Machine Learning-Based Modeling for Structural Engineering: A Comprehensive Survey and Applications Overview
Modeling and simulation have been extensively used to solve a wide range of problems in structural engineering. However, many simulations require significant computational resources, resulting in exponentially increasing computational time as the spatial and temporal scales of the models increase. T...
Saved in:
Published in | Buildings (Basel) Vol. 14; no. 11; p. 3515 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modeling and simulation have been extensively used to solve a wide range of problems in structural engineering. However, many simulations require significant computational resources, resulting in exponentially increasing computational time as the spatial and temporal scales of the models increase. This is particularly relevant as the demand for higher fidelity models and simulations increases. Recently, the rapid developments in artificial intelligence technologies, coupled with the wide availability of computational resources and data, have driven the extensive adoption of machine learning techniques to improve the computational accuracy and precision of simulations, which enhances their practicality and potential. In this paper, we present a comprehensive survey of the methodologies and techniques used in this context to solve computationally demanding problems, such as structural system identification, structural design, and prediction applications. Specialized deep neural network algorithms, such as the enhanced probabilistic neural network, have been the subject of numerous articles. However, other machine learning algorithms, including neural dynamic classification and dynamic ensemble learning, have shown significant potential for major advancements in specific applications of structural engineering. Our objective in this paper is to provide a state-of-the-art review of machine learning-based modeling in structural engineering, along with its applications in the following areas: (i) computational mechanics, (ii) structural health monitoring, (iii) structural design and manufacturing, (iv) stress analysis, (v) failure analysis, (vi) material modeling and design, and (vii) optimization problems. We aim to offer a comprehensive overview and provide perspectives on these powerful techniques, which have the potential to become alternatives to conventional modeling methods. |
---|---|
AbstractList | Modeling and simulation have been extensively used to solve a wide range of problems in structural engineering. However, many simulations require significant computational resources, resulting in exponentially increasing computational time as the spatial and temporal scales of the models increase. This is particularly relevant as the demand for higher fidelity models and simulations increases. Recently, the rapid developments in artificial intelligence technologies, coupled with the wide availability of computational resources and data, have driven the extensive adoption of machine learning techniques to improve the computational accuracy and precision of simulations, which enhances their practicality and potential. In this paper, we present a comprehensive survey of the methodologies and techniques used in this context to solve computationally demanding problems, such as structural system identification, structural design, and prediction applications. Specialized deep neural network algorithms, such as the enhanced probabilistic neural network, have been the subject of numerous articles. However, other machine learning algorithms, including neural dynamic classification and dynamic ensemble learning, have shown significant potential for major advancements in specific applications of structural engineering. Our objective in this paper is to provide a state-of-the-art review of machine learning-based modeling in structural engineering, along with its applications in the following areas: (i) computational mechanics, (ii) structural health monitoring, (iii) structural design and manufacturing, (iv) stress analysis, (v) failure analysis, (vi) material modeling and design, and (vii) optimization problems. We aim to offer a comprehensive overview and provide perspectives on these powerful techniques, which have the potential to become alternatives to conventional modeling methods. |
Audience | Academic |
Author | Renno, Jamil Seaid, Mohammed Al-Ghosoun, Alia Mohamed, M. Shadi Etim, Bassey |
Author_xml | – sequence: 1 givenname: Bassey orcidid: 0009-0008-3900-8794 surname: Etim fullname: Etim, Bassey – sequence: 2 givenname: Alia surname: Al-Ghosoun fullname: Al-Ghosoun, Alia – sequence: 3 givenname: Jamil orcidid: 0000-0002-1081-9912 surname: Renno fullname: Renno, Jamil – sequence: 4 givenname: Mohammed surname: Seaid fullname: Seaid, Mohammed – sequence: 5 givenname: M. Shadi orcidid: 0000-0002-0152-8478 surname: Mohamed fullname: Mohamed, M. Shadi |
BookMark | eNp9Uctu3CAURVUqNZnmA7pDytopD2Ob7iajtIk0URZp1wjDZcLIAw7YE-XvS2aiKmqlwoLL5Z6HOGfoJMQACH2h5JJzSb72sx-sD5tMa0q5oOIDOmWkFZXgRJ68qz-h85y3pKxOMCbqUzTcafPoA-A16BQKR3WlM1h8Fy0M5YpdTPhhSrOZ5qQHfB02ZRpSefqGl3gVd2OCRwjZ7wE_zGkPL1gHi5fjOHijJx9Dxvd7SHsPz5_RR6eHDOdv5wL9-n79c3VTre9_3K6W68rUjE4VbWpOeWsbJ6RrOyd445zQjgBpnGEOiKmB1LKTwKFv29owkI7WznKqe0n5At0eeW3UWzUmv9PpRUXt1aER00bpNHkzgGJgOmeFY0YWHkN608uuazgDYhkv0gt0ceQaU3yaIU9qG-cUin1VTHLCuTgoXh6nNrqQ-uDilLQp28LOm5KW86W_7GhHiSBSFgA9AkyKOSdwf2xSol5DVf-EWjDtXxjjp8MXFzE__Af5G_GXrG4 |
CitedBy_id | crossref_primary_10_1016_j_engappai_2025_110378 crossref_primary_10_1007_s41024_025_00568_x crossref_primary_10_36897_jme_202916 |
Cites_doi | 10.1016/j.jsv.2024.118597 10.1007/s11665-021-05507-8 10.1016/j.conbuildmat.2024.135860 10.1111/ffe.13559 10.1080/10255842.2012.746676 10.1111/mice.12480 10.1177/1475921717693572 10.1109/72.712178 10.1109/JPROC.2020.3004555 10.1111/mice.12655 10.1016/j.compstruct.2023.117257 10.3934/Mine.2018.1.118 10.1016/j.aei.2022.101612 10.1016/j.measurement.2018.07.051 10.1016/j.automatica.2013.02.003 10.1016/S0045-7949(01)00039-6 10.1007/s10845-021-01805-z 10.1109/JIOT.2020.3028325 10.1007/s13349-022-00591-3 10.1002/ird.1876 10.1016/j.commatsci.2024.112898 10.1016/j.ymssp.2022.108919 10.1016/S0167-9236(02)00079-9 10.1016/j.ymssp.2024.111340 10.1016/j.compstruc.2007.02.021 10.1016/j.camwa.2020.08.012 10.1016/j.compstruc.2021.106484 10.1007/s11440-022-01709-z 10.1016/j.neucom.2023.127028 10.1016/j.beth.2020.05.002 10.1007/s00332-023-09903-3 10.1016/0041-5553(64)90137-5 10.2514/6.2023-0370 10.1061/(ASCE)0887-3801(1993)7:1(71) 10.1016/j.matdes.2022.110423 10.1002/9781119821908.ch1 10.3390/s21051654 10.1007/978-3-030-47717-2_5 10.1117/12.2664359 10.1016/j.strusafe.2014.02.004 10.1007/s00366-023-01864-1 10.1061/(ASCE)0887-3801(2008)22:2(133) 10.1115/1.4049805 10.1061/(ASCE)0899-1561(2006)18:3(462) 10.1007/s10494-017-9807-0 10.1080/07474938.2010.481556 10.1016/j.ymssp.2015.02.016 10.1016/j.jcp.2018.10.045 10.1016/j.ymssp.2021.108519 10.1061/(ASCE)0899-1561(2005)17:3(353) 10.2749/101686614X13830790993483 10.1007/s10489-021-02291-9 10.1016/j.jmsy.2020.06.018 10.1007/s11440-021-01419-y 10.1111/mice.12405 10.1016/j.cma.2016.02.001 10.1061/(ASCE)0887-3801(1995)9:4(279) 10.1080/09243046.2023.2215474 10.1016/j.procir.2012.05.019 10.1061/(ASCE)0887-3801(1999)13:1(36) 10.1016/j.engstruct.2023.116912 10.1016/j.jcp.2007.04.012 10.1016/j.advengsoft.2022.103392 10.1016/j.strusafe.2019.101906 10.1016/j.energy.2019.03.080 10.3390/s23115040 10.1016/S0045-7949(03)00255-4 10.1016/j.engstruct.2022.115122 10.1007/s40571-021-00405-1 10.1016/j.jmrt.2023.06.038 10.1061/(ASCE)0733-9399(1991)117:1(132) 10.1016/j.ejor.2006.12.004 10.1142/S1793962313500268 10.1109/TSMC.2020.3032622 10.1002/stc.492 10.1098/rsta.2006.1938 10.1520/JTE20220569 10.1016/0895-7177(94)90095-7 10.1115/1.4046739 10.1177/14759217211009780 10.1007/s10115-012-0508-7 10.1016/j.knosys.2016.12.022 10.1016/j.camwa.2022.11.024 10.1016/j.jcp.2020.110080 10.3390/machines11050547 10.1016/j.eswa.2012.02.199 10.1016/j.ress.2024.110465 10.1016/j.engappai.2018.09.007 10.14445/22312803/IJCTT-V48P126 10.1155/2023/8899806 10.38094/jastt1457 10.1109/ICRSE.2017.8030793 10.1016/j.wear.2018.03.001 10.1016/j.cma.2020.113482 10.1016/j.neucom.2018.06.056 10.3390/app10175917 10.1007/BF00116251 10.1016/j.cma.2018.10.046 10.1016/j.ress.2021.108258 10.1002/adts.202200459 10.1016/j.istruc.2022.10.004 10.1098/rsif.2017.0844 10.1016/j.patrec.2009.09.011 10.1016/S0308-0161(98)00136-7 10.1061/(ASCE)0899-1561(1998)10:4(263) 10.1016/j.asoc.2024.112026 10.1016/j.tafmec.2023.103917 10.1007/978-3-030-81716-9_12 10.1061/(ASCE)0899-1561(2004)16:3(257) 10.1109/ICASSP.2013.6639343 10.1016/j.compstruc.2021.106546 10.1016/j.asoc.2014.10.024 10.1007/978-981-19-1280-1_12 10.1016/j.compstruc.2023.107188 10.1016/j.ress.2023.109093 10.1111/j.1467-8667.2008.00572.x 10.1016/j.infsof.2015.07.004 10.1016/j.autcon.2021.103931 10.1016/j.ast.2021.107056 10.1016/j.advengsoft.2023.103487 10.1016/j.trc.2018.04.001 10.1142/S0129065719500138 10.1016/j.jtcvs.2009.02.057 10.1177/14759217221100443 10.1016/j.measurement.2020.107811 10.1016/j.ymssp.2024.111645 10.1016/j.eswa.2015.04.042 10.1103/PhysRevX.8.041006 10.1007/s005210050038 10.1098/rsta.2006.1925 10.1007/978-3-030-34328-6_2 10.1108/MMMS-12-2022-0290 10.1016/j.cma.2020.113452 10.1016/j.ijplas.2023.103642 10.1007/s10994-013-5368-1 10.1016/j.engstruct.2024.117971 10.1016/j.cirp.2017.04.022 10.5802/crmeca.185 10.1016/0021-9991(90)90007-N 10.1016/j.aei.2023.102074 10.1007/BF00992699 10.1177/1475921719894186 10.1016/j.jmatprotec.2007.04.026 10.1109/ACCESS.2020.2988796 10.1016/j.asoc.2024.111335 10.1016/j.ymssp.2022.109708 10.1016/j.procs.2016.06.016 10.1207/s15327906mbr2504_4 10.1002/nme.905 10.1007/s00466-023-02343-6 10.1007/s00158-022-03432-5 10.1007/s40304-017-0117-6 10.1016/j.engstruct.2017.02.059 10.1016/j.compgeo.2010.11.002 10.1111/exsy.12055 10.1002/stc.2298 10.1016/j.atmosres.2022.106157 10.1016/j.procir.2013.05.033 10.1016/j.engstruct.2022.114059 10.1115/1.4056693 10.3233/ICA-180596 10.1023/A:1007617005950 10.1016/j.compstruc.2021.106707 10.3390/w11112210 10.1016/j.jsv.2004.11.031 10.1016/j.cma.2017.08.040 10.1088/0964-1726/18/2/025016 10.1016/j.jcp.2017.11.039 10.1016/j.engstruct.2021.112377 10.1016/j.neucom.2017.01.026 10.1016/j.finel.2023.103956 10.1098/rsta.2000.0717 10.1109/ACCESS.2023.3244681 10.1016/j.jcp.2016.07.038 10.1098/rsta.2006.1928 10.1016/j.neucom.2022.02.047 10.1016/j.engstruct.2019.05.028 10.1016/j.ress.2022.108643 10.1007/978-981-15-6568-7_8 10.1016/j.istruc.2023.06.049 10.3233/ICA-180560 10.1016/j.jcp.2019.05.024 10.1111/mice.12315 10.1007/s00466-021-02081-7 10.1016/j.cma.2023.116347 10.1061/(ASCE)BE.1943-5592.0001979 10.1016/j.jvcir.2018.12.011 10.1109/ACCESS.2023.3282453 10.1002/cpt.1796 10.1016/j.matdes.2023.112128 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L.- L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.3390/buildings14113515 |
DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-5309 |
ExternalDocumentID | oai_doaj_org_article_2ec8fd5f2c974cc0bcb988632e0d23f5 A818105099 10_3390_buildings14113515 |
GeographicLocations | United States New Jersey Germany |
GeographicLocations_xml | – name: New Jersey – name: Germany – name: United States |
GroupedDBID | .4S 2XV 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHM ITC KQ8 L6V M7S MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PTHSS PYCSY TUS PMFND 8FD ABUWG AZQEC DWQXO FR3 GNUQQ KR7 L.- PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c421t-1643137d6f59f78f536ff5af0e06fc2fe0c4e04989e3eb774c2e9f14fd31ab913 |
IEDL.DBID | BENPR |
ISSN | 2075-5309 |
IngestDate | Wed Aug 27 01:24:20 EDT 2025 Fri Jul 25 12:10:15 EDT 2025 Tue Jun 10 20:57:44 EDT 2025 Thu Apr 24 23:00:20 EDT 2025 Tue Jul 01 01:45:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-1643137d6f59f78f536ff5af0e06fc2fe0c4e04989e3eb774c2e9f14fd31ab913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1081-9912 0009-0008-3900-8794 0000-0002-0152-8478 |
OpenAccessLink | https://www.proquest.com/docview/3133033591?pq-origsite=%requestingapplication% |
PQID | 3133033591 |
PQPubID | 2032422 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2ec8fd5f2c974cc0bcb988632e0d23f5 proquest_journals_3133033591 gale_infotracacademiconefile_A818105099 crossref_primary_10_3390_buildings14113515 crossref_citationtrail_10_3390_buildings14113515 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Buildings (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Hashash (ref_160) 2004; 59 Park (ref_22) 2020; 16 Mital (ref_166) 2022; 9 Sinaga (ref_48) 2020; 8 Yeh (ref_61) 1998; 10 Fazily (ref_163) 2023; 166 Quinn (ref_92) 2024; 213 Kamariotis (ref_122) 2023; 184 ref_131 ref_133 Meade (ref_76) 1994; 91 Bayane (ref_200) 2024; 308 Johannes (ref_236) 2022; 33 Jaccard (ref_38) 1990; 25 Yi (ref_221) 2020; 8 ref_126 Polyak (ref_44) 1964; 4 ref_125 Lees (ref_75) 1990; 91 Liao (ref_128) 2021; 132 Yan (ref_149) 2019; 193 Farrar (ref_103) 2001; 359 Kan (ref_153) 2015; 62 Liang (ref_69) 2018; 15 Tronci (ref_101) 2022; 12 ref_120 Zhu (ref_207) 2019; 394 Gupta (ref_172) 2006; 18 Yang (ref_174) 2024; 423 Alireza (ref_195) 2018; 17 Divac (ref_111) 2014; 48 Zhou (ref_1) 2017; 237 Skordaris (ref_136) 2018; 404 Jirousek (ref_142) 2023; 232 Agarwal (ref_53) 2021; 22 Zhang (ref_129) 2017; 140 Tan (ref_158) 2011; 38 Lu (ref_90) 2023; 72 Kotsiantis (ref_30) 2007; 160 Abdulwahab (ref_169) 2008; 10 Man (ref_139) 2012; 1 Kazem (ref_218) 2015; 64 Rasoulzadeh (ref_127) 2023; 57 Guan (ref_179) 2022; 46 Hofmann (ref_47) 2001; 42 Praveena (ref_37) 2017; 169 Zimmerling (ref_225) 2022; 214 Marugan (ref_21) 2023; 183 Mathias (ref_49) 2020; 124 Piervincenzo (ref_208) 2009; 18 ref_88 ref_143 Aurccio (ref_145) 2014; 17 ref_84 Hashemi (ref_89) 2023; 11 Guan (ref_235) 2023; 233 Einst (ref_50) 2005; 6 Yu (ref_154) 2023; 51 ref_214 ref_215 Habib (ref_135) 2023; 19 Maulud (ref_40) 2020; 1 Toledo (ref_112) 2014; 5 Charalampous (ref_141) 2002; 30 Soheila (ref_211) 2023; 274 Maximilian (ref_233) 2023; 145 Shaopeng (ref_228) 2021; 36 Kim (ref_171) 2005; 17 Gosliga (ref_117) 2022; 173 Logarzo (ref_94) 2021; 373 Chen (ref_19) 2019; 34 Heng (ref_159) 2011; 38 Trask (ref_82) 2019; 7 Aswani (ref_54) 2013; 49 Saul (ref_188) 2003; 4 Choi (ref_206) 2023; 11 Weinan (ref_80) 2017; 5 ref_203 Markogiannaki (ref_123) 2023; 22 Gardner (ref_116) 2022; 167 Madan (ref_191) 2005; 287 Hakim (ref_168) 2011; 6 Jiang (ref_27) 2020; 51 Alireza (ref_196) 2020; 19 Riedmiller (ref_52) 2000; 8 Mishra (ref_96) 2018; 1 Li (ref_119) 2022; 21 Rakthanmanon (ref_187) 2012; 33 Jung (ref_93) 2022; 69 ref_118 Azar (ref_55) 2013; 91 Kirchdoerfer (ref_74) 2016; 304 Koutsourelakis (ref_72) 2007; 226 ref_230 ref_232 Ghimire (ref_42) 2022; 272 Raissi (ref_87) 2018; 357 Berg (ref_81) 2018; 317 Kim (ref_32) 2003; 34 Bolaji (ref_68) 2023; 25 ref_108 ref_229 Preisinger (ref_132) 2014; 24 ref_109 Nicholas (ref_177) 2003; 81 Dominik (ref_219) 2022; 38 Dominguez (ref_18) 2018; 28 ref_223 Ahmad (ref_24) 2019; 175 Sui (ref_2) 2019; 64 Nashed (ref_66) 2023; 176 Reiner (ref_150) 2023; 321 Zhang (ref_13) 2019; 34 Miseta (ref_34) 2024; 567 Hein (ref_176) 2018; 76 Gang (ref_165) 2022; 17 Liu (ref_197) 2024; 252 Liang (ref_146) 2023; 416 Benyamin (ref_181) 2023; Volume 404 Syed (ref_4) 2021; 51 Lagaris (ref_77) 1998; 9 ref_10 Silva (ref_70) 2021; 44 Worden (ref_102) 2007; 365 Lou (ref_130) 2021; 250 Soyoz (ref_107) 2009; 24 Zhuang (ref_115) 2021; 109 ref_15 Carbonneau (ref_59) 2008; 184 Tramel (ref_20) 2018; 8 Laisisi (ref_9) 2018; 91 Guan (ref_234) 2022; 219 Michailidis (ref_140) 2017; 66 Brevis (ref_95) 2021; 95 Gharahamani (ref_180) 2004; 16 Janusz (ref_62) 1995; 9 ref_25 Daneshvar (ref_192) 2022; 256 Cabrera (ref_67) 2023; 39 Chang (ref_106) 2018; 129 Fabian (ref_231) 2022; 52 Yeh (ref_63) 1999; 13 Saha (ref_85) 2021; 378 Raissi (ref_86) 2019; 378 Yang (ref_222) 2022; 225 Sutton (ref_56) 1999; 17 ref_26 Peng (ref_45) 2024; 153 Ma (ref_194) 2020; 160 Osisanwo (ref_29) 2017; 48 Stolpr (ref_205) 2011; 6913 Ghaboussi (ref_60) 1991; 117 Li (ref_91) 2023; 289 Xiao (ref_79) 2016; 324 Bahnsen (ref_39) 2015; 42 Wojtowytsch (ref_43) 2023; 33 Lioyd (ref_46) 2013; 3 Magidson (ref_183) 2002; 20 Pizarro (ref_124) 2021; 241 Newby (ref_138) 2007; 192 Brownjohn (ref_99) 2007; 365 Jokar (ref_71) 2021; 247 Dy (ref_189) 2004; 5 Taylor (ref_114) 2009; 10 Roberson (ref_173) 2022; 259 Pan (ref_210) 2021; 35 Arash (ref_217) 2019; 26 Jiang (ref_147) 2021; 88 Bernard (ref_216) 2008; 22 Wang (ref_5) 2018; 25 Singh (ref_28) 2016; 3 Farrarand (ref_97) 2007; 365 Oishi (ref_73) 2017; 327 Azad (ref_121) 2023; 33 Kao (ref_110) 2013; 20 Sanchez (ref_184) 2008; 6 Lu (ref_201) 2024; 590 Abbasi (ref_16) 2019; 29 Mohanty (ref_157) 2014; 26 Belavagi (ref_31) 2016; 89 ref_57 ref_175 Harley (ref_226) 2020; 56 Capuano (ref_65) 2019; 345 ref_178 Yu (ref_14) 2018; 33 Miceli (ref_98) 2024; 164 Guan (ref_167) 2022; 18 ref_182 Lin (ref_51) 1992; 8 Cheng (ref_155) 1999; 76 Wagg (ref_100) 2020; 6 Motsa (ref_134) 2023; 296 Karmaker (ref_8) 2022; 54 Carneiro (ref_161) 2023; 222 Fernandez (ref_36) 2022; 486 Wei (ref_212) 2020; 83 Yu (ref_213) 2022; 5 Rafiq (ref_152) 2001; 79 Fu (ref_137) 2017; 93 Macqueen (ref_185) 1967; Volume 1 Yeh (ref_104) 1993; 7 Dufera (ref_83) 2021; 5 Eloi (ref_199) 2023; 28 Zhang (ref_11) 2020; 52 Dwyer (ref_144) 2009; 138 Konrad (ref_204) 2012; 1 Song (ref_113) 2023; 55 Zio (ref_156) 2012; 39 Kim (ref_170) 2004; 16 ref_35 Hau (ref_209) 2022; 39 Junges (ref_198) 2024; 220 Quinlan (ref_17) 1986; 1 Kazeruni (ref_148) 2023; 125 Huang (ref_33) 2015; 67 Long (ref_164) 2024; 237 Abdi (ref_23) 2015; 32 Ahmed (ref_58) 2010; 29 Cao (ref_224) 2023; 66 Trent (ref_64) 2023; 136 Wu (ref_78) 2017; 99 Yang (ref_3) 2019; 26 Utkin (ref_41) 2017; 120 ref_186 Jonathan (ref_227) 2021; 428 Badillo (ref_7) 2020; 107 Qiu (ref_220) 2021; 118 Bui (ref_151) 2014; 5 Jain (ref_12) 2010; 9 ref_190 Zapico (ref_105) 2008; 86 ref_193 Lieber (ref_202) 2013; 7 (ref_162) 2023; 351 ref_6 |
References_xml | – ident: ref_190 – volume: 590 start-page: 118597 year: 2024 ident: ref_201 article-title: Unsupervised quantitative structural damage identification method based on BiLSTM networks and probability distribution model publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2024.118597 – volume: 30 start-page: 2002 year: 2002 ident: ref_141 article-title: Prediction of cutting forces in milling using machine learning algorithms and finite element analysis publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-021-05507-8 – volume: 423 start-page: 135860 year: 2024 ident: ref_174 article-title: Effect of structural parameters on compression performance of autoclaved aerated concrete: Simulation and machine learning publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2024.135860 – volume: 44 start-page: 3334 year: 2021 ident: ref_70 article-title: Machine learning and finite element analysis: An integrated approach for fatigue lifetime prediction of adhesively bonded joints publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/ffe.13559 – volume: 17 start-page: 1347 year: 2014 ident: ref_145 article-title: Simulations of transcather aortic valve implementation: Apatient-specific finite element approach publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2012.746676 – volume: Volume 404 start-page: 207 year: 2023 ident: ref_181 article-title: Locally linear embedding publication-title: Elements of Dimensionality Reduction and Manifold Learning – volume: 34 start-page: 991 year: 2019 ident: ref_13 article-title: Probability and interval hybrid reliability analysis based on adaptive local approximation of projection outlines using support vector machine publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12480 – volume: 17 start-page: 325 year: 2018 ident: ref_195 article-title: An unsupervised learning approach by novel damage indices in structural health monitoring for damage localization and quantification publication-title: Struct. Health Monit. doi: 10.1177/1475921717693572 – volume: 9 start-page: 987 year: 1998 ident: ref_77 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: Trans. Neural Netw. doi: 10.1109/72.712178 – ident: ref_178 – volume: 109 start-page: 43 year: 2021 ident: ref_115 article-title: A Comprehensive survey on transfer learning publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.3004555 – volume: 36 start-page: 733 year: 2021 ident: ref_228 article-title: A knowledge-enhanced deep reinforcement learning-based shape optimizer for aerodynamic mitigation of wind-sensitive structures publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12655 – volume: 6 start-page: 503 year: 2005 ident: ref_50 article-title: Trees-based batch mode reinforcement learning publication-title: J. Mach. Learn. Res. – volume: 321 start-page: 117257 year: 2023 ident: ref_150 article-title: Bayesian parameter estimation for the inclusion of uncertainty in progressive damage simulation of composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2023.117257 – volume: 1 start-page: 118 year: 2018 ident: ref_96 article-title: A machine learning framework for data driven acceleration of computations of differential equations publication-title: Math. Eng. doi: 10.3934/Mine.2018.1.118 – volume: 35 start-page: 180 year: 2021 ident: ref_210 article-title: A self-learning finite element extraction system based on reinforcement learning publication-title: AI EDAM – volume: 52 start-page: 101612 year: 2022 ident: ref_231 article-title: Reinforcement learning for engineering design automation publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101612 – volume: 129 start-page: 457 year: 2018 ident: ref_106 article-title: Applications of neural network models for structural health monitoring based on derived modal properties publication-title: Measurement doi: 10.1016/j.measurement.2018.07.051 – ident: ref_223 – volume: 49 start-page: 1216 year: 2013 ident: ref_54 article-title: Probably safe and robust learning-based model predictive control publication-title: Automatica doi: 10.1016/j.automatica.2013.02.003 – volume: 79 start-page: 1541 year: 2001 ident: ref_152 article-title: Neural network design for engineering applications publication-title: Comuters Struct. doi: 10.1016/S0045-7949(01)00039-6 – volume: 33 start-page: 333 year: 2022 ident: ref_236 article-title: Deep reinforcement learning methods for structure-guided processing path optimization publication-title: J. Intell. Manuf. doi: 10.1007/s10845-021-01805-z – volume: 8 start-page: 3108 year: 2020 ident: ref_221 article-title: Reinforcement-learning-enabled partial confident information coverage for IoT-based bridge structural health monitoring publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3028325 – volume: 38 start-page: 178 year: 2011 ident: ref_159 article-title: Intelligent prognostics of machinery health utilising suspended condition monitoring data publication-title: Comput. Geotech. – volume: 12 start-page: 1285 year: 2022 ident: ref_101 article-title: A transfer learning SHM strategy for bridges enriched by the use of speaker recognition x-vectors publication-title: J. Civ. Struct. Health Monit. doi: 10.1007/s13349-022-00591-3 – volume: 64 start-page: 77 year: 2015 ident: ref_218 article-title: Application of reinforcement learning algorithm for automation of canal structures publication-title: Irrig. Drain. doi: 10.1002/ird.1876 – volume: 237 start-page: 112898 year: 2024 ident: ref_164 article-title: Impact of structural characteristics on thermal conductivity of foam structures revealed with machine learning publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2024.112898 – volume: 173 start-page: 108919 year: 2022 ident: ref_117 article-title: On Population-based structural health monitoring for bridges publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.108919 – volume: 124 start-page: 226 year: 2020 ident: ref_49 article-title: Unsupervised machine learning and band topology publication-title: Phys. Rev. Lett. – volume: 34 start-page: 167 year: 2003 ident: ref_32 article-title: Combination of multiple classifiers for the customers purchase behavior prediction publication-title: Decis. Support Syst. doi: 10.1016/S0167-9236(02)00079-9 – volume: 213 start-page: 111340 year: 2024 ident: ref_92 article-title: A structure-preserving machine learning framework for accurate prediction of structural dynamics for systems with isolated nonlinearities publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2024.111340 – volume: 86 start-page: 416 year: 2008 ident: ref_105 article-title: Seismic damage identification in buildings using neural networks and modal data publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.02.021 – volume: 95 start-page: 186 year: 2021 ident: ref_95 article-title: A machine-learning minimal-residual (ML-MRes) framework for goal-oriented finite element discretizations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2020.08.012 – volume: 169 start-page: 975 year: 2017 ident: ref_37 article-title: A literature review on supervised machine learning algorithms and boosting process publication-title: Int. J. Comput. Appl. – volume: 247 start-page: 106484 year: 2021 ident: ref_71 article-title: Finite element network analysis: A machine learning based computational framework for the simulation of physical systems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2021.106484 – volume: 18 start-page: 1699 year: 2022 ident: ref_167 article-title: A machine learning-based multi-scale computational framework for granular materials publication-title: Acta Geotech. doi: 10.1007/s11440-022-01709-z – volume: 567 start-page: 127028 year: 2024 ident: ref_34 article-title: Surpassing early stopping:A novel correlation-based stopping criterion for neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.127028 – volume: 54 start-page: 1 year: 2022 ident: ref_8 article-title: ACM computing surveys publication-title: Knowl. Inf. Syst. – volume: 51 start-page: 675 year: 2020 ident: ref_27 article-title: Supervised machine learning: A brief primer publication-title: Behav. Ther. doi: 10.1016/j.beth.2020.05.002 – volume: 33 start-page: 45 year: 2023 ident: ref_43 article-title: Stochastic gradient descent with noise of machine learning type 1:Discrete time analysis publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-023-09903-3 – volume: 6 start-page: 975 year: 2011 ident: ref_168 article-title: Application of artificial neural networks to predict compressive strength of high strength concrete publication-title: Int. J. Phys. Sci. – volume: 4 start-page: 1 year: 1964 ident: ref_44 article-title: Some methods of speeding up the convergence of iteration methods publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – volume: 22 start-page: 1 year: 2021 ident: ref_53 article-title: On the theory of policy gradient methods: Optimality, approximation and distribution shift publication-title: J. Mach. Learn. Res. – ident: ref_6 doi: 10.2514/6.2023-0370 – volume: 7 start-page: 71 year: 1993 ident: ref_104 article-title: Building KBES for diagnosing PC pile with artificial neural network publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(1993)7:1(71) – ident: ref_25 – volume: 214 start-page: 110423 year: 2022 ident: ref_225 article-title: Optimisation of manufacturing process parameters for variable component geometries using reinforcement learning publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.110423 – ident: ref_15 doi: 10.1002/9781119821908.ch1 – ident: ref_88 doi: 10.3390/s21051654 – ident: ref_120 doi: 10.1007/978-3-030-47717-2_5 – ident: ref_109 doi: 10.1117/12.2664359 – volume: 48 start-page: 33 year: 2014 ident: ref_111 article-title: Development of support vector regression identification model for prediction of dam structural behaviour publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2014.02.004 – volume: 3 start-page: 16 year: 2016 ident: ref_28 article-title: A review of supervised machine learning algorithms publication-title: Behav. Ther. – volume: 39 start-page: 3993 year: 2023 ident: ref_67 article-title: Fusion of experimental and synthetic data for reliable prediction of steel connection behaviour using machine learning publication-title: Eng. Comput. doi: 10.1007/s00366-023-01864-1 – volume: 22 start-page: 133 year: 2008 ident: ref_216 article-title: Reinforcement learning for structural control publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2008)22:2(133) – volume: 88 start-page: 051005 year: 2021 ident: ref_147 article-title: Stressgan: A generative deep learning model for two-dimensional stress distribution prediction publication-title: J. Appl. Mech. doi: 10.1115/1.4049805 – volume: 18 start-page: 462 year: 2006 ident: ref_172 article-title: Prediction of concrete strength using neural-expert system publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2006)18:3(462) – volume: 20 start-page: 13 year: 2002 ident: ref_183 article-title: Latent class models for clustering: A comparison with K-means publication-title: Int. Can. J. Mark. Res. – volume: 99 start-page: 25 year: 2017 ident: ref_78 article-title: A priori assessment of prediction confidence for data-driven turbulance modeling publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-017-9807-0 – volume: 6913 start-page: 349 year: 2011 ident: ref_205 article-title: Learning from label proportion by optimizing cluster model selection publication-title: Mach. Learn. Knowl. Discov. Databases – volume: 29 start-page: 594 year: 2010 ident: ref_58 article-title: An empirical comparison of machine learning models for time series forecasting publication-title: Econ. Rev. doi: 10.1080/07474938.2010.481556 – ident: ref_26 – volume: 62 start-page: 1 year: 2015 ident: ref_153 article-title: A review on prognostic techniques for non-stationary and non-linear totating systems publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.02.016 – volume: 28 start-page: 175 year: 2018 ident: ref_18 article-title: Foreground detection by competitive learning for varying input distributions publication-title: Int. J. Neural Syst. – volume: 378 start-page: 686 year: 2019 ident: ref_86 article-title: Physics-informed neural networks:Adeep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 167 start-page: 108519 year: 2022 ident: ref_116 article-title: On the application of Kernelised Bayesian transfer learning to population-based structural health monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108519 – volume: 17 start-page: 353 year: 2005 ident: ref_171 article-title: Application of probabilistic neural networks for prediction of concrete strength publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2005)17:3(353) – volume: 24 start-page: 217 year: 2014 ident: ref_132 article-title: Karamba—A toolkit for parametric structural design publication-title: Struct. Eng. Int. doi: 10.2749/101686614X13830790993483 – volume: 51 start-page: 8961 year: 2021 ident: ref_4 article-title: Features selection for semi-supervised multi-target regression using genetic algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-021-02291-9 – volume: 56 start-page: 326 year: 2020 ident: ref_226 article-title: Reinforcement learning for facilitating human–robot-interaction in manufacturing publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.06.018 – volume: 17 start-page: 3463 year: 2022 ident: ref_165 article-title: A predictive deep learning framework for path-dependent mechanical behavior of granular materials publication-title: Acta Geotech. doi: 10.1007/s11440-021-01419-y – volume: 34 start-page: 116 year: 2019 ident: ref_19 article-title: Roadway asset inspection sampling using high-dimensional clustering and locality-sensitivity hashing publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12405 – volume: 304 start-page: 81 year: 2016 ident: ref_74 article-title: Data-driven computational mechanics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.02.001 – volume: 9 start-page: 279 year: 1995 ident: ref_62 article-title: HPC strength prediction using artificial neural network publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(1995)9:4(279) – volume: 33 start-page: 162 year: 2023 ident: ref_121 article-title: Intelligent structural health monitoring of composite structures using machine learning, deep learning, and transfer learning: A review publication-title: Adv. Compos. Mater. doi: 10.1080/09243046.2023.2215474 – volume: 1 start-page: 663 year: 2012 ident: ref_139 article-title: Validation of finite element cutting force prediction for end milling publication-title: Procedia CIRP doi: 10.1016/j.procir.2012.05.019 – volume: 13 start-page: 36 year: 1999 ident: ref_63 article-title: Design of high-performance concrete mixture using neural networks and nonlinear programming publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(1999)13:1(36) – volume: 7 start-page: 15 year: 2019 ident: ref_82 article-title: GMLS-Nets: Aframe work for learning from unstructured data publication-title: Comput. Sci. – volume: 1 start-page: 67 year: 2012 ident: ref_204 article-title: Striving for zero defect production: Intelligent manufacturing control through data mining in continious rolling mill processes publication-title: Robust Manuf. Control – volume: 296 start-page: 116912 year: 2023 ident: ref_134 article-title: A data-driven, machine learning scheme used to predict the structural response of masonry arches publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2023.116912 – volume: 226 start-page: 301 year: 2007 ident: ref_72 article-title: Stochastic upscaling in soild mechanics: An exercise in machine learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.04.012 – volume: 176 start-page: 103392 year: 2023 ident: ref_66 article-title: Nonlinear analysis of shell structures using image processing and machine learning publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103392 – volume: 83 start-page: 101906 year: 2020 ident: ref_212 article-title: Optimal policy for structure maintenance: A deep reinforcement learning framework publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2019.101906 – volume: 175 start-page: 98 year: 2019 ident: ref_24 article-title: Deep learning for multi-scale smart energy forecasting publication-title: Energy doi: 10.1016/j.energy.2019.03.080 – ident: ref_133 doi: 10.3390/s23115040 – volume: 81 start-page: 2259 year: 2003 ident: ref_177 article-title: Applicability and viability of a GA based finite element analysis architecture for structural design optimization publication-title: Comput. Struct. doi: 10.1016/S0045-7949(03)00255-4 – volume: 274 start-page: 115122 year: 2023 ident: ref_211 article-title: Active structural control framework using policy-gradient reinforcement learning publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115122 – volume: 9 start-page: 221 year: 2022 ident: ref_166 article-title: Bridging length scales in granular materials using convolutional neural networks publication-title: Comput. Part. Mech. doi: 10.1007/s40571-021-00405-1 – volume: 38 start-page: 1605 year: 2022 ident: ref_219 article-title: Reinforcement learning-based control to suppress the transient vibration of semi-active structures subjected to unknown harmonic excitation publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 25 start-page: 1612 year: 2023 ident: ref_68 article-title: Integrating Experiments, Finite Element Analysis, and Interpretable Machine Learning to Evaluate the Auxetic Response of 3D Printed Re-entrant Metamaterials publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.06.038 – volume: 5 start-page: 81 year: 2014 ident: ref_112 article-title: Prediction of gauge readings of filtration in arch dams using artificial neural networks publication-title: Tecnol. Cienc. Agua – volume: 117 start-page: 132 year: 1991 ident: ref_60 article-title: Knowledge-based modeling of material behavior with neural networks publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1991)117:1(132) – ident: ref_215 – volume: 184 start-page: 1140 year: 2008 ident: ref_59 article-title: Application of machine learning techniques for supply chain demand forecasting publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.12.004 – volume: 5 start-page: 135 year: 2014 ident: ref_151 article-title: Improved knowledge-based neural network (KBNN) model for predicting spring-back angles in metal sheet bending publication-title: Int. J. Model. Simul. Sci. Comput. doi: 10.1142/S1793962313500268 – volume: 52 start-page: 1603 year: 2020 ident: ref_11 article-title: Reinforcement learning-based structural control of floating wind turbines publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2020.3032622 – volume: 20 start-page: 282 year: 2013 ident: ref_110 article-title: Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches publication-title: Struct. Control Health Monit. doi: 10.1002/stc.492 – volume: 365 start-page: 515 year: 2007 ident: ref_102 article-title: The application of machine learning to structural health monitoring publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2006.1938 – volume: 51 start-page: JTE20220569 year: 2023 ident: ref_154 article-title: Application of the Ultrasonic Guided Wave Technique Based on PSO-ELM Algorithm in the Rail Fatigue Crack Assessment publication-title: J. Test. Eval. doi: 10.1520/JTE20220569 – volume: 91 start-page: 1 year: 1994 ident: ref_76 article-title: The numerical solution of linear ordinary differential equations by feedward neural networks publication-title: Math. Comput. Model. doi: 10.1016/0895-7177(94)90095-7 – volume: 6 start-page: 030901 year: 2020 ident: ref_100 article-title: Digital twins: State-of-the-art and future directions for modeling and simulation in engineering dynamics applications publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. doi: 10.1115/1.4046739 – volume: 21 start-page: 770 year: 2022 ident: ref_119 article-title: A new dam structural response estimation paradigm powered by deep learning and transfer learning techniques publication-title: Struct. Health Monit. doi: 10.1177/14759217211009780 – volume: 3 start-page: 17 year: 2013 ident: ref_46 article-title: Quantum algorithms for supervised and unsupervised machine learning publication-title: Int. J. Quantuum Phys. – volume: 33 start-page: 371 year: 2012 ident: ref_187 article-title: MDL-based time series clustering publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-012-0508-7 – volume: 5 start-page: 845 year: 2004 ident: ref_189 article-title: Feature selection for unsupervised learning publication-title: J. Mach. Learn. Res. – volume: 120 start-page: 43 year: 2017 ident: ref_41 article-title: A one-class classification support vector machine model by interval-valued training data publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.12.022 – volume: 136 start-page: 1 year: 2023 ident: ref_64 article-title: Using image processing techniques in computational mechanics publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2022.11.024 – volume: 428 start-page: 110080 year: 2021 ident: ref_227 article-title: Direct shape optimization through deep reinforcement learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.110080 – ident: ref_203 – ident: ref_143 doi: 10.3390/machines11050547 – volume: 39 start-page: 10681 year: 2012 ident: ref_156 article-title: Fatigue crack growth estimation by relevance vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.199 – ident: ref_232 – volume: 252 start-page: 110465 year: 2024 ident: ref_197 article-title: Structural damage detection and localization via an unsupervised anomaly detection method publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2024.110465 – ident: ref_175 – volume: 76 start-page: 158 year: 2018 ident: ref_176 article-title: Interpretable policies for reinforcement learning by genetic programming publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.09.007 – volume: 48 start-page: 128 year: 2017 ident: ref_29 article-title: Supervised machine learning algorithms: Classification and comparison publication-title: Int. J. Comput. Trends Technol. doi: 10.14445/22312803/IJCTT-V48P126 – ident: ref_118 doi: 10.1155/2023/8899806 – volume: 1 start-page: 140 year: 2020 ident: ref_40 article-title: A review on linear regression comprehensive in machine learning publication-title: J. Appl. Sci. Technol. Trends doi: 10.38094/jastt1457 – ident: ref_108 doi: 10.1109/ICRSE.2017.8030793 – volume: 404 start-page: 50 year: 2018 ident: ref_136 article-title: Bias voltage effect on the mechanical properties, adhesion and milling performance of PVD films on cemented carbide inserts publication-title: Wear doi: 10.1016/j.wear.2018.03.001 – volume: 93 start-page: 2061 year: 2017 ident: ref_137 article-title: An analytical force model for ball-end milling based on a predictive machine theory considering cutter runout publication-title: Int. J. Adv. Manuf. Technol. – volume: 373 start-page: 113482 year: 2021 ident: ref_94 article-title: Smart constitutive laws: Inelastic homogenization through machine learning publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113482 – volume: 317 start-page: 28 year: 2018 ident: ref_81 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.056 – ident: ref_84 doi: 10.3390/app10175917 – volume: 1 start-page: 81 year: 1986 ident: ref_17 article-title: Introduction of decision trees publication-title: Mach. Learn. doi: 10.1007/BF00116251 – volume: 345 start-page: 363 year: 2019 ident: ref_65 article-title: Smart finite elements: A novel machine learning publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.10.046 – volume: 219 start-page: 108258 year: 2022 ident: ref_234 article-title: Structural dominant failure modes searching method based on deep reinforcement learning publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.108258 – volume: 5 start-page: 2200459 year: 2022 ident: ref_213 article-title: Hierarchical Multiresolution Design of Bioinspired Structural Composites Using Progressive Reinforcement Learning publication-title: Adv. Theory Simul. doi: 10.1002/adts.202200459 – volume: 46 start-page: 17 year: 2022 ident: ref_179 article-title: Bias-variance tradeoff in machine learning: Theoretical formulation and implications to structural engineering applications publication-title: Structures doi: 10.1016/j.istruc.2022.10.004 – volume: 16 start-page: 1001 year: 2020 ident: ref_22 article-title: Enhanced machine learning algorithms: Deep learning, reinforcement learning and Q-learning publication-title: J. Inf. Process. Syst. – volume: 15 start-page: 20170844 year: 2018 ident: ref_69 article-title: A deep learning approach to estimate stress distribution: A fast and accurate surrogate of finite-element analysis publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2017.0844 – volume: 39 start-page: 2585 year: 2022 ident: ref_209 article-title: A novel deep unsupervised learning-based framework for optimization of truss structures publication-title: Eng. Comput. – volume: 9 start-page: 651 year: 2010 ident: ref_12 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – volume: 76 start-page: 113 year: 1999 ident: ref_155 article-title: Artificial neural network technology for the data processing of one-line corrosion fatigue crack growth monitoing publication-title: Int. J. Pres. Ves. Pip doi: 10.1016/S0308-0161(98)00136-7 – volume: 10 start-page: 263 year: 1998 ident: ref_61 article-title: Modeling concrete strength with augment-neuron networks publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(1998)10:4(263) – volume: 164 start-page: 112026 year: 2024 ident: ref_98 article-title: Machine learning modelling of structural response for different seismic signal characteristics: A parametric analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112026 – volume: 125 start-page: 103917 year: 2023 ident: ref_148 article-title: Data-driven artificial neural network for elastic plastic stress and strain computation for notched bodies publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2023.103917 – ident: ref_193 doi: 10.1007/978-3-030-81716-9_12 – volume: 16 start-page: 257 year: 2004 ident: ref_170 article-title: Application of neural networks for estimation of concrete strength publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2004)16:3(257) – ident: ref_10 doi: 10.1109/ICASSP.2013.6639343 – volume: 250 start-page: 106546 year: 2021 ident: ref_130 article-title: Shear wall layout optimization strategy for high-rise buildings based on conceptual design and data-driven tabu search publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2021.106546 – volume: 26 start-page: 428 year: 2014 ident: ref_157 article-title: Prediction of constant amplitude fatigue crack growth life of 2024T3 AI alloy with R-ratio effect by GP publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.10.024 – ident: ref_126 doi: 10.1007/978-981-19-1280-1_12 – volume: 289 start-page: 107188 year: 2023 ident: ref_91 article-title: Machine learning prediction of structural dynamic responses using graph neural networks publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2023.107188 – volume: 233 start-page: 109093 year: 2023 ident: ref_235 article-title: A deep reinforcement learning method for structural dominant failure modes searching based on self-play strategy publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109093 – volume: 24 start-page: 82 year: 2009 ident: ref_107 article-title: Long-term monitoring and identification of bridge structural parameters publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.2008.00572.x – volume: 67 start-page: 108 year: 2015 ident: ref_33 article-title: An empirical analysis of data preprocessing for machine learning-based software cost estimation publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2015.07.004 – volume: 132 start-page: 103931 year: 2021 ident: ref_128 article-title: Automated structural design of shear wall residential buildings using generative adversarial networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103931 – volume: 118 start-page: 107056 year: 2021 ident: ref_220 article-title: Reinforcement learning vibration control for a flexible hinged plate publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.107056 – volume: 183 start-page: 103 year: 2023 ident: ref_21 article-title: Applications of reinforcement learning for maintenance of engineering systems:A review publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2023.103487 – ident: ref_182 – volume: 91 start-page: 230 year: 2018 ident: ref_9 article-title: Principal components analysis and track quality index: A machine learning approach publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.04.001 – volume: 29 start-page: 195 year: 2019 ident: ref_16 article-title: Latent phase detection of hypoxic-ischemic spike transients in the EEG of preterm fetal sheep using reverse biorthogonal wavelets and fuzzy classifier publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065719500138 – volume: 138 start-page: 1227 year: 2009 ident: ref_144 article-title: Migration forces of transcatheter aortic valves in patients with noncalcific aortic insufficiency publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2009.02.057 – volume: 22 start-page: 1376 year: 2023 ident: ref_123 article-title: Vibration-based Damage Localization and Quantification Framework of Large-Scale Truss Structures publication-title: Struct. Health Monit. doi: 10.1177/14759217221100443 – volume: 160 start-page: 107811 year: 2020 ident: ref_194 article-title: Structural damage identification based on unsupervised feature-extraction via Variational Auto-encoder publication-title: Measurement doi: 10.1016/j.measurement.2020.107811 – volume: 10 start-page: 1633 year: 2009 ident: ref_114 article-title: Transfer learning for reinforcement learning domains: A survey publication-title: J. Mach. Learn. Res. – volume: 220 start-page: 111645 year: 2024 ident: ref_198 article-title: Convolutional autoencoders and CGANs for unsupervised structural damage localization publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2024.111645 – volume: Volume 1 start-page: 281 year: 1967 ident: ref_185 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability – volume: 42 start-page: 6609 year: 2015 ident: ref_39 article-title: Dependent cost-sensitive decision trees publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.042 – volume: 8 start-page: 041006 year: 2018 ident: ref_20 article-title: Deterministic and generalized framework for unsupervised learning with restricted Boltzmann machines publication-title: Phys. Rev. doi: 10.1103/PhysRevX.8.041006 – volume: 8 start-page: 323 year: 2000 ident: ref_52 article-title: Concepts and facilities of a neural reinforcement learning control architecture for technical process control publication-title: J. Neural Comput. Appl. doi: 10.1007/s005210050038 – volume: 365 start-page: 589 year: 2007 ident: ref_99 article-title: Structural health monitoring of civil infrastructure publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2006.1925 – ident: ref_214 doi: 10.1007/978-3-030-34328-6_2 – volume: 19 start-page: 966 year: 2023 ident: ref_135 article-title: Evaluating the accuracy and effectiveness of machine learning methods for rapidly determining the safety factor of road embankments publication-title: Multidiscip. Model. Mater. Struct. doi: 10.1108/MMMS-12-2022-0290 – volume: 378 start-page: 113452 year: 2021 ident: ref_85 article-title: Hierarchical deep learning neural network HiDeNN: An artificial intelligence AI framework for computational science and engineering publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113452 – volume: 166 start-page: 103642 year: 2023 ident: ref_163 article-title: Machine learning-driven stress integration method for anisotropic plasticity in sheet metal forming publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2023.103642 – volume: 5 start-page: 532 year: 2021 ident: ref_83 article-title: Deep neural network for system of ordinary differential equatuions: Vectorized algorithm and simulation publication-title: Mach. Learn. Appl. – volume: 91 start-page: 325 year: 2013 ident: ref_55 article-title: Minimax bounds on the sample, complexity of reinforcement learning with a generative model publication-title: Mach. Learn. doi: 10.1007/s10994-013-5368-1 – volume: 308 start-page: 117971 year: 2024 ident: ref_200 article-title: An unsupervised machine learning approach for real-time damage detection in bridges publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2024.117971 – volume: 66 start-page: 121 year: 2017 ident: ref_140 article-title: Computational-experimental investigations of milling porous Aluminimum publication-title: CIRP Ann. doi: 10.1016/j.cirp.2017.04.022 – volume: 351 start-page: 151 year: 2023 ident: ref_162 article-title: Deep Learning of Temperature–Dependent Stress–Strain Hardening Curves publication-title: C. R. Mécanique doi: 10.5802/crmeca.185 – volume: 16 start-page: 362 year: 2004 ident: ref_180 article-title: Unsupervised learning publication-title: Adv. Lect. Mach. Learn. – volume: 91 start-page: 110 year: 1990 ident: ref_75 article-title: Neural algorithm for solving differential equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(90)90007-N – volume: 57 start-page: 102074 year: 2023 ident: ref_127 article-title: A novel integrative design framework combining 4D sketching, geometry reconstruction, micromechanics material modelling, and structural analysis publication-title: Adv. Eng. Informatics doi: 10.1016/j.aei.2023.102074 – volume: 10 start-page: 47 year: 2008 ident: ref_169 article-title: Modeling of polymer modified-concrete strength with artificial neural networks publication-title: Int. J. Civ. Eng. – volume: 8 start-page: 293 year: 1992 ident: ref_51 article-title: Self improving reactive agents based on reinforcement learning, planning and teaching publication-title: J. Mach. Learn. Res. doi: 10.1007/BF00992699 – volume: 19 start-page: 1685 year: 2020 ident: ref_196 article-title: Fast unsupervised learning methods for structural health monitoring with large vibration data from dense sensor networks publication-title: Struct. Health Monit. doi: 10.1177/1475921719894186 – volume: 192 start-page: 41 year: 2007 ident: ref_138 article-title: Empirical analysis of cutting force constants in Micro-end-milling operations publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.04.026 – volume: 8 start-page: 80716 year: 2020 ident: ref_48 article-title: Unsupervised K-means clustering algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988796 – volume: 153 start-page: 13 year: 2024 ident: ref_45 article-title: Practical guidelines for resolving the loss divergence caused by the root-mean-aquared propagation optimizer publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111335 – volume: 184 start-page: 109708 year: 2023 ident: ref_122 article-title: A framework for quantifying the value of vibration-based structural health monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109708 – volume: 89 start-page: 117 year: 2016 ident: ref_31 article-title: Performance evaluation of supervised machine learning algorithms for the intrusion detection publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.06.016 – volume: 25 start-page: 467 year: 1990 ident: ref_38 article-title: The detection and interpretation of interaction effects between continuous variables in multiple regression publication-title: Multivar. Behav. Res. doi: 10.1207/s15327906mbr2504_4 – volume: 59 start-page: 989 year: 2004 ident: ref_160 article-title: Numerical implementation of a neural network based material model in finite element analysis publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.905 – volume: 72 start-page: 563 year: 2023 ident: ref_90 article-title: Deep neural operator for learning transient response of interpenetrating phase composites subject to dynamic loading publication-title: Comput. Mech. doi: 10.1007/s00466-023-02343-6 – volume: 66 start-page: 16 year: 2023 ident: ref_224 article-title: A reinforcement learning hyper-heuristic in multi-objective optimization with application to structural damage identification publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-022-03432-5 – volume: 5 start-page: 349 year: 2017 ident: ref_80 article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations publication-title: Commun. Math. Stat. doi: 10.1007/s40304-017-0117-6 – volume: 140 start-page: 225 year: 2017 ident: ref_129 article-title: Shear wall layout optimization for conceptual design of tall buildings publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2017.02.059 – volume: 38 start-page: 178 year: 2011 ident: ref_158 article-title: Reliability analysis using radial basis function networks and support vector machines publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2010.11.002 – volume: 32 start-page: 49 year: 2015 ident: ref_23 article-title: Application of temporal difference learning rules in short-term traffic flow prediction publication-title: Expert Syst. doi: 10.1111/exsy.12055 – volume: 26 start-page: e2298 year: 2019 ident: ref_217 article-title: Online control of an active seismic system via reinforcement learning publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2298 – volume: 272 start-page: 106157 year: 2022 ident: ref_42 article-title: Machine learning regression and classification methods for fog events prediction publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2022.106157 – ident: ref_131 – volume: 7 start-page: 193 year: 2013 ident: ref_202 article-title: Quality predictions in interlinked manufacturing processes based on supervised and unsupervised machine learning publication-title: Procedia CIRP doi: 10.1016/j.procir.2013.05.033 – volume: 17 start-page: 229 year: 1999 ident: ref_56 article-title: Reinforcement learning: An introduction publication-title: Robotica – volume: 256 start-page: 114059 year: 2022 ident: ref_192 article-title: Unsupervised learning-based damage assessment of full-scale civil structures under long-term and short-term monitoring publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114059 – volume: 145 start-page: 061701 year: 2023 ident: ref_233 article-title: Design synthesis of structural systems as a Markov decision process solved with deep reinforcement learning publication-title: J. Mech. Des. doi: 10.1115/1.4056693 – volume: 26 start-page: 273 year: 2019 ident: ref_3 article-title: Multi-object tracking with discriminant correlation filter based deep learning tracker publication-title: Integr. Comput.-Aided Eng. doi: 10.3233/ICA-180596 – volume: 42 start-page: 177 year: 2001 ident: ref_47 article-title: Unsupervised learning by probabilistic latent semantic analysis publication-title: Int. J. Mach. Learn. doi: 10.1023/A:1007617005950 – volume: 259 start-page: 106707 year: 2022 ident: ref_173 article-title: Probabilistic neural networks that predict compressive strength of high strength concrete in mass placements using thermal history publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2021.106707 – ident: ref_35 doi: 10.3390/w11112210 – volume: 287 start-page: 759 year: 2005 ident: ref_191 article-title: Vibration control of building structures using self-organizing and self-learning neural networks publication-title: J. Sounds Vib. doi: 10.1016/j.jsv.2004.11.031 – volume: 327 start-page: 327 year: 2017 ident: ref_73 article-title: Computational mechanics enhanced by deep learning publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.08.040 – volume: 6 start-page: 93 year: 2008 ident: ref_184 article-title: Software to assess evolutionary algorithms for data mining problems publication-title: Soft Comput. – volume: 18 start-page: 025016 year: 2009 ident: ref_208 article-title: An unsupervised learning algorithm for fatigue crack detection in waveguides publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/2/025016 – ident: ref_230 – volume: 357 start-page: 125 year: 2018 ident: ref_87 article-title: Machine learning of nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.11.039 – volume: 241 start-page: 112377 year: 2021 ident: ref_124 article-title: Structural design of reinforced concrete buildings based on deep neural networks publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.112377 – volume: 237 start-page: 350 year: 2017 ident: ref_1 article-title: Machine learning on big data: Opportunities and challenges publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.026 – volume: 222 start-page: 103956 year: 2023 ident: ref_161 article-title: A simple machine learning-based framework for faster multi-scale simulations of path-independent materials at large strains publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2023.103956 – volume: 359 start-page: 131 year: 2001 ident: ref_103 article-title: Vibration–based structural damage identification publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2000.0717 – volume: 11 start-page: 23433 year: 2023 ident: ref_206 article-title: Unsupervised Legendre–Galerkin Neural Network for Solving Partial Differential Equations publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3244681 – volume: 324 start-page: 115 year: 2016 ident: ref_79 article-title: Quantifying and reducing model-form uncertainties in Reynolds averaged Navier-stokes simulations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.07.038 – volume: 365 start-page: 303 year: 2007 ident: ref_97 article-title: An introduction to structural health monitoring publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2006.1928 – volume: 160 start-page: 3 year: 2007 ident: ref_30 article-title: Supervised machine learning: A review of classification techniques publication-title: Emerg. Artif. Intell. Appl. Comput. Eng. – volume: 486 start-page: 77 year: 2022 ident: ref_36 article-title: Supervised outlier detection for classification and regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.02.047 – ident: ref_186 – volume: 193 start-page: 91 year: 2019 ident: ref_149 article-title: Probabilistic machine learning approach to bridge fatigue failure analysis due to vehicular overloading publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.05.028 – volume: 4 start-page: 119 year: 2003 ident: ref_188 article-title: Unsupervised learning of two dimensional manifolds publication-title: J. Mach. Learn. Res. – volume: 225 start-page: 108643 year: 2022 ident: ref_222 article-title: Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108643 – ident: ref_229 – ident: ref_125 doi: 10.1007/978-981-15-6568-7_8 – volume: 55 start-page: 160 year: 2023 ident: ref_113 article-title: Fast inversion method for seepage parameters of core earth-rock dam based on LHS-SSA-MKELM fusion surrogate model publication-title: Structures doi: 10.1016/j.istruc.2023.06.049 – volume: 25 start-page: 247 year: 2018 ident: ref_5 article-title: Regional parallel structural based CNN for thermal infrared face identification publication-title: Integr. Comput.-Aided Eng. doi: 10.3233/ICA-180560 – volume: 394 start-page: 56 year: 2019 ident: ref_207 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.024 – volume: 33 start-page: 333 year: 2018 ident: ref_14 article-title: Prediction of bus travel time using random forests based on near neighbors publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12315 – volume: 69 start-page: 23 year: 2022 ident: ref_93 article-title: Self-updated four-node finite element using deep learning publication-title: Comput. Mech. doi: 10.1007/s00466-021-02081-7 – volume: 416 start-page: 116 year: 2023 ident: ref_146 article-title: Synergistic integration of deep neural networks and finite element method with applications of nonlinear large deformation biomechanics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116347 – volume: 28 start-page: 04022134 year: 2023 ident: ref_199 article-title: Transfer learning to enhance the damage detection performance in bridges when using numerical models publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001979 – volume: 64 start-page: 94 year: 2019 ident: ref_2 article-title: Image processing analysis and research based on game animation design publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2018.12.011 – ident: ref_57 – volume: 11 start-page: 54509 year: 2023 ident: ref_89 article-title: A Machine Learning-Based Surrogate Finite Element Model for Estimating Dynamic Response of Mechanical Systems publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3282453 – volume: 107 start-page: 871 year: 2020 ident: ref_7 article-title: An introduction to machine learning publication-title: Clin. Pharmacol. Ther. doi: 10.1002/cpt.1796 – volume: 232 start-page: 112128 year: 2023 ident: ref_142 article-title: Design exploration of additively manufactured chiral auxetic structure using explainable machine learning publication-title: Mater. Des. doi: 10.1016/j.matdes.2023.112128 |
SSID | ssj0000852254 |
Score | 2.3464563 |
SecondaryResourceType | review_article |
Snippet | Modeling and simulation have been extensively used to solve a wide range of problems in structural engineering. However, many simulations require significant... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3515 |
SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Classification Clustering Computational mechanics Computer applications Computer simulation Computing time Control algorithms Data mining Datasets Design Design analysis Design optimization Ensemble learning Failure analysis Learning algorithms Machine learning Neural networks Optimization Simulation methods Stress analysis Structural design structural design and manufacturing Structural engineering Structural health monitoring Surveys System identification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwUxDC7iSQ_iis-NHgRBGJy2s7TenqKIoB5U8FamnUQRecpzw39vMjPKiKgXr0NbOknafKHJFyE2VcxyZSwm1lQUoGQlJFWsyiSEMhZaO4vI1cgnp8XRZXZ8lV_1Wn1xTlhLD9wKbkdDtFjnqCMh3xjTEIOztjAa0lobbNhLyef1gqnbNvuKDDVrnzENxfU7oesy_agyxV3p8i-OqOHr_-lWblzN4ayY6TCiHLZ7mxMTMJoX0z3mwAVxd9IkQYLs-FGvkz1yR7Xk1mZcYC4Ji8rzhhuWeTVkb_KuHEq-BcZw0yavy_Pn8Qu8yWpUy2HvPVuevfBFAq-L4vLw4GL_KOkaJyQx0-opoRDIKFPWBeYOS4u5KRDzClNIC4waIY0ZUGhgHRgIBACjBocqw9qoKjhllsTk6H4Ey0LWtIorwMQKaJgLgRnrdSAvj2kMVg9E-iFFHztWcW5ucecpumDB-2-CH4jtzykPLaXGb4P3WDWfA5kNu_lANuI7G_F_2chAbLFiPZ9Z2lysutID-kVmv_JDQi2KiXDcQKx96N53h_nRkyzJ0ZvcqZX_2M2qmNKEjNqCxjUxSbYA64RsnsJGY8TvL9n6IQ priority: 102 providerName: Directory of Open Access Journals |
Title | Machine Learning-Based Modeling for Structural Engineering: A Comprehensive Survey and Applications Overview |
URI | https://www.proquest.com/docview/3133033591 https://doaj.org/article/2ec8fd5f2c974cc0bcb988632e0d23f5 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELb6uMABQQERKJEPlSohrbq292FzQQlqqJD6EKVSb9baO9MeqqRNShH_npldJwQhet21rd0Zezzf2PONEHsqFqUyFjNrGgIoRQ1ZE5s6C6GOldbOInI28vFJdXRRfL0sL1PAbZGuVS5tYmeo21nkGPmBITCVG1M69en2LuOqUXy6mkpobIptMsGWwNf2-PDk7NsqykIOBU3Yoj_ONITvD0KqNr1QheLqdOVfG1LH2_8_69xtOZPn4lnyFeWoV-4LsQHTHfF0jUHwpbg57i5Dgkw8qVfZmLalVnKJM040l-STyvOOI5b5NeRa549yJNkazOG6v8Quz3_MH-CXbKatHK2da8vTBzYo8POVuJgcfv98lKUCClkstLrPCAqR2Oq2wtJhbbE0FWLZYA55hVEj5LEAggjWgYFAjmDU4FAV2BrVBKfMa7E1nU3hjZAtjeIqMLEBauZCYOZ6HWi3xzwGqwciX0rRx8QuzkUubjyhDBa8_0fwA_Fh1eW2p9Z4rPGYVbNqyKzY3YPZ_MqnReY1RIttiToSSooxDzE4ayujIW-1QRpknxXree3Sx8UmpSDQLzILlh-R96KYEMcNxO5S9z4t6oX_MwXfPv76nXiiyffpUxZ3xRZpGd6T73IfhmLTTr4M0zQddhGA3zMw8-M |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEG8QH5QH42c4Qe2DxsRkw_Zjd1sSYw71PITDByDhrWy7U3wgd3CHEP4p_kZn9uM8Y-SN1912stvpTH_Tdn7D2FsRdCaUiYlRJQYouoCkDGWReF-EXEprYqRs5NFePjzU34-yoyV20-XC0LXKzifWjrqaBNoj31AYTKVKZVZ8OjtPqGoUna52JTSaabED11cYss0-bn9B_b6TcvD14PMwaasKJEFLcZFgfICyiiqPmY2FiZnKY8zKmEKaxyAjpEED4mZjQYFHdBQk2Ch0rJQovRUK5d5j97VSlizKDL7N93QQvqB56ObwFN-nG76tbT0TWlAtvOyv5a-uEvC_taBe4AaP2aMWmfJ-M5WesCUYP2UrC3yFz9jpqL56CbxlZT1JtnARrDgVVKO0do4ImO_XjLTE5sEXOm_yPiffM4WfzZV5vv9regnXvBxXvL9wis5_XJL7gqvn7PBOBvYFWx5PxrDKeIVSbA4qlIDNrPfEky89YouYBm9kj6XdKLrQcplTSY1ThzENDbz7Z-B77MO8y1lD5HFb4y1SzbwhcXDXDybTE9eatJMQTKyyKAPGZCGkPnhrTK4kpJVUEYW8J8U68hT4caFsEx7wF4lzy_URKwmi37E9tt7p3rUuZOb-TPiXt79-wx4MD0a7bnd7b2eNPZSIuppkyXW2jBqHV4iaLvzreqpydnzXtvEbewEt4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFoIAPICSkVfzYl5EQSmijltJQUSr1ZtZeuxyqpCSlVf8av46ZXW8IQvTW665t7Xoe_sb2fAPwUrg0E6oMSakqDFDSwieVq4rE2sLlUuoyBMpG3pvk24fpx6PsaA1-dbkwdK2y84mNo65njvbIBwqDKa5UpsUgxGsR-5vj96c_EqogRSetXTmNVkV2_eUFhm-LdzubKOtXUo63vn7YTmKFgcSlUpwlGCvguEWdh0yHogyZykPIqsA9z4OTwXOXesTQpfbKW0RKTnodRBpqJSqrhcJxb8B6gVER78H6aGuy_2W5w4NgBo0lbY9SldJ8YGOl64VIBVXGy_5aDJuaAf9bGZrlbnwX7kScyoatYt2DNT-9D7dX2AsfwMlecxHTs8jRepyMcEmsGZVXoyR3hniYHTT8tMTtwVY6v2VDRp5o7r-3F-jZwc_5ub9k1bRmw5Uzdfb5nJyZv3gIh9cytY-gN51N_WNgNY6ic69c5bGZtpZY86VFpBG4s6XsA-9m0bjIbE4FNk4MRjg08eafie_Dm2WX05bW46rGIxLNsiExcjcPZvNjEw3cSO_KUGdBOozQnOPWWV2WuZKe11IFHOQ1CdaQ38CPc1VMf8BfJAYuM0TkJIiMR_dho5O9iQ5lYf6o_5OrX7-Am2gX5tPOZPcp3JIIwdrMyQ3oocD9M4RQZ_Z51FUG367bPH4DQYczdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Modeling+for+Structural+Engineering%3A+A+Comprehensive+Survey+and+Applications+Overview&rft.jtitle=Buildings+%28Basel%29&rft.au=Bassey+Etim&rft.au=Al-Ghosoun%2C+Alia&rft.au=Renno%2C+Jamil&rft.au=Seaid%2C+Mohammed&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.eissn=2075-5309&rft.volume=14&rft.issue=11&rft.spage=3515&rft_id=info:doi/10.3390%2Fbuildings14113515&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon |