Probabilistic Graph Model Based Recommendation Algorithm for Material Selection in Self-directed Learning

Faced the vast amount of information, choosing the appropriate materials is a prerequisite for effective self-directed learning. The recommendation algorithm is a kind of intelligent technology that can accurately locate the required information which the users care about most. However, many recomme...

Full description

Saved in:
Bibliographic Details
Published inSAGE open Vol. 14; no. 2
Main Authors Qiu, Zhiyong, Cui, Yingjin
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.04.2024
SAGE PUBLICATIONS, INC
SAGE Publishing
Subjects
Online AccessGet full text
ISSN2158-2440
2158-2440
DOI10.1177/21582440241241981

Cover

Abstract Faced the vast amount of information, choosing the appropriate materials is a prerequisite for effective self-directed learning. The recommendation algorithm is a kind of intelligent technology that can accurately locate the required information which the users care about most. However, many recommendation techniques experience can not be trained adequately in scenarios with small sample data and extremely sparse ratings. Moreover, DLRAs (Deep learning based Recommendation Algorithms) require high hardware support. The probabilistic graph (PG) can effectively represent the implicit complex relations among nodes, but it still has the problem of sparse data sensitivity. Therefore, we propose a Matrix-Factorization-based Probabilistic Graph Model for Recommendation Algorithm (MF-PGMRA): By matrix-factorizing the sparse rating matrix, the users and items are mapped to the user/item spaces, respectively; We employ the inner product to data-enhance and overcome the problems of sparse data and cold start; Then, we build Probabilistic Graph to construct the “user-item” latent spaces and estimate the probability distribution based on expectation maximization (EM), so as to predict the ratings; Finally, we built a library management system with the recommendation module to highlight the benefits of MF-PGMRA for students’ subject learning. According to a questionnaire, we confirmed that the students are satisfied with the system from four aspects of speed, accuracy, usability and convenience, which can confirm that the library management system based on MF-PGMRA can efficiently and accurately recommend suitable materials for students from the huge amount of learning materials to improve students’ self-directed learning efficiency. Plain Language Summary We designed an intelligent recommendation method for material selection of self-directed learning based on matrix factorization and probabilistic graph model, and built a library management system with the recommendation module with our method for practical application. In the future, we plan to build an improved PGM by introducing deep learning model to further mine implicit relations between users and source of scholarly retrieval for better self-directed learning.
AbstractList Faced the vast amount of information, choosing the appropriate materials is a prerequisite for effective self-directed learning. The recommendation algorithm is a kind of intelligent technology that can accurately locate the required information which the users care about most. However, many recommendation techniques experience can not be trained adequately in scenarios with small sample data and extremely sparse ratings. Moreover, DLRAs (Deep learning based Recommendation Algorithms) require high hardware support. The probabilistic graph (PG) can effectively represent the implicit complex relations among nodes, but it still has the problem of sparse data sensitivity. Therefore, we propose a Matrix-Factorization-based Probabilistic Graph Model for Recommendation Algorithm (MF-PGMRA): By matrix-factorizing the sparse rating matrix, the users and items are mapped to the user/item spaces, respectively; We employ the inner product to data-enhance and overcome the problems of sparse data and cold start; Then, we build Probabilistic Graph to construct the “user-item” latent spaces and estimate the probability distribution based on expectation maximization (EM), so as to predict the ratings; Finally, we built a library management system with the recommendation module to highlight the benefits of MF-PGMRA for students’ subject learning. According to a questionnaire, we confirmed that the students are satisfied with the system from four aspects of speed, accuracy, usability and convenience, which can confirm that the library management system based on MF-PGMRA can efficiently and accurately recommend suitable materials for students from the huge amount of learning materials to improve students’ self-directed learning efficiency. Plain Language Summary We designed an intelligent recommendation method for material selection of self-directed learning based on matrix factorization and probabilistic graph model, and built a library management system with the recommendation module with our method for practical application. In the future, we plan to build an improved PGM by introducing deep learning model to further mine implicit relations between users and source of scholarly retrieval for better self-directed learning.
Faced the vast amount of information, choosing the appropriate materials is a prerequisite for effective self-directed learning. The recommendation algorithm is a kind of intelligent technology that can accurately locate the required information which the users care about most. However, many recommendation techniques experience can not be trained adequately in scenarios with small sample data and extremely sparse ratings. Moreover, DLRAs (Deep learning based Recommendation Algorithms) require high hardware support. The probabilistic graph (PG) can effectively represent the implicit complex relations among nodes, but it still has the problem of sparse data sensitivity. Therefore, we propose a Matrix-Factorization-based Probabilistic Graph Model for Recommendation Algorithm (MF-PGMRA): By matrix-factorizing the sparse rating matrix, the users and items are mapped to the user/item spaces, respectively; We employ the inner product to data-enhance and overcome the problems of sparse data and cold start; Then, we build Probabilistic Graph to construct the “user-item” latent spaces and estimate the probability distribution based on expectation maximization (EM), so as to predict the ratings; Finally, we built a library management system with the recommendation module to highlight the benefits of MF-PGMRA for students’ subject learning. According to a questionnaire, we confirmed that the students are satisfied with the system from four aspects of speed, accuracy, usability and convenience, which can confirm that the library management system based on MF-PGMRA can efficiently and accurately recommend suitable materials for students from the huge amount of learning materials to improve students’ self-directed learning efficiency.
Author Qiu, Zhiyong
Cui, Yingjin
Author_xml – sequence: 1
  givenname: Zhiyong
  surname: Qiu
  fullname: Qiu, Zhiyong
– sequence: 2
  givenname: Yingjin
  orcidid: 0000-0002-5273-4300
  surname: Cui
  fullname: Cui, Yingjin
BookMark eNp9kVFPHCEUhYmxiXa7P6Bvk_g8FgaYYR6taa3JbjRqn8kFLiub2WEL44P_vuxuo6amJSTAyfkOF-5HcjzGEQn5zOg5Y133pWFSNULQRrAye8WOyOlOq3fi8Zv9CZnnvKZlSCqFaE5JuE3RgAlDyFOw1VWC7WO1jA6H6itkdNUd2rjZ4OhgCnGsLoZVTGF63FQ-pmoJE6YAQ3WPA9q9IYy7g69dSEUpAQuENIZx9Yl88DBknP9ZZ-Tn928Plz_qxc3V9eXForaiYVPNvGq5B2Va5g2jjjvZGut7J2kLYHtjZIvC8U44oRqOintFWcdN31PhheEzcn3IdRHWepvCBtKzjhD0XohppSGVtw6ofedlg9Axy6VoOe8bK4ELjkXgxmLJOjtkbVP89YR50uv4lMZSvuZUyY72qthnhB1cNsWcE_qXWxnVuwbpdw0qTPcXY8O0_-IpQRj-S54fyAwrfK3n38BvQ56iJA
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3526876
Cites_doi 10.1109/ECDC.2013.6556720
10.1609/aaai.v32i1.11251
10.1109/TLT.2017.2732349
10.1145/2783258.2783273
10.1109/CSCITA.2017.8066567
10.1109/TLT.2015.2438867
10.1007/978-3-319-18818-8_45
10.3390/su141610390
10.1080/10494820.2015.1016532
10.1007/978-3-030-45439-5_16
10.1109/ACCESS.2017.2788138
10.1016/j.knosys.2015.12.018
10.1145/3038912.3052569
10.1007/s10648-008-9082-7
10.1080/02635143.2022.2116419
10.1145/2507157.2507163
10.1016/j.chb.2011.09.002
10.1145/2939672.2939704
10.1145/2988450.2988454
10.1016/j.engappai.2019.06.020
10.1016/j.neucom.2017.05.100
10.1214/16-STS578
10.1007/s10462-021-10063-7
10.1186/s41239-019-0147-0
10.1016/j.ins.2019.07.024
10.3934/mbe.2020077
10.1016/j.eswa.2020.113764
10.1016/j.jksuci.2021.06.009
10.24963/ijcai.2017/435
10.3233/KES-190402
10.1016/j.joi.2017.06.005
10.1145/2766462.2767755
10.3389/fpsyg.2018.02324
10.1016/j.dss.2013.04.002
10.1109/ACCESS.2019.2920278
10.1109/ICDM.2016.0151
10.1145/3077136.3080777
10.1007/s11277-018-5332-2
10.1007/s10489-016-0879-7
10.1145/3106426.3106522
10.1002/berj.3823
10.1145/1458082.1458205
10.1007/978-3-030-15719-7_21
10.1103/PhysRevA.101.012326
10.14742/ajet.3142
10.1145/3018661.3018665
10.1145/2872427.2883037
10.1016/j.future.2017.02.049
10.1080/03055698.2020.1814699
10.1007/978-3-319-30671-1_4
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024 This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024 This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AFRWT
AAYXX
CITATION
DOA
DOI 10.1177/21582440241241981
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 2158-2440
ExternalDocumentID oai_doaj_org_article_f7f52ea71c35463392c5a343e1c33bce
10_1177_21582440241241981
10.1177_21582440241241981
GrantInformation_xml – fundername: Philosophy and Social Science Foundation of Heilongjiang Province
  grantid: 20EDE377
– fundername: Education Foundation of Heilongjiang Province
  grantid: SJGSZD2021018
GroupedDBID 0-V
01A
0R~
54M
5VS
5WV
AAFWJ
AAJPV
AASGM
AAUIH
ABAWP
ABDBF
ABOPQ
ABOWD
ABQXT
ABUWG
ACCJX
ACGFO
ACGFS
ACHEB
ACROE
ADBBV
ADOGD
AEGGN
AEONT
AEUHG
AEVXP
AEWDL
AFCOW
AFKRA
AFKRG
AFPKN
AFRWT
AGUGZ
AHHCN
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ALNCK
ALSLI
ALZUE
ARALO
ARBYP
ARYUH
ATKJL
AUTPY
AZFZN
AZQEC
BCNDV
BDZRT
BENPR
BMVBW
BPHCQ
CCPQU
DWQXO
EBS
EF0
EJD
GNUQQ
GROUPED_DOAJ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HVGLF
IPNFZ
J8X
KQ8
M2R
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
PQEDU
PQQKQ
PRQQA
RIG
RNS
ROL
S01
SAUOL
SCDPB
SCNPE
SFC
SJN
Y4B
AAYXX
CITATION
PUEGO
ID FETCH-LOGICAL-c421t-1f863fa8b61fb10d3d56bcf9d506aac9bb56e4d374d4823e83f80173b9904f4b3
IEDL.DBID DOA
ISSN 2158-2440
IngestDate Wed Aug 27 01:30:22 EDT 2025
Sat Aug 23 13:30:19 EDT 2025
Thu Apr 24 23:10:44 EDT 2025
Tue Jul 01 05:19:04 EDT 2025
Sun Aug 10 06:46:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords self-directed learning
matrix factorization
e-learning materials
intelligent recommendation
probabilistic graph
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-1f863fa8b61fb10d3d56bcf9d506aac9bb56e4d374d4823e83f80173b9904f4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5273-4300
OpenAccessLink https://doaj.org/article/f7f52ea71c35463392c5a343e1c33bce
PQID 3085709834
PQPubID 4451069
ParticipantIDs doaj_primary_oai_doaj_org_article_f7f52ea71c35463392c5a343e1c33bce
proquest_journals_3085709834
crossref_primary_10_1177_21582440241241981
crossref_citationtrail_10_1177_21582440241241981
sage_journals_10_1177_21582440241241981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240400
2024-04-00
20240401
2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: Thousand Oaks
PublicationTitle SAGE open
PublicationYear 2024
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
– name: SAGE Publishing
References Dhelim, Aung, Bouras, Ning, Cambria 2022; 55
Chen, Hua, Gao, Xing 2018; 2018
Tarus, Niu, Yousif 2017; 72
Guo, Tang, Ye, Li, He 2017
Wu, He, Wang, Zhang, Wang 2022; 35
Chen 2017; 32
Cao, Li, Zheng 2018; 102
Tekkol, Demirel 2018; 9
Joy, Pillai 2022; 34
Han, Zheng, Huang, Xu, Yu, Zuo 2019; 503
Ribosa, Duran 2022; 9
Halevi, Moed, Bar-Ilan 2017; 11
Liu, Wu, Wu, Li 2019; 7
Sumuer 2018; 34
Zhang, Yao, Sun, Tay 2020; 52
Valcarce, Landin, Parapar, Barreiro 2019; 85
George, Michel, Ollagnier-Beldame 2016; 24
Xiao, Ye, He, Zhang, Wu, Chua 2017
Miyahara, Aihara, Lechner 2020; 101
Buder, Schwind 2012; 28
Fazeli, Drachsler, Bitter-Rijpkema, Brouns, Brouns, Sloep 2018; 11
Pepple 2022; 48
Verbert, Manouselis, Drachsler, Duval 2012; 15
Tao, Ren, Chen, Wang, Zou, Chen, Jiang 2020; 17
Liu, Wu, Liu 2013; 55
Ramamuruthy, Rao 2015; 3
Hernando, Bobadilla, Ortega 2016; 97
Shao, Li, Bian 2021; 165
Harper 2015 2015; 5
Voskamp, Kuiper, Volman 2022; 48
Qiu, Gao, Lyu, Guo, Gallinari 2018; 278
Bobadilla, Bojorque, Hernando Esteban, Hurtado 2018; 6
Xiao 2017; 46
An, Xi, Yu, Zhang 2022; 14
Garanayak, Mohanty, Jagadev, Sahoo 2019; 23
Erdt, Fernandez, Rensing 2015; 8
Loyens, Magda, Rikers 2008; 20
Geng, Law, Niu 2019; 16
bibr24-21582440241241981
bibr11-21582440241241981
bibr1-21582440241241981
bibr6-21582440241241981
Chen R. (bibr9-21582440241241981) 2018; 2018
Guo H. (bibr17-21582440241241981) 2017
bibr16-21582440241241981
bibr32-21582440241241981
bibr29-21582440241241981
bibr45-21582440241241981
bibr52-21582440241241981
bibr25-21582440241241981
bibr49-21582440241241981
bibr12-21582440241241981
bibr40-21582440241241981
bibr2-21582440241241981
bibr8-21582440241241981
bibr18-21582440241241981
bibr28-21582440241241981
bibr56-21582440241241981
bibr10-21582440241241981
bibr38-21582440241241981
bibr46-21582440241241981
bibr36-21582440241241981
bibr60-21582440241241981
bibr48-21582440241241981
bibr50-21582440241241981
Knowles M. S. (bibr26-21582440241241981) 1975
bibr31-21582440241241981
bibr27-21582440241241981
bibr7-21582440241241981
bibr57-21582440241241981
Ramamuruthy V. (bibr41-21582440241241981) 2015; 3
bibr47-21582440241241981
bibr37-21582440241241981
bibr14-21582440241241981
bibr21-21582440241241981
Liu X. (bibr30-21582440241241981) 2007
bibr3-21582440241241981
Wu L. (bibr55-21582440241241981) 2022; 35
bibr19-21582440241241981
bibr35-21582440241241981
Candy P. C. (bibr5-21582440241241981) 1990
bibr22-21582440241241981
bibr39-21582440241241981
bibr42-21582440241241981
bibr59-21582440241241981
Verbert K. (bibr51-21582440241241981) 2012; 15
bibr53-21582440241241981
bibr15-21582440241241981
Zhang S. (bibr58-21582440241241981) 2020; 52
bibr23-21582440241241981
bibr33-21582440241241981
bibr13-21582440241241981
bibr43-21582440241241981
bibr54-21582440241241981
bibr4-21582440241241981
bibr34-21582440241241981
Harper F. M. (bibr20-21582440241241981) 2015; 5
bibr44-21582440241241981
References_xml – volume: 503
  start-page: 521
  year: 2019
  end-page: 532
  article-title: Deep latent factor model with hierarchical similarity measure for recommender systems
  publication-title: Information Sciences
– volume: 34
  start-page: 29
  issue: 4
  year: 2018
  end-page: 43
  article-title: Factors related to college students’ self-directed learning with technology
  publication-title: Australasian Journal of Educational Technology
– year: 2017
  article-title: Attentional factorization machines: Learning the weight of feature interactions via attention networks
– volume: 3
  start-page: 23
  issue: 4
  year: 2015
  end-page: 35
  article-title: Smartphones promote autonomous learning in ESL classrooms
  publication-title: Malaysian Online Journal of Educational Technology
– volume: 9
  start-page: 1
  year: 2022
  end-page: 18
  article-title: Students creating videos for learning by teaching from their scientific curiosity
  publication-title: Research in Science & Technological Education
– volume: 165
  start-page: 113764
  year: 2021
  article-title: A survey of research hotspots and frontier trends of recommendation systems from the perspective of knowledge graph
  publication-title: Expert Systems with Applications
– year: 2017
  article-title: DeepFM: a factorization-machine based neural network for CTR prediction
  publication-title: arXiv preprint
– volume: 8
  start-page: 326
  issue: 4
  year: 2015
  end-page: 344
  article-title: Evaluating recommender systems for technology enhanced learning: A quantitative survey
  publication-title: IEEE Transactions on Learning Technologies
– volume: 9
  start-page: 2324
  year: 2018
  article-title: An investigation of self-directed learning skills of undergraduate students
  publication-title: Frontiers in Psychology
– volume: 97
  start-page: 188
  year: 2016
  end-page: 202
  article-title: A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model
  publication-title: Knowledge-Based Systems
– volume: 17
  start-page: 1495
  issue: 2
  year: 2020
  end-page: 1510
  article-title: A method for robotic grasping based on improved Gaussian mixture model
  publication-title: Mathematical Biosciences and Engineering
– volume: 5
  start-page: 1
  issue: 3
  year: 2015 2015
  end-page: 19
  article-title: The movielens datasets: History and context
  publication-title: ACM Transactions on Interactive Intelligent Systems
– volume: 28
  start-page: 207
  issue: 1
  year: 2012
  end-page: 216
  article-title: Learning with personalized recommender systems: A psychological view
  publication-title: Computers in Human Behavior
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 22
  article-title: A hybrid recommender system for Gaussian mixture model and enhanced social matrix factorization technology based on multiple interests
  publication-title: Mathematical Problems in Engineering
– volume: 23
  start-page: 93
  issue: 2
  year: 2019
  end-page: 101
  article-title: Recommender system using item based collaborative filtering (CF) and K-means
  publication-title: International Journal of Knowledge-based and Intelligent Engineering Systems
– volume: 278
  start-page: 144
  year: 2018
  end-page: 152
  article-title: A novel non-Gaussian embedding based model for recommender systems
  publication-title: Neurocomputing
– volume: 15
  start-page: 133
  issue: 3
  year: 2012
  end-page: 148
  article-title: Dataset-driven research to support learning and knowledge analytics
  publication-title: Journal of Educational Technology & Society
– volume: 7
  start-page: 72591
  year: 2019
  end-page: 72603
  article-title: Mixed probability inverse depth estimation based on probabilistic graph model
  publication-title: IEEE Access
– volume: 32
  start-page: 47
  issue: 1
  year: 2017
  end-page: 63
  article-title: Consistency of the MLE under mixture models
  publication-title: Statistical Science
– volume: 11
  start-page: 823
  issue: 3
  year: 2017
  end-page: 834
  article-title: Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the literature
  publication-title: Journal of Informetrics
– volume: 85
  start-page: 347
  year: 2019
  end-page: 356
  article-title: Collaborative filtering embeddings for memory-based recommender systems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 24
  start-page: 1389
  issue: 7
  year: 2016
  end-page: 1407
  article-title: Favouring reflexivity in technology-enhanced learning systems: Towards smart uses of traces
  publication-title: Interactive Learning Environments
– volume: 72
  start-page: 37
  year: 2017
  end-page: 48
  article-title: A hybrid knowledge-based recommender system for e-learning based on ontology and sequential pattern mining
  publication-title: Future Generation Computer Systems
– volume: 14
  issue: 16
  year: 2022
  article-title: Relationship between technology acceptance and self-directed learning: Mediation role of positive emotions and technological self-efficacy
  publication-title: Sustainability
– volume: 55
  start-page: 2409
  issue: 3
  year: 2022
  end-page: 2454
  article-title: A survey on personality-aware recommendation systems
  publication-title: Artificial Intelligence Review
– volume: 52
  start-page: 1
  issue: 1
  year: 2020
  end-page: 38
  article-title: Deep learning based recommender system: A survey and new perspectives
  publication-title: ACM Computing Surveys
– volume: 35
  start-page: 4425
  issue: 5
  year: 2022
  end-page: 4445
  article-title: A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 34
  start-page: 7670
  year: 2022
  end-page: 7685
  article-title: Review and classification of content recommenders in E-learning environment
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 55
  start-page: 838
  issue: 3
  year: 2013
  end-page: 850
  article-title: Bayesian probabilistic matrix factorization with social relations and item contents for recommendation
  publication-title: Decision Support Systems
– volume: 20
  start-page: 411
  issue: 4
  year: 2008
  end-page: 427
  article-title: Self-directed learning in problem-based learning and its relationships with self-regulated learning
  publication-title: Educational Psychology Review
– volume: 101
  issue: 1
  year: 2020
  article-title: Quantum expectation-maximization algorithm
  publication-title: Physical Review A
– volume: 46
  start-page: 889
  issue: 4
  year: 2017
  end-page: 897
  article-title: Recurrent neural network system using probability graph model optimization
  publication-title: Applied Intelligence
– volume: 48
  start-page: 772
  issue: 6
  year: 2022
  end-page: 789
  article-title: Teaching practices for self-directed and self-regulated learning: Case studies in Dutch innovative secondary schools
  publication-title: Educational Studies
– volume: 48
  start-page: 1216
  year: 2022
  end-page: 1231
  article-title: An ecological perspective of student engagement through digital technology: Practical application and implications
  publication-title: British Educational Research Journal
– volume: 16
  start-page: 1
  issue: 1
  year: 2019
  end-page: 22
  article-title: Investigating self-directed learning and technology readiness in blending learning environment
  publication-title: International Journal of Educational Technology in Higher Education
– volume: 6
  start-page: 3549
  year: 2018
  end-page: 3564
  article-title: Recommender systems clustering using Bayesian non negative matrix factorization
  publication-title: IEEE Access
– volume: 102
  start-page: 3121
  issue: 4
  year: 2018
  end-page: 3140
  article-title: An improved neighborhood-aware unified probabilistic matrix factorization recommendation
  publication-title: Wireless Personal Communications
– volume: 11
  start-page: 294
  issue: 3
  year: 2018
  end-page: 306
  article-title: User-centric evaluation of recommender systems in social learning platforms: Accuracy is just the tip of the iceberg
  publication-title: IEEE Transactions on Learning Technologies
– ident: bibr3-21582440241241981
  doi: 10.1109/ECDC.2013.6556720
– ident: bibr53-21582440241241981
  doi: 10.1609/aaai.v32i1.11251
– ident: bibr12-21582440241241981
  doi: 10.1109/TLT.2017.2732349
– ident: bibr54-21582440241241981
  doi: 10.1145/2783258.2783273
– ident: bibr35-21582440241241981
  doi: 10.1109/CSCITA.2017.8066567
– volume: 2018
  start-page: 1
  year: 2018
  ident: bibr9-21582440241241981
  publication-title: Mathematical Problems in Engineering
– ident: bibr11-21582440241241981
  doi: 10.1109/TLT.2015.2438867
– ident: bibr27-21582440241241981
  doi: 10.1007/978-3-319-18818-8_45
– ident: bibr1-21582440241241981
  doi: 10.3390/su141610390
– ident: bibr16-21582440241241981
  doi: 10.1080/10494820.2015.1016532
– ident: bibr14-21582440241241981
  doi: 10.1007/978-3-030-45439-5_16
– ident: bibr2-21582440241241981
  doi: 10.1109/ACCESS.2017.2788138
– ident: bibr22-21582440241241981
  doi: 10.1016/j.knosys.2015.12.018
– ident: bibr23-21582440241241981
  doi: 10.1145/3038912.3052569
– ident: bibr31-21582440241241981
  doi: 10.1007/s10648-008-9082-7
– ident: bibr42-21582440241241981
  doi: 10.1080/02635143.2022.2116419
– ident: bibr34-21582440241241981
  doi: 10.1145/2507157.2507163
– ident: bibr4-21582440241241981
  doi: 10.1016/j.chb.2011.09.002
– ident: bibr43-21582440241241981
  doi: 10.1145/2939672.2939704
– ident: bibr7-21582440241241981
  doi: 10.1145/2988450.2988454
– ident: bibr50-21582440241241981
  doi: 10.1016/j.engappai.2019.06.020
– ident: bibr39-21582440241241981
  doi: 10.1016/j.neucom.2017.05.100
– ident: bibr8-21582440241241981
  doi: 10.1214/16-STS578
– ident: bibr10-21582440241241981
  doi: 10.1007/s10462-021-10063-7
– ident: bibr15-21582440241241981
  doi: 10.1186/s41239-019-0147-0
– ident: bibr19-21582440241241981
  doi: 10.1016/j.ins.2019.07.024
– ident: bibr47-21582440241241981
  doi: 10.3934/mbe.2020077
– ident: bibr44-21582440241241981
  doi: 10.1016/j.eswa.2020.113764
– ident: bibr25-21582440241241981
  doi: 10.1016/j.jksuci.2021.06.009
– start-page: 9
  volume-title: Advances in research and practice in self-directed learning
  year: 1990
  ident: bibr5-21582440241241981
– ident: bibr56-21582440241241981
  doi: 10.24963/ijcai.2017/435
– ident: bibr13-21582440241241981
  doi: 10.3233/KES-190402
– ident: bibr18-21582440241241981
  doi: 10.1016/j.joi.2017.06.005
– ident: bibr33-21582440241241981
  doi: 10.1145/2766462.2767755
– ident: bibr49-21582440241241981
  doi: 10.3389/fpsyg.2018.02324
– ident: bibr28-21582440241241981
  doi: 10.1016/j.dss.2013.04.002
– volume: 52
  start-page: 1
  issue: 1
  year: 2020
  ident: bibr58-21582440241241981
  publication-title: ACM Computing Surveys
– ident: bibr29-21582440241241981
  doi: 10.1109/ACCESS.2019.2920278
– ident: bibr40-21582440241241981
  doi: 10.1109/ICDM.2016.0151
– ident: bibr24-21582440241241981
  doi: 10.1145/3077136.3080777
– ident: bibr6-21582440241241981
  doi: 10.1007/s11277-018-5332-2
– ident: bibr57-21582440241241981
  doi: 10.1007/s10489-016-0879-7
– volume-title: Research on Audio Visual Education
  year: 2007
  ident: bibr30-21582440241241981
– ident: bibr45-21582440241241981
  doi: 10.1145/3106426.3106522
– ident: bibr38-21582440241241981
  doi: 10.1002/berj.3823
– ident: bibr32-21582440241241981
  doi: 10.1145/1458082.1458205
– ident: bibr37-21582440241241981
  doi: 10.1007/978-3-030-15719-7_21
– ident: bibr36-21582440241241981
  doi: 10.1103/PhysRevA.101.012326
– volume: 3
  start-page: 23
  issue: 4
  year: 2015
  ident: bibr41-21582440241241981
  publication-title: Malaysian Online Journal of Educational Technology
– ident: bibr46-21582440241241981
  doi: 10.14742/ajet.3142
– volume: 5
  start-page: 1
  issue: 3
  year: 2015
  ident: bibr20-21582440241241981
  publication-title: ACM Transactions on Interactive Intelligent Systems
– ident: bibr60-21582440241241981
  doi: 10.1145/3018661.3018665
– ident: bibr21-21582440241241981
  doi: 10.1145/2872427.2883037
– ident: bibr48-21582440241241981
  doi: 10.1016/j.future.2017.02.049
– volume-title: Self-directed learning: A guide for learners and teachers
  year: 1975
  ident: bibr26-21582440241241981
– volume: 15
  start-page: 133
  issue: 3
  year: 2012
  ident: bibr51-21582440241241981
  publication-title: Journal of Educational Technology & Society
– year: 2017
  ident: bibr17-21582440241241981
  publication-title: arXiv preprint
– ident: bibr52-21582440241241981
  doi: 10.1080/03055698.2020.1814699
– volume: 35
  start-page: 4425
  issue: 5
  year: 2022
  ident: bibr55-21582440241241981
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– ident: bibr59-21582440241241981
  doi: 10.1007/978-3-319-30671-1_4
SSID ssj0000505442
Score 2.280126
Snippet Faced the vast amount of information, choosing the appropriate materials is a prerequisite for effective self-directed learning. The recommendation algorithm...
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Independent study
Instructional Materials
Library Administration
Library management
Management Systems
Media Selection
Students
SummonAdditionalLinks – databaseName: Sage Journals GOLD Open Access 2024
  dbid: AFRWT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaW7oUL4ikKC_IBiYdkNo7tPE6oiygrJBCCXbG3yHY8pVLTom564N8z4ziFFQ9xjDOJHT_yje3x9zH2ROY-h6CDqH2VCQ0ZCKe9Fbn1ptbSexci2-eH4vRcv7swFwdsM56FSTV4-ZLCqrBE8WdNo5tWo4_TJuMx4lSFuIT4gvCE02b5atd3zbDcPapqUArtT-862tr2FBD5XYzH266xw7wstJmww9n805ez_bIMCbvpKLlDeQjKJO2F_jHfK2gWSf-veKq_BIdFvJrfZDeSo8lnQ8-4xQ7C-jabDqdxeRrRl_xZop1-foctP25xbFOsLFE387fEZM1JKm3FTxDqWk4z1a4LSYWJz1aLzXbZf-04-r38ve1jX-afo7AOGSzXdAFiQE18QeJyXdxl5_M3Z69PRRJiEF7nshcSqkKBrVwhwcmsVa0pnIe6NVlhra-dM0XQrSp1q6tchUoBAl-pHEKdBu3UPTZZb9bhPuOBwqoAQmskaJwauiIDwI9DT9Ri5YYpy8YKbXxiKSexjFUjEzH5b20wZS_2j3wbKDr-ZXxCrbQ3JHbtmLDZLpo0WBsoweTBltIrUgtAF9Ibq7QKmKCcx0IejW3cjB22UVEroK6UnrKn1O4_b_21NA_-2_Ihu57j1RAzdMQm_XYXHqE71LvHqQv_APhBARo
  priority: 102
  providerName: SAGE Publications
Title Probabilistic Graph Model Based Recommendation Algorithm for Material Selection in Self-directed Learning
URI https://journals.sagepub.com/doi/full/10.1177/21582440241241981
https://www.proquest.com/docview/3085709834
https://doaj.org/article/f7f52ea71c35463392c5a343e1c33bce
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD6MWL-BPrL3IQ_AHFpEm79rjJpggOUYe7lSTNm4Ntyqz_vy9tnBuiXry0tE1Dmrz0-0JfP4-QYx6ZCKy0YWZSFkpgEGppVBgpE2eSG6NtRfvsJtc9edOP-3OpvlxMWI0HrjvuAhoQR1Y1uBGO3I5ybmIlpLB4Qmhj3duXZWxuMVVTvdEVkZH_jOkISyhtKUoZShIqGq60-YIQVbz-BSdzLq6rkprOOlnzPiJt1m3bIEt2skmC-kda6ifjGz31xOizLTK8m-K0dGGujrpMrxyEmrosZyPaQpUqqFtkjsfWJ1CizdHgZTosn8cUXVZ6q8rKDOlDlRPHFRhO3AGEteBhBR7DOtgmvU778fI69DkUQiMjXoYc0kSASnXCQXNWiCJOtIGsiFmilMm0jhMrC9GQhUwjYVMBqFkNoVGlJEgtdsjy5GVidwm1LiIKwBYxB4mrOp0wAHw4dCIVdq4NCPvs0Nx4wLjLczHKuWeKfxuDgJzPbnmt6Rq_FW65UZoVdGDs6gSaS-7NJf_LXAJy8DnGuZ-tb7moMP9ZKmRATty4f136sTV7_9GafbIaYZV1JNABWS6n7_YQnZxSH5GVZuf-6RH3rXb37v6osm_ctjvsAwF3-Es
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqeigX1BdiKaU-VOIhmcax8zoCYrstDyEBErfIdjzLSvuolvT_d8bxLkXQimOcseV4PPlmkvE3jH2VqUvBay8qVyZCQwLCamdEalxWaemc9YHt8yIf3Oift9ltzKqkszBxBe8PKK0KZxRe1kvrLopvCFElQhJCCyITRswY-bzWGE1R9YKTfrL8vkIV2nSonUM9BHWJPzWfHeURLAX2_kcu519ZXgF4-m_ZWvQY-WGn4nfslZ--Z73uWC2PpnnPdyN_9N4HNrqco5FS0itxMPPvREnNqebZmB8hZjWcQs7JxMdySvxwPJzNR-3dhKMDy89NGzYlvwoVckhgNKULEB384QCRlHX4kd30T66PByJWVBBOp7IVEspcgSltLsHKpFFNllsHVZMluTGusjbLvW5UoRtdpsqXChDBCmURszRoq9bZynQ29RuMe8qPAvBNJkFjjGfzBAAfDl1Kg4vreyxZLGjtIt04Vb0Y1zIyjD_RQY_tL7v86rg2_id8RFpaChJNdmiYzYd1tLoaCshSbwrpFNH-oy_oMqO08tigrMNJbi10XC92Xq0C6X9VKt1jO6T3h1v_nM3miyW_sDeD6_Oz-uzHxekntprinS4RaIuttPPf_jP6OK3dDpv5DzG97NY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQlVAvFRRQl0frA1JbJJc4drLJcbdlgT4QUkHiFtmOZ1lpH2hJ_z8zjncpKqAe44wtx2Pnm7HH3zB2IFOXgtdelK5IhIYEhNXOiNS4rNTSOesD2-d5fnqlv19n13HDje7CxBG8-0JhVdij8LOm1X1bw1E8YzxCmCoQlhBeEJ3Qa0bv5xW6GZq4848HyXKPhbK06ZA_h2oIqhIPNp9s5RE0BQb_R2bnX5FeAXwG6-xNtBp5r1XzBlvx07es016t5XF53vFPkUP68yYbXcxxoVLgK_Ew8xOipeaU92zM-4hbNSe3czLxMaUS742Hs_mouZlwNGL5L9OEicl_hyw5JDCa0gOIFgKxgUjMOtxiV4Pjy6-nImZVEE6nshESilyBKWwuwcqkVnWWWwdlnSW5Ma60Nsu9rlVX17pIlS8UIIp1lUXc0qCt2mar09nUv2PcU4wUgK8zCRoVYPMEAD8OzUqDg-s7LFkMaOUi5ThlvhhXMrKM_6ODDjtcVrlt-TZeEu6TlpaCRJUdCmbzYRVXXgVdyFJvutIpov5He9BlRmnlsUBZh53cW-i4Wsy-SgXi_7JQusM-kt4fXj3bm53_lvzA1i6-DaqfZ-c_dtnrFF-0sUB7bLWZ__H7aOY09n2Yy_f1_e3v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Graph+Model+Based+Recommendation+Algorithm+for+Material+Selection+in+Self-directed+Learning&rft.jtitle=SAGE+open&rft.au=Qiu%2C+Zhiyong&rft.au=Cui%2C+Yingjin&rft.date=2024-04-01&rft.issn=2158-2440&rft.eissn=2158-2440&rft.volume=14&rft.issue=2&rft_id=info:doi/10.1177%2F21582440241241981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_21582440241241981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-2440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-2440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-2440&client=summon