Cotranslational interaction of human EBP50 and ezrin overcomes masked binding site during complex assembly

Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting s...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 7
Main Authors Khan, Krishnendu, Long, Briana, Baleanu-Gogonea, Camelia, Gogonea, Valentin, Deshpande, Gauravi M, Vasu, Kommireddy, Fox, Paul L
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to "buried" domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser and Ser abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond "simple" generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes.
AbstractList Multiprotein complexes in mammalian cells are thought to form by interactions between domains of mature, fully folded proteins. However, in some cases interprotein interaction is obstructed by “buried” or inaccessible binding domains. One such example is the interaction between EBP50 and ezrin, proteins linking the plasma membrane and cytoskeleton; self-association of domains in ezrin masks the site recognized by EBP50. Here, we show EBP50 overcomes this obstacle by cotranslationally binding to nascent ezrin’s otherwise masked domain emerging from the translating ribosome. Our study extends the function of mRNA translation beyond “simple” generation of linear peptide chains that fold into mature proteins for subsequent complex assembly; additionally, cotranslation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes. Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to “buried” domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during EZR mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser 339 and Ser 340 abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond “simple” generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes.
Significance Multiprotein complexes in mammalian cells are thought to form by interactions between domains of mature, fully folded proteins. However, in some cases interprotein interaction is obstructed by “buried” or inaccessible binding domains. One such example is the interaction between EBP50 and ezrin, proteins linking the plasma membrane and cytoskeleton; self-association of domains in ezrin masks the site recognized by EBP50. Here, we show EBP50 overcomes this obstacle by cotranslationally binding to nascent ezrin’s otherwise masked domain emerging from the translating ribosome. Our study extends the function of mRNA translation beyond “simple” generation of linear peptide chains that fold into mature proteins for subsequent complex assembly; additionally, cotranslation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes. Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to “buried” domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during EZR mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser 339 and Ser 340 abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond “simple” generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes.
Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to "buried" domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser and Ser abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond "simple" generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes.
Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to "buried" domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during EZR mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser339 and Ser340 abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond "simple" generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes.
Author Khan, Krishnendu
Baleanu-Gogonea, Camelia
Deshpande, Gauravi M
Vasu, Kommireddy
Fox, Paul L
Gogonea, Valentin
Long, Briana
Author_xml – sequence: 1
  givenname: Krishnendu
  surname: Khan
  fullname: Khan, Krishnendu
  organization: Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
– sequence: 2
  givenname: Briana
  surname: Long
  fullname: Long, Briana
  organization: Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
– sequence: 3
  givenname: Camelia
  surname: Baleanu-Gogonea
  fullname: Baleanu-Gogonea, Camelia
  organization: Department of Chemistry, Cleveland State University, Cleveland, OH 44115
– sequence: 4
  givenname: Valentin
  orcidid: 0000-0002-6154-8497
  surname: Gogonea
  fullname: Gogonea, Valentin
  organization: Department of Chemistry, Cleveland State University, Cleveland, OH 44115
– sequence: 5
  givenname: Gauravi M
  orcidid: 0000-0002-1621-1553
  surname: Deshpande
  fullname: Deshpande, Gauravi M
  organization: Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
– sequence: 6
  givenname: Kommireddy
  surname: Vasu
  fullname: Vasu, Kommireddy
  organization: Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
– sequence: 7
  givenname: Paul L
  orcidid: 0000-0002-6033-1528
  surname: Fox
  fullname: Fox, Paul L
  email: foxp@ccf.org
  organization: Department of Chemistry, Cleveland State University, Cleveland, OH 44115
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35140182$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtvFTEMhSNURG8La3YoEptuprUnmUc2SHBVHlIluijrKJN42lxmkksyU9H-embUUh4r2_LnI9vniB2EGIix1winCI042weTT0vEqlEKUT1jGwSFRS0VHLANQNkUrSzlITvKeQcAqmrhBTsUFUrAttyw3TZOyYQ8mMnHYAbuw0TJ2LXisec382gCP_9wWQE3wXG6T35p3FKycaTMR5O_k-OdD86Ha579RNzNac0XYD_QT25yprEb7l6y570ZMr16jMfs28fzq-3n4uLrpy_b9xeFlSVOBfY1CmGUItuQ61D2zlELytWmoqbpateJTqFxUElC25HFshWmw16ayrRWHLN3D7r7uRvJWQrLhYPeJz-adKej8frfTvA3-jre6rZd3tLCInDyKJDij5nypEefLQ2DCRTnrMu6bBYOpFzQt_-huzin5Y8rJaASIMRKnT1QNsWcE_VPyyDo1Ue9-qj_-LhMvPn7hif-t3HiF9ygniE
CitedBy_id crossref_primary_10_1016_j_jmb_2023_168382
crossref_primary_10_1002_bies_202300024
crossref_primary_10_1073_pnas_2205669119
crossref_primary_10_3389_fcell_2023_1125881
crossref_primary_10_1002_1873_3468_14713
crossref_primary_10_3389_fbioe_2024_1361682
Cites_doi 10.1016/j.bbamcr.2006.06.013
10.1038/s41467-019-09749-y
10.1083/jcb.200909175
10.1038/s41586-018-0462-y
10.4049/jimmunol.1800168
10.1093/nar/gky427
10.1083/jcb.200307032
10.1038/s41594-018-0179-5
10.1371/journal.pone.0075113
10.1074/jbc.273.29.18452
10.1016/j.cels.2018.11.003
10.1073/pnas.1010954108
10.3389/fcell.2020.588801
10.1158/0008-5472.CAN-19-0860
10.1242/jcs.02371
10.1038/onc.2008.437
10.1038/emboj.2009.240
10.1016/j.drudis.2008.07.008
10.1093/nar/gki481
10.1074/jbc.M114.609768
10.1016/j.tcb.2019.07.006
10.1042/BJ20091136
10.1083/jcb.201004115
10.1038/onc.2011.245
10.1038/srep40419
10.1083/jcb.140.4.885
10.1016/j.lfs.2020.117681
10.1073/pnas.0407974101
10.4049/jimmunol.182.2.1021
10.1016/j.cels.2020.01.004
10.1242/jcs.01038
10.1371/journal.pgen.1002398
10.1128/MCB.01372-06
10.1074/jbc.273.34.21893
10.1126/science.aac8171
10.1016/j.celrep.2015.12.085
10.18632/oncotarget.16001
10.1016/j.jmb.2006.10.075
10.1083/jcb.139.1.169
10.1146/annurev.cellbio.16.1.113
10.1074/jbc.M114.589523
10.1042/BCJ20160541
10.1038/cdd.2012.4
10.1074/jbc.M113.505669
10.1016/j.celrep.2018.12.008
10.1002/ijc.26285
10.3390/ijms21207716
10.1038/onc.2009.20
10.1091/mbc.6.8.1061
ContentType Journal Article
Copyright Copyright © 2022 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Feb 15, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Feb 15, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2115799119
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 10_1073_pnas_2115799119
35140182
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK123236
– fundername: NIA NIH HHS
  grantid: R01 AG067146
– fundername: NINDS NIH HHS
  grantid: R01 NS124547
– fundername: NIDDK NIH HHS
  grantid: R01 DK124203
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: R01 NS124547
– fundername: HHS | NIH | National Institute on Aging (NIA)
  grantid: AG067146
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: R01 DK124203
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: R01 DK123236
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CGR
CS3
CUY
CVF
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
H13
HH5
HYE
JLS
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c421t-1f6133a99ec7edb14fdde809d6a5e77b6db3b91ad054e1cbec1283ab1f4a5a8c3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:24:21 EDT 2024
Tue Aug 27 04:31:40 EDT 2024
Thu Oct 10 16:30:43 EDT 2024
Fri Aug 23 01:32:08 EDT 2024
Sat Sep 28 08:20:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords protein–protein interaction
ezrin
mRNA translation
EBP50
cotranslational assembly
Language English
License Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-1f6133a99ec7edb14fdde809d6a5e77b6db3b91ad054e1cbec1283ab1f4a5a8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: K.K., K.V., and P.L.F. designed research; K.K., B.L., C.B.-G., V.G., G.M.D., and K.V. performed experiments; K.K., C.B.G., V.G., G.M.D., and P.L.F. analyzed data; and K.K. and P.L.F. wrote the paper.
Edited by Alan Hinnebusch, National Institute of Child Health and Human Development, NIH, Bethesda, MD; received August 26, 2021; accepted December 23, 2021
ORCID 0000-0002-6033-1528
0000-0002-6154-8497
0000-0002-1621-1553
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851480/
PMID 35140182
PQID 2630530334
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8851480
proquest_miscellaneous_2627480044
proquest_journals_2630530334
crossref_primary_10_1073_pnas_2115799119
pubmed_primary_35140182
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_32_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_2_2
Bonilha V. L. (e_1_3_4_17_2) 2001; 42
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_8_2
  doi: 10.1016/j.bbamcr.2006.06.013
– ident: e_1_3_4_3_2
  doi: 10.1038/s41467-019-09749-y
– ident: e_1_3_4_2_2
  doi: 10.1083/jcb.200909175
– ident: e_1_3_4_4_2
  doi: 10.1038/s41586-018-0462-y
– ident: e_1_3_4_34_2
  doi: 10.4049/jimmunol.1800168
– ident: e_1_3_4_49_2
  doi: 10.1093/nar/gky427
– ident: e_1_3_4_43_2
  doi: 10.1083/jcb.200307032
– ident: e_1_3_4_30_2
  doi: 10.1038/s41594-018-0179-5
– ident: e_1_3_4_41_2
  doi: 10.1371/journal.pone.0075113
– ident: e_1_3_4_16_2
  doi: 10.1074/jbc.273.29.18452
– ident: e_1_3_4_27_2
  doi: 10.1016/j.cels.2018.11.003
– ident: e_1_3_4_24_2
  doi: 10.1073/pnas.1010954108
– ident: e_1_3_4_48_2
  doi: 10.3389/fcell.2020.588801
– ident: e_1_3_4_45_2
  doi: 10.1158/0008-5472.CAN-19-0860
– ident: e_1_3_4_31_2
  doi: 10.1242/jcs.02371
– ident: e_1_3_4_37_2
  doi: 10.1038/onc.2008.437
– ident: e_1_3_4_5_2
  doi: 10.1038/emboj.2009.240
– ident: e_1_3_4_39_2
  doi: 10.1016/j.drudis.2008.07.008
– ident: e_1_3_4_50_2
  doi: 10.1093/nar/gki481
– ident: e_1_3_4_36_2
  doi: 10.1074/jbc.M114.609768
– ident: e_1_3_4_7_2
  doi: 10.1016/j.tcb.2019.07.006
– ident: e_1_3_4_23_2
  doi: 10.1042/BJ20091136
– ident: e_1_3_4_14_2
  doi: 10.1083/jcb.201004115
– ident: e_1_3_4_47_2
  doi: 10.1038/onc.2011.245
– ident: e_1_3_4_25_2
  doi: 10.1038/srep40419
– ident: e_1_3_4_38_2
  doi: 10.1083/jcb.140.4.885
– ident: e_1_3_4_44_2
  doi: 10.1016/j.lfs.2020.117681
– ident: e_1_3_4_11_2
  doi: 10.1073/pnas.0407974101
– ident: e_1_3_4_33_2
  doi: 10.4049/jimmunol.182.2.1021
– ident: e_1_3_4_26_2
  doi: 10.1016/j.cels.2020.01.004
– ident: e_1_3_4_15_2
  doi: 10.1242/jcs.01038
– ident: e_1_3_4_6_2
  doi: 10.1371/journal.pgen.1002398
– volume: 42
  start-page: 3274
  year: 2001
  ident: e_1_3_4_17_2
  article-title: Polarity and developmental regulation of two PDZ proteins in the retinal pigment epithelium
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Bonilha V. L.
– ident: e_1_3_4_18_2
  doi: 10.1128/MCB.01372-06
– ident: e_1_3_4_20_2
  doi: 10.1074/jbc.273.34.21893
– ident: e_1_3_4_29_2
  doi: 10.1126/science.aac8171
– ident: e_1_3_4_28_2
  doi: 10.1016/j.celrep.2015.12.085
– ident: e_1_3_4_46_2
  doi: 10.18632/oncotarget.16001
– ident: e_1_3_4_9_2
  doi: 10.1016/j.jmb.2006.10.075
– ident: e_1_3_4_12_2
  doi: 10.1083/jcb.139.1.169
– ident: e_1_3_4_13_2
  doi: 10.1146/annurev.cellbio.16.1.113
– ident: e_1_3_4_21_2
  doi: 10.1074/jbc.M114.589523
– ident: e_1_3_4_10_2
  doi: 10.1042/BCJ20160541
– ident: e_1_3_4_22_2
  doi: 10.1038/cdd.2012.4
– ident: e_1_3_4_35_2
  doi: 10.1074/jbc.M113.505669
– ident: e_1_3_4_1_2
  doi: 10.1016/j.celrep.2018.12.008
– ident: e_1_3_4_40_2
  doi: 10.1002/ijc.26285
– ident: e_1_3_4_32_2
  doi: 10.3390/ijms21207716
– ident: e_1_3_4_42_2
  doi: 10.1038/onc.2009.20
– ident: e_1_3_4_19_2
  doi: 10.1091/mbc.6.8.1061
SSID ssj0009580
Score 2.4629471
Snippet Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic,...
Significance Multiprotein complexes in mammalian cells are thought to form by interactions between domains of mature, fully folded proteins. However, in some...
Multiprotein complexes in mammalian cells are thought to form by interactions between domains of mature, fully folded proteins. However, in some cases...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Assembly
Binding Sites
Biological Sciences
C-Terminus
Cloning, Molecular
Complex formation
Constituents
CRISPR-Cas Systems
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
DNA, Complementary
Ezrin
Gene Expression Regulation
Gene Silencing
HCT116 Cells
HEK293 Cells
Humans
Jurkat Cells
Models, Molecular
mRNA
Peptides
Phosphoproteins - genetics
Phosphoproteins - metabolism
Phosphorylation
Protein Binding
Protein Biosynthesis
Protein Conformation
Protein structure
Proteins
Sodium-Hydrogen Exchangers - genetics
Sodium-Hydrogen Exchangers - metabolism
Stochasticity
Tertiary structure
Translation
Title Cotranslational interaction of human EBP50 and ezrin overcomes masked binding site during complex assembly
URI https://www.ncbi.nlm.nih.gov/pubmed/35140182
https://www.proquest.com/docview/2630530334
https://search.proquest.com/docview/2627480044
https://pubmed.ncbi.nlm.nih.gov/PMC8851480
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4Bp14qQksJL22lHuDgJLte2-tjiUC0FRWHInGzZh8WgcSJkiABv76zazs09MZ51mtrZ3bnG8_MtwDfHHInEswj5KqMyB_nkTYayZY9gFAlN6Er7ep3enkjf94mtxuQtL0woWjf6FGvGk961egu1FbOJqbf1on1r6-GimCCVIP-JmySgbYh-oppV9V9J4KOXylky-eTxf1ZhYue8PQyhIq4Jwz1dewDrsS6V_oPar6tmPzHBV1sw8cGO7Lv9Td2YMNVO9BpdueCnTQU0qef4H44XXonNG5-9THPCjGvexjYtGThZj52fnadDBhWlrmX-YgEZNZkgDTVBBcPzjI9Cj0vzGeYWd3QyEINuntiBLrdRI-fP8PNxfmf4WXU3KoQGSn4MuIlefAY89yZzFnNZUknnBrkNsXEZZlOrY51ztESmHPckI7JhcWoeSkxQWXiXdiqppXbA2biVFI4p0zCUaLLMEWrhbHWCEkRu-zCSbuqxawmzyhC0juLC6-L4lUXXThsV71odhGJUzqNyMfGNNPXlZjs3yc1sHLTRz-G4mrl89Jd-FIrafWuVrtdyNbUtxrgubXXJWRygWO7MbH9dz95AB-E75Twd8ckh7C1nD-6I8IvS31MyP3Hr-NgtX8B1IrzQQ
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VcoALoryaUmCROJSDE-96ba-PELUK0FQ9tFJv1uzDakriREkqFX49s2s7beDGeddra2dm5xvPzLcAnxxyJ1IsIuSqisgfF5E2GkmXPYBQFTehK218lo0u5fer9GoH0q4XJhTtGz3p19NZv55ch9rKxcwMujqxwfl4qAgmSBUPHsFjstdYdkH6hmtXNZ0ngg5gKWTH6JMng0WNq77wBDOEi7inDPWV7DFXYtsv_QM2_66ZfOCETp7DsxY9si_NV-7BjqtfwF5rnyt21JJIf34JN8P52ruhafuzj3leiGXTxcDmFQt387Hjr-dpzLC2zP1eTmiAFJtUkJaa4eqns0xPQtcL8zlm1rQ0slCF7u4YwW4309Nfr-Dy5PhiOIraexUiIwVfR7wiH55gUTiTO6u5rOiMU3FhM0xdnuvM6kQXHC3BOccNSZmcWIKaVxJTVCZ5Dbv1vHb7wEySSQrolEk5SnQ5Zmi1MNYaISlmlz046na1XDT0GWVIe-dJ6WVR3suiB4fdrpetHdFwRucRedmEVvq4GSYL8GkNrN381s-hyFr5zHQP3jRC2ryrk24P8i3xbSZ4du3tEVK6wLLdKtnBfz_5AZ6MLsan5em3sx9v4anwfRP-Jpn0EHbXy1v3jtDMWr8PuvsHCen1ng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9NADLdgSIgXxPgsbHBIPIyHNLnLJbk8QrdqfGzqA5P2Fvk-Irq1adV2EvDX47skZYU3nn25RGf7bMf2zwDvHHInMiwj5KqOyB6XkTYaSZa9A6FqbkJX2tl5fnohP19ml7dGfYWifaOnw2Y2HzbT76G2cjk3cV8nFk_ORorcBKmSeGnr-C7cI51N8j5Q3-Ltqrb7RNAlLIXsUX2KNF42uB4KDzJDvhH3sKG-mj3hSuzapn8czr_rJm8ZovEjeNh5kOxD-6X7cMc1j2G_09E1O-qApN8_gavRYuNN0az74cc8NsSq7WRgi5qF-Xzs5OMkSxg2lrlfqykRSLhJDGmrOa6vnWV6GjpfmM8zs7atkYVKdPeDkevt5nr28ylcjE--jU6jbrZCZKTgm4jXZMdTLEtnCmc1lzXdcyopbY6ZKwqdW53qkqMll85xQ5wmQ5ai5rXEDJVJn8Fes2jcC2AmzSUFdcpkHCW6AnO0WhhrjZAUt8sBHPWnWi1bCI0qpL6LtPK8qP7wYgAH_alXnS4ROac7iSxtSju93ZJJC3xqAxu3uPFrKLpWPjs9gOctk7bv6rk7gGKHfdsFHmF7l0KCF5C2O0F7-d9PvoH7k-Nx9fXT-ZdX8ED41gk_TCY7gL3N6sYdkkOz0a-D6P4GjIr2sQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cotranslational+interaction+of+human+EBP50+and+ezrin+overcomes+masked+binding+site+during+complex+assembly&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Khan%2C+Krishnendu&rft.au=Long%2C+Briana&rft.au=Baleanu-Gogonea%2C+Camelia&rft.au=Gogonea%2C+Valentin&rft.date=2022-02-15&rft.eissn=1091-6490&rft.volume=119&rft.issue=7&rft_id=info:doi/10.1073%2Fpnas.2115799119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon