Ethnicity- and Gender-based Subject Retrieval Using 3-D Face-Recognition Techniques

While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of h...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 89; no. 2-3; pp. 382 - 391
Main Authors Toderici, George, O’Malley, Sean M., Passalis, George, Theoharis, Theoharis, Kakadiaris, Ioannis A.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.09.2010
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-5691
1573-1405
DOI10.1007/s11263-009-0300-7

Cover

Loading…
Abstract While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of human subjects. Due to this disparity of interest, existing methods for retrieval based on demographic attributes tend to lag behind the more well-studied algorithms designed purely for face matching. The question this raises is whether a face recognition system could be leveraged to solve these other problems and, if so, how effective it could be. In the current work, we explore the limits of such a system for gender and ethnicity identification given (1) a ground truth of demographically-labeled, textureless 3-D models of human faces and (2) a state-of-the-art face-recognition algorithm. Once trained, our system is capable of classifying the gender and ethnicity of any such model of interest. Experiments are conducted on 4007 facial meshes from the benchmark Face Recognition Grand Challenge v2 dataset.
AbstractList While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of human subjects. Due to this disparity of interest, existing methods for retrieval based on demographic attributes tend to lag behind the more well-studied algorithms designed purely for face matching. The question this raises is whether a face recognition system could be leveraged to solve these other problems and, if so, how effective it could be. In the current work, we explore the limits of such a system for gender and ethnicity identification given (1) a ground truth of demographically-labeled, textureless 3-D models of human faces and (2) a state-of-the-art face-recognition algorithm. Once trained, our system is capable of classifying the gender and ethnicity of any such model of interest. Experiments are conducted on 4007 facial meshes from the benchmark Face Recognition Grand Challenge v2 dataset.
While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of human subjects. Due to this disparity of interest, existing methods for retrieval based on demographic attributes tend to lag behind the more well-studied algorithms designed purely for face matching. The question this raises is whether a face recognition system could be leveraged to solve these other problems and, if so, how effective it could be. In the current work, we explore the limits of such a system for gender and ethnicity identification given (1) a ground truth of demographically-labeled, textureless 3-D models of human faces and (2) a state-of-the-art face-recognition algorithm. Once trained, our system is capable of classifying the gender and ethnicity of any such model of interest. Experiments are conducted on 4007 facial meshes from the benchmark Face Recognition Grand Challenge v2 dataset. Keywords Ethnicity. Face. Gender. Identification. Race. Recognition. Retrieval
While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of human subjects. Due to this disparity of interest, existing methods for retrieval based on demographic attributes tend to lag behind the more well-studied algorithms designed purely for face matching. The question this raises is whether a face recognition system could be leveraged to solve these other problems and, if so, how effective it could be. In the current work, we explore the limits of such a system for gender and ethnicity identification given (1) a ground truth of demographically-labeled, textureless 3-D models of human faces and (2) a state-of-the-art face-recognition algorithm. Once trained, our system is capable of classifying the gender and ethnicity of any such model of interest. Experiments are conducted on 4007 facial meshes from the benchmark Face Recognition Grand Challenge v2 dataset.
Issue Title: Special Issue: 3D Object Retrieval While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of human subjects. Due to this disparity of interest, existing methods for retrieval based on demographic attributes tend to lag behind the more well-studied algorithms designed purely for face matching. The question this raises is whether a face recognition system could be leveraged to solve these other problems and, if so, how effective it could be. In the current work, we explore the limits of such a system for gender and ethnicity identification given (1) a ground truth of demographically-labeled, textureless 3-D models of human faces and (2) a state-of-the-art face-recognition algorithm. Once trained, our system is capable of classifying the gender and ethnicity of any such model of interest. Experiments are conducted on 4007 facial meshes from the benchmark Face Recognition Grand Challenge v2 dataset.[PUBLICATION ABSTRACT]
Audience Academic
Author Toderici, George
Theoharis, Theoharis
Kakadiaris, Ioannis A.
O’Malley, Sean M.
Passalis, George
Author_xml – sequence: 1
  givenname: George
  surname: Toderici
  fullname: Toderici, George
  email: gtoderici@uh.edu
  organization: Computational Biomedicine Lab, Department of Computer Science, University of Houston
– sequence: 2
  givenname: Sean M.
  surname: O’Malley
  fullname: O’Malley, Sean M.
  organization: Computational Biomedicine Lab, Department of Computer Science, University of Houston
– sequence: 3
  givenname: George
  surname: Passalis
  fullname: Passalis, George
  organization: Computational Biomedicine Lab, Department of Computer Science, University of Houston, Computer Graphics Laboratory, Department of Informatics & Telecommunications, University of Athens
– sequence: 4
  givenname: Theoharis
  surname: Theoharis
  fullname: Theoharis, Theoharis
  organization: Computational Biomedicine Lab, Department of Computer Science, University of Houston, Computer Graphics Laboratory, Department of Informatics & Telecommunications, University of Athens
– sequence: 5
  givenname: Ioannis A.
  surname: Kakadiaris
  fullname: Kakadiaris, Ioannis A.
  organization: Computational Biomedicine Lab, Department of Computer Science, University of Houston
BookMark eNp9kcFq3DAQhkVJoZu0D9CboYfSg1KNZEv2MaRJGggUNtmzkOWxq8Urp5JcmrfJs-TJKuMemkCLDgLxfTOj-Y_JkZ88EvIe2Ckwpj5HAC4FZayhTDBG1SuygUoJCiWrjsiGNZzRSjbwhhzHuGeM8ZqLDdldpO_eWZceaGF8V1yh7zDQ1kTsitu53aNNxRZTcPjTjMUuOj88PQr65enx0likW7TT4F1yky_u0OZaP2aMb8nr3owR3_25T8ju8uLu_Cu9-XZ1fX52Q23JIVGAuhO1qVuwXErboK1aDgr6tm25sEZAaXgtlWHCSCF4jX1nBaJF2cnGWnFCPq5178O09E364KLFcTQepznqhqmmErysM_nhBbmf5uDzcBoARFXXUJWZOl2pwYyone-nFIzNp8ODs3njvcvvZ0JWTAmuVBY-PRMyk_BXGswco76-3T5n1craMMUYsNd57WbZXG7iRg1ML1HqNUqdo9RLlHox4YV5H9zBhIf_Onx1Ymb9gOGvD_9T-g2YKrHQ
CitedBy_id crossref_primary_10_1109_TPAMI_2012_126
crossref_primary_10_1007_s10044_015_0499_6
crossref_primary_10_1109_TPAMI_2017_2669035
crossref_primary_10_1016_j_imavis_2012_02_004
crossref_primary_10_1016_j_imavis_2017_06_004
crossref_primary_10_1016_j_patcog_2014_09_021
crossref_primary_10_1007_s11042_016_4085_8
crossref_primary_10_1109_TPAMI_2014_2321570
crossref_primary_10_1007_s11263_017_1009_7
crossref_primary_10_1016_j_imavis_2014_06_009
crossref_primary_10_1109_TAFFC_2016_2518162
crossref_primary_10_1142_S0218001417500264
crossref_primary_10_1364_JOSAA_33_000333
crossref_primary_10_3390_electronics13122317
crossref_primary_10_1186_s13640_015_0089_y
crossref_primary_10_1007_s11263_020_01308_z
Cites_doi 10.1109/TPAMI.2003.1233902
10.1109/TPAMI.2007.70800
10.1007/s11263-006-5166-3
10.1137/050639296
10.1109/34.1000244
10.1109/TIP.2006.884940
10.1109/TIP.2003.819861
10.1068/p260075
10.1109/TPAMI.2007.1017
10.1109/18.119725
10.1207/S15327906MBR3503_02
10.1007/s11263-006-8910-9
10.1109/72.857774
10.1002/9780470316641
10.1109/34.868688
10.1109/AFGR.2004.1301530
10.4135/9781412985130
10.3758/BF03194079
10.1109/CVPR.2005.268
10.1007/978-3-540-69812-8_92
10.1007/11539117_64
10.1007/978-3-662-05802-2
10.1007/978-3-540-74549-5_49
10.5244/C.21.50
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2010
COPYRIGHT 2010 Springer
Copyright_xml – notice: Springer Science+Business Media, LLC 2010
– notice: COPYRIGHT 2010 Springer
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-009-0300-7
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts



ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 391
ExternalDocumentID 2793815691
A365073277
10_1007_s11263_009_0300_7
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c421t-118d38a8b1c266c9ec5b2171fbbb23ca314a2867a03a63328efdc3eece6d69cc3
IEDL.DBID AGYKE
ISSN 0920-5691
IngestDate Fri Jul 11 08:15:09 EDT 2025
Fri Jul 25 23:39:26 EDT 2025
Tue Jun 10 20:39:53 EDT 2025
Fri Jun 27 05:07:32 EDT 2025
Tue Jul 01 04:30:53 EDT 2025
Thu Apr 24 23:10:17 EDT 2025
Fri Feb 21 02:26:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2-3
Keywords Retrieval
Ethnicity
Race
Identification
Gender
Face
Recognition
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-118d38a8b1c266c9ec5b2171fbbb23ca314a2867a03a63328efdc3eece6d69cc3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1113588154
PQPubID 1456341
PageCount 10
ParticipantIDs proquest_miscellaneous_907953248
proquest_journals_1113588154
gale_infotracacademiconefile_A365073277
gale_incontextgauss_ISR_A365073277
crossref_citationtrail_10_1007_s11263_009_0300_7
crossref_primary_10_1007_s11263_009_0300_7
springer_journals_10_1007_s11263_009_0300_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2010
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Moghaddam, Yang (CR16) 2002; 24
Baluja, Rowley (CR2) 2007; 71
Kruskal, Wish (CR11) 1978
Elbaz, Kimmel (CR6) 2003; 25
CR19
Young (CR29) 1987
CR17
CR14
CR13
CR12
Gutta, Huang, Jonathan, Wechsler (CR7) 2000; 11
Mäkinen, Raisamo (CR15) 2008; 30
Simoncelli, Freeman, Adelson, Heeger (CR23) 1992; 38
Aharon, Kimmel (CR1) 2006; 67
Bronstein, Bronstein, Kimmel (CR4) 2007; 16
Shi, Malik (CR22) 2000; 22
CR5
Potter, Corneille, Ruys, Rhodes (CR20) 2007; 14
Seber (CR21) 1984
Tsogo, Masson, Bardot (CR24) 2000; 35
CR28
CR9
CR27
CR26
Wang, Bovik, Sheikh, Simoncelli (CR25) 2004; 13
Kakadiaris, Passalis, Toderici, Murtuza, Lu, Karampatziakis, Theoharis (CR10) 2007; 29
Härdle, Simar (CR8) 2003
Bronstein, Bronstein, Kimmel (CR3) 2006; 28
O’Toole, Vetter, Troje, Bülthoff (CR18) 1997; 26
S. Gutta (300_CR7) 2000; 11
E. Simoncelli (300_CR23) 1992; 38
F. W. Young (300_CR29) 1987
M. Aharon (300_CR1) 2006; 67
J. B. Kruskal (300_CR11) 1978
300_CR9
A. M. Bronstein (300_CR3) 2006; 28
300_CR27
300_CR28
300_CR5
A. J. O’Toole (300_CR18) 1997; 26
L. Tsogo (300_CR24) 2000; 35
300_CR14
J. Shi (300_CR22) 2000; 22
300_CR12
300_CR13
B. Moghaddam (300_CR16) 2002; 24
A. M. Bronstein (300_CR4) 2007; 16
I. A. Kakadiaris (300_CR10) 2007; 29
G. Seber (300_CR21) 1984
T. Potter (300_CR20) 2007; 14
W. Härdle (300_CR8) 2003
300_CR19
300_CR17
Z. Wang (300_CR25) 2004; 13
S. Baluja (300_CR2) 2007; 71
300_CR26
A. E. Elbaz (300_CR6) 2003; 25
E. Mäkinen (300_CR15) 2008; 30
References_xml – volume: 14
  start-page: 368
  issue: 2
  year: 2007
  end-page: 372
  ident: CR20
  article-title: “Just another pretty face”: A multidimensional scaling approach to face attractiveness and variability
  publication-title: Psychonomic Bulletin & Review
– volume: 25
  start-page: 1285
  issue: 10
  year: 2003
  end-page: 1295
  ident: CR6
  article-title: On bending invariant signatures for surfaces
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1233902
– volume: 30
  start-page: 541
  issue: 3
  year: 2008
  end-page: 547
  ident: CR15
  article-title: Evaluation of gender classification methods with automatically detected and aligned faces
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.70800
– ident: CR14
– volume: 67
  start-page: 297
  issue: 3
  year: 2006
  end-page: 312
  ident: CR1
  article-title: Representation analysis and synthesis of lip images using dimensionality reduction
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-006-5166-3
– volume: 28
  start-page: 1812
  issue: 5
  year: 2006
  end-page: 1836
  ident: CR3
  article-title: Efficient computation of isometry-invariant distances between surfaces
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/050639296
– ident: CR12
– volume: 24
  start-page: 707
  issue: 5
  year: 2002
  end-page: 711
  ident: CR16
  article-title: Learning gender with support faces
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.1000244
– volume: 16
  start-page: 188
  issue: 1
  year: 2007
  end-page: 197
  ident: CR4
  article-title: Expression-invariant representations of faces
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2006.884940
– ident: CR27
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  ident: CR25
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– ident: CR19
– volume: 26
  start-page: 75
  year: 1997
  end-page: 84
  ident: CR18
  article-title: Sex classification is better with three-dimensional structure than with image intensity information
  publication-title: Perception
  doi: 10.1068/p260075
– volume: 29
  start-page: 640
  issue: 4
  year: 2007
  end-page: 649
  ident: CR10
  article-title: Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1017
– volume: 38
  start-page: 587
  year: 1992
  end-page: 607
  ident: CR23
  article-title: Shiftable multi-scale transforms
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.119725
– ident: CR17
– ident: CR13
– volume: 35
  start-page: 307
  issue: 3
  year: 2000
  end-page: 319
  ident: CR24
  article-title: Multidimensional scaling methods for many-object sets: A review
  publication-title: Multivariate Behavioral Research
  doi: 10.1207/S15327906MBR3503_02
– ident: CR9
– year: 2003
  ident: CR8
  publication-title: Applied multivariate statistical analysis
– ident: CR5
– year: 1987
  ident: CR29
  publication-title: Multidimensional scaling: history, theory, and applications
– year: 1978
  ident: CR11
  publication-title: Multidimensional scaling
– ident: CR28
– volume: 71
  start-page: 111
  issue: 1
  year: 2007
  end-page: 119
  ident: CR2
  article-title: Boosting sex identification performance
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-006-8910-9
– ident: CR26
– volume: 11
  start-page: 948
  issue: 4
  year: 2000
  end-page: 960
  ident: CR7
  article-title: Mixture of experts for classification of gender, ethnic origin, and pose of human faces
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.857774
– year: 1984
  ident: CR21
  publication-title: , Multivariate observations
  doi: 10.1002/9780470316641
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  end-page: 905
  ident: CR22
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.868688
– ident: 300_CR9
  doi: 10.1109/AFGR.2004.1301530
– volume-title: Multidimensional scaling, Multivariate observations
  year: 1984
  ident: 300_CR21
  doi: 10.1002/9780470316641
– volume: 11
  start-page: 948
  issue: 4
  year: 2000
  ident: 300_CR7
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.857774
– volume-title: Multidimensional scaling
  year: 1978
  ident: 300_CR11
  doi: 10.4135/9781412985130
– ident: 300_CR13
– volume: 26
  start-page: 75
  year: 1997
  ident: 300_CR18
  publication-title: Perception
  doi: 10.1068/p260075
– volume: 71
  start-page: 111
  issue: 1
  year: 2007
  ident: 300_CR2
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-006-8910-9
– volume-title: Multidimensional scaling: history, theory, and applications
  year: 1987
  ident: 300_CR29
– volume: 67
  start-page: 297
  issue: 3
  year: 2006
  ident: 300_CR1
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-006-5166-3
– ident: 300_CR17
– volume: 38
  start-page: 587
  year: 1992
  ident: 300_CR23
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.119725
– volume: 14
  start-page: 368
  issue: 2
  year: 2007
  ident: 300_CR20
  publication-title: Psychonomic Bulletin & Review
  doi: 10.3758/BF03194079
– ident: 300_CR19
  doi: 10.1109/CVPR.2005.268
– volume: 25
  start-page: 1285
  issue: 10
  year: 2003
  ident: 300_CR6
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1233902
– volume: 16
  start-page: 188
  issue: 1
  year: 2007
  ident: 300_CR4
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2006.884940
– ident: 300_CR27
  doi: 10.1007/978-3-540-69812-8_92
– volume: 30
  start-page: 541
  issue: 3
  year: 2008
  ident: 300_CR15
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.70800
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 300_CR22
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.868688
– volume: 24
  start-page: 707
  issue: 5
  year: 2002
  ident: 300_CR16
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.1000244
– volume: 29
  start-page: 640
  issue: 4
  year: 2007
  ident: 300_CR10
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1017
– ident: 300_CR5
– volume: 28
  start-page: 1812
  issue: 5
  year: 2006
  ident: 300_CR3
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/050639296
– ident: 300_CR14
– ident: 300_CR12
  doi: 10.1007/11539117_64
– volume-title: Applied multivariate statistical analysis
  year: 2003
  ident: 300_CR8
  doi: 10.1007/978-3-662-05802-2
– ident: 300_CR28
  doi: 10.1007/978-3-540-74549-5_49
– volume: 35
  start-page: 307
  issue: 3
  year: 2000
  ident: 300_CR24
  publication-title: Multivariate Behavioral Research
  doi: 10.1207/S15327906MBR3503_02
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 300_CR25
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– ident: 300_CR26
  doi: 10.5244/C.21.50
SSID ssj0002823
Score 2.150127
Snippet While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it...
Issue Title: Special Issue: 3D Object Retrieval While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 382
SubjectTerms Algorithms
Artificial Intelligence
Biometry
Classification
Computer Imaging
Computer Science
Demographics
Demography
Ethnicity
Face recognition
Gender
Ground truth
Human
Human subjects
Image Processing and Computer Vision
Mathematical models
Methods
Pattern Recognition
Pattern Recognition and Graphics
Retrieval
Studies
Vision
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLjwRiwUZCEkJJBFEjuOfUIVdClIcNi2Um-WPfYCEkoK2f3_zCT2loLo1bHjZDz2PD0fYy-CVC2EZEQFrRRKRSvIbBYGZAwaQFsgh_7nL_roVH06a8-yw23MaZXlTJwO6jgA-cjfECR6awxK_LfnPwWhRlF0NUNoXGc3apQ0xOdm-WF3EqM5MUPJo4nUaluXqOZ0dQ4HSDGFBmRVie6SXPr7dP4nTDpJn-UddiurjfxgXue77Frq77HbWYXkeYOO2FRQGkrbfXZ8uPnWfwfUtgX3feQzeJwg8YUjt4EcMXw1AWsh1_Eph4BL8Z4vPSSxKglGQ89PSr3X8QE7XR6evDsSGUpBgGrqjUAzIkrjTagB6QQ2QRvQGKnXIYRGgpe18o3Rna-k11I2Jq0jyJQg6YjLBfIh2-uHPj1i3FcWYvCJzFgVu9Zq1HxVUjqhpWK7uGBVIaSDXGec4C5-uIsKyUR7h7R3RHvXLdir3ZDzucjGVZ2f0-o4Kl7RU3bMV78dR_fxeOUOJOqbnWw67PQyd1oPODn4fNkAf4HqXV3quV9W2eXtO7oLZlswvnuMG4-iKb5Pw3Z0tupsi-qoWbDXhTn-eMP_Pv_x1fM9YTfn_ATKYttne5tf2_QU1Z5NeDbx9m_d0PsT
  priority: 102
  providerName: ProQuest
Title Ethnicity- and Gender-based Subject Retrieval Using 3-D Face-Recognition Techniques
URI https://link.springer.com/article/10.1007/s11263-009-0300-7
https://www.proquest.com/docview/1113588154
https://www.proquest.com/docview/907953248
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7YULLS-xpa0ihIQEcpXEedjHLey2gKjQsiuVk2VPvICosogkF35Nf0t_Wccbe0vLQ-opkjNO_BiP5_OMZwCeG57laKxgMeacZVklmYPNTCCvTIFYSHQH-h9OiuN59u40P_X3uJvg7R5MkitJfXXZLUmdzdEd5vM4ZuUGbOaJkGIAm6Ojz-_HawFMKKLPIE_IKC9kEoyZf_vIte3oplD-wzq62nQmWzALze19Tb4fdK05wF83Ijnesj_bcM8rodGo55r7cMfWD2DLK6SRX-4NFYWcD6HsIczH7df6G5LuziJdV1Gfio65zZBqdsYd60TTVZou4uFo5ZFwcc7Zm4vziUbLpsFhaVlHsxA_tnkE88l49vqY-dQMDLM0aRnBkooLLUyCtMOjtJgbAjfJwhiTctQ8yXQqilLHXBecp8IuKuTWoi0qmn7kj2FQL2v7BCIdS6yMtg4WZ1WZy4I06cxmhSXkI8tqCHGYIYU-brlLn3GmriIuu5FUNJLKjaQqh_ByXeVHH7Tjf8TP3LQrFwyjdt42X3TXNOrtp6kacdJfS56WRPTCEy2W9HPU_vICdcHFz7pGuRvYR3lx0DiYxXMhSF0dQrR-TQvZWWd0bZddo2RcypzUWzGEV4FhfvvCv5q_cyvqp3C3d39wTnK7MGh_dnaPtKrW7MOGmBzt-7VEz8Pxyccplc7T0SVNUBpV
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAX3ohAgRUCIYFW2N7164BQoYkS2kYoTaXetvsKrYTsghMh_hS_kZnYm1IQvfVqr1-z45lvdmbnA3hhhEyt8QWPbCq4lK7kFDbzwgpnMmuz0tKC_v4kGx3KT0fp0Qb8CnthqKwy2MSVoXa1pTXyt0SJnhYFevz3Z984sUZRdjVQaLRqset__sCQrXk33sH5fZkkw8Hs44h3rALcyiRecETUThS6MLFF52RLb1ODuDyeG2MSYbWIpU6KLNeR0JkQSeHnzgrvrc8cvrkVeN9rsClpR2sPNj8MJp-na9uPAUxLXo9BWZqVccijrjbrxQnlTCkZIaKI5xc84d_-4J_E7MrfDW_DzQ6osu1Ws-7Ahq_uwq0OtLLOJDR4KPBChGP34GCwOKlOLeJ7znTlWEtXx8lh4pVLQ0s_bLqi8kI9Z6uqBSb4Dhtq6_k0lDTVFZuFDrPNfTi8EjE_gF5VV_4hMB2V1hntKXCWLk_LDLG29DLzGBuVuetDFASpbNfZnAg2vqrznswke4WyVyR7lffh9fqSs7atx2WDn9PsKGqXUVE9zhe9bBo1PpiqbYEINxdJjoNedYPmNT7c6m57A34Cddi6MHIrzLLqDEajztW7D2x9Gn91yt_oytfLRpVRXqYIgIs-vAnK8ccd_vf6jy5_3jO4Pprt76m98WT3MdxoqyOohm4LeovvS_8EQdfCPO00ncHxVf9cvwF9RzqL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAX3oiFAhYCIYGsJnES2weEKrZLl0KFtq3Um2tPvICEkkJ2hfhr_DpmknhLQfTWa-I8PB57vvGM52PsqZd5AT5okUAhRZ5XRpDbLDTIypcApQHa0P-wV-4c5u-OiqM19iuehaG0yrgmdgt11QDtkW8SJXqhNVr8zfmQFvFxPHl98k0QgxRFWiOdRq8iu-HnD3Tf2lfTMY71syybbB-82REDw4CAPEsXAtF1JbXTPgU0VGACFB4xejr33mcSnExzl-lSuUS6UspMh3kFMgQIZYW9AInvvcQuK6kMOX568nZlBdCV6Wns0T0rSpPGiGp3bC_NKHpKYQmZJEKdsYl_W4Z_QrSd5ZvcYNcGyMq3eh27ydZCfYtdH-ArHxaHFi9Fhoh47Tbb3158rr8AIn3BXV3xnrhOkOnEJ5eeNoH4rCP1Qo3nXf4Cl2LMJw6CmMXkpqbmB7HWbHuHHV6IkO-y9bqpwz3GXWKg8i6QC51XqjAlou485GVAL8moasSSKEgLQ41zotr4ak-rM5PsLcrekuytGrEXq0dO-gIf5zV-QqNjqXBGTSr4yS3b1k73Z3ZLItZVMlPY6PnQaN7gx8ENBx2wC1Rr60zLjTjKdlg6Wnuq6CPGV7dx0lMkx9WhWbbWJMoUCIX1iL2MyvHHG_73-_fP_95jdgWnlH0_3dt9wK72aRKUTLfB1hffl-Ehoq-Ff9SpOWfHFz2vfgPkvT1b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ethnicity-+and+gender-based+subject+retrieval+using+3-D+face-recognition+techniques&rft.jtitle=International+journal+of+computer+vision&rft.au=Toderici%2C+George&rft.au=O%27Malley%2C+Sean+M&rft.au=Passalis%2C+George&rft.au=Theoharis%2C+Theoharis&rft.date=2010-09-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=89&rft.issue=2-3&rft.spage=382&rft_id=info:doi/10.1007%2Fs11263-009-0300-7&rft.externalDocID=A365073277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon