Cotranslational interaction of human EBP50 and ezrin overcomes masked binding site during complex assembly
Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting s...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to "buried" domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during
mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser
and Ser
abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond "simple" generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes. |
---|---|
AbstractList | Multiprotein complexes in mammalian cells are thought to form by interactions between domains of mature, fully folded proteins. However, in some cases interprotein interaction is obstructed by “buried” or inaccessible binding domains. One such example is the interaction between EBP50 and ezrin, proteins linking the plasma membrane and cytoskeleton; self-association of domains in ezrin masks the site recognized by EBP50. Here, we show EBP50 overcomes this obstacle by cotranslationally binding to nascent ezrin’s otherwise masked domain emerging from the translating ribosome. Our study extends the function of mRNA translation beyond “simple” generation of linear peptide chains that fold into mature proteins for subsequent complex assembly; additionally, cotranslation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes.
Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to “buried” domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during
EZR
mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser
339
and Ser
340
abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond “simple” generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes. Significance Multiprotein complexes in mammalian cells are thought to form by interactions between domains of mature, fully folded proteins. However, in some cases interprotein interaction is obstructed by “buried” or inaccessible binding domains. One such example is the interaction between EBP50 and ezrin, proteins linking the plasma membrane and cytoskeleton; self-association of domains in ezrin masks the site recognized by EBP50. Here, we show EBP50 overcomes this obstacle by cotranslationally binding to nascent ezrin’s otherwise masked domain emerging from the translating ribosome. Our study extends the function of mRNA translation beyond “simple” generation of linear peptide chains that fold into mature proteins for subsequent complex assembly; additionally, cotranslation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes. Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to “buried” domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during EZR mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser 339 and Ser 340 abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond “simple” generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes. Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to "buried" domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser and Ser abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond "simple" generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes. Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to "buried" domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during EZR mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser339 and Ser340 abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond "simple" generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes. |
Author | Khan, Krishnendu Baleanu-Gogonea, Camelia Deshpande, Gauravi M Vasu, Kommireddy Fox, Paul L Gogonea, Valentin Long, Briana |
Author_xml | – sequence: 1 givenname: Krishnendu surname: Khan fullname: Khan, Krishnendu organization: Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 – sequence: 2 givenname: Briana surname: Long fullname: Long, Briana organization: Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 – sequence: 3 givenname: Camelia surname: Baleanu-Gogonea fullname: Baleanu-Gogonea, Camelia organization: Department of Chemistry, Cleveland State University, Cleveland, OH 44115 – sequence: 4 givenname: Valentin orcidid: 0000-0002-6154-8497 surname: Gogonea fullname: Gogonea, Valentin organization: Department of Chemistry, Cleveland State University, Cleveland, OH 44115 – sequence: 5 givenname: Gauravi M orcidid: 0000-0002-1621-1553 surname: Deshpande fullname: Deshpande, Gauravi M organization: Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 – sequence: 6 givenname: Kommireddy surname: Vasu fullname: Vasu, Kommireddy organization: Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 – sequence: 7 givenname: Paul L orcidid: 0000-0002-6033-1528 surname: Fox fullname: Fox, Paul L email: foxp@ccf.org organization: Department of Chemistry, Cleveland State University, Cleveland, OH 44115 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35140182$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtvFTEMhSNURG8La3YoEptuprUnmUc2SHBVHlIluijrKJN42lxmkksyU9H-embUUh4r2_LnI9vniB2EGIix1winCI042weTT0vEqlEKUT1jGwSFRS0VHLANQNkUrSzlITvKeQcAqmrhBTsUFUrAttyw3TZOyYQ8mMnHYAbuw0TJ2LXisec382gCP_9wWQE3wXG6T35p3FKycaTMR5O_k-OdD86Ha579RNzNac0XYD_QT25yprEb7l6y570ZMr16jMfs28fzq-3n4uLrpy_b9xeFlSVOBfY1CmGUItuQ61D2zlELytWmoqbpateJTqFxUElC25HFshWmw16ayrRWHLN3D7r7uRvJWQrLhYPeJz-adKej8frfTvA3-jre6rZd3tLCInDyKJDij5nypEefLQ2DCRTnrMu6bBYOpFzQt_-huzin5Y8rJaASIMRKnT1QNsWcE_VPyyDo1Ue9-qj_-LhMvPn7hif-t3HiF9ygniE |
CitedBy_id | crossref_primary_10_1016_j_jmb_2023_168382 crossref_primary_10_1002_bies_202300024 crossref_primary_10_1073_pnas_2205669119 crossref_primary_10_3389_fcell_2023_1125881 crossref_primary_10_1002_1873_3468_14713 crossref_primary_10_3389_fbioe_2024_1361682 |
Cites_doi | 10.1016/j.bbamcr.2006.06.013 10.1038/s41467-019-09749-y 10.1083/jcb.200909175 10.1038/s41586-018-0462-y 10.4049/jimmunol.1800168 10.1093/nar/gky427 10.1083/jcb.200307032 10.1038/s41594-018-0179-5 10.1371/journal.pone.0075113 10.1074/jbc.273.29.18452 10.1016/j.cels.2018.11.003 10.1073/pnas.1010954108 10.3389/fcell.2020.588801 10.1158/0008-5472.CAN-19-0860 10.1242/jcs.02371 10.1038/onc.2008.437 10.1038/emboj.2009.240 10.1016/j.drudis.2008.07.008 10.1093/nar/gki481 10.1074/jbc.M114.609768 10.1016/j.tcb.2019.07.006 10.1042/BJ20091136 10.1083/jcb.201004115 10.1038/onc.2011.245 10.1038/srep40419 10.1083/jcb.140.4.885 10.1016/j.lfs.2020.117681 10.1073/pnas.0407974101 10.4049/jimmunol.182.2.1021 10.1016/j.cels.2020.01.004 10.1242/jcs.01038 10.1371/journal.pgen.1002398 10.1128/MCB.01372-06 10.1074/jbc.273.34.21893 10.1126/science.aac8171 10.1016/j.celrep.2015.12.085 10.18632/oncotarget.16001 10.1016/j.jmb.2006.10.075 10.1083/jcb.139.1.169 10.1146/annurev.cellbio.16.1.113 10.1074/jbc.M114.589523 10.1042/BCJ20160541 10.1038/cdd.2012.4 10.1074/jbc.M113.505669 10.1016/j.celrep.2018.12.008 10.1002/ijc.26285 10.3390/ijms21207716 10.1038/onc.2009.20 10.1091/mbc.6.8.1061 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s). Published by PNAS. Copyright National Academy of Sciences Feb 15, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Feb 15, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2115799119 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | 10_1073_pnas_2115799119 35140182 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK123236 – fundername: NIA NIH HHS grantid: R01 AG067146 – fundername: NINDS NIH HHS grantid: R01 NS124547 – fundername: NIDDK NIH HHS grantid: R01 DK124203 – fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: R01 NS124547 – fundername: HHS | NIH | National Institute on Aging (NIA) grantid: AG067146 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: R01 DK124203 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: R01 DK123236 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CGR CS3 CUY CVF D0L DIK DU5 E3Z EBS ECM EIF F5P FRP GX1 H13 HH5 HYE JLS JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c421t-1f6133a99ec7edb14fdde809d6a5e77b6db3b91ad054e1cbec1283ab1f4a5a8c3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:24:21 EDT 2024 Tue Aug 27 04:31:40 EDT 2024 Thu Oct 10 16:30:43 EDT 2024 Fri Aug 23 01:32:08 EDT 2024 Sat Sep 28 08:20:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | protein–protein interaction ezrin mRNA translation EBP50 cotranslational assembly |
Language | English |
License | Copyright © 2022 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-1f6133a99ec7edb14fdde809d6a5e77b6db3b91ad054e1cbec1283ab1f4a5a8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: K.K., K.V., and P.L.F. designed research; K.K., B.L., C.B.-G., V.G., G.M.D., and K.V. performed experiments; K.K., C.B.G., V.G., G.M.D., and P.L.F. analyzed data; and K.K. and P.L.F. wrote the paper. Edited by Alan Hinnebusch, National Institute of Child Health and Human Development, NIH, Bethesda, MD; received August 26, 2021; accepted December 23, 2021 |
ORCID | 0000-0002-6033-1528 0000-0002-6154-8497 0000-0002-1621-1553 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851480/ |
PMID | 35140182 |
PQID | 2630530334 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8851480 proquest_miscellaneous_2627480044 proquest_journals_2630530334 crossref_primary_10_1073_pnas_2115799119 pubmed_primary_35140182 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_32_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_2_2 Bonilha V. L. (e_1_3_4_17_2) 2001; 42 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_8_2 doi: 10.1016/j.bbamcr.2006.06.013 – ident: e_1_3_4_3_2 doi: 10.1038/s41467-019-09749-y – ident: e_1_3_4_2_2 doi: 10.1083/jcb.200909175 – ident: e_1_3_4_4_2 doi: 10.1038/s41586-018-0462-y – ident: e_1_3_4_34_2 doi: 10.4049/jimmunol.1800168 – ident: e_1_3_4_49_2 doi: 10.1093/nar/gky427 – ident: e_1_3_4_43_2 doi: 10.1083/jcb.200307032 – ident: e_1_3_4_30_2 doi: 10.1038/s41594-018-0179-5 – ident: e_1_3_4_41_2 doi: 10.1371/journal.pone.0075113 – ident: e_1_3_4_16_2 doi: 10.1074/jbc.273.29.18452 – ident: e_1_3_4_27_2 doi: 10.1016/j.cels.2018.11.003 – ident: e_1_3_4_24_2 doi: 10.1073/pnas.1010954108 – ident: e_1_3_4_48_2 doi: 10.3389/fcell.2020.588801 – ident: e_1_3_4_45_2 doi: 10.1158/0008-5472.CAN-19-0860 – ident: e_1_3_4_31_2 doi: 10.1242/jcs.02371 – ident: e_1_3_4_37_2 doi: 10.1038/onc.2008.437 – ident: e_1_3_4_5_2 doi: 10.1038/emboj.2009.240 – ident: e_1_3_4_39_2 doi: 10.1016/j.drudis.2008.07.008 – ident: e_1_3_4_50_2 doi: 10.1093/nar/gki481 – ident: e_1_3_4_36_2 doi: 10.1074/jbc.M114.609768 – ident: e_1_3_4_7_2 doi: 10.1016/j.tcb.2019.07.006 – ident: e_1_3_4_23_2 doi: 10.1042/BJ20091136 – ident: e_1_3_4_14_2 doi: 10.1083/jcb.201004115 – ident: e_1_3_4_47_2 doi: 10.1038/onc.2011.245 – ident: e_1_3_4_25_2 doi: 10.1038/srep40419 – ident: e_1_3_4_38_2 doi: 10.1083/jcb.140.4.885 – ident: e_1_3_4_44_2 doi: 10.1016/j.lfs.2020.117681 – ident: e_1_3_4_11_2 doi: 10.1073/pnas.0407974101 – ident: e_1_3_4_33_2 doi: 10.4049/jimmunol.182.2.1021 – ident: e_1_3_4_26_2 doi: 10.1016/j.cels.2020.01.004 – ident: e_1_3_4_15_2 doi: 10.1242/jcs.01038 – ident: e_1_3_4_6_2 doi: 10.1371/journal.pgen.1002398 – volume: 42 start-page: 3274 year: 2001 ident: e_1_3_4_17_2 article-title: Polarity and developmental regulation of two PDZ proteins in the retinal pigment epithelium publication-title: Invest. Ophthalmol. Vis. Sci. contributor: fullname: Bonilha V. L. – ident: e_1_3_4_18_2 doi: 10.1128/MCB.01372-06 – ident: e_1_3_4_20_2 doi: 10.1074/jbc.273.34.21893 – ident: e_1_3_4_29_2 doi: 10.1126/science.aac8171 – ident: e_1_3_4_28_2 doi: 10.1016/j.celrep.2015.12.085 – ident: e_1_3_4_46_2 doi: 10.18632/oncotarget.16001 – ident: e_1_3_4_9_2 doi: 10.1016/j.jmb.2006.10.075 – ident: e_1_3_4_12_2 doi: 10.1083/jcb.139.1.169 – ident: e_1_3_4_13_2 doi: 10.1146/annurev.cellbio.16.1.113 – ident: e_1_3_4_21_2 doi: 10.1074/jbc.M114.589523 – ident: e_1_3_4_10_2 doi: 10.1042/BCJ20160541 – ident: e_1_3_4_22_2 doi: 10.1038/cdd.2012.4 – ident: e_1_3_4_35_2 doi: 10.1074/jbc.M113.505669 – ident: e_1_3_4_1_2 doi: 10.1016/j.celrep.2018.12.008 – ident: e_1_3_4_40_2 doi: 10.1002/ijc.26285 – ident: e_1_3_4_32_2 doi: 10.3390/ijms21207716 – ident: e_1_3_4_42_2 doi: 10.1038/onc.2009.20 – ident: e_1_3_4_19_2 doi: 10.1091/mbc.6.8.1061 |
SSID | ssj0009580 |
Score | 2.4629471 |
Snippet | Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic,... Significance Multiprotein complexes in mammalian cells are thought to form by interactions between domains of mature, fully folded proteins. However, in some... Multiprotein complexes in mammalian cells are thought to form by interactions between domains of mature, fully folded proteins. However, in some cases... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Assembly Binding Sites Biological Sciences C-Terminus Cloning, Molecular Complex formation Constituents CRISPR-Cas Systems Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism DNA, Complementary Ezrin Gene Expression Regulation Gene Silencing HCT116 Cells HEK293 Cells Humans Jurkat Cells Models, Molecular mRNA Peptides Phosphoproteins - genetics Phosphoproteins - metabolism Phosphorylation Protein Binding Protein Biosynthesis Protein Conformation Protein structure Proteins Sodium-Hydrogen Exchangers - genetics Sodium-Hydrogen Exchangers - metabolism Stochasticity Tertiary structure Translation |
Title | Cotranslational interaction of human EBP50 and ezrin overcomes masked binding site during complex assembly |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35140182 https://www.proquest.com/docview/2630530334 https://search.proquest.com/docview/2627480044 https://pubmed.ncbi.nlm.nih.gov/PMC8851480 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4Bp14qQksJL22lHuDgJLte2-tjiUC0FRWHInGzZh8WgcSJkiABv76zazs09MZ51mtrZ3bnG8_MtwDfHHInEswj5KqMyB_nkTYayZY9gFAlN6Er7ep3enkjf94mtxuQtL0woWjf6FGvGk961egu1FbOJqbf1on1r6-GimCCVIP-JmySgbYh-oppV9V9J4KOXylky-eTxf1ZhYue8PQyhIq4Jwz1dewDrsS6V_oPar6tmPzHBV1sw8cGO7Lv9Td2YMNVO9BpdueCnTQU0qef4H44XXonNG5-9THPCjGvexjYtGThZj52fnadDBhWlrmX-YgEZNZkgDTVBBcPzjI9Cj0vzGeYWd3QyEINuntiBLrdRI-fP8PNxfmf4WXU3KoQGSn4MuIlefAY89yZzFnNZUknnBrkNsXEZZlOrY51ztESmHPckI7JhcWoeSkxQWXiXdiqppXbA2biVFI4p0zCUaLLMEWrhbHWCEkRu-zCSbuqxawmzyhC0juLC6-L4lUXXThsV71odhGJUzqNyMfGNNPXlZjs3yc1sHLTRz-G4mrl89Jd-FIrafWuVrtdyNbUtxrgubXXJWRygWO7MbH9dz95AB-E75Twd8ckh7C1nD-6I8IvS31MyP3Hr-NgtX8B1IrzQQ |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VcoALoryaUmCROJSDE-96ba-PELUK0FQ9tFJv1uzDakriREkqFX49s2s7beDGeddra2dm5xvPzLcAnxxyJ1IsIuSqisgfF5E2GkmXPYBQFTehK218lo0u5fer9GoH0q4XJhTtGz3p19NZv55ch9rKxcwMujqxwfl4qAgmSBUPHsFjstdYdkH6hmtXNZ0ngg5gKWTH6JMng0WNq77wBDOEi7inDPWV7DFXYtsv_QM2_66ZfOCETp7DsxY9si_NV-7BjqtfwF5rnyt21JJIf34JN8P52ruhafuzj3leiGXTxcDmFQt387Hjr-dpzLC2zP1eTmiAFJtUkJaa4eqns0xPQtcL8zlm1rQ0slCF7u4YwW4309Nfr-Dy5PhiOIraexUiIwVfR7wiH55gUTiTO6u5rOiMU3FhM0xdnuvM6kQXHC3BOccNSZmcWIKaVxJTVCZ5Dbv1vHb7wEySSQrolEk5SnQ5Zmi1MNYaISlmlz046na1XDT0GWVIe-dJ6WVR3suiB4fdrpetHdFwRucRedmEVvq4GSYL8GkNrN381s-hyFr5zHQP3jRC2ryrk24P8i3xbSZ4du3tEVK6wLLdKtnBfz_5AZ6MLsan5em3sx9v4anwfRP-Jpn0EHbXy1v3jtDMWr8PuvsHCen1ng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9NADLdgSIgXxPgsbHBIPIyHNLnLJbk8QrdqfGzqA5P2Fvk-Irq1adV2EvDX47skZYU3nn25RGf7bMf2zwDvHHInMiwj5KqOyB6XkTYaSZa9A6FqbkJX2tl5fnohP19ml7dGfYWifaOnw2Y2HzbT76G2cjk3cV8nFk_ORorcBKmSeGnr-C7cI51N8j5Q3-Ltqrb7RNAlLIXsUX2KNF42uB4KDzJDvhH3sKG-mj3hSuzapn8czr_rJm8ZovEjeNh5kOxD-6X7cMc1j2G_09E1O-qApN8_gavRYuNN0az74cc8NsSq7WRgi5qF-Xzs5OMkSxg2lrlfqykRSLhJDGmrOa6vnWV6GjpfmM8zs7atkYVKdPeDkevt5nr28ylcjE--jU6jbrZCZKTgm4jXZMdTLEtnCmc1lzXdcyopbY6ZKwqdW53qkqMll85xQ5wmQ5ai5rXEDJVJn8Fes2jcC2AmzSUFdcpkHCW6AnO0WhhrjZAUt8sBHPWnWi1bCI0qpL6LtPK8qP7wYgAH_alXnS4ROac7iSxtSju93ZJJC3xqAxu3uPFrKLpWPjs9gOctk7bv6rk7gGKHfdsFHmF7l0KCF5C2O0F7-d9PvoH7k-Nx9fXT-ZdX8ED41gk_TCY7gL3N6sYdkkOz0a-D6P4GjIr2sQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cotranslational+interaction+of+human+EBP50+and+ezrin+overcomes+masked+binding+site+during+complex+assembly&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Khan%2C+Krishnendu&rft.au=Long%2C+Briana&rft.au=Baleanu-Gogonea%2C+Camelia&rft.au=Gogonea%2C+Valentin&rft.date=2022-02-15&rft.eissn=1091-6490&rft.volume=119&rft.issue=7&rft_id=info:doi/10.1073%2Fpnas.2115799119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |