Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine
The feasibility of classifying different human activities based on micro-Doppler signatures is investigated. Measured data of 12 human subjects performing seven different activities are collected using a Doppler radar. The seven activities include running, walking, walking while holding a stick, cra...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 47; no. 5; pp. 1328 - 1337 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The feasibility of classifying different human activities based on micro-Doppler signatures is investigated. Measured data of 12 human subjects performing seven different activities are collected using a Doppler radar. The seven activities include running, walking, walking while holding a stick, crawling, boxing while moving forward, boxing while standing in place, and sitting still. Six features are extracted from the Doppler spectrogram. A support vector machine (SVM) is then trained using the measurement features to classify the activities. A multiclass classification is implemented using a decision-tree structure. Optimal parameters for the SVM are found through a fourfold cross-validation. The resulting classification accuracy is found to be more than 90%. The potentials of classifying human activities over extended time duration, through wall, and at oblique angles with respect to the radar are also investigated and discussed. |
---|---|
AbstractList | The feasibility of classifying different human activities based on micro-Doppler signatures is investigated. Measured data of 12 human subjects performing seven different activities are collected using a Doppler radar. The seven activities include running, walking, walking while holding a stick, crawling, boxing while moving forward, boxing while standing in place, and sitting still. Six features are extracted from the Doppler spectrogram. A support vector machine (SVM) is then trained using the measurement features to classify the activities. A multiclass classification is implemented using a decision-tree structure. Optimal parameters for the SVM are found through a fourfold cross-validation. The resulting classification accuracy is found to be more than 90%. The potentials of classifying human activities over extended time duration, through wall, and at oblique angles with respect to the radar are also investigated and discussed. |
Author | Hao Ling Youngwook Kim |
Author_xml | – sequence: 1 givenname: Youngwook Kim surname: Youngwook Kim fullname: Youngwook Kim, Youngwook Kim – sequence: 2 givenname: Hao Ling surname: Hao Ling fullname: Hao Ling, Hao Ling |
BookMark | eNp9kb1uFDEURi0UJDaBB0A0FgVUE_w7Y5dhgQQpERKbUGJ5vNfB0aw92B6kvD1eNqJIkcbXxfmudL9zjI5iioDQa0pOKSX6w_X5980pI0S3hzIl9DO0olKqjvRCHKEVobrvmNLsBTou5Y4QKiQdVujnxbKzEZ-5Gv6Eeo_Xky0l-OBsDSnij7bAFrfPVXA5dZ_SPE-Q8SbcRluXDAXflBBvscWbZZ5TrvgHuJoyvrLuV4jwEj33dirw6mGeoJsvn6_XF93lt_Ov67PLzglGa8eYYlZpPnAyWueUJGzQI4yCD1vK-Tgy5SkDSp0cGCi_1Q4GL4knxHvOt_wEvT_snXP6vUCpZheKg2myEdJSjOp160Qy3ch3T5K850Lqfg--fQTepSXHdoVRchA9Z1I0aDhArZ1SMnjjQv1XXc02TIYSs9dj9nrMXo950NOS9FFyzmFn8_2TmTeHTACA_7xQhPatvL_Bqpy- |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3355421 crossref_primary_10_1109_TAES_2017_2740098 crossref_primary_10_1049_iet_rsn_2013_0108 crossref_primary_10_1109_TAES_2022_3145303 crossref_primary_10_1109_TGRS_2022_3230977 crossref_primary_10_1109_TAP_2022_3220489 crossref_primary_10_1109_TAES_2016_140682 crossref_primary_10_1109_TGRS_2020_2974749 crossref_primary_10_1109_JSEN_2020_2977685 crossref_primary_10_1109_TAES_2016_150250 crossref_primary_10_1016_j_compeleceng_2025_110198 crossref_primary_10_1109_TAES_2014_130082 crossref_primary_10_1016_j_eswa_2023_121830 crossref_primary_10_1049_iet_rsn_2017_0126 crossref_primary_10_1049_rsn2_12066 crossref_primary_10_1109_JIOT_2023_3309837 crossref_primary_10_3390_s22239402 crossref_primary_10_1109_TAP_2017_2677918 crossref_primary_10_1587_transcom_2021EBP3075 crossref_primary_10_1109_ACCESS_2019_2956952 crossref_primary_10_3390_jimaging11030091 crossref_primary_10_1109_JERM_2019_2893587 crossref_primary_10_1109_TGRS_2024_3363631 crossref_primary_10_1109_ACCESS_2017_2750222 crossref_primary_10_3390_rs11091068 crossref_primary_10_1109_LGRS_2020_2980320 crossref_primary_10_1109_TAES_2015_130595 crossref_primary_10_1109_LGRS_2021_3075940 crossref_primary_10_1109_LSENS_2019_2953022 crossref_primary_10_3390_s16091401 crossref_primary_10_3390_s19112598 crossref_primary_10_1109_ACCESS_2021_3074088 crossref_primary_10_2528_PIERM15050502 crossref_primary_10_3390_rs9060594 crossref_primary_10_1109_ACCESS_2016_2617282 crossref_primary_10_1007_s42835_020_00405_w crossref_primary_10_1109_TSP_2010_2063027 crossref_primary_10_1109_JSEN_2023_3283778 crossref_primary_10_1109_TAP_2014_2379955 crossref_primary_10_1109_TGRS_2011_2176342 crossref_primary_10_1109_TBME_2015_2453255 crossref_primary_10_1016_j_neucom_2018_11_109 crossref_primary_10_1049_rsn2_12177 crossref_primary_10_3390_rs14092196 crossref_primary_10_1109_ACCESS_2020_3037062 crossref_primary_10_1088_1361_6501_ad9622 crossref_primary_10_1109_TMC_2023_3276930 crossref_primary_10_1109_ACCESS_2020_2971064 crossref_primary_10_1109_LSP_2021_3122355 crossref_primary_10_1109_JSEN_2019_2917375 crossref_primary_10_3390_s22124447 crossref_primary_10_1109_LGRS_2019_2942097 crossref_primary_10_1016_j_patcog_2017_04_024 crossref_primary_10_1109_JSEN_2020_3028362 crossref_primary_10_1080_01431161_2016_1192703 crossref_primary_10_1109_TGRS_2009_2034367 crossref_primary_10_1049_rsn2_12049 crossref_primary_10_1145_3351273 crossref_primary_10_1049_iet_rsn_2019_0618 crossref_primary_10_5573_ieek_2013_50_4_182 crossref_primary_10_1109_ACCESS_2020_2975676 crossref_primary_10_1109_JERM_2017_2735241 crossref_primary_10_1109_LGRS_2015_2452311 crossref_primary_10_1109_ACCESS_2018_2843391 crossref_primary_10_1109_TAES_2019_2914518 crossref_primary_10_1049_iet_rsn_2017_0570 crossref_primary_10_3724_SP_J_1146_2010_00128 crossref_primary_10_1109_ACCESS_2016_2614824 crossref_primary_10_1109_LGRS_2014_2311819 crossref_primary_10_3390_app14167154 crossref_primary_10_2528_PIERM18111509 crossref_primary_10_1109_LSENS_2021_3067215 crossref_primary_10_1109_TBME_2012_2211355 crossref_primary_10_3233_AIS_160388 crossref_primary_10_1109_JSEN_2020_3004252 crossref_primary_10_1109_MAES_2021_3138948 crossref_primary_10_1109_JSEN_2018_2800053 crossref_primary_10_1587_transinf_2017EDL8192 crossref_primary_10_3390_rs8080621 crossref_primary_10_3390_s20174660 crossref_primary_10_1002_mop_32125 crossref_primary_10_1109_LGRS_2018_2873776 crossref_primary_10_1049_rsn2_12147 crossref_primary_10_1109_TBME_2014_2320153 crossref_primary_10_1109_TIM_2023_3304683 crossref_primary_10_1016_j_patcog_2018_07_030 crossref_primary_10_4316_AECE_2020_02015 crossref_primary_10_1109_TAES_2012_6129657 crossref_primary_10_1109_LCOMM_2021_3081135 crossref_primary_10_1109_TMTT_2021_3076055 crossref_primary_10_1109_TAES_2020_2969579 crossref_primary_10_1109_TGRS_2020_3004331 crossref_primary_10_3390_s130405317 crossref_primary_10_1016_j_imu_2020_100472 crossref_primary_10_1049_iet_rsn_2018_5206 crossref_primary_10_1109_TAP_2020_3016184 crossref_primary_10_3390_rs14040867 crossref_primary_10_1016_j_phycom_2014_04_006 crossref_primary_10_1109_JSEN_2020_3046991 crossref_primary_10_1109_JSEN_2021_3071884 crossref_primary_10_1109_MSP_2015_2502784 crossref_primary_10_1049_rsn2_12125 crossref_primary_10_3390_s24144570 crossref_primary_10_1109_TMC_2018_2879075 crossref_primary_10_1109_LGRS_2017_2765341 crossref_primary_10_1109_TMTT_2010_2086467 crossref_primary_10_1002_2014RS005555 crossref_primary_10_1016_j_neucom_2020_07_136 crossref_primary_10_1109_LGRS_2010_2081660 crossref_primary_10_1109_TAP_2013_2291893 crossref_primary_10_1049_sil2_12060 crossref_primary_10_1049_iet_rsn_2012_0327 crossref_primary_10_1109_JSEN_2020_2999548 crossref_primary_10_1109_ACCESS_2019_2951537 crossref_primary_10_1109_TAES_2024_3353148 crossref_primary_10_1109_ACCESS_2023_3330895 crossref_primary_10_1109_TAES_2024_3411594 crossref_primary_10_1049_iet_rsn_2015_0084 crossref_primary_10_26833_ijeg_1380658 crossref_primary_10_3390_s17092090 crossref_primary_10_1016_j_robot_2014_12_003 crossref_primary_10_3390_electronics12020308 crossref_primary_10_1088_1361_6501_ad7b60 crossref_primary_10_3390_s20154172 crossref_primary_10_5515_KJKIEES_2017_28_1_33 crossref_primary_10_1109_TGRS_2009_2037219 crossref_primary_10_1016_j_eswa_2015_06_017 crossref_primary_10_1109_LSENS_2021_3061561 crossref_primary_10_1109_TAES_2017_2739958 crossref_primary_10_1145_3466638 crossref_primary_10_1109_JIOT_2023_3242417 crossref_primary_10_1049_iet_spr_2018_5245 crossref_primary_10_1109_TMC_2023_3310508 crossref_primary_10_1109_LSENS_2018_2866371 crossref_primary_10_1007_s11276_021_02670_7 crossref_primary_10_26866_jees_2024_4_r_235 crossref_primary_10_1109_JSTARS_2022_3158661 crossref_primary_10_1109_TGRS_2022_3228959 crossref_primary_10_1088_1674_1056_21_5_050204 crossref_primary_10_1109_TIM_2023_3298408 crossref_primary_10_1109_ACCESS_2024_3514140 crossref_primary_10_1109_JIOT_2021_3063504 crossref_primary_10_1017_S1759078721000830 crossref_primary_10_1109_ACCESS_2021_3127327 crossref_primary_10_1109_TRS_2023_3310894 crossref_primary_10_1109_ACCESS_2023_3247583 crossref_primary_10_1109_TIP_2011_2166967 crossref_primary_10_1108_SR_04_2017_0060 crossref_primary_10_3389_frsip_2022_864538 crossref_primary_10_3390_rs15174299 crossref_primary_10_3390_s22176363 crossref_primary_10_1109_JSEN_2020_2971626 crossref_primary_10_1109_JSEN_2021_3068388 crossref_primary_10_1109_LGRS_2017_2771405 crossref_primary_10_1109_JSEN_2020_2977170 crossref_primary_10_1109_LAWP_2019_2893358 crossref_primary_10_1109_JSEN_2019_2937989 crossref_primary_10_3390_s16121990 crossref_primary_10_1049_iet_rsn_2019_0585 crossref_primary_10_1049_iet_rsn_2014_0432 crossref_primary_10_1049_iet_rsn_2014_0551 crossref_primary_10_3390_app12084021 crossref_primary_10_3390_s20072001 crossref_primary_10_1007_s11432_015_5327_5 crossref_primary_10_1109_JSEN_2021_3100635 crossref_primary_10_1109_JSEN_2021_3092002 crossref_primary_10_1049_iet_rsn_2019_0225 crossref_primary_10_1109_JSEN_2018_2816594 crossref_primary_10_1587_transcom_2022EBP3040 crossref_primary_10_1155_2017_1320780 crossref_primary_10_1109_TBME_2019_2893528 crossref_primary_10_3390_s19030714 crossref_primary_10_1049_el_2014_2349 crossref_primary_10_1134_S1064226916100120 crossref_primary_10_1109_MMM_2014_2308763 crossref_primary_10_1109_JIOT_2024_3489956 crossref_primary_10_3390_rs14236017 crossref_primary_10_1109_TGRS_2013_2292826 crossref_primary_10_1016_j_sigpro_2024_109505 crossref_primary_10_1109_JSEN_2019_2892073 crossref_primary_10_1109_JSEN_2022_3224083 crossref_primary_10_1109_TGRS_2019_2929096 crossref_primary_10_1007_s00521_022_07665_9 crossref_primary_10_1117_1_3652706 crossref_primary_10_1049_iet_rsn_2014_0254 crossref_primary_10_1049_iet_rsn_2019_0240 crossref_primary_10_1109_JSEN_2023_3267820 crossref_primary_10_1002_mmce_22264 crossref_primary_10_1109_JSEN_2024_3482291 crossref_primary_10_1007_s00521_022_07776_3 crossref_primary_10_1049_iet_rsn_2014_0250 crossref_primary_10_3390_rs13214264 crossref_primary_10_3390_app9173534 crossref_primary_10_2528_PIERB10022206 crossref_primary_10_1109_JIOT_2023_3235808 crossref_primary_10_1109_JBHI_2023_3240895 crossref_primary_10_1109_JIOT_2023_3321056 crossref_primary_10_3390_s17122769 crossref_primary_10_1109_TRS_2024_3396172 crossref_primary_10_1109_LGRS_2016_2515942 crossref_primary_10_3390_rs13030423 crossref_primary_10_1049_ell2_12560 crossref_primary_10_1145_3161415 crossref_primary_10_1049_iet_rsn_2014_0360 crossref_primary_10_1049_joe_2019_0560 crossref_primary_10_1049_joe_2019_0561 crossref_primary_10_3233_AIS_170425 crossref_primary_10_1109_JSEN_2019_2943152 crossref_primary_10_1109_TGRS_2023_3275991 crossref_primary_10_1109_ACCESS_2020_3029247 crossref_primary_10_1109_ACCESS_2019_2926381 crossref_primary_10_1080_09205071_2021_1943002 crossref_primary_10_1109_TMC_2022_3186473 crossref_primary_10_1109_JSEN_2023_3325619 crossref_primary_10_1109_JIOT_2024_3489643 crossref_primary_10_1049_joe_2019_0557 crossref_primary_10_1049_joe_2019_0559 crossref_primary_10_1049_iet_rsn_2015_0113 crossref_primary_10_1049_iet_rsn_2012_0058 crossref_primary_10_1109_TAES_2017_2761229 crossref_primary_10_1109_JSEN_2017_2697077 crossref_primary_10_3390_s21082612 crossref_primary_10_1109_LGRS_2019_2930636 crossref_primary_10_3390_rs13030527 crossref_primary_10_54939_1859_1043_j_mst_95_2024_20_28 crossref_primary_10_1016_j_eswa_2018_02_019 crossref_primary_10_1587_transcom_E97_B_1223 crossref_primary_10_1587_transcom_E95_B_3088 crossref_primary_10_1109_JSEN_2020_3000498 crossref_primary_10_1360_SSI_2023_0040 crossref_primary_10_1109_TGRS_2023_3270365 crossref_primary_10_1109_JSEN_2023_3322684 crossref_primary_10_1109_JSEN_2020_3033278 crossref_primary_10_1109_LGRS_2019_2917301 crossref_primary_10_1049_iet_rsn_2019_0044 crossref_primary_10_1109_JSEN_2023_3242660 crossref_primary_10_1109_LGRS_2014_2336231 crossref_primary_10_1016_j_eswa_2018_03_056 crossref_primary_10_1109_JSEN_2024_3417899 crossref_primary_10_1109_THMS_2021_3131675 crossref_primary_10_1109_JSEN_2024_3439686 crossref_primary_10_3390_s23063185 crossref_primary_10_1109_MMM_2019_2915491 crossref_primary_10_5626_JOK_2016_43_8_848 crossref_primary_10_1109_TII_2021_3049342 crossref_primary_10_1109_TGRS_2022_3189746 crossref_primary_10_1109_LAWP_2018_2839019 crossref_primary_10_1155_2020_8617430 crossref_primary_10_1109_JBHI_2020_3025900 crossref_primary_10_1109_JSEN_2025_3535673 crossref_primary_10_1109_LMWC_2019_2907547 crossref_primary_10_1109_TMTT_2021_3131593 crossref_primary_10_1007_s12652_011_0065_z crossref_primary_10_1109_ACCESS_2017_2667720 crossref_primary_10_3390_rs11212584 crossref_primary_10_1109_JIOT_2020_3024234 crossref_primary_10_1109_TMTT_2020_3025563 crossref_primary_10_1109_MSP_2015_2496324 crossref_primary_10_1049_iet_rsn_2015_0493 crossref_primary_10_1109_TGRS_2023_3329561 crossref_primary_10_3390_rs9030260 crossref_primary_10_1109_TGRS_2012_2185244 crossref_primary_10_1109_TMTT_2022_3200097 crossref_primary_10_1007_s00779_018_1185_7 crossref_primary_10_1109_TGRS_2018_2884446 crossref_primary_10_1109_LGRS_2015_2491329 crossref_primary_10_1007_s12530_017_9208_6 crossref_primary_10_1109_TAES_2014_140481 crossref_primary_10_1016_j_dsp_2015_06_011 crossref_primary_10_1109_TAES_2021_3068436 crossref_primary_10_1109_LGRS_2019_2919770 crossref_primary_10_3390_rs15082101 crossref_primary_10_3390_s16060885 crossref_primary_10_1049_el_2014_1091 crossref_primary_10_1109_JSEN_2020_3040865 crossref_primary_10_3390_s19224837 crossref_primary_10_1109_TMTT_2017_2650909 crossref_primary_10_1109_JSEN_2022_3216604 crossref_primary_10_1109_TAES_2013_6494415 crossref_primary_10_1109_JSEN_2019_2914365 crossref_primary_10_3390_s21061951 crossref_primary_10_1109_TAES_2019_2910980 crossref_primary_10_1049_iet_rsn_2016_0055 crossref_primary_10_1109_TITS_2018_2865588 crossref_primary_10_3390_s20041210 crossref_primary_10_1109_ACCESS_2021_3051454 crossref_primary_10_1109_LGRS_2020_2993039 crossref_primary_10_1016_j_aeue_2011_01_013 crossref_primary_10_1109_JSEN_2021_3116271 crossref_primary_10_1016_j_sigpro_2020_107565 crossref_primary_10_1109_TGRS_2015_2505409 crossref_primary_10_1109_TMTT_2017_2650911 crossref_primary_10_1109_JSEN_2023_3333407 crossref_primary_10_1109_LGRS_2014_2386896 crossref_primary_10_1109_TMTT_2021_3134992 crossref_primary_10_1109_JSEN_2016_2630726 crossref_primary_10_1049_iet_rsn_2015_0144 crossref_primary_10_1109_TMTT_2015_2495298 crossref_primary_10_3390_s23239563 crossref_primary_10_1109_JETCAS_2018_2822684 crossref_primary_10_1109_TAP_2013_2296325 crossref_primary_10_1109_ACCESS_2023_3322726 crossref_primary_10_1109_JSEN_2023_3299558 crossref_primary_10_1109_JSEN_2020_2967054 crossref_primary_10_1109_JSEN_2019_2895538 crossref_primary_10_1109_TMC_2015_2416186 crossref_primary_10_1049_iet_rsn_2015_0058 crossref_primary_10_1109_JMW_2020_3030722 crossref_primary_10_1049_iet_rsn_2016_0271 crossref_primary_10_1109_TAES_2015_150112 crossref_primary_10_3233_IDA_184361 crossref_primary_10_1109_JIOT_2024_3492721 crossref_primary_10_1109_LGRS_2010_2045473 crossref_primary_10_1049_iet_rsn_2011_0101 crossref_primary_10_1109_TMTT_2018_2829523 crossref_primary_10_1109_JIOT_2019_2929833 crossref_primary_10_1109_JETCAS_2018_2797313 crossref_primary_10_1109_LGRS_2015_2439393 crossref_primary_10_1109_ACCESS_2020_3009123 crossref_primary_10_1109_TAES_2018_2799758 crossref_primary_10_1109_JSEN_2019_2938997 crossref_primary_10_1109_LGRS_2020_3046015 crossref_primary_10_1049_iet_rsn_2015_0173 crossref_primary_10_1016_j_compbiomed_2023_107315 crossref_primary_10_3390_s130506054 crossref_primary_10_1016_j_mstc_2011_03_007 crossref_primary_10_1109_TGRS_2018_2816812 crossref_primary_10_1109_TGRS_2023_3345829 crossref_primary_10_1109_JSEN_2022_3175618 crossref_primary_10_1007_s11760_025_03838_w crossref_primary_10_1109_TVT_2021_3115877 crossref_primary_10_1109_JERM_2018_2881238 crossref_primary_10_1109_JIOT_2021_3083934 crossref_primary_10_1109_TBME_2016_2566619 crossref_primary_10_1587_transcom_E96_B_2563 crossref_primary_10_1049_rsn2_12227 crossref_primary_10_1109_ACCESS_2016_2547948 crossref_primary_10_1109_JSEN_2021_3106300 crossref_primary_10_2197_ipsjjip_20_396 crossref_primary_10_1109_JSTARS_2015_2451004 crossref_primary_10_1109_JSEN_2023_3310620 crossref_primary_10_1109_LAWP_2010_2041026 crossref_primary_10_1109_TCE_2020_3021398 crossref_primary_10_1049_el_2015_3513 crossref_primary_10_1109_JSEN_2018_2879223 crossref_primary_10_1109_LAWP_2021_3063059 crossref_primary_10_3390_s21217130 crossref_primary_10_1109_JSEN_2014_2314219 crossref_primary_10_1145_3494994 crossref_primary_10_3389_fnins_2023_1233037 crossref_primary_10_3390_s22062287 crossref_primary_10_1049_iet_rsn_2013_0165 crossref_primary_10_1109_TGRS_2014_2322438 crossref_primary_10_1109_TGRS_2014_2345514 crossref_primary_10_1109_TAES_2017_2651678 crossref_primary_10_1109_TGRS_2021_3100482 crossref_primary_10_1109_TIV_2022_3146639 crossref_primary_10_2528_PIERM14100701 crossref_primary_10_3390_rs15071752 crossref_primary_10_1109_TGRS_2014_2355211 crossref_primary_10_1109_LGRS_2016_2628909 crossref_primary_10_1371_journal_pone_0308045 crossref_primary_10_1109_TMC_2017_2691705 crossref_primary_10_1080_01431161_2016_1213924 crossref_primary_10_1109_LGRS_2016_2539386 crossref_primary_10_1109_JBHI_2018_2817258 crossref_primary_10_1109_LSENS_2020_2991367 crossref_primary_10_1109_TGRS_2019_2908758 crossref_primary_10_1109_ACCESS_2021_3085985 crossref_primary_10_3390_life12091414 crossref_primary_10_1016_j_isprsjprs_2014_04_006 crossref_primary_10_1109_JSEN_2022_3171293 crossref_primary_10_4236_ait_2013_32A005 crossref_primary_10_1109_LGRS_2018_2806940 crossref_primary_10_1109_TVT_2016_2616883 crossref_primary_10_2197_ipsjjip_30_66 crossref_primary_10_1109_MAES_2015_7119820 crossref_primary_10_3390_rs14010123 crossref_primary_10_1109_JSYST_2018_2876461 crossref_primary_10_3390_app9112314 crossref_primary_10_1109_JSEN_2021_3118836 crossref_primary_10_1109_JSTARS_2023_3274830 crossref_primary_10_1109_JSEN_2018_2834739 crossref_primary_10_1109_JBHI_2020_2994471 crossref_primary_10_1109_ACCESS_2021_3061424 crossref_primary_10_1186_s13634_019_0648_y crossref_primary_10_3390_electronics12234772 crossref_primary_10_2528_PIER14012306 crossref_primary_10_1145_3161183 crossref_primary_10_1038_s41598_023_30631_x crossref_primary_10_1109_JSEN_2016_2538790 crossref_primary_10_1109_COMST_2023_3334269 crossref_primary_10_1109_TBME_2014_2319333 crossref_primary_10_1109_TAES_2023_3344685 crossref_primary_10_1109_TGRS_2012_2217975 crossref_primary_10_1109_TGRS_2012_2216885 crossref_primary_10_1109_JSEN_2019_2946095 crossref_primary_10_1109_TGRS_2020_2985421 crossref_primary_10_1109_LAWP_2019_2904580 crossref_primary_10_1063_5_0055641 crossref_primary_10_1109_TIM_2023_3238749 crossref_primary_10_1109_TAP_2015_2511779 crossref_primary_10_3390_rs9070699 crossref_primary_10_3390_s21010222 crossref_primary_10_1186_s13634_015_0244_8 crossref_primary_10_3390_s24020349 crossref_primary_10_1109_JIOT_2023_3280227 crossref_primary_10_3390_s21134291 crossref_primary_10_1016_j_fss_2010_08_006 crossref_primary_10_1038_s41598_023_45149_5 crossref_primary_10_1109_MMM_2016_2541821 crossref_primary_10_1109_JSEN_2015_2509185 crossref_primary_10_1109_ACCESS_2021_3068075 crossref_primary_10_1109_JSEN_2020_3006386 crossref_primary_10_1109_TGRS_2019_2958178 crossref_primary_10_1155_2010_389716 crossref_primary_10_1109_JSEN_2013_2272119 crossref_primary_10_1109_JSEN_2021_3107943 crossref_primary_10_3233_JIFS_169844 crossref_primary_10_1587_transcom_2015ISP0029 |
Cites_doi | 10.1109/TGRS.2008.916212 10.1109/ISSPIT.2005.1577085 10.1117/12.607176 10.1109/JSEN.2002.805552 10.1109/RADAR.2002.1174739 10.1049/ip-rsn:20030729 10.1109/7.937475 10.1109/TGRS.2005.857914 10.1109/EURAD.2006.280298 10.1117/12.542718 10.1017/CBO9780511801389 10.1007/978-0-387-21606-5 10.1049/ip-rsn:20030568 10.1109/TAP.2007.891550 10.1109/LAWP.2005.860196 10.1109/APS.2005.1552508 10.1109/45.645833 10.1117/12.488285 10.1109/APS.2004.1332026 10.1109/RADAR.2008.4653901 10.1109/TGRS.2008.915754 10.1117/12.488286 10.1109/ISSPA.2007.4555595 10.1109/72.991427 10.1109/TAES.2007.4441754 10.1109/TAES.2006.1603422 10.1049/iet-rsn:20060103 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 |
DOI | 10.1109/TGRS.2009.2012849 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 1337 |
ExternalDocumentID | 2295161741 10_1109_TGRS_2009_2012849 4801689 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 |
ID | FETCH-LOGICAL-c421t-2282a893730bacc850279beb437d133bb28f12e11c572e8fd9ce7f50f00ff33d3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Thu Jul 10 19:54:26 EDT 2025 Thu Jul 10 23:59:01 EDT 2025 Mon Jun 30 09:07:52 EDT 2025 Tue Jul 01 04:30:22 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Tue Aug 26 16:47:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-2282a893730bacc850279beb437d133bb28f12e11c572e8fd9ce7f50f00ff33d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 857463254 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2009_2012849 ieee_primary_4801689 proquest_miscellaneous_36345969 proquest_journals_857463254 proquest_miscellaneous_869849529 crossref_primary_10_1109_TGRS_2009_2012849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-05-01 |
PublicationDateYYYYMMDD | 2009-05-01 |
PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2009 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref11 ref32 ref10 ref1 chang (ref30) 2001 ref17 ref16 ref19 ref18 kim (ref34) 2008 geisheimer (ref9) 2002; 4744 vapnik (ref23) 1998 chen (ref12) 2002 ref24 ref26 ref20 ref22 ref28 ref27 ref29 fumitake (ref31) 2002; 3 ref8 kim (ref33) 2008 ref7 nag (ref2) 2002; 4744 ref4 ref3 ref6 ref5 anderson (ref21) 2007; 6547 hastie (ref25) 2001 |
References_xml | – ident: ref8 doi: 10.1109/TGRS.2008.916212 – ident: ref11 doi: 10.1109/ISSPIT.2005.1577085 – ident: ref14 doi: 10.1117/12.607176 – ident: ref29 doi: 10.1109/JSEN.2002.805552 – ident: ref18 doi: 10.1109/RADAR.2002.1174739 – year: 2002 ident: ref12 publication-title: Time-frequency transforms for radar imaging and signal analysis – ident: ref15 doi: 10.1049/ip-rsn:20030729 – ident: ref28 doi: 10.1109/7.937475 – ident: ref5 doi: 10.1109/TGRS.2005.857914 – ident: ref20 doi: 10.1109/EURAD.2006.280298 – ident: ref4 doi: 10.1117/12.542718 – ident: ref24 doi: 10.1017/CBO9780511801389 – year: 2001 ident: ref25 publication-title: The Elements of Statistical Learning doi: 10.1007/978-0-387-21606-5 – ident: ref13 doi: 10.1049/ip-rsn:20030568 – ident: ref27 doi: 10.1109/TAP.2007.891550 – ident: ref26 doi: 10.1109/LAWP.2005.860196 – volume: 3 start-page: 1418 year: 2002 ident: ref31 article-title: decision-tree-based multi-class support vector machines publication-title: Proc IEEE ICON – ident: ref6 doi: 10.1109/APS.2005.1552508 – ident: ref1 doi: 10.1109/45.645833 – volume: 4744 start-page: 48 year: 2002 ident: ref2 article-title: ultrawideband through-wall radar for detecting the motion of people in real time publication-title: Proc SPIE Radar Sensor Technol Data Vis doi: 10.1117/12.488285 – ident: ref3 doi: 10.1109/APS.2004.1332026 – ident: ref22 doi: 10.1109/RADAR.2008.4653901 – volume: 6547 start-page: 65470a year: 2007 ident: ref21 article-title: micro-doppler analysis of multiple frequency continuous wave radar signatures publication-title: Proc SPIE Conf Radar Sensor Technology – ident: ref7 doi: 10.1109/TGRS.2008.915754 – volume: 4744 start-page: 8 year: 2002 ident: ref9 article-title: high-resolution doppler model of the human gait publication-title: Proc SPIE Radar Sensor Technol Data Vis doi: 10.1117/12.488286 – year: 2001 ident: ref30 publication-title: LIBSVM A library for support vector machines – ident: ref17 doi: 10.1109/ISSPA.2007.4555595 – ident: ref32 doi: 10.1109/72.991427 – ident: ref10 doi: 10.1109/TAES.2007.4441754 – year: 2008 ident: ref34 publication-title: Through-wall human monitoring using data-driven models with Doppler information – year: 1998 ident: ref23 publication-title: Statistical Learning Theory – ident: ref19 doi: 10.1109/TAES.2006.1603422 – start-page: 1 year: 2008 ident: ref33 article-title: human activity classification based on micro-doppler signatures using an artificial neural network publication-title: Proc IEEE Antennas Propag Soc Int Symp Dig – ident: ref16 doi: 10.1049/iet-rsn:20060103 |
SSID | ssj0014517 |
Score | 2.5200274 |
Snippet | The feasibility of classifying different human activities based on micro-Doppler signatures is investigated. Measured data of 12 human subjects performing... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1328 |
SubjectTerms | Classification Data mining Doppler effect Doppler radar Human Human activity classification Humans Information security Legged locomotion micro-doppler Radar detection Radar signal processing Radar tracking Signatures Spectrograms support vector machine Support vector machine classification Support vector machines through-wall Walking Walls |
Title | Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine |
URI | https://ieeexplore.ieee.org/document/4801689 https://www.proquest.com/docview/857463254 https://www.proquest.com/docview/36345969 https://www.proquest.com/docview/869849529 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JThwxEC0BUqTkAAQSZYAQH3KK4sHtpds-QoCgSJNDWMSJlpdqFIFmEDNz4eux3T2tLBDlZsm2bKm81HM91wP4KEKKpzFJnTecytIyaoP2VCMqLZxvKpdZvt_Lk3P57VJdLsHn_i8MImbyGQ5TMcfyw8TP01PZXkp1UmqzDMsRuLV_tfqIgVRF9zW6pBFE8C6CWTCzd_b1x2mbmZLn49j8dgdlUZW_TuJ8vRyvwWgxsZZVcjOcz9zQP_yRs_F_Z74Oq52fSfbbhfEalnC8Aa9-yT64AS8y-9NPN-EqP-WTfd9KSZCslJk4RNls5CDedIHEwiix9-jhJHqueE9Of163aUGnJBMPiCVJIzT68-QixwLIKDM18Q2cHx-dfTmhnfAC9ZIXM8ojDrPJkRHMWe-1itjVOHRSVCFiWue4bgqOReFVxVE3wXisGsUaxppGiCDewsp4MsZ3QLhsjDQVVqzwkjlnk4aCVSZYVQUXxADYwhS177KSJ3GM2zqjE2bqZL0klmnqznoD-NR3uWtTcvyr8WayRt-wM8QAthf2rrtNO621qmQpImIewIe-Nu62FEKxY5zMp7UohVSmjP3JMy10aeKwiputp0fehpdtQCpxJndgZXY_x_fRr5m53bygHwHLdPQ- |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qRQhY8GhBDAXqBWyQPHX8SOwFi0IpU9rpgk5RVw1-BSHQDGpmhOBb-BX-DdvxRLx3ldhFih0rvje-vjnH9wA8ZC7iaYRjYxXFvNQEayctlt4LyYxtKpNYvofl6Ji_PBEnK_C1PwvjvU_kMz-MlwnLdzO7iL_KtmKpk1KqTKHc958_hQStfbK3E6z5iNLd55NnI5w1BLDltJhjGlIKHWMyI0ZbK0VIw5TxhrPKhfTMGCqbgvqisKKiXjZOWV81gjSENA1jjoXnXoCLYZ8haHc6rMcouCjyYewSh7SFZsy0IGpr8uLVUVcLk6YAoH6KeknG5be1PwW03evwbTkVHY_l_XAxN0P75Zcqkf_rXN2Aa3knjbY7178JK366Bld_qK-4BpcSv9W263CawAq0bTuxDJS0QCNLKjkmehpiuUPhYhz5iXhnFvbm_gwdvXvbFT5tUaJWII2iCmrIWNDrhHagceKi-ltwfC6vehtWp7OpvwOI8kZxVfmKFJYTY3RUidBCOS0qZxwbAFmavra57nqU__hQp_yLqDp6S5QDVXX2lgE87rt87IqO_KvxerR-3zAbfgAbS_-q87LU1lJUvGRU8AFs9nfDehJBIj31s0Vbs5JxocrQH_2lhSxVGFZQdffPI2_C5dFkfFAf7B3ub8CVDn6LDNF7sDo_W_j7YRc3Nw_Sx4TgzXl75He6SVFO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Activity+Classification+Based+on+Micro-Doppler+Signatures+Using+a+Support+Vector+Machine&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Youngwook+Kim&rft.au=Hao+Ling&rft.date=2009-05-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=47&rft.issue=5&rft.spage=1328&rft.epage=1337&rft_id=info:doi/10.1109%2FTGRS.2009.2012849&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2009_2012849 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |