Machine Learning-Based Modeling for Structural Engineering: A Comprehensive Survey and Applications Overview

Modeling and simulation have been extensively used to solve a wide range of problems in structural engineering. However, many simulations require significant computational resources, resulting in exponentially increasing computational time as the spatial and temporal scales of the models increase. T...

Full description

Saved in:
Bibliographic Details
Published inBuildings (Basel) Vol. 14; no. 11; p. 3515
Main Authors Etim, Bassey, Al-Ghosoun, Alia, Renno, Jamil, Seaid, Mohammed, Mohamed, M. Shadi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modeling and simulation have been extensively used to solve a wide range of problems in structural engineering. However, many simulations require significant computational resources, resulting in exponentially increasing computational time as the spatial and temporal scales of the models increase. This is particularly relevant as the demand for higher fidelity models and simulations increases. Recently, the rapid developments in artificial intelligence technologies, coupled with the wide availability of computational resources and data, have driven the extensive adoption of machine learning techniques to improve the computational accuracy and precision of simulations, which enhances their practicality and potential. In this paper, we present a comprehensive survey of the methodologies and techniques used in this context to solve computationally demanding problems, such as structural system identification, structural design, and prediction applications. Specialized deep neural network algorithms, such as the enhanced probabilistic neural network, have been the subject of numerous articles. However, other machine learning algorithms, including neural dynamic classification and dynamic ensemble learning, have shown significant potential for major advancements in specific applications of structural engineering. Our objective in this paper is to provide a state-of-the-art review of machine learning-based modeling in structural engineering, along with its applications in the following areas: (i) computational mechanics, (ii) structural health monitoring, (iii) structural design and manufacturing, (iv) stress analysis, (v) failure analysis, (vi) material modeling and design, and (vii) optimization problems. We aim to offer a comprehensive overview and provide perspectives on these powerful techniques, which have the potential to become alternatives to conventional modeling methods.
AbstractList Modeling and simulation have been extensively used to solve a wide range of problems in structural engineering. However, many simulations require significant computational resources, resulting in exponentially increasing computational time as the spatial and temporal scales of the models increase. This is particularly relevant as the demand for higher fidelity models and simulations increases. Recently, the rapid developments in artificial intelligence technologies, coupled with the wide availability of computational resources and data, have driven the extensive adoption of machine learning techniques to improve the computational accuracy and precision of simulations, which enhances their practicality and potential. In this paper, we present a comprehensive survey of the methodologies and techniques used in this context to solve computationally demanding problems, such as structural system identification, structural design, and prediction applications. Specialized deep neural network algorithms, such as the enhanced probabilistic neural network, have been the subject of numerous articles. However, other machine learning algorithms, including neural dynamic classification and dynamic ensemble learning, have shown significant potential for major advancements in specific applications of structural engineering. Our objective in this paper is to provide a state-of-the-art review of machine learning-based modeling in structural engineering, along with its applications in the following areas: (i) computational mechanics, (ii) structural health monitoring, (iii) structural design and manufacturing, (iv) stress analysis, (v) failure analysis, (vi) material modeling and design, and (vii) optimization problems. We aim to offer a comprehensive overview and provide perspectives on these powerful techniques, which have the potential to become alternatives to conventional modeling methods.
Audience Academic
Author Renno, Jamil
Seaid, Mohammed
Al-Ghosoun, Alia
Mohamed, M. Shadi
Etim, Bassey
Author_xml – sequence: 1
  givenname: Bassey
  orcidid: 0009-0008-3900-8794
  surname: Etim
  fullname: Etim, Bassey
– sequence: 2
  givenname: Alia
  surname: Al-Ghosoun
  fullname: Al-Ghosoun, Alia
– sequence: 3
  givenname: Jamil
  orcidid: 0000-0002-1081-9912
  surname: Renno
  fullname: Renno, Jamil
– sequence: 4
  givenname: Mohammed
  surname: Seaid
  fullname: Seaid, Mohammed
– sequence: 5
  givenname: M. Shadi
  orcidid: 0000-0002-0152-8478
  surname: Mohamed
  fullname: Mohamed, M. Shadi
BookMark eNp9Uctu3CAURVUqNZnmA7pDytopD2Ob7iajtIk0URZp1wjDZcLIAw7YE-XvS2aiKmqlwoLL5Z6HOGfoJMQACH2h5JJzSb72sx-sD5tMa0q5oOIDOmWkFZXgRJ68qz-h85y3pKxOMCbqUzTcafPoA-A16BQKR3WlM1h8Fy0M5YpdTPhhSrOZ5qQHfB02ZRpSefqGl3gVd2OCRwjZ7wE_zGkPL1gHi5fjOHijJx9Dxvd7SHsPz5_RR6eHDOdv5wL9-n79c3VTre9_3K6W68rUjE4VbWpOeWsbJ6RrOyd445zQjgBpnGEOiKmB1LKTwKFv29owkI7WznKqe0n5At0eeW3UWzUmv9PpRUXt1aER00bpNHkzgGJgOmeFY0YWHkN608uuazgDYhkv0gt0ceQaU3yaIU9qG-cUin1VTHLCuTgoXh6nNrqQ-uDilLQp28LOm5KW86W_7GhHiSBSFgA9AkyKOSdwf2xSol5DVf-EWjDtXxjjp8MXFzE__Af5G_GXrG4
CitedBy_id crossref_primary_10_1016_j_engappai_2025_110378
crossref_primary_10_1007_s41024_025_00568_x
crossref_primary_10_36897_jme_202916
Cites_doi 10.1016/j.jsv.2024.118597
10.1007/s11665-021-05507-8
10.1016/j.conbuildmat.2024.135860
10.1111/ffe.13559
10.1080/10255842.2012.746676
10.1111/mice.12480
10.1177/1475921717693572
10.1109/72.712178
10.1109/JPROC.2020.3004555
10.1111/mice.12655
10.1016/j.compstruct.2023.117257
10.3934/Mine.2018.1.118
10.1016/j.aei.2022.101612
10.1016/j.measurement.2018.07.051
10.1016/j.automatica.2013.02.003
10.1016/S0045-7949(01)00039-6
10.1007/s10845-021-01805-z
10.1109/JIOT.2020.3028325
10.1007/s13349-022-00591-3
10.1002/ird.1876
10.1016/j.commatsci.2024.112898
10.1016/j.ymssp.2022.108919
10.1016/S0167-9236(02)00079-9
10.1016/j.ymssp.2024.111340
10.1016/j.compstruc.2007.02.021
10.1016/j.camwa.2020.08.012
10.1016/j.compstruc.2021.106484
10.1007/s11440-022-01709-z
10.1016/j.neucom.2023.127028
10.1016/j.beth.2020.05.002
10.1007/s00332-023-09903-3
10.1016/0041-5553(64)90137-5
10.2514/6.2023-0370
10.1061/(ASCE)0887-3801(1993)7:1(71)
10.1016/j.matdes.2022.110423
10.1002/9781119821908.ch1
10.3390/s21051654
10.1007/978-3-030-47717-2_5
10.1117/12.2664359
10.1016/j.strusafe.2014.02.004
10.1007/s00366-023-01864-1
10.1061/(ASCE)0887-3801(2008)22:2(133)
10.1115/1.4049805
10.1061/(ASCE)0899-1561(2006)18:3(462)
10.1007/s10494-017-9807-0
10.1080/07474938.2010.481556
10.1016/j.ymssp.2015.02.016
10.1016/j.jcp.2018.10.045
10.1016/j.ymssp.2021.108519
10.1061/(ASCE)0899-1561(2005)17:3(353)
10.2749/101686614X13830790993483
10.1007/s10489-021-02291-9
10.1016/j.jmsy.2020.06.018
10.1007/s11440-021-01419-y
10.1111/mice.12405
10.1016/j.cma.2016.02.001
10.1061/(ASCE)0887-3801(1995)9:4(279)
10.1080/09243046.2023.2215474
10.1016/j.procir.2012.05.019
10.1061/(ASCE)0887-3801(1999)13:1(36)
10.1016/j.engstruct.2023.116912
10.1016/j.jcp.2007.04.012
10.1016/j.advengsoft.2022.103392
10.1016/j.strusafe.2019.101906
10.1016/j.energy.2019.03.080
10.3390/s23115040
10.1016/S0045-7949(03)00255-4
10.1016/j.engstruct.2022.115122
10.1007/s40571-021-00405-1
10.1016/j.jmrt.2023.06.038
10.1061/(ASCE)0733-9399(1991)117:1(132)
10.1016/j.ejor.2006.12.004
10.1142/S1793962313500268
10.1109/TSMC.2020.3032622
10.1002/stc.492
10.1098/rsta.2006.1938
10.1520/JTE20220569
10.1016/0895-7177(94)90095-7
10.1115/1.4046739
10.1177/14759217211009780
10.1007/s10115-012-0508-7
10.1016/j.knosys.2016.12.022
10.1016/j.camwa.2022.11.024
10.1016/j.jcp.2020.110080
10.3390/machines11050547
10.1016/j.eswa.2012.02.199
10.1016/j.ress.2024.110465
10.1016/j.engappai.2018.09.007
10.14445/22312803/IJCTT-V48P126
10.1155/2023/8899806
10.38094/jastt1457
10.1109/ICRSE.2017.8030793
10.1016/j.wear.2018.03.001
10.1016/j.cma.2020.113482
10.1016/j.neucom.2018.06.056
10.3390/app10175917
10.1007/BF00116251
10.1016/j.cma.2018.10.046
10.1016/j.ress.2021.108258
10.1002/adts.202200459
10.1016/j.istruc.2022.10.004
10.1098/rsif.2017.0844
10.1016/j.patrec.2009.09.011
10.1016/S0308-0161(98)00136-7
10.1061/(ASCE)0899-1561(1998)10:4(263)
10.1016/j.asoc.2024.112026
10.1016/j.tafmec.2023.103917
10.1007/978-3-030-81716-9_12
10.1061/(ASCE)0899-1561(2004)16:3(257)
10.1109/ICASSP.2013.6639343
10.1016/j.compstruc.2021.106546
10.1016/j.asoc.2014.10.024
10.1007/978-981-19-1280-1_12
10.1016/j.compstruc.2023.107188
10.1016/j.ress.2023.109093
10.1111/j.1467-8667.2008.00572.x
10.1016/j.infsof.2015.07.004
10.1016/j.autcon.2021.103931
10.1016/j.ast.2021.107056
10.1016/j.advengsoft.2023.103487
10.1016/j.trc.2018.04.001
10.1142/S0129065719500138
10.1016/j.jtcvs.2009.02.057
10.1177/14759217221100443
10.1016/j.measurement.2020.107811
10.1016/j.ymssp.2024.111645
10.1016/j.eswa.2015.04.042
10.1103/PhysRevX.8.041006
10.1007/s005210050038
10.1098/rsta.2006.1925
10.1007/978-3-030-34328-6_2
10.1108/MMMS-12-2022-0290
10.1016/j.cma.2020.113452
10.1016/j.ijplas.2023.103642
10.1007/s10994-013-5368-1
10.1016/j.engstruct.2024.117971
10.1016/j.cirp.2017.04.022
10.5802/crmeca.185
10.1016/0021-9991(90)90007-N
10.1016/j.aei.2023.102074
10.1007/BF00992699
10.1177/1475921719894186
10.1016/j.jmatprotec.2007.04.026
10.1109/ACCESS.2020.2988796
10.1016/j.asoc.2024.111335
10.1016/j.ymssp.2022.109708
10.1016/j.procs.2016.06.016
10.1207/s15327906mbr2504_4
10.1002/nme.905
10.1007/s00466-023-02343-6
10.1007/s00158-022-03432-5
10.1007/s40304-017-0117-6
10.1016/j.engstruct.2017.02.059
10.1016/j.compgeo.2010.11.002
10.1111/exsy.12055
10.1002/stc.2298
10.1016/j.atmosres.2022.106157
10.1016/j.procir.2013.05.033
10.1016/j.engstruct.2022.114059
10.1115/1.4056693
10.3233/ICA-180596
10.1023/A:1007617005950
10.1016/j.compstruc.2021.106707
10.3390/w11112210
10.1016/j.jsv.2004.11.031
10.1016/j.cma.2017.08.040
10.1088/0964-1726/18/2/025016
10.1016/j.jcp.2017.11.039
10.1016/j.engstruct.2021.112377
10.1016/j.neucom.2017.01.026
10.1016/j.finel.2023.103956
10.1098/rsta.2000.0717
10.1109/ACCESS.2023.3244681
10.1016/j.jcp.2016.07.038
10.1098/rsta.2006.1928
10.1016/j.neucom.2022.02.047
10.1016/j.engstruct.2019.05.028
10.1016/j.ress.2022.108643
10.1007/978-981-15-6568-7_8
10.1016/j.istruc.2023.06.049
10.3233/ICA-180560
10.1016/j.jcp.2019.05.024
10.1111/mice.12315
10.1007/s00466-021-02081-7
10.1016/j.cma.2023.116347
10.1061/(ASCE)BE.1943-5592.0001979
10.1016/j.jvcir.2018.12.011
10.1109/ACCESS.2023.3282453
10.1002/cpt.1796
10.1016/j.matdes.2023.112128
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L.-
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.3390/buildings14113515
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-5309
ExternalDocumentID oai_doaj_org_article_2ec8fd5f2c974cc0bcb988632e0d23f5
A818105099
10_3390_buildings14113515
GeographicLocations United States
New Jersey
Germany
GeographicLocations_xml – name: New Jersey
– name: Germany
– name: United States
GroupedDBID .4S
2XV
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHM
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PYCSY
TUS
PMFND
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
KR7
L.-
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c421t-1643137d6f59f78f536ff5af0e06fc2fe0c4e04989e3eb774c2e9f14fd31ab913
IEDL.DBID BENPR
ISSN 2075-5309
IngestDate Wed Aug 27 01:24:20 EDT 2025
Fri Jul 25 12:10:15 EDT 2025
Tue Jun 10 20:57:44 EDT 2025
Thu Apr 24 23:00:20 EDT 2025
Tue Jul 01 01:45:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-1643137d6f59f78f536ff5af0e06fc2fe0c4e04989e3eb774c2e9f14fd31ab913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1081-9912
0009-0008-3900-8794
0000-0002-0152-8478
OpenAccessLink https://www.proquest.com/docview/3133033591?pq-origsite=%requestingapplication%
PQID 3133033591
PQPubID 2032422
ParticipantIDs doaj_primary_oai_doaj_org_article_2ec8fd5f2c974cc0bcb988632e0d23f5
proquest_journals_3133033591
gale_infotracacademiconefile_A818105099
crossref_primary_10_3390_buildings14113515
crossref_citationtrail_10_3390_buildings14113515
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Buildings (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hashash (ref_160) 2004; 59
Park (ref_22) 2020; 16
Mital (ref_166) 2022; 9
Sinaga (ref_48) 2020; 8
Yeh (ref_61) 1998; 10
Fazily (ref_163) 2023; 166
Quinn (ref_92) 2024; 213
Kamariotis (ref_122) 2023; 184
ref_131
ref_133
Meade (ref_76) 1994; 91
Bayane (ref_200) 2024; 308
Johannes (ref_236) 2022; 33
Jaccard (ref_38) 1990; 25
Yi (ref_221) 2020; 8
ref_126
Polyak (ref_44) 1964; 4
ref_125
Lees (ref_75) 1990; 91
Liao (ref_128) 2021; 132
Yan (ref_149) 2019; 193
Farrar (ref_103) 2001; 359
Kan (ref_153) 2015; 62
Liang (ref_69) 2018; 15
Tronci (ref_101) 2022; 12
ref_120
Zhu (ref_207) 2019; 394
Gupta (ref_172) 2006; 18
Yang (ref_174) 2024; 423
Alireza (ref_195) 2018; 17
Divac (ref_111) 2014; 48
Zhou (ref_1) 2017; 237
Skordaris (ref_136) 2018; 404
Jirousek (ref_142) 2023; 232
Agarwal (ref_53) 2021; 22
Zhang (ref_129) 2017; 140
Tan (ref_158) 2011; 38
Lu (ref_90) 2023; 72
Kotsiantis (ref_30) 2007; 160
Abdulwahab (ref_169) 2008; 10
Man (ref_139) 2012; 1
Kazem (ref_218) 2015; 64
Rasoulzadeh (ref_127) 2023; 57
Guan (ref_179) 2022; 46
Hofmann (ref_47) 2001; 42
Praveena (ref_37) 2017; 169
Zimmerling (ref_225) 2022; 214
Marugan (ref_21) 2023; 183
Mathias (ref_49) 2020; 124
Piervincenzo (ref_208) 2009; 18
ref_88
ref_143
Aurccio (ref_145) 2014; 17
ref_84
Hashemi (ref_89) 2023; 11
Guan (ref_235) 2023; 233
Einst (ref_50) 2005; 6
Yu (ref_154) 2023; 51
ref_214
ref_215
Habib (ref_135) 2023; 19
Maulud (ref_40) 2020; 1
Toledo (ref_112) 2014; 5
Charalampous (ref_141) 2002; 30
Soheila (ref_211) 2023; 274
Maximilian (ref_233) 2023; 145
Shaopeng (ref_228) 2021; 36
Kim (ref_171) 2005; 17
Gosliga (ref_117) 2022; 173
Logarzo (ref_94) 2021; 373
Chen (ref_19) 2019; 34
Heng (ref_159) 2011; 38
Trask (ref_82) 2019; 7
Aswani (ref_54) 2013; 49
Saul (ref_188) 2003; 4
Choi (ref_206) 2023; 11
Weinan (ref_80) 2017; 5
ref_203
Markogiannaki (ref_123) 2023; 22
Gardner (ref_116) 2022; 167
Madan (ref_191) 2005; 287
Hakim (ref_168) 2011; 6
Jiang (ref_27) 2020; 51
Alireza (ref_196) 2020; 19
Riedmiller (ref_52) 2000; 8
Mishra (ref_96) 2018; 1
Li (ref_119) 2022; 21
Rakthanmanon (ref_187) 2012; 33
Jung (ref_93) 2022; 69
ref_118
Azar (ref_55) 2013; 91
Kirchdoerfer (ref_74) 2016; 304
Koutsourelakis (ref_72) 2007; 226
ref_230
ref_232
Ghimire (ref_42) 2022; 272
Raissi (ref_87) 2018; 357
Berg (ref_81) 2018; 317
Kim (ref_32) 2003; 34
Bolaji (ref_68) 2023; 25
ref_108
ref_229
Preisinger (ref_132) 2014; 24
ref_109
Nicholas (ref_177) 2003; 81
Dominik (ref_219) 2022; 38
Dominguez (ref_18) 2018; 28
ref_223
Ahmad (ref_24) 2019; 175
Sui (ref_2) 2019; 64
Nashed (ref_66) 2023; 176
Reiner (ref_150) 2023; 321
Zhang (ref_13) 2019; 34
Miseta (ref_34) 2024; 567
Hein (ref_176) 2018; 76
Gang (ref_165) 2022; 17
Liu (ref_197) 2024; 252
Liang (ref_146) 2023; 416
Benyamin (ref_181) 2023; Volume 404
Syed (ref_4) 2021; 51
Lagaris (ref_77) 1998; 9
ref_10
Silva (ref_70) 2021; 44
Worden (ref_102) 2007; 365
Lou (ref_130) 2021; 250
Soyoz (ref_107) 2009; 24
Zhuang (ref_115) 2021; 109
ref_15
Carbonneau (ref_59) 2008; 184
Tramel (ref_20) 2018; 8
Laisisi (ref_9) 2018; 91
Guan (ref_234) 2022; 219
Michailidis (ref_140) 2017; 66
Brevis (ref_95) 2021; 95
Gharahamani (ref_180) 2004; 16
Janusz (ref_62) 1995; 9
ref_25
Daneshvar (ref_192) 2022; 256
Cabrera (ref_67) 2023; 39
Chang (ref_106) 2018; 129
Fabian (ref_231) 2022; 52
Yeh (ref_63) 1999; 13
Saha (ref_85) 2021; 378
Raissi (ref_86) 2019; 378
Yang (ref_222) 2022; 225
Sutton (ref_56) 1999; 17
ref_26
Peng (ref_45) 2024; 153
Ma (ref_194) 2020; 160
Osisanwo (ref_29) 2017; 48
Stolpr (ref_205) 2011; 6913
Ghaboussi (ref_60) 1991; 117
Li (ref_91) 2023; 289
Xiao (ref_79) 2016; 324
Bahnsen (ref_39) 2015; 42
Wojtowytsch (ref_43) 2023; 33
Lioyd (ref_46) 2013; 3
Magidson (ref_183) 2002; 20
Pizarro (ref_124) 2021; 241
Newby (ref_138) 2007; 192
Brownjohn (ref_99) 2007; 365
Jokar (ref_71) 2021; 247
Dy (ref_189) 2004; 5
Taylor (ref_114) 2009; 10
Roberson (ref_173) 2022; 259
Pan (ref_210) 2021; 35
Arash (ref_217) 2019; 26
Jiang (ref_147) 2021; 88
Bernard (ref_216) 2008; 22
Wang (ref_5) 2018; 25
Singh (ref_28) 2016; 3
Farrarand (ref_97) 2007; 365
Oishi (ref_73) 2017; 327
Azad (ref_121) 2023; 33
Kao (ref_110) 2013; 20
Sanchez (ref_184) 2008; 6
Lu (ref_201) 2024; 590
Abbasi (ref_16) 2019; 29
Mohanty (ref_157) 2014; 26
Belavagi (ref_31) 2016; 89
ref_57
ref_175
Harley (ref_226) 2020; 56
Capuano (ref_65) 2019; 345
ref_178
Yu (ref_14) 2018; 33
Miceli (ref_98) 2024; 164
Guan (ref_167) 2022; 18
ref_182
Lin (ref_51) 1992; 8
Cheng (ref_155) 1999; 76
Wagg (ref_100) 2020; 6
Motsa (ref_134) 2023; 296
Karmaker (ref_8) 2022; 54
Carneiro (ref_161) 2023; 222
Fernandez (ref_36) 2022; 486
Wei (ref_212) 2020; 83
Yu (ref_213) 2022; 5
Rafiq (ref_152) 2001; 79
Fu (ref_137) 2017; 93
Macqueen (ref_185) 1967; Volume 1
Yeh (ref_104) 1993; 7
Dufera (ref_83) 2021; 5
Eloi (ref_199) 2023; 28
Zhang (ref_11) 2020; 52
Dwyer (ref_144) 2009; 138
Konrad (ref_204) 2012; 1
Song (ref_113) 2023; 55
Zio (ref_156) 2012; 39
Kim (ref_170) 2004; 16
ref_35
Hau (ref_209) 2022; 39
Junges (ref_198) 2024; 220
Quinlan (ref_17) 1986; 1
Kazeruni (ref_148) 2023; 125
Huang (ref_33) 2015; 67
Long (ref_164) 2024; 237
Abdi (ref_23) 2015; 32
Ahmed (ref_58) 2010; 29
Cao (ref_224) 2023; 66
Trent (ref_64) 2023; 136
Wu (ref_78) 2017; 99
Yang (ref_3) 2019; 26
Utkin (ref_41) 2017; 120
ref_186
Jonathan (ref_227) 2021; 428
Badillo (ref_7) 2020; 107
Qiu (ref_220) 2021; 118
Bui (ref_151) 2014; 5
Jain (ref_12) 2010; 9
ref_190
Zapico (ref_105) 2008; 86
ref_193
Lieber (ref_202) 2013; 7
(ref_162) 2023; 351
ref_6
References_xml – ident: ref_190
– volume: 590
  start-page: 118597
  year: 2024
  ident: ref_201
  article-title: Unsupervised quantitative structural damage identification method based on BiLSTM networks and probability distribution model
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2024.118597
– volume: 30
  start-page: 2002
  year: 2002
  ident: ref_141
  article-title: Prediction of cutting forces in milling using machine learning algorithms and finite element analysis
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-021-05507-8
– volume: 423
  start-page: 135860
  year: 2024
  ident: ref_174
  article-title: Effect of structural parameters on compression performance of autoclaved aerated concrete: Simulation and machine learning
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.135860
– volume: 44
  start-page: 3334
  year: 2021
  ident: ref_70
  article-title: Machine learning and finite element analysis: An integrated approach for fatigue lifetime prediction of adhesively bonded joints
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/ffe.13559
– volume: 17
  start-page: 1347
  year: 2014
  ident: ref_145
  article-title: Simulations of transcather aortic valve implementation: Apatient-specific finite element approach
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2012.746676
– volume: Volume 404
  start-page: 207
  year: 2023
  ident: ref_181
  article-title: Locally linear embedding
  publication-title: Elements of Dimensionality Reduction and Manifold Learning
– volume: 34
  start-page: 991
  year: 2019
  ident: ref_13
  article-title: Probability and interval hybrid reliability analysis based on adaptive local approximation of projection outlines using support vector machine
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12480
– volume: 17
  start-page: 325
  year: 2018
  ident: ref_195
  article-title: An unsupervised learning approach by novel damage indices in structural health monitoring for damage localization and quantification
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921717693572
– volume: 9
  start-page: 987
  year: 1998
  ident: ref_77
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: Trans. Neural Netw.
  doi: 10.1109/72.712178
– ident: ref_178
– volume: 109
  start-page: 43
  year: 2021
  ident: ref_115
  article-title: A Comprehensive survey on transfer learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.3004555
– volume: 36
  start-page: 733
  year: 2021
  ident: ref_228
  article-title: A knowledge-enhanced deep reinforcement learning-based shape optimizer for aerodynamic mitigation of wind-sensitive structures
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12655
– volume: 6
  start-page: 503
  year: 2005
  ident: ref_50
  article-title: Trees-based batch mode reinforcement learning
  publication-title: J. Mach. Learn. Res.
– volume: 321
  start-page: 117257
  year: 2023
  ident: ref_150
  article-title: Bayesian parameter estimation for the inclusion of uncertainty in progressive damage simulation of composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2023.117257
– volume: 1
  start-page: 118
  year: 2018
  ident: ref_96
  article-title: A machine learning framework for data driven acceleration of computations of differential equations
  publication-title: Math. Eng.
  doi: 10.3934/Mine.2018.1.118
– volume: 35
  start-page: 180
  year: 2021
  ident: ref_210
  article-title: A self-learning finite element extraction system based on reinforcement learning
  publication-title: AI EDAM
– volume: 52
  start-page: 101612
  year: 2022
  ident: ref_231
  article-title: Reinforcement learning for engineering design automation
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101612
– volume: 129
  start-page: 457
  year: 2018
  ident: ref_106
  article-title: Applications of neural network models for structural health monitoring based on derived modal properties
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.07.051
– ident: ref_223
– volume: 49
  start-page: 1216
  year: 2013
  ident: ref_54
  article-title: Probably safe and robust learning-based model predictive control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.02.003
– volume: 79
  start-page: 1541
  year: 2001
  ident: ref_152
  article-title: Neural network design for engineering applications
  publication-title: Comuters Struct.
  doi: 10.1016/S0045-7949(01)00039-6
– volume: 33
  start-page: 333
  year: 2022
  ident: ref_236
  article-title: Deep reinforcement learning methods for structure-guided processing path optimization
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-021-01805-z
– volume: 8
  start-page: 3108
  year: 2020
  ident: ref_221
  article-title: Reinforcement-learning-enabled partial confident information coverage for IoT-based bridge structural health monitoring
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3028325
– volume: 38
  start-page: 178
  year: 2011
  ident: ref_159
  article-title: Intelligent prognostics of machinery health utilising suspended condition monitoring data
  publication-title: Comput. Geotech.
– volume: 12
  start-page: 1285
  year: 2022
  ident: ref_101
  article-title: A transfer learning SHM strategy for bridges enriched by the use of speaker recognition x-vectors
  publication-title: J. Civ. Struct. Health Monit.
  doi: 10.1007/s13349-022-00591-3
– volume: 64
  start-page: 77
  year: 2015
  ident: ref_218
  article-title: Application of reinforcement learning algorithm for automation of canal structures
  publication-title: Irrig. Drain.
  doi: 10.1002/ird.1876
– volume: 237
  start-page: 112898
  year: 2024
  ident: ref_164
  article-title: Impact of structural characteristics on thermal conductivity of foam structures revealed with machine learning
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2024.112898
– volume: 173
  start-page: 108919
  year: 2022
  ident: ref_117
  article-title: On Population-based structural health monitoring for bridges
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.108919
– volume: 124
  start-page: 226
  year: 2020
  ident: ref_49
  article-title: Unsupervised machine learning and band topology
  publication-title: Phys. Rev. Lett.
– volume: 34
  start-page: 167
  year: 2003
  ident: ref_32
  article-title: Combination of multiple classifiers for the customers purchase behavior prediction
  publication-title: Decis. Support Syst.
  doi: 10.1016/S0167-9236(02)00079-9
– volume: 213
  start-page: 111340
  year: 2024
  ident: ref_92
  article-title: A structure-preserving machine learning framework for accurate prediction of structural dynamics for systems with isolated nonlinearities
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2024.111340
– volume: 86
  start-page: 416
  year: 2008
  ident: ref_105
  article-title: Seismic damage identification in buildings using neural networks and modal data
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.02.021
– volume: 95
  start-page: 186
  year: 2021
  ident: ref_95
  article-title: A machine-learning minimal-residual (ML-MRes) framework for goal-oriented finite element discretizations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2020.08.012
– volume: 169
  start-page: 975
  year: 2017
  ident: ref_37
  article-title: A literature review on supervised machine learning algorithms and boosting process
  publication-title: Int. J. Comput. Appl.
– volume: 247
  start-page: 106484
  year: 2021
  ident: ref_71
  article-title: Finite element network analysis: A machine learning based computational framework for the simulation of physical systems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2021.106484
– volume: 18
  start-page: 1699
  year: 2022
  ident: ref_167
  article-title: A machine learning-based multi-scale computational framework for granular materials
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-022-01709-z
– volume: 567
  start-page: 127028
  year: 2024
  ident: ref_34
  article-title: Surpassing early stopping:A novel correlation-based stopping criterion for neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.127028
– volume: 54
  start-page: 1
  year: 2022
  ident: ref_8
  article-title: ACM computing surveys
  publication-title: Knowl. Inf. Syst.
– volume: 51
  start-page: 675
  year: 2020
  ident: ref_27
  article-title: Supervised machine learning: A brief primer
  publication-title: Behav. Ther.
  doi: 10.1016/j.beth.2020.05.002
– volume: 33
  start-page: 45
  year: 2023
  ident: ref_43
  article-title: Stochastic gradient descent with noise of machine learning type 1:Discrete time analysis
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-023-09903-3
– volume: 6
  start-page: 975
  year: 2011
  ident: ref_168
  article-title: Application of artificial neural networks to predict compressive strength of high strength concrete
  publication-title: Int. J. Phys. Sci.
– volume: 4
  start-page: 1
  year: 1964
  ident: ref_44
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 22
  start-page: 1
  year: 2021
  ident: ref_53
  article-title: On the theory of policy gradient methods: Optimality, approximation and distribution shift
  publication-title: J. Mach. Learn. Res.
– ident: ref_6
  doi: 10.2514/6.2023-0370
– volume: 7
  start-page: 71
  year: 1993
  ident: ref_104
  article-title: Building KBES for diagnosing PC pile with artificial neural network
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(1993)7:1(71)
– ident: ref_25
– volume: 214
  start-page: 110423
  year: 2022
  ident: ref_225
  article-title: Optimisation of manufacturing process parameters for variable component geometries using reinforcement learning
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.110423
– ident: ref_15
  doi: 10.1002/9781119821908.ch1
– ident: ref_88
  doi: 10.3390/s21051654
– ident: ref_120
  doi: 10.1007/978-3-030-47717-2_5
– ident: ref_109
  doi: 10.1117/12.2664359
– volume: 48
  start-page: 33
  year: 2014
  ident: ref_111
  article-title: Development of support vector regression identification model for prediction of dam structural behaviour
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.02.004
– volume: 3
  start-page: 16
  year: 2016
  ident: ref_28
  article-title: A review of supervised machine learning algorithms
  publication-title: Behav. Ther.
– volume: 39
  start-page: 3993
  year: 2023
  ident: ref_67
  article-title: Fusion of experimental and synthetic data for reliable prediction of steel connection behaviour using machine learning
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-023-01864-1
– volume: 22
  start-page: 133
  year: 2008
  ident: ref_216
  article-title: Reinforcement learning for structural control
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2008)22:2(133)
– volume: 88
  start-page: 051005
  year: 2021
  ident: ref_147
  article-title: Stressgan: A generative deep learning model for two-dimensional stress distribution prediction
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4049805
– volume: 18
  start-page: 462
  year: 2006
  ident: ref_172
  article-title: Prediction of concrete strength using neural-expert system
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2006)18:3(462)
– volume: 20
  start-page: 13
  year: 2002
  ident: ref_183
  article-title: Latent class models for clustering: A comparison with K-means
  publication-title: Int. Can. J. Mark. Res.
– volume: 99
  start-page: 25
  year: 2017
  ident: ref_78
  article-title: A priori assessment of prediction confidence for data-driven turbulance modeling
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-017-9807-0
– volume: 6913
  start-page: 349
  year: 2011
  ident: ref_205
  article-title: Learning from label proportion by optimizing cluster model selection
  publication-title: Mach. Learn. Knowl. Discov. Databases
– volume: 29
  start-page: 594
  year: 2010
  ident: ref_58
  article-title: An empirical comparison of machine learning models for time series forecasting
  publication-title: Econ. Rev.
  doi: 10.1080/07474938.2010.481556
– ident: ref_26
– volume: 62
  start-page: 1
  year: 2015
  ident: ref_153
  article-title: A review on prognostic techniques for non-stationary and non-linear totating systems
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.02.016
– volume: 28
  start-page: 175
  year: 2018
  ident: ref_18
  article-title: Foreground detection by competitive learning for varying input distributions
  publication-title: Int. J. Neural Syst.
– volume: 378
  start-page: 686
  year: 2019
  ident: ref_86
  article-title: Physics-informed neural networks:Adeep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 167
  start-page: 108519
  year: 2022
  ident: ref_116
  article-title: On the application of Kernelised Bayesian transfer learning to population-based structural health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108519
– volume: 17
  start-page: 353
  year: 2005
  ident: ref_171
  article-title: Application of probabilistic neural networks for prediction of concrete strength
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2005)17:3(353)
– volume: 24
  start-page: 217
  year: 2014
  ident: ref_132
  article-title: Karamba—A toolkit for parametric structural design
  publication-title: Struct. Eng. Int.
  doi: 10.2749/101686614X13830790993483
– volume: 51
  start-page: 8961
  year: 2021
  ident: ref_4
  article-title: Features selection for semi-supervised multi-target regression using genetic algorithm
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02291-9
– volume: 56
  start-page: 326
  year: 2020
  ident: ref_226
  article-title: Reinforcement learning for facilitating human–robot-interaction in manufacturing
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.06.018
– volume: 17
  start-page: 3463
  year: 2022
  ident: ref_165
  article-title: A predictive deep learning framework for path-dependent mechanical behavior of granular materials
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-021-01419-y
– volume: 34
  start-page: 116
  year: 2019
  ident: ref_19
  article-title: Roadway asset inspection sampling using high-dimensional clustering and locality-sensitivity hashing
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12405
– volume: 304
  start-page: 81
  year: 2016
  ident: ref_74
  article-title: Data-driven computational mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.02.001
– volume: 9
  start-page: 279
  year: 1995
  ident: ref_62
  article-title: HPC strength prediction using artificial neural network
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(1995)9:4(279)
– volume: 33
  start-page: 162
  year: 2023
  ident: ref_121
  article-title: Intelligent structural health monitoring of composite structures using machine learning, deep learning, and transfer learning: A review
  publication-title: Adv. Compos. Mater.
  doi: 10.1080/09243046.2023.2215474
– volume: 1
  start-page: 663
  year: 2012
  ident: ref_139
  article-title: Validation of finite element cutting force prediction for end milling
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2012.05.019
– volume: 13
  start-page: 36
  year: 1999
  ident: ref_63
  article-title: Design of high-performance concrete mixture using neural networks and nonlinear programming
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(1999)13:1(36)
– volume: 7
  start-page: 15
  year: 2019
  ident: ref_82
  article-title: GMLS-Nets: Aframe work for learning from unstructured data
  publication-title: Comput. Sci.
– volume: 1
  start-page: 67
  year: 2012
  ident: ref_204
  article-title: Striving for zero defect production: Intelligent manufacturing control through data mining in continious rolling mill processes
  publication-title: Robust Manuf. Control
– volume: 296
  start-page: 116912
  year: 2023
  ident: ref_134
  article-title: A data-driven, machine learning scheme used to predict the structural response of masonry arches
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2023.116912
– volume: 226
  start-page: 301
  year: 2007
  ident: ref_72
  article-title: Stochastic upscaling in soild mechanics: An exercise in machine learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.04.012
– volume: 176
  start-page: 103392
  year: 2023
  ident: ref_66
  article-title: Nonlinear analysis of shell structures using image processing and machine learning
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2022.103392
– volume: 83
  start-page: 101906
  year: 2020
  ident: ref_212
  article-title: Optimal policy for structure maintenance: A deep reinforcement learning framework
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2019.101906
– volume: 175
  start-page: 98
  year: 2019
  ident: ref_24
  article-title: Deep learning for multi-scale smart energy forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.080
– ident: ref_133
  doi: 10.3390/s23115040
– volume: 81
  start-page: 2259
  year: 2003
  ident: ref_177
  article-title: Applicability and viability of a GA based finite element analysis architecture for structural design optimization
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(03)00255-4
– volume: 274
  start-page: 115122
  year: 2023
  ident: ref_211
  article-title: Active structural control framework using policy-gradient reinforcement learning
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.115122
– volume: 9
  start-page: 221
  year: 2022
  ident: ref_166
  article-title: Bridging length scales in granular materials using convolutional neural networks
  publication-title: Comput. Part. Mech.
  doi: 10.1007/s40571-021-00405-1
– volume: 38
  start-page: 1605
  year: 2022
  ident: ref_219
  article-title: Reinforcement learning-based control to suppress the transient vibration of semi-active structures subjected to unknown harmonic excitation
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 25
  start-page: 1612
  year: 2023
  ident: ref_68
  article-title: Integrating Experiments, Finite Element Analysis, and Interpretable Machine Learning to Evaluate the Auxetic Response of 3D Printed Re-entrant Metamaterials
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.06.038
– volume: 5
  start-page: 81
  year: 2014
  ident: ref_112
  article-title: Prediction of gauge readings of filtration in arch dams using artificial neural networks
  publication-title: Tecnol. Cienc. Agua
– volume: 117
  start-page: 132
  year: 1991
  ident: ref_60
  article-title: Knowledge-based modeling of material behavior with neural networks
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1991)117:1(132)
– ident: ref_215
– volume: 184
  start-page: 1140
  year: 2008
  ident: ref_59
  article-title: Application of machine learning techniques for supply chain demand forecasting
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.12.004
– volume: 5
  start-page: 135
  year: 2014
  ident: ref_151
  article-title: Improved knowledge-based neural network (KBNN) model for predicting spring-back angles in metal sheet bending
  publication-title: Int. J. Model. Simul. Sci. Comput.
  doi: 10.1142/S1793962313500268
– volume: 52
  start-page: 1603
  year: 2020
  ident: ref_11
  article-title: Reinforcement learning-based structural control of floating wind turbines
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2020.3032622
– volume: 20
  start-page: 282
  year: 2013
  ident: ref_110
  article-title: Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.492
– volume: 365
  start-page: 515
  year: 2007
  ident: ref_102
  article-title: The application of machine learning to structural health monitoring
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2006.1938
– volume: 51
  start-page: JTE20220569
  year: 2023
  ident: ref_154
  article-title: Application of the Ultrasonic Guided Wave Technique Based on PSO-ELM Algorithm in the Rail Fatigue Crack Assessment
  publication-title: J. Test. Eval.
  doi: 10.1520/JTE20220569
– volume: 91
  start-page: 1
  year: 1994
  ident: ref_76
  article-title: The numerical solution of linear ordinary differential equations by feedward neural networks
  publication-title: Math. Comput. Model.
  doi: 10.1016/0895-7177(94)90095-7
– volume: 6
  start-page: 030901
  year: 2020
  ident: ref_100
  article-title: Digital twins: State-of-the-art and future directions for modeling and simulation in engineering dynamics applications
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng.
  doi: 10.1115/1.4046739
– volume: 21
  start-page: 770
  year: 2022
  ident: ref_119
  article-title: A new dam structural response estimation paradigm powered by deep learning and transfer learning techniques
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217211009780
– volume: 3
  start-page: 17
  year: 2013
  ident: ref_46
  article-title: Quantum algorithms for supervised and unsupervised machine learning
  publication-title: Int. J. Quantuum Phys.
– volume: 33
  start-page: 371
  year: 2012
  ident: ref_187
  article-title: MDL-based time series clustering
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-012-0508-7
– volume: 5
  start-page: 845
  year: 2004
  ident: ref_189
  article-title: Feature selection for unsupervised learning
  publication-title: J. Mach. Learn. Res.
– volume: 120
  start-page: 43
  year: 2017
  ident: ref_41
  article-title: A one-class classification support vector machine model by interval-valued training data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.12.022
– volume: 136
  start-page: 1
  year: 2023
  ident: ref_64
  article-title: Using image processing techniques in computational mechanics
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2022.11.024
– volume: 428
  start-page: 110080
  year: 2021
  ident: ref_227
  article-title: Direct shape optimization through deep reinforcement learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110080
– ident: ref_203
– ident: ref_143
  doi: 10.3390/machines11050547
– volume: 39
  start-page: 10681
  year: 2012
  ident: ref_156
  article-title: Fatigue crack growth estimation by relevance vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.199
– ident: ref_232
– volume: 252
  start-page: 110465
  year: 2024
  ident: ref_197
  article-title: Structural damage detection and localization via an unsupervised anomaly detection method
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2024.110465
– ident: ref_175
– volume: 76
  start-page: 158
  year: 2018
  ident: ref_176
  article-title: Interpretable policies for reinforcement learning by genetic programming
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.09.007
– volume: 48
  start-page: 128
  year: 2017
  ident: ref_29
  article-title: Supervised machine learning algorithms: Classification and comparison
  publication-title: Int. J. Comput. Trends Technol.
  doi: 10.14445/22312803/IJCTT-V48P126
– ident: ref_118
  doi: 10.1155/2023/8899806
– volume: 1
  start-page: 140
  year: 2020
  ident: ref_40
  article-title: A review on linear regression comprehensive in machine learning
  publication-title: J. Appl. Sci. Technol. Trends
  doi: 10.38094/jastt1457
– ident: ref_108
  doi: 10.1109/ICRSE.2017.8030793
– volume: 404
  start-page: 50
  year: 2018
  ident: ref_136
  article-title: Bias voltage effect on the mechanical properties, adhesion and milling performance of PVD films on cemented carbide inserts
  publication-title: Wear
  doi: 10.1016/j.wear.2018.03.001
– volume: 93
  start-page: 2061
  year: 2017
  ident: ref_137
  article-title: An analytical force model for ball-end milling based on a predictive machine theory considering cutter runout
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 373
  start-page: 113482
  year: 2021
  ident: ref_94
  article-title: Smart constitutive laws: Inelastic homogenization through machine learning
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113482
– volume: 317
  start-page: 28
  year: 2018
  ident: ref_81
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.056
– ident: ref_84
  doi: 10.3390/app10175917
– volume: 1
  start-page: 81
  year: 1986
  ident: ref_17
  article-title: Introduction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
– volume: 345
  start-page: 363
  year: 2019
  ident: ref_65
  article-title: Smart finite elements: A novel machine learning
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.10.046
– volume: 219
  start-page: 108258
  year: 2022
  ident: ref_234
  article-title: Structural dominant failure modes searching method based on deep reinforcement learning
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.108258
– volume: 5
  start-page: 2200459
  year: 2022
  ident: ref_213
  article-title: Hierarchical Multiresolution Design of Bioinspired Structural Composites Using Progressive Reinforcement Learning
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.202200459
– volume: 46
  start-page: 17
  year: 2022
  ident: ref_179
  article-title: Bias-variance tradeoff in machine learning: Theoretical formulation and implications to structural engineering applications
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.10.004
– volume: 16
  start-page: 1001
  year: 2020
  ident: ref_22
  article-title: Enhanced machine learning algorithms: Deep learning, reinforcement learning and Q-learning
  publication-title: J. Inf. Process. Syst.
– volume: 15
  start-page: 20170844
  year: 2018
  ident: ref_69
  article-title: A deep learning approach to estimate stress distribution: A fast and accurate surrogate of finite-element analysis
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0844
– volume: 39
  start-page: 2585
  year: 2022
  ident: ref_209
  article-title: A novel deep unsupervised learning-based framework for optimization of truss structures
  publication-title: Eng. Comput.
– volume: 9
  start-page: 651
  year: 2010
  ident: ref_12
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 76
  start-page: 113
  year: 1999
  ident: ref_155
  article-title: Artificial neural network technology for the data processing of one-line corrosion fatigue crack growth monitoing
  publication-title: Int. J. Pres. Ves. Pip
  doi: 10.1016/S0308-0161(98)00136-7
– volume: 10
  start-page: 263
  year: 1998
  ident: ref_61
  article-title: Modeling concrete strength with augment-neuron networks
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(1998)10:4(263)
– volume: 164
  start-page: 112026
  year: 2024
  ident: ref_98
  article-title: Machine learning modelling of structural response for different seismic signal characteristics: A parametric analysis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112026
– volume: 125
  start-page: 103917
  year: 2023
  ident: ref_148
  article-title: Data-driven artificial neural network for elastic plastic stress and strain computation for notched bodies
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2023.103917
– ident: ref_193
  doi: 10.1007/978-3-030-81716-9_12
– volume: 16
  start-page: 257
  year: 2004
  ident: ref_170
  article-title: Application of neural networks for estimation of concrete strength
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2004)16:3(257)
– ident: ref_10
  doi: 10.1109/ICASSP.2013.6639343
– volume: 250
  start-page: 106546
  year: 2021
  ident: ref_130
  article-title: Shear wall layout optimization strategy for high-rise buildings based on conceptual design and data-driven tabu search
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2021.106546
– volume: 26
  start-page: 428
  year: 2014
  ident: ref_157
  article-title: Prediction of constant amplitude fatigue crack growth life of 2024T3 AI alloy with R-ratio effect by GP
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.10.024
– ident: ref_126
  doi: 10.1007/978-981-19-1280-1_12
– volume: 289
  start-page: 107188
  year: 2023
  ident: ref_91
  article-title: Machine learning prediction of structural dynamic responses using graph neural networks
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2023.107188
– volume: 233
  start-page: 109093
  year: 2023
  ident: ref_235
  article-title: A deep reinforcement learning method for structural dominant failure modes searching based on self-play strategy
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109093
– volume: 24
  start-page: 82
  year: 2009
  ident: ref_107
  article-title: Long-term monitoring and identification of bridge structural parameters
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2008.00572.x
– volume: 67
  start-page: 108
  year: 2015
  ident: ref_33
  article-title: An empirical analysis of data preprocessing for machine learning-based software cost estimation
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2015.07.004
– volume: 132
  start-page: 103931
  year: 2021
  ident: ref_128
  article-title: Automated structural design of shear wall residential buildings using generative adversarial networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103931
– volume: 118
  start-page: 107056
  year: 2021
  ident: ref_220
  article-title: Reinforcement learning vibration control for a flexible hinged plate
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.107056
– volume: 183
  start-page: 103
  year: 2023
  ident: ref_21
  article-title: Applications of reinforcement learning for maintenance of engineering systems:A review
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2023.103487
– ident: ref_182
– volume: 91
  start-page: 230
  year: 2018
  ident: ref_9
  article-title: Principal components analysis and track quality index: A machine learning approach
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.04.001
– volume: 29
  start-page: 195
  year: 2019
  ident: ref_16
  article-title: Latent phase detection of hypoxic-ischemic spike transients in the EEG of preterm fetal sheep using reverse biorthogonal wavelets and fuzzy classifier
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065719500138
– volume: 138
  start-page: 1227
  year: 2009
  ident: ref_144
  article-title: Migration forces of transcatheter aortic valves in patients with noncalcific aortic insufficiency
  publication-title: J. Thorac. Cardiovasc. Surg.
  doi: 10.1016/j.jtcvs.2009.02.057
– volume: 22
  start-page: 1376
  year: 2023
  ident: ref_123
  article-title: Vibration-based Damage Localization and Quantification Framework of Large-Scale Truss Structures
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217221100443
– volume: 160
  start-page: 107811
  year: 2020
  ident: ref_194
  article-title: Structural damage identification based on unsupervised feature-extraction via Variational Auto-encoder
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107811
– volume: 10
  start-page: 1633
  year: 2009
  ident: ref_114
  article-title: Transfer learning for reinforcement learning domains: A survey
  publication-title: J. Mach. Learn. Res.
– volume: 220
  start-page: 111645
  year: 2024
  ident: ref_198
  article-title: Convolutional autoencoders and CGANs for unsupervised structural damage localization
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2024.111645
– volume: Volume 1
  start-page: 281
  year: 1967
  ident: ref_185
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability
– volume: 42
  start-page: 6609
  year: 2015
  ident: ref_39
  article-title: Dependent cost-sensitive decision trees
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.042
– volume: 8
  start-page: 041006
  year: 2018
  ident: ref_20
  article-title: Deterministic and generalized framework for unsupervised learning with restricted Boltzmann machines
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevX.8.041006
– volume: 8
  start-page: 323
  year: 2000
  ident: ref_52
  article-title: Concepts and facilities of a neural reinforcement learning control architecture for technical process control
  publication-title: J. Neural Comput. Appl.
  doi: 10.1007/s005210050038
– volume: 365
  start-page: 589
  year: 2007
  ident: ref_99
  article-title: Structural health monitoring of civil infrastructure
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2006.1925
– ident: ref_214
  doi: 10.1007/978-3-030-34328-6_2
– volume: 19
  start-page: 966
  year: 2023
  ident: ref_135
  article-title: Evaluating the accuracy and effectiveness of machine learning methods for rapidly determining the safety factor of road embankments
  publication-title: Multidiscip. Model. Mater. Struct.
  doi: 10.1108/MMMS-12-2022-0290
– volume: 378
  start-page: 113452
  year: 2021
  ident: ref_85
  article-title: Hierarchical deep learning neural network HiDeNN: An artificial intelligence AI framework for computational science and engineering
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113452
– volume: 166
  start-page: 103642
  year: 2023
  ident: ref_163
  article-title: Machine learning-driven stress integration method for anisotropic plasticity in sheet metal forming
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2023.103642
– volume: 5
  start-page: 532
  year: 2021
  ident: ref_83
  article-title: Deep neural network for system of ordinary differential equatuions: Vectorized algorithm and simulation
  publication-title: Mach. Learn. Appl.
– volume: 91
  start-page: 325
  year: 2013
  ident: ref_55
  article-title: Minimax bounds on the sample, complexity of reinforcement learning with a generative model
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-013-5368-1
– volume: 308
  start-page: 117971
  year: 2024
  ident: ref_200
  article-title: An unsupervised machine learning approach for real-time damage detection in bridges
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2024.117971
– volume: 66
  start-page: 121
  year: 2017
  ident: ref_140
  article-title: Computational-experimental investigations of milling porous Aluminimum
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2017.04.022
– volume: 351
  start-page: 151
  year: 2023
  ident: ref_162
  article-title: Deep Learning of Temperature–Dependent Stress–Strain Hardening Curves
  publication-title: C. R. Mécanique
  doi: 10.5802/crmeca.185
– volume: 16
  start-page: 362
  year: 2004
  ident: ref_180
  article-title: Unsupervised learning
  publication-title: Adv. Lect. Mach. Learn.
– volume: 91
  start-page: 110
  year: 1990
  ident: ref_75
  article-title: Neural algorithm for solving differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90007-N
– volume: 57
  start-page: 102074
  year: 2023
  ident: ref_127
  article-title: A novel integrative design framework combining 4D sketching, geometry reconstruction, micromechanics material modelling, and structural analysis
  publication-title: Adv. Eng. Informatics
  doi: 10.1016/j.aei.2023.102074
– volume: 10
  start-page: 47
  year: 2008
  ident: ref_169
  article-title: Modeling of polymer modified-concrete strength with artificial neural networks
  publication-title: Int. J. Civ. Eng.
– volume: 8
  start-page: 293
  year: 1992
  ident: ref_51
  article-title: Self improving reactive agents based on reinforcement learning, planning and teaching
  publication-title: J. Mach. Learn. Res.
  doi: 10.1007/BF00992699
– volume: 19
  start-page: 1685
  year: 2020
  ident: ref_196
  article-title: Fast unsupervised learning methods for structural health monitoring with large vibration data from dense sensor networks
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921719894186
– volume: 192
  start-page: 41
  year: 2007
  ident: ref_138
  article-title: Empirical analysis of cutting force constants in Micro-end-milling operations
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.04.026
– volume: 8
  start-page: 80716
  year: 2020
  ident: ref_48
  article-title: Unsupervised K-means clustering algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988796
– volume: 153
  start-page: 13
  year: 2024
  ident: ref_45
  article-title: Practical guidelines for resolving the loss divergence caused by the root-mean-aquared propagation optimizer
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111335
– volume: 184
  start-page: 109708
  year: 2023
  ident: ref_122
  article-title: A framework for quantifying the value of vibration-based structural health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109708
– volume: 89
  start-page: 117
  year: 2016
  ident: ref_31
  article-title: Performance evaluation of supervised machine learning algorithms for the intrusion detection
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.06.016
– volume: 25
  start-page: 467
  year: 1990
  ident: ref_38
  article-title: The detection and interpretation of interaction effects between continuous variables in multiple regression
  publication-title: Multivar. Behav. Res.
  doi: 10.1207/s15327906mbr2504_4
– volume: 59
  start-page: 989
  year: 2004
  ident: ref_160
  article-title: Numerical implementation of a neural network based material model in finite element analysis
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.905
– volume: 72
  start-page: 563
  year: 2023
  ident: ref_90
  article-title: Deep neural operator for learning transient response of interpenetrating phase composites subject to dynamic loading
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-023-02343-6
– volume: 66
  start-page: 16
  year: 2023
  ident: ref_224
  article-title: A reinforcement learning hyper-heuristic in multi-objective optimization with application to structural damage identification
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-022-03432-5
– volume: 5
  start-page: 349
  year: 2017
  ident: ref_80
  article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-017-0117-6
– volume: 140
  start-page: 225
  year: 2017
  ident: ref_129
  article-title: Shear wall layout optimization for conceptual design of tall buildings
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.02.059
– volume: 38
  start-page: 178
  year: 2011
  ident: ref_158
  article-title: Reliability analysis using radial basis function networks and support vector machines
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2010.11.002
– volume: 32
  start-page: 49
  year: 2015
  ident: ref_23
  article-title: Application of temporal difference learning rules in short-term traffic flow prediction
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12055
– volume: 26
  start-page: e2298
  year: 2019
  ident: ref_217
  article-title: Online control of an active seismic system via reinforcement learning
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.2298
– volume: 272
  start-page: 106157
  year: 2022
  ident: ref_42
  article-title: Machine learning regression and classification methods for fog events prediction
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2022.106157
– ident: ref_131
– volume: 7
  start-page: 193
  year: 2013
  ident: ref_202
  article-title: Quality predictions in interlinked manufacturing processes based on supervised and unsupervised machine learning
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2013.05.033
– volume: 17
  start-page: 229
  year: 1999
  ident: ref_56
  article-title: Reinforcement learning: An introduction
  publication-title: Robotica
– volume: 256
  start-page: 114059
  year: 2022
  ident: ref_192
  article-title: Unsupervised learning-based damage assessment of full-scale civil structures under long-term and short-term monitoring
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.114059
– volume: 145
  start-page: 061701
  year: 2023
  ident: ref_233
  article-title: Design synthesis of structural systems as a Markov decision process solved with deep reinforcement learning
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4056693
– volume: 26
  start-page: 273
  year: 2019
  ident: ref_3
  article-title: Multi-object tracking with discriminant correlation filter based deep learning tracker
  publication-title: Integr. Comput.-Aided Eng.
  doi: 10.3233/ICA-180596
– volume: 42
  start-page: 177
  year: 2001
  ident: ref_47
  article-title: Unsupervised learning by probabilistic latent semantic analysis
  publication-title: Int. J. Mach. Learn.
  doi: 10.1023/A:1007617005950
– volume: 259
  start-page: 106707
  year: 2022
  ident: ref_173
  article-title: Probabilistic neural networks that predict compressive strength of high strength concrete in mass placements using thermal history
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2021.106707
– ident: ref_35
  doi: 10.3390/w11112210
– volume: 287
  start-page: 759
  year: 2005
  ident: ref_191
  article-title: Vibration control of building structures using self-organizing and self-learning neural networks
  publication-title: J. Sounds Vib.
  doi: 10.1016/j.jsv.2004.11.031
– volume: 327
  start-page: 327
  year: 2017
  ident: ref_73
  article-title: Computational mechanics enhanced by deep learning
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.08.040
– volume: 6
  start-page: 93
  year: 2008
  ident: ref_184
  article-title: Software to assess evolutionary algorithms for data mining problems
  publication-title: Soft Comput.
– volume: 18
  start-page: 025016
  year: 2009
  ident: ref_208
  article-title: An unsupervised learning algorithm for fatigue crack detection in waveguides
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/2/025016
– ident: ref_230
– volume: 357
  start-page: 125
  year: 2018
  ident: ref_87
  article-title: Machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.11.039
– volume: 241
  start-page: 112377
  year: 2021
  ident: ref_124
  article-title: Structural design of reinforced concrete buildings based on deep neural networks
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.112377
– volume: 237
  start-page: 350
  year: 2017
  ident: ref_1
  article-title: Machine learning on big data: Opportunities and challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.026
– volume: 222
  start-page: 103956
  year: 2023
  ident: ref_161
  article-title: A simple machine learning-based framework for faster multi-scale simulations of path-independent materials at large strains
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2023.103956
– volume: 359
  start-page: 131
  year: 2001
  ident: ref_103
  article-title: Vibration–based structural damage identification
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2000.0717
– volume: 11
  start-page: 23433
  year: 2023
  ident: ref_206
  article-title: Unsupervised Legendre–Galerkin Neural Network for Solving Partial Differential Equations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3244681
– volume: 324
  start-page: 115
  year: 2016
  ident: ref_79
  article-title: Quantifying and reducing model-form uncertainties in Reynolds averaged Navier-stokes simulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.07.038
– volume: 365
  start-page: 303
  year: 2007
  ident: ref_97
  article-title: An introduction to structural health monitoring
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2006.1928
– volume: 160
  start-page: 3
  year: 2007
  ident: ref_30
  article-title: Supervised machine learning: A review of classification techniques
  publication-title: Emerg. Artif. Intell. Appl. Comput. Eng.
– volume: 486
  start-page: 77
  year: 2022
  ident: ref_36
  article-title: Supervised outlier detection for classification and regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.02.047
– ident: ref_186
– volume: 193
  start-page: 91
  year: 2019
  ident: ref_149
  article-title: Probabilistic machine learning approach to bridge fatigue failure analysis due to vehicular overloading
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.05.028
– volume: 4
  start-page: 119
  year: 2003
  ident: ref_188
  article-title: Unsupervised learning of two dimensional manifolds
  publication-title: J. Mach. Learn. Res.
– volume: 225
  start-page: 108643
  year: 2022
  ident: ref_222
  article-title: Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108643
– ident: ref_229
– ident: ref_125
  doi: 10.1007/978-981-15-6568-7_8
– volume: 55
  start-page: 160
  year: 2023
  ident: ref_113
  article-title: Fast inversion method for seepage parameters of core earth-rock dam based on LHS-SSA-MKELM fusion surrogate model
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.06.049
– volume: 25
  start-page: 247
  year: 2018
  ident: ref_5
  article-title: Regional parallel structural based CNN for thermal infrared face identification
  publication-title: Integr. Comput.-Aided Eng.
  doi: 10.3233/ICA-180560
– volume: 394
  start-page: 56
  year: 2019
  ident: ref_207
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.024
– volume: 33
  start-page: 333
  year: 2018
  ident: ref_14
  article-title: Prediction of bus travel time using random forests based on near neighbors
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12315
– volume: 69
  start-page: 23
  year: 2022
  ident: ref_93
  article-title: Self-updated four-node finite element using deep learning
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-021-02081-7
– volume: 416
  start-page: 116
  year: 2023
  ident: ref_146
  article-title: Synergistic integration of deep neural networks and finite element method with applications of nonlinear large deformation biomechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116347
– volume: 28
  start-page: 04022134
  year: 2023
  ident: ref_199
  article-title: Transfer learning to enhance the damage detection performance in bridges when using numerical models
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001979
– volume: 64
  start-page: 94
  year: 2019
  ident: ref_2
  article-title: Image processing analysis and research based on game animation design
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2018.12.011
– ident: ref_57
– volume: 11
  start-page: 54509
  year: 2023
  ident: ref_89
  article-title: A Machine Learning-Based Surrogate Finite Element Model for Estimating Dynamic Response of Mechanical Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3282453
– volume: 107
  start-page: 871
  year: 2020
  ident: ref_7
  article-title: An introduction to machine learning
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1002/cpt.1796
– volume: 232
  start-page: 112128
  year: 2023
  ident: ref_142
  article-title: Design exploration of additively manufactured chiral auxetic structure using explainable machine learning
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2023.112128
SSID ssj0000852254
Score 2.3464563
SecondaryResourceType review_article
Snippet Modeling and simulation have been extensively used to solve a wide range of problems in structural engineering. However, many simulations require significant...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3515
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Classification
Clustering
Computational mechanics
Computer applications
Computer simulation
Computing time
Control algorithms
Data mining
Datasets
Design
Design analysis
Design optimization
Ensemble learning
Failure analysis
Learning algorithms
Machine learning
Neural networks
Optimization
Simulation methods
Stress analysis
Structural design
structural design and manufacturing
Structural engineering
Structural health monitoring
Surveys
System identification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwUxDC7iSQ_iis-NHgRBGJy2s7TenqKIoB5U8FamnUQRecpzw39vMjPKiKgXr0NbOknafKHJFyE2VcxyZSwm1lQUoGQlJFWsyiSEMhZaO4vI1cgnp8XRZXZ8lV_1Wn1xTlhLD9wKbkdDtFjnqCMh3xjTEIOztjAa0lobbNhLyef1gqnbNvuKDDVrnzENxfU7oesy_agyxV3p8i-OqOHr_-lWblzN4ayY6TCiHLZ7mxMTMJoX0z3mwAVxd9IkQYLs-FGvkz1yR7Xk1mZcYC4Ji8rzhhuWeTVkb_KuHEq-BcZw0yavy_Pn8Qu8yWpUy2HvPVuevfBFAq-L4vLw4GL_KOkaJyQx0-opoRDIKFPWBeYOS4u5KRDzClNIC4waIY0ZUGhgHRgIBACjBocqw9qoKjhllsTk6H4Ey0LWtIorwMQKaJgLgRnrdSAvj2kMVg9E-iFFHztWcW5ucecpumDB-2-CH4jtzykPLaXGb4P3WDWfA5kNu_lANuI7G_F_2chAbLFiPZ9Z2lysutID-kVmv_JDQi2KiXDcQKx96N53h_nRkyzJ0ZvcqZX_2M2qmNKEjNqCxjUxSbYA64RsnsJGY8TvL9n6IQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine Learning-Based Modeling for Structural Engineering: A Comprehensive Survey and Applications Overview
URI https://www.proquest.com/docview/3133033591
https://doaj.org/article/2ec8fd5f2c974cc0bcb988632e0d23f5
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELb6uMABQQERKJEPlSohrbq292FzQQlqqJD6EKVSb9baO9MeqqRNShH_npldJwQhet21rd0Zezzf2PONEHsqFqUyFjNrGgIoRQ1ZE5s6C6GOldbOInI28vFJdXRRfL0sL1PAbZGuVS5tYmeo21nkGPmBITCVG1M69en2LuOqUXy6mkpobIptMsGWwNf2-PDk7NsqykIOBU3Yoj_ONITvD0KqNr1QheLqdOVfG1LH2_8_69xtOZPn4lnyFeWoV-4LsQHTHfF0jUHwpbg57i5Dgkw8qVfZmLalVnKJM040l-STyvOOI5b5NeRa549yJNkazOG6v8Quz3_MH-CXbKatHK2da8vTBzYo8POVuJgcfv98lKUCClkstLrPCAqR2Oq2wtJhbbE0FWLZYA55hVEj5LEAggjWgYFAjmDU4FAV2BrVBKfMa7E1nU3hjZAtjeIqMLEBauZCYOZ6HWi3xzwGqwciX0rRx8QuzkUubjyhDBa8_0fwA_Fh1eW2p9Z4rPGYVbNqyKzY3YPZ_MqnReY1RIttiToSSooxDzE4ayujIW-1QRpknxXree3Sx8UmpSDQLzILlh-R96KYEMcNxO5S9z4t6oX_MwXfPv76nXiiyffpUxZ3xRZpGd6T73IfhmLTTr4M0zQddhGA3zMw8-M
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEG8QH5QH42c4Qe2DxsRkw_Zjd1sSYw71PITDByDhrWy7U3wgd3CHEP4p_kZn9uM8Y-SN1912stvpTH_Tdn7D2FsRdCaUiYlRJQYouoCkDGWReF-EXEprYqRs5NFePjzU34-yoyV20-XC0LXKzifWjrqaBNoj31AYTKVKZVZ8OjtPqGoUna52JTSaabED11cYss0-bn9B_b6TcvD14PMwaasKJEFLcZFgfICyiiqPmY2FiZnKY8zKmEKaxyAjpEED4mZjQYFHdBQk2Ch0rJQovRUK5d5j97VSlizKDL7N93QQvqB56ObwFN-nG76tbT0TWlAtvOyv5a-uEvC_taBe4AaP2aMWmfJ-M5WesCUYP2UrC3yFz9jpqL56CbxlZT1JtnARrDgVVKO0do4ImO_XjLTE5sEXOm_yPiffM4WfzZV5vv9regnXvBxXvL9wis5_XJL7gqvn7PBOBvYFWx5PxrDKeIVSbA4qlIDNrPfEky89YouYBm9kj6XdKLrQcplTSY1ThzENDbz7Z-B77MO8y1lD5HFb4y1SzbwhcXDXDybTE9eatJMQTKyyKAPGZCGkPnhrTK4kpJVUEYW8J8U68hT4caFsEx7wF4lzy_URKwmi37E9tt7p3rUuZOb-TPiXt79-wx4MD0a7bnd7b2eNPZSIuppkyXW2jBqHV4iaLvzreqpydnzXtvEbewEt4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFoIAPICSkVfzYl5EQSmijltJQUSr1ZtZeuxyqpCSlVf8av46ZXW8IQvTW665t7Xoe_sb2fAPwUrg0E6oMSakqDFDSwieVq4rE2sLlUuoyBMpG3pvk24fpx6PsaA1-dbkwdK2y84mNo65njvbIBwqDKa5UpsUgxGsR-5vj96c_EqogRSetXTmNVkV2_eUFhm-LdzubKOtXUo63vn7YTmKFgcSlUpwlGCvguEWdh0yHogyZykPIqsA9z4OTwXOXesTQpfbKW0RKTnodRBpqJSqrhcJxb8B6gVER78H6aGuy_2W5w4NgBo0lbY9SldJ8YGOl64VIBVXGy_5aDJuaAf9bGZrlbnwX7kScyoatYt2DNT-9D7dX2AsfwMlecxHTs8jRepyMcEmsGZVXoyR3hniYHTT8tMTtwVY6v2VDRp5o7r-3F-jZwc_5ub9k1bRmw5Uzdfb5nJyZv3gIh9cytY-gN51N_WNgNY6ic69c5bGZtpZY86VFpBG4s6XsA-9m0bjIbE4FNk4MRjg08eafie_Dm2WX05bW46rGIxLNsiExcjcPZvNjEw3cSO_KUGdBOozQnOPWWV2WuZKe11IFHOQ1CdaQ38CPc1VMf8BfJAYuM0TkJIiMR_dho5O9iQ5lYf6o_5OrX7-Am2gX5tPOZPcp3JIIwdrMyQ3oocD9M4RQZ_Z51FUG367bPH4DQYczdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Modeling+for+Structural+Engineering%3A+A+Comprehensive+Survey+and+Applications+Overview&rft.jtitle=Buildings+%28Basel%29&rft.au=Bassey+Etim&rft.au=Al-Ghosoun%2C+Alia&rft.au=Renno%2C+Jamil&rft.au=Seaid%2C+Mohammed&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.eissn=2075-5309&rft.volume=14&rft.issue=11&rft.spage=3515&rft_id=info:doi/10.3390%2Fbuildings14113515&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon