Ethnicity- and Gender-based Subject Retrieval Using 3-D Face-Recognition Techniques
While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of h...
Saved in:
Published in | International journal of computer vision Vol. 89; no. 2-3; pp. 382 - 391 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.09.2010
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0920-5691 1573-1405 |
DOI | 10.1007/s11263-009-0300-7 |
Cover
Loading…
Abstract | While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of human subjects. Due to this disparity of interest, existing methods for retrieval based on demographic attributes tend to lag behind the more well-studied algorithms designed purely for face matching. The question this raises is whether a face recognition system could be leveraged to solve these other problems and, if so, how effective it could be. In the current work, we explore the limits of such a system for gender and ethnicity identification given (1) a ground truth of demographically-labeled, textureless 3-D models of human faces and (2) a state-of-the-art face-recognition algorithm. Once trained, our system is capable of classifying the gender and ethnicity of any such model of interest. Experiments are conducted on 4007 facial meshes from the benchmark
Face Recognition Grand Challenge v2
dataset. |
---|---|
AbstractList | While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of human subjects. Due to this disparity of interest, existing methods for retrieval based on demographic attributes tend to lag behind the more well-studied algorithms designed purely for face matching. The question this raises is whether a face recognition system could be leveraged to solve these other problems and, if so, how effective it could be. In the current work, we explore the limits of such a system for gender and ethnicity identification given (1) a ground truth of demographically-labeled, textureless 3-D models of human faces and (2) a state-of-the-art face-recognition algorithm. Once trained, our system is capable of classifying the gender and ethnicity of any such model of interest. Experiments are conducted on 4007 facial meshes from the benchmark Face Recognition Grand Challenge v2 dataset. While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of human subjects. Due to this disparity of interest, existing methods for retrieval based on demographic attributes tend to lag behind the more well-studied algorithms designed purely for face matching. The question this raises is whether a face recognition system could be leveraged to solve these other problems and, if so, how effective it could be. In the current work, we explore the limits of such a system for gender and ethnicity identification given (1) a ground truth of demographically-labeled, textureless 3-D models of human faces and (2) a state-of-the-art face-recognition algorithm. Once trained, our system is capable of classifying the gender and ethnicity of any such model of interest. Experiments are conducted on 4007 facial meshes from the benchmark Face Recognition Grand Challenge v2 dataset. Keywords Ethnicity. Face. Gender. Identification. Race. Recognition. Retrieval While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of human subjects. Due to this disparity of interest, existing methods for retrieval based on demographic attributes tend to lag behind the more well-studied algorithms designed purely for face matching. The question this raises is whether a face recognition system could be leveraged to solve these other problems and, if so, how effective it could be. In the current work, we explore the limits of such a system for gender and ethnicity identification given (1) a ground truth of demographically-labeled, textureless 3-D models of human faces and (2) a state-of-the-art face-recognition algorithm. Once trained, our system is capable of classifying the gender and ethnicity of any such model of interest. Experiments are conducted on 4007 facial meshes from the benchmark Face Recognition Grand Challenge v2 dataset. Issue Title: Special Issue: 3D Object Retrieval While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of human subjects. Due to this disparity of interest, existing methods for retrieval based on demographic attributes tend to lag behind the more well-studied algorithms designed purely for face matching. The question this raises is whether a face recognition system could be leveraged to solve these other problems and, if so, how effective it could be. In the current work, we explore the limits of such a system for gender and ethnicity identification given (1) a ground truth of demographically-labeled, textureless 3-D models of human faces and (2) a state-of-the-art face-recognition algorithm. Once trained, our system is capable of classifying the gender and ethnicity of any such model of interest. Experiments are conducted on 4007 facial meshes from the benchmark Face Recognition Grand Challenge v2 dataset.[PUBLICATION ABSTRACT] |
Audience | Academic |
Author | Toderici, George Theoharis, Theoharis Kakadiaris, Ioannis A. O’Malley, Sean M. Passalis, George |
Author_xml | – sequence: 1 givenname: George surname: Toderici fullname: Toderici, George email: gtoderici@uh.edu organization: Computational Biomedicine Lab, Department of Computer Science, University of Houston – sequence: 2 givenname: Sean M. surname: O’Malley fullname: O’Malley, Sean M. organization: Computational Biomedicine Lab, Department of Computer Science, University of Houston – sequence: 3 givenname: George surname: Passalis fullname: Passalis, George organization: Computational Biomedicine Lab, Department of Computer Science, University of Houston, Computer Graphics Laboratory, Department of Informatics & Telecommunications, University of Athens – sequence: 4 givenname: Theoharis surname: Theoharis fullname: Theoharis, Theoharis organization: Computational Biomedicine Lab, Department of Computer Science, University of Houston, Computer Graphics Laboratory, Department of Informatics & Telecommunications, University of Athens – sequence: 5 givenname: Ioannis A. surname: Kakadiaris fullname: Kakadiaris, Ioannis A. organization: Computational Biomedicine Lab, Department of Computer Science, University of Houston |
BookMark | eNp9kcFq3DAQhkVJoZu0D9CboYfSg1KNZEv2MaRJGggUNtmzkOWxq8Urp5JcmrfJs-TJKuMemkCLDgLxfTOj-Y_JkZ88EvIe2Ckwpj5HAC4FZayhTDBG1SuygUoJCiWrjsiGNZzRSjbwhhzHuGeM8ZqLDdldpO_eWZceaGF8V1yh7zDQ1kTsitu53aNNxRZTcPjTjMUuOj88PQr65enx0likW7TT4F1yky_u0OZaP2aMb8nr3owR3_25T8ju8uLu_Cu9-XZ1fX52Q23JIVGAuhO1qVuwXErboK1aDgr6tm25sEZAaXgtlWHCSCF4jX1nBaJF2cnGWnFCPq5178O09E364KLFcTQepznqhqmmErysM_nhBbmf5uDzcBoARFXXUJWZOl2pwYyone-nFIzNp8ODs3njvcvvZ0JWTAmuVBY-PRMyk_BXGswco76-3T5n1craMMUYsNd57WbZXG7iRg1ML1HqNUqdo9RLlHox4YV5H9zBhIf_Onx1Ymb9gOGvD_9T-g2YKrHQ |
CitedBy_id | crossref_primary_10_1109_TPAMI_2012_126 crossref_primary_10_1007_s10044_015_0499_6 crossref_primary_10_1109_TPAMI_2017_2669035 crossref_primary_10_1016_j_imavis_2012_02_004 crossref_primary_10_1016_j_imavis_2017_06_004 crossref_primary_10_1016_j_patcog_2014_09_021 crossref_primary_10_1007_s11042_016_4085_8 crossref_primary_10_1109_TPAMI_2014_2321570 crossref_primary_10_1007_s11263_017_1009_7 crossref_primary_10_1016_j_imavis_2014_06_009 crossref_primary_10_1109_TAFFC_2016_2518162 crossref_primary_10_1142_S0218001417500264 crossref_primary_10_1364_JOSAA_33_000333 crossref_primary_10_3390_electronics13122317 crossref_primary_10_1186_s13640_015_0089_y crossref_primary_10_1007_s11263_020_01308_z |
Cites_doi | 10.1109/TPAMI.2003.1233902 10.1109/TPAMI.2007.70800 10.1007/s11263-006-5166-3 10.1137/050639296 10.1109/34.1000244 10.1109/TIP.2006.884940 10.1109/TIP.2003.819861 10.1068/p260075 10.1109/TPAMI.2007.1017 10.1109/18.119725 10.1207/S15327906MBR3503_02 10.1007/s11263-006-8910-9 10.1109/72.857774 10.1002/9780470316641 10.1109/34.868688 10.1109/AFGR.2004.1301530 10.4135/9781412985130 10.3758/BF03194079 10.1109/CVPR.2005.268 10.1007/978-3-540-69812-8_92 10.1007/11539117_64 10.1007/978-3-662-05802-2 10.1007/978-3-540-74549-5_49 10.5244/C.21.50 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2010 COPYRIGHT 2010 Springer |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2010 – notice: COPYRIGHT 2010 Springer |
DBID | AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
DOI | 10.1007/s11263-009-0300-7 |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1573-1405 |
EndPage | 391 |
ExternalDocumentID | 2793815691 A365073277 10_1007_s11263_009_0300_7 |
Genre | Feature |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c421t-118d38a8b1c266c9ec5b2171fbbb23ca314a2867a03a63328efdc3eece6d69cc3 |
IEDL.DBID | AGYKE |
ISSN | 0920-5691 |
IngestDate | Fri Jul 11 08:15:09 EDT 2025 Fri Jul 25 23:39:26 EDT 2025 Tue Jun 10 20:39:53 EDT 2025 Fri Jun 27 05:07:32 EDT 2025 Tue Jul 01 04:30:53 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 Fri Feb 21 02:26:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2-3 |
Keywords | Retrieval Ethnicity Race Identification Gender Face Recognition |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-118d38a8b1c266c9ec5b2171fbbb23ca314a2867a03a63328efdc3eece6d69cc3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1113588154 |
PQPubID | 1456341 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_907953248 proquest_journals_1113588154 gale_infotracacademiconefile_A365073277 gale_incontextgauss_ISR_A365073277 crossref_citationtrail_10_1007_s11263_009_0300_7 crossref_primary_10_1007_s11263_009_0300_7 springer_journals_10_1007_s11263_009_0300_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York |
PublicationTitle | International journal of computer vision |
PublicationTitleAbbrev | Int J Comput Vis |
PublicationYear | 2010 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Moghaddam, Yang (CR16) 2002; 24 Baluja, Rowley (CR2) 2007; 71 Kruskal, Wish (CR11) 1978 Elbaz, Kimmel (CR6) 2003; 25 CR19 Young (CR29) 1987 CR17 CR14 CR13 CR12 Gutta, Huang, Jonathan, Wechsler (CR7) 2000; 11 Mäkinen, Raisamo (CR15) 2008; 30 Simoncelli, Freeman, Adelson, Heeger (CR23) 1992; 38 Aharon, Kimmel (CR1) 2006; 67 Bronstein, Bronstein, Kimmel (CR4) 2007; 16 Shi, Malik (CR22) 2000; 22 CR5 Potter, Corneille, Ruys, Rhodes (CR20) 2007; 14 Seber (CR21) 1984 Tsogo, Masson, Bardot (CR24) 2000; 35 CR28 CR9 CR27 CR26 Wang, Bovik, Sheikh, Simoncelli (CR25) 2004; 13 Kakadiaris, Passalis, Toderici, Murtuza, Lu, Karampatziakis, Theoharis (CR10) 2007; 29 Härdle, Simar (CR8) 2003 Bronstein, Bronstein, Kimmel (CR3) 2006; 28 O’Toole, Vetter, Troje, Bülthoff (CR18) 1997; 26 S. Gutta (300_CR7) 2000; 11 E. Simoncelli (300_CR23) 1992; 38 F. W. Young (300_CR29) 1987 M. Aharon (300_CR1) 2006; 67 J. B. Kruskal (300_CR11) 1978 300_CR9 A. M. Bronstein (300_CR3) 2006; 28 300_CR27 300_CR28 300_CR5 A. J. O’Toole (300_CR18) 1997; 26 L. Tsogo (300_CR24) 2000; 35 300_CR14 J. Shi (300_CR22) 2000; 22 300_CR12 300_CR13 B. Moghaddam (300_CR16) 2002; 24 A. M. Bronstein (300_CR4) 2007; 16 I. A. Kakadiaris (300_CR10) 2007; 29 G. Seber (300_CR21) 1984 T. Potter (300_CR20) 2007; 14 W. Härdle (300_CR8) 2003 300_CR19 300_CR17 Z. Wang (300_CR25) 2004; 13 S. Baluja (300_CR2) 2007; 71 300_CR26 A. E. Elbaz (300_CR6) 2003; 25 E. Mäkinen (300_CR15) 2008; 30 |
References_xml | – volume: 14 start-page: 368 issue: 2 year: 2007 end-page: 372 ident: CR20 article-title: “Just another pretty face”: A multidimensional scaling approach to face attractiveness and variability publication-title: Psychonomic Bulletin & Review – volume: 25 start-page: 1285 issue: 10 year: 2003 end-page: 1295 ident: CR6 article-title: On bending invariant signatures for surfaces publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2003.1233902 – volume: 30 start-page: 541 issue: 3 year: 2008 end-page: 547 ident: CR15 article-title: Evaluation of gender classification methods with automatically detected and aligned faces publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.70800 – ident: CR14 – volume: 67 start-page: 297 issue: 3 year: 2006 end-page: 312 ident: CR1 article-title: Representation analysis and synthesis of lip images using dimensionality reduction publication-title: International Journal of Computer Vision doi: 10.1007/s11263-006-5166-3 – volume: 28 start-page: 1812 issue: 5 year: 2006 end-page: 1836 ident: CR3 article-title: Efficient computation of isometry-invariant distances between surfaces publication-title: SIAM Journal on Scientific Computing doi: 10.1137/050639296 – ident: CR12 – volume: 24 start-page: 707 issue: 5 year: 2002 end-page: 711 ident: CR16 article-title: Learning gender with support faces publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.1000244 – volume: 16 start-page: 188 issue: 1 year: 2007 end-page: 197 ident: CR4 article-title: Expression-invariant representations of faces publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2006.884940 – ident: CR27 – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 ident: CR25 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.819861 – ident: CR19 – volume: 26 start-page: 75 year: 1997 end-page: 84 ident: CR18 article-title: Sex classification is better with three-dimensional structure than with image intensity information publication-title: Perception doi: 10.1068/p260075 – volume: 29 start-page: 640 issue: 4 year: 2007 end-page: 649 ident: CR10 article-title: Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.1017 – volume: 38 start-page: 587 year: 1992 end-page: 607 ident: CR23 article-title: Shiftable multi-scale transforms publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.119725 – ident: CR17 – ident: CR13 – volume: 35 start-page: 307 issue: 3 year: 2000 end-page: 319 ident: CR24 article-title: Multidimensional scaling methods for many-object sets: A review publication-title: Multivariate Behavioral Research doi: 10.1207/S15327906MBR3503_02 – ident: CR9 – year: 2003 ident: CR8 publication-title: Applied multivariate statistical analysis – ident: CR5 – year: 1987 ident: CR29 publication-title: Multidimensional scaling: history, theory, and applications – year: 1978 ident: CR11 publication-title: Multidimensional scaling – ident: CR28 – volume: 71 start-page: 111 issue: 1 year: 2007 end-page: 119 ident: CR2 article-title: Boosting sex identification performance publication-title: International Journal of Computer Vision doi: 10.1007/s11263-006-8910-9 – ident: CR26 – volume: 11 start-page: 948 issue: 4 year: 2000 end-page: 960 ident: CR7 article-title: Mixture of experts for classification of gender, ethnic origin, and pose of human faces publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.857774 – year: 1984 ident: CR21 publication-title: , Multivariate observations doi: 10.1002/9780470316641 – volume: 22 start-page: 888 issue: 8 year: 2000 end-page: 905 ident: CR22 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.868688 – ident: 300_CR9 doi: 10.1109/AFGR.2004.1301530 – volume-title: Multidimensional scaling, Multivariate observations year: 1984 ident: 300_CR21 doi: 10.1002/9780470316641 – volume: 11 start-page: 948 issue: 4 year: 2000 ident: 300_CR7 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.857774 – volume-title: Multidimensional scaling year: 1978 ident: 300_CR11 doi: 10.4135/9781412985130 – ident: 300_CR13 – volume: 26 start-page: 75 year: 1997 ident: 300_CR18 publication-title: Perception doi: 10.1068/p260075 – volume: 71 start-page: 111 issue: 1 year: 2007 ident: 300_CR2 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-006-8910-9 – volume-title: Multidimensional scaling: history, theory, and applications year: 1987 ident: 300_CR29 – volume: 67 start-page: 297 issue: 3 year: 2006 ident: 300_CR1 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-006-5166-3 – ident: 300_CR17 – volume: 38 start-page: 587 year: 1992 ident: 300_CR23 publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.119725 – volume: 14 start-page: 368 issue: 2 year: 2007 ident: 300_CR20 publication-title: Psychonomic Bulletin & Review doi: 10.3758/BF03194079 – ident: 300_CR19 doi: 10.1109/CVPR.2005.268 – volume: 25 start-page: 1285 issue: 10 year: 2003 ident: 300_CR6 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2003.1233902 – volume: 16 start-page: 188 issue: 1 year: 2007 ident: 300_CR4 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2006.884940 – ident: 300_CR27 doi: 10.1007/978-3-540-69812-8_92 – volume: 30 start-page: 541 issue: 3 year: 2008 ident: 300_CR15 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.70800 – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 300_CR22 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.868688 – volume: 24 start-page: 707 issue: 5 year: 2002 ident: 300_CR16 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.1000244 – volume: 29 start-page: 640 issue: 4 year: 2007 ident: 300_CR10 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.1017 – ident: 300_CR5 – volume: 28 start-page: 1812 issue: 5 year: 2006 ident: 300_CR3 publication-title: SIAM Journal on Scientific Computing doi: 10.1137/050639296 – ident: 300_CR14 – ident: 300_CR12 doi: 10.1007/11539117_64 – volume-title: Applied multivariate statistical analysis year: 2003 ident: 300_CR8 doi: 10.1007/978-3-662-05802-2 – ident: 300_CR28 doi: 10.1007/978-3-540-74549-5_49 – volume: 35 start-page: 307 issue: 3 year: 2000 ident: 300_CR24 publication-title: Multivariate Behavioral Research doi: 10.1207/S15327906MBR3503_02 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 300_CR25 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.819861 – ident: 300_CR26 doi: 10.5244/C.21.50 |
SSID | ssj0002823 |
Score | 2.150127 |
Snippet | While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it... Issue Title: Special Issue: 3D Object Retrieval While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 382 |
SubjectTerms | Algorithms Artificial Intelligence Biometry Classification Computer Imaging Computer Science Demographics Demography Ethnicity Face recognition Gender Ground truth Human Human subjects Image Processing and Computer Vision Mathematical models Methods Pattern Recognition Pattern Recognition and Graphics Retrieval Studies Vision |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLjwRiwUZCEkJJBFEjuOfUIVdClIcNi2Um-WPfYCEkoK2f3_zCT2loLo1bHjZDz2PD0fYy-CVC2EZEQFrRRKRSvIbBYGZAwaQFsgh_7nL_roVH06a8-yw23MaZXlTJwO6jgA-cjfECR6awxK_LfnPwWhRlF0NUNoXGc3apQ0xOdm-WF3EqM5MUPJo4nUaluXqOZ0dQ4HSDGFBmRVie6SXPr7dP4nTDpJn-UddiurjfxgXue77Frq77HbWYXkeYOO2FRQGkrbfXZ8uPnWfwfUtgX3feQzeJwg8YUjt4EcMXw1AWsh1_Eph4BL8Z4vPSSxKglGQ89PSr3X8QE7XR6evDsSGUpBgGrqjUAzIkrjTagB6QQ2QRvQGKnXIYRGgpe18o3Rna-k11I2Jq0jyJQg6YjLBfIh2-uHPj1i3FcWYvCJzFgVu9Zq1HxVUjqhpWK7uGBVIaSDXGec4C5-uIsKyUR7h7R3RHvXLdir3ZDzucjGVZ2f0-o4Kl7RU3bMV78dR_fxeOUOJOqbnWw67PQyd1oPODn4fNkAf4HqXV3quV9W2eXtO7oLZlswvnuMG4-iKb5Pw3Z0tupsi-qoWbDXhTn-eMP_Pv_x1fM9YTfn_ATKYttne5tf2_QU1Z5NeDbx9m_d0PsT priority: 102 providerName: ProQuest |
Title | Ethnicity- and Gender-based Subject Retrieval Using 3-D Face-Recognition Techniques |
URI | https://link.springer.com/article/10.1007/s11263-009-0300-7 https://www.proquest.com/docview/1113588154 https://www.proquest.com/docview/907953248 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7YULLS-xpa0ihIQEcpXEedjHLey2gKjQsiuVk2VPvICosogkF35Nf0t_Wccbe0vLQ-opkjNO_BiP5_OMZwCeG57laKxgMeacZVklmYPNTCCvTIFYSHQH-h9OiuN59u40P_X3uJvg7R5MkitJfXXZLUmdzdEd5vM4ZuUGbOaJkGIAm6Ojz-_HawFMKKLPIE_IKC9kEoyZf_vIte3oplD-wzq62nQmWzALze19Tb4fdK05wF83Ijnesj_bcM8rodGo55r7cMfWD2DLK6SRX-4NFYWcD6HsIczH7df6G5LuziJdV1Gfio65zZBqdsYd60TTVZou4uFo5ZFwcc7Zm4vziUbLpsFhaVlHsxA_tnkE88l49vqY-dQMDLM0aRnBkooLLUyCtMOjtJgbAjfJwhiTctQ8yXQqilLHXBecp8IuKuTWoi0qmn7kj2FQL2v7BCIdS6yMtg4WZ1WZy4I06cxmhSXkI8tqCHGYIYU-brlLn3GmriIuu5FUNJLKjaQqh_ByXeVHH7Tjf8TP3LQrFwyjdt42X3TXNOrtp6kacdJfS56WRPTCEy2W9HPU_vICdcHFz7pGuRvYR3lx0DiYxXMhSF0dQrR-TQvZWWd0bZddo2RcypzUWzGEV4FhfvvCv5q_cyvqp3C3d39wTnK7MGh_dnaPtKrW7MOGmBzt-7VEz8Pxyccplc7T0SVNUBpV |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAX3ohAgRUCIYFW2N7164BQoYkS2kYoTaXetvsKrYTsghMh_hS_kZnYm1IQvfVqr1-z45lvdmbnA3hhhEyt8QWPbCq4lK7kFDbzwgpnMmuz0tKC_v4kGx3KT0fp0Qb8CnthqKwy2MSVoXa1pTXyt0SJnhYFevz3Z984sUZRdjVQaLRqset__sCQrXk33sH5fZkkw8Hs44h3rALcyiRecETUThS6MLFF52RLb1ODuDyeG2MSYbWIpU6KLNeR0JkQSeHnzgrvrc8cvrkVeN9rsClpR2sPNj8MJp-na9uPAUxLXo9BWZqVccijrjbrxQnlTCkZIaKI5xc84d_-4J_E7MrfDW_DzQ6osu1Ws-7Ahq_uwq0OtLLOJDR4KPBChGP34GCwOKlOLeJ7znTlWEtXx8lh4pVLQ0s_bLqi8kI9Z6uqBSb4Dhtq6_k0lDTVFZuFDrPNfTi8EjE_gF5VV_4hMB2V1hntKXCWLk_LDLG29DLzGBuVuetDFASpbNfZnAg2vqrznswke4WyVyR7lffh9fqSs7atx2WDn9PsKGqXUVE9zhe9bBo1PpiqbYEINxdJjoNedYPmNT7c6m57A34Cddi6MHIrzLLqDEajztW7D2x9Gn91yt_oytfLRpVRXqYIgIs-vAnK8ccd_vf6jy5_3jO4Pprt76m98WT3MdxoqyOohm4LeovvS_8EQdfCPO00ncHxVf9cvwF9RzqL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAX3oiFAhYCIYGsJnES2weEKrZLl0KFtq3Um2tPvICEkkJ2hfhr_DpmknhLQfTWa-I8PB57vvGM52PsqZd5AT5okUAhRZ5XRpDbLDTIypcApQHa0P-wV-4c5u-OiqM19iuehaG0yrgmdgt11QDtkW8SJXqhNVr8zfmQFvFxPHl98k0QgxRFWiOdRq8iu-HnD3Tf2lfTMY71syybbB-82REDw4CAPEsXAtF1JbXTPgU0VGACFB4xejr33mcSnExzl-lSuUS6UspMh3kFMgQIZYW9AInvvcQuK6kMOX568nZlBdCV6Wns0T0rSpPGiGp3bC_NKHpKYQmZJEKdsYl_W4Z_QrSd5ZvcYNcGyMq3eh27ydZCfYtdH-ArHxaHFi9Fhoh47Tbb3158rr8AIn3BXV3xnrhOkOnEJ5eeNoH4rCP1Qo3nXf4Cl2LMJw6CmMXkpqbmB7HWbHuHHV6IkO-y9bqpwz3GXWKg8i6QC51XqjAlou485GVAL8moasSSKEgLQ41zotr4ak-rM5PsLcrekuytGrEXq0dO-gIf5zV-QqNjqXBGTSr4yS3b1k73Z3ZLItZVMlPY6PnQaN7gx8ENBx2wC1Rr60zLjTjKdlg6Wnuq6CPGV7dx0lMkx9WhWbbWJMoUCIX1iL2MyvHHG_73-_fP_95jdgWnlH0_3dt9wK72aRKUTLfB1hffl-Ehoq-Ff9SpOWfHFz2vfgPkvT1b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ethnicity-+and+gender-based+subject+retrieval+using+3-D+face-recognition+techniques&rft.jtitle=International+journal+of+computer+vision&rft.au=Toderici%2C+George&rft.au=O%27Malley%2C+Sean+M&rft.au=Passalis%2C+George&rft.au=Theoharis%2C+Theoharis&rft.date=2010-09-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=89&rft.issue=2-3&rft.spage=382&rft_id=info:doi/10.1007%2Fs11263-009-0300-7&rft.externalDocID=A365073277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |