_ACCESS_2021_3068075
crossref_primary_10_1109_JSEN_2020_3006386
crossref_primary_10_1109_TGRS_2019_2958178
crossref_primary_10_1155_2010_389716
crossref_primary_10_1109_JSEN_2013_2272119
crossref_primary_10_1109_JSEN_2021_3107943
crossref_primary_10_3233_JIFS_169844
crossref_primary_10_1587_transcom_2015ISP0029
Cites_doi 10.1109/TGRS.2008.916212
10.1109/ISSPIT.2005.1577085
10.1117/12.607176
10.1109/JSEN.2002.805552
10.1109/RADAR.2002.1174739
10.1049/ip-rsn:20030729
10.1109/7.937475
10.1109/TGRS.2005.857914
10.1109/EURAD.2006.280298
10.1117/12.542718
10.1017/CBO9780511801389
10.1007/978-0-387-21606-5
10.1049/ip-rsn:20030568
10.1109/TAP.2007.891550
10.1109/LAWP.2005.860196
10.1109/APS.2005.1552508
10.1109/45.645833
10.1117/12.488285
10.1109/APS.2004.1332026
10.1109/RADAR.2008.4653901
10.1109/TGRS.2008.915754
10.1117/12.488286
10.1109/ISSPA.2007.4555595
10.1109/72.991427
10.1109/TAES.2007.4441754
10.1109/TAES.2006.1603422
10.1049/iet-rsn:20060103
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
DOI 10.1109/TGRS.2009.2012849
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1337
ExternalDocumentID 2295161741
10_1109_TGRS_2009_2012849
4801689
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
ID FETCH-LOGICAL-c421t-2282a893730bacc850279beb437d133bb28f12e11c572e8fd9ce7f50f00ff33d3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Thu Jul 10 19:54:26 EDT 2025
Thu Jul 10 23:59:01 EDT 2025
Mon Jun 30 09:07:52 EDT 2025
Tue Jul 01 04:30:22 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Tue Aug 26 16:47:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-2282a893730bacc850279beb437d133bb28f12e11c572e8fd9ce7f50f00ff33d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 857463254
PQPubID 23500
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2009_2012849
ieee_primary_4801689
proquest_miscellaneous_36345969
proquest_journals_857463254
proquest_miscellaneous_869849529
crossref_primary_10_1109_TGRS_2009_2012849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-05-01
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2009
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
ref32
ref10
ref1
chang (ref30) 2001
ref17
ref16
ref19
ref18
kim (ref34) 2008
geisheimer (ref9) 2002; 4744
vapnik (ref23) 1998
chen (ref12) 2002
ref24
ref26
ref20
ref22
ref28
ref27
ref29
fumitake (ref31) 2002; 3
ref8
kim (ref33) 2008
ref7
nag (ref2) 2002; 4744
ref4
ref3
ref6
ref5
anderson (ref21) 2007; 6547
hastie (ref25) 2001
References_xml – ident: ref8
  doi: 10.1109/TGRS.2008.916212
– ident: ref11
  doi: 10.1109/ISSPIT.2005.1577085
– ident: ref14
  doi: 10.1117/12.607176
– ident: ref29
  doi: 10.1109/JSEN.2002.805552
– ident: ref18
  doi: 10.1109/RADAR.2002.1174739
– year: 2002
  ident: ref12
  publication-title: Time-frequency transforms for radar imaging and signal analysis
– ident: ref15
  doi: 10.1049/ip-rsn:20030729
– ident: ref28
  doi: 10.1109/7.937475
– ident: ref5
  doi: 10.1109/TGRS.2005.857914
– ident: ref20
  doi: 10.1109/EURAD.2006.280298
– ident: ref4
  doi: 10.1117/12.542718
– ident: ref24
  doi: 10.1017/CBO9780511801389
– year: 2001
  ident: ref25
  publication-title: The Elements of Statistical Learning
  doi: 10.1007/978-0-387-21606-5
– ident: ref13
  doi: 10.1049/ip-rsn:20030568
– ident: ref27
  doi: 10.1109/TAP.2007.891550
– ident: ref26
  doi: 10.1109/LAWP.2005.860196
– volume: 3
  start-page: 1418
  year: 2002
  ident: ref31
  article-title: decision-tree-based multi-class support vector machines
  publication-title: Proc IEEE ICON
– ident: ref6
  doi: 10.1109/APS.2005.1552508
– ident: ref1
  doi: 10.1109/45.645833
– volume: 4744
  start-page: 48
  year: 2002
  ident: ref2
  article-title: ultrawideband through-wall radar for detecting the motion of people in real time
  publication-title: Proc SPIE Radar Sensor Technol Data Vis
  doi: 10.1117/12.488285
– ident: ref3
  doi: 10.1109/APS.2004.1332026
– ident: ref22
  doi: 10.1109/RADAR.2008.4653901
– volume: 6547
  start-page: 65470a
  year: 2007
  ident: ref21
  article-title: micro-doppler analysis of multiple frequency continuous wave radar signatures
  publication-title: Proc SPIE Conf Radar Sensor Technology
– ident: ref7
  doi: 10.1109/TGRS.2008.915754
– volume: 4744
  start-page: 8
  year: 2002
  ident: ref9
  article-title: high-resolution doppler model of the human gait
  publication-title: Proc SPIE Radar Sensor Technol Data Vis
  doi: 10.1117/12.488286
– year: 2001
  ident: ref30
  publication-title: LIBSVM A library for support vector machines
– ident: ref17
  doi: 10.1109/ISSPA.2007.4555595
– ident: ref32
  doi: 10.1109/72.991427
– ident: ref10
  doi: 10.1109/TAES.2007.4441754
– year: 2008
  ident: ref34
  publication-title: Through-wall human monitoring using data-driven models with Doppler information
– year: 1998
  ident: ref23
  publication-title: Statistical Learning Theory
– ident: ref19
  doi: 10.1109/TAES.2006.1603422
– start-page: 1
  year: 2008
  ident: ref33
  article-title: human activity classification based on micro-doppler signatures using an artificial neural network
  publication-title: Proc IEEE Antennas Propag Soc Int Symp Dig
– ident: ref16
  doi: 10.1049/iet-rsn:20060103
SSID ssj0014517
Score 2.5200274
Snippet The feasibility of classifying different human activities based on micro-Doppler signatures is investigated. Measured data of 12 human subjects performing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1328
SubjectTerms Classification
Data mining
Doppler effect
Doppler radar
Human
Human activity classification
Humans
Information security
Legged locomotion
micro-doppler
Radar detection
Radar signal processing
Radar tracking
Signatures
Spectrograms
support vector machine
Support vector machine classification
Support vector machines
through-wall
Walking
Walls
Title Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine
URI https://ieeexplore.ieee.org/document/4801689
https://www.proquest.com/docview/857463254
https://www.proquest.com/docview/36345969
https://www.proquest.com/docview/869849529
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JThwxEC0BUqTkAAQSZYAQH3KK4sHtpds-QoCgSJNDWMSJlpdqFIFmEDNz4eux3T2tLBDlZsm2bKm81HM91wP4KEKKpzFJnTecytIyaoP2VCMqLZxvKpdZvt_Lk3P57VJdLsHn_i8MImbyGQ5TMcfyw8TP01PZXkp1UmqzDMsRuLV_tfqIgVRF9zW6pBFE8C6CWTCzd_b1x2mbmZLn49j8dgdlUZW_TuJ8vRyvwWgxsZZVcjOcz9zQP_yRs_F_Z74Oq52fSfbbhfEalnC8Aa9-yT64AS8y-9NPN-EqP-WTfd9KSZCslJk4RNls5CDedIHEwiix9-jhJHqueE9Of163aUGnJBMPiCVJIzT68-QixwLIKDM18Q2cHx-dfTmhnfAC9ZIXM8ojDrPJkRHMWe-1itjVOHRSVCFiWue4bgqOReFVxVE3wXisGsUaxppGiCDewsp4MsZ3QLhsjDQVVqzwkjlnk4aCVSZYVQUXxADYwhS177KSJ3GM2zqjE2bqZL0klmnqznoD-NR3uWtTcvyr8WayRt-wM8QAthf2rrtNO621qmQpImIewIe-Nu62FEKxY5zMp7UohVSmjP3JMy10aeKwiputp0fehpdtQCpxJndgZXY_x_fRr5m53bygHwHLdPQ-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qRQhY8GhBDAXqBWyQPHX8SOwFi0IpU9rpgk5RVw1-BSHQDGpmhOBb-BX-DdvxRLx3ldhFih0rvje-vjnH9wA8ZC7iaYRjYxXFvNQEayctlt4LyYxtKpNYvofl6Ji_PBEnK_C1PwvjvU_kMz-MlwnLdzO7iL_KtmKpk1KqTKHc958_hQStfbK3E6z5iNLd55NnI5w1BLDltJhjGlIKHWMyI0ZbK0VIw5TxhrPKhfTMGCqbgvqisKKiXjZOWV81gjSENA1jjoXnXoCLYZ8haHc6rMcouCjyYewSh7SFZsy0IGpr8uLVUVcLk6YAoH6KeknG5be1PwW03evwbTkVHY_l_XAxN0P75Zcqkf_rXN2Aa3knjbY7178JK366Bld_qK-4BpcSv9W263CawAq0bTuxDJS0QCNLKjkmehpiuUPhYhz5iXhnFvbm_gwdvXvbFT5tUaJWII2iCmrIWNDrhHagceKi-ltwfC6vehtWp7OpvwOI8kZxVfmKFJYTY3RUidBCOS0qZxwbAFmavra57nqU__hQp_yLqDp6S5QDVXX2lgE87rt87IqO_KvxerR-3zAbfgAbS_-q87LU1lJUvGRU8AFs9nfDehJBIj31s0Vbs5JxocrQH_2lhSxVGFZQdffPI2_C5dFkfFAf7B3ub8CVDn6LDNF7sDo_W_j7YRc3Nw_Sx4TgzXl75He6SVFO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Activity+Classification+Based+on+Micro-Doppler+Signatures+Using+a+Support+Vector+Machine&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Youngwook+Kim&rft.au=Hao+Ling&rft.date=2009-05-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=47&rft.issue=5&rft.spage=1328&rft.epage=1337&rft_id=info:doi/10.1109%2FTGRS.2009.2012849&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2009_2012849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon