Clustering Residential Burglaries Using Modus Operandi and Spatiotemporal Information

To identify series of residential burglaries, detecting linked crimes performed by the same constellations of criminals is necessary. Comparison of crime reports today is difficult as crime reports traditionally have been written as unstructured text and often lack a common information-basis. Based...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of information technology & decision making Vol. 15; no. 1; pp. 23 - 42
Main Authors Borg, Anton, Boldt, Martin
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.01.2016
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0219-6220
1793-6845
1793-6845
DOI10.1142/S0219622015500339

Cover

Loading…
Abstract To identify series of residential burglaries, detecting linked crimes performed by the same constellations of criminals is necessary. Comparison of crime reports today is difficult as crime reports traditionally have been written as unstructured text and often lack a common information-basis. Based on a novel process for collecting structured crime scene information, the present study investigates the use of clustering algorithms to group similar crime reports based on combined crime characteristics from the structured form. Clustering quality is measured using Connectivity and Silhouette index (SI), stability using Jaccard index, and accuracy is measured using Rand index (RI) and a Series Rand index (SRI). The performance of clustering using combined characteristics was compared with spatial characteristic. The results suggest that the combined characteristics perform better or similar to the spatial characteristic. In terms of practical significance, the presented clustering approach is capable of clustering cases using a broader decision basis.
AbstractList To identify series of residential burglaries, detecting linked crimes performed by the same constellations of criminals is necessary. Comparison of crime reports today is difficult as crime reports traditionally have been written as unstructured text and often lack a common information-basis. Based on a novel process for collecting structured crime scene information, the present study investigates the use of clustering algorithms to group similar crime reports based on combined crime characteristics from the structured form. Clustering quality is measured using Connectivity and Silhouette index (SI), stability using Jaccard index, and accuracy is measured using Rand index (RI) and a Series Rand index (SRI). The performance of clustering using combined characteristics was compared with spatial characteristic. The results suggest that the combined characteristics perform better or similar to the spatial characteristic. In terms of practical significance, the presented clustering approach is capable of clustering cases using a broader decision basis.
Author Borg, Anton
Boldt, Martin
Author_xml – sequence: 1
  givenname: Anton
  surname: Borg
  fullname: Borg, Anton
– sequence: 2
  givenname: Martin
  surname: Boldt
  fullname: Boldt, Martin
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:bth-11779$$DView record from Swedish Publication Index
BookMark eNp9kV1PwyAYhYmZidv0B3jXxFurfKy0XM75tWRmiXPeElpgsnSlQpvFfy-16oVLvIHAOc-bw2EEBpWtFADnCF4hNMHXK4gRoxhDlCQQEsKOwBCljMQ0myQDMOzkuNNPwMj7LQxnyPAQrGdl6xvlTLWJnpU3UlWNEWV007pNKZxRPlr7TnyysvXRslZOVNJEYYlWtWiMbdSuti4g80pbt-uuqlNwrEXp1dn3Pgbr-7uX2WO8WD7MZ9NFXEy6PAXLsNBYEkxSBBVFUhY6ZzhHGEKaakkzrQhjwVcQJhKUUEw1pIxRKLAUZAwu-7l-r-o257UzO-E-uBWG35rXKbduw_PmjSOUhjLG4KK3186-t8o3fGtbV4WEHCNECQmdZMGV9q7CWe-d0rwwzdezGidMyRHkXeX8oPJAoj_kT6D_GNgze-tK6QvTfYA2xS96iHwC5AGUBg
CitedBy_id crossref_primary_10_1016_j_knosys_2020_105738
crossref_primary_10_1590_0101_7438_2022_042_00257930
crossref_primary_10_3233_IDA_163220
crossref_primary_10_1142_S0219622018500141
crossref_primary_10_1016_j_jocs_2019_101024
crossref_primary_10_1016_j_knosys_2017_02_017
Cites_doi 10.1016/0377-0427(87)90125-7
10.1002/jip.21
10.1348/135532506X118631
10.1111/j.1469-8137.1912.tb05611.x
10.1109/TNN.2005.845141
10.1177/0093854811418599
10.1109/34.868688
10.1016/j.apgeog.2013.04.001
10.1109/TSMCC.2003.809867
10.1016/S1355-0306(02)71820-0
10.1080/1561426042000191305
10.1348/135532508X349336
10.1177/1477370808095124
10.1198/016214503000000666
10.1080/10683160902971030
10.1080/10439460500399791
10.1007/s10707-010-0116-1
10.1002/9781118685181
10.1111/rssa.12076
10.1016/j.eswa.2014.02.035
10.1080/15427951.2004.10129093
10.1142/S0219622012500095
10.1002/jip.120
10.1016/j.cosrev.2007.05.001
10.1093/bioinformatics/bti517
10.1080/01621459.1971.10482356
10.1016/j.ins.2014.02.137
10.1016/j.forsciint.2010.03.017
10.1007/s10506-006-9023-z
ContentType Journal Article
Copyright 2016, World Scientific Publishing Company
2016. World Scientific Publishing Company
Copyright_xml – notice: 2016, World Scientific Publishing Company
– notice: 2016. World Scientific Publishing Company
DBID AAYXX
CITATION
ADTPV
AOWAS
DF3
DOI 10.1142/S0219622015500339
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Blekinge Tekniska Högskola
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1793-6845
EndPage 42
ExternalDocumentID oai_DiVA_org_bth_11779
10_1142_S0219622015500339
S0219622015500339
GroupedDBID .DC
0R~
4.4
5GY
8VB
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
DU5
EBS
EBU
EJD
F5P
HZ~
K1G
O9-
P2P
P71
QWB
RWJ
ZL0
AAYXX
ADMLS
CITATION
ADTPV
AOWAS
DF3
ID FETCH-LOGICAL-c4219-c982af2d323710e61ddcfb92b120067fd68fe399c98c39a515626f069960a2da3
ISSN 0219-6220
1793-6845
IngestDate Thu Aug 21 06:51:31 EDT 2025
Mon Jun 30 05:43:11 EDT 2025
Tue Jul 01 02:25:06 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Fri Aug 23 08:20:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords residential burglary analysis
Crime clustering
decision support system
combined distance metric
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4219-c982af2d323710e61ddcfb92b120067fd68fe399c98c39a515626f069960a2da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2116331098
PQPubID 2049870
PageCount 20
ParticipantIDs swepub_primary_oai_DiVA_org_bth_11779
crossref_citationtrail_10_1142_S0219622015500339
crossref_primary_10_1142_S0219622015500339
proquest_journals_2116331098
worldscientific_primary_S0219622015500339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160100
2016-01-00
20160101
2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 20160100
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of information technology & decision making
PublicationYear 2016
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References Zelnik-Manor L. (S0219622015500339BIB026) 2004
Markson L. (S0219622015500339BIB014) 2010; 7
Bowers K. (S0219622015500339BIB007) 2004; 5
S0219622015500339BIB008
S0219622015500339BIB009
S0219622015500339BIB005
S0219622015500339BIB027
S0219622015500339BIB029
S0219622015500339BIB022
S0219622015500339BIB001
S0219622015500339BIB002
S0219622015500339BIB024
S0219622015500339BIB003
S0219622015500339BIB025
S0219622015500339BIB020
S0219622015500339BIB021
Eck J. E. (S0219622015500339BIB004) 2004
S0219622015500339BIB019
Maguire M. (S0219622015500339BIB006) 2006; 16
S0219622015500339BIB015
Witten I. H. (S0219622015500339BIB028) 2011
S0219622015500339BIB016
S0219622015500339BIB011
S0219622015500339BIB033
S0219622015500339BIB012
S0219622015500339BIB034
S0219622015500339BIB013
S0219622015500339BIB035
S0219622015500339BIB036
S0219622015500339BIB030
S0219622015500339BIB031
S0219622015500339BIB010
S0219622015500339BIB032
References_xml – ident: S0219622015500339BIB032
  doi: 10.1016/0377-0427(87)90125-7
– volume: 5
  start-page: 12
  issue: 3
  year: 2004
  ident: S0219622015500339BIB007
  publication-title: Western Criminology Review
– ident: S0219622015500339BIB022
  doi: 10.1002/jip.21
– ident: S0219622015500339BIB002
  doi: 10.1348/135532506X118631
– volume-title: Data Mining — Practical Machine Learning Tools and Techniques
  year: 2011
  ident: S0219622015500339BIB028
– ident: S0219622015500339BIB033
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– ident: S0219622015500339BIB027
  doi: 10.1109/TNN.2005.845141
– ident: S0219622015500339BIB001
  doi: 10.1177/0093854811418599
– ident: S0219622015500339BIB030
  doi: 10.1109/34.868688
– ident: S0219622015500339BIB009
  doi: 10.1016/j.apgeog.2013.04.001
– ident: S0219622015500339BIB016
  doi: 10.1109/TSMCC.2003.809867
– ident: S0219622015500339BIB010
  doi: 10.1016/S1355-0306(02)71820-0
– volume-title: Self-Tuning Spectral Clustering
  year: 2004
  ident: S0219622015500339BIB026
– ident: S0219622015500339BIB003
  doi: 10.1080/1561426042000191305
– ident: S0219622015500339BIB011
  doi: 10.1348/135532508X349336
– ident: S0219622015500339BIB008
  doi: 10.1177/1477370808095124
– ident: S0219622015500339BIB024
  doi: 10.1198/016214503000000666
– ident: S0219622015500339BIB013
  doi: 10.1080/10683160902971030
– volume: 16
  start-page: 67
  issue: 1
  year: 2006
  ident: S0219622015500339BIB006
  publication-title: Policing and Society: An International Journal of Research and Policy
  doi: 10.1080/10439460500399791
– ident: S0219622015500339BIB019
  doi: 10.1007/s10707-010-0116-1
– ident: S0219622015500339BIB021
  doi: 10.1002/9781118685181
– ident: S0219622015500339BIB015
  doi: 10.1111/rssa.12076
– ident: S0219622015500339BIB005
  doi: 10.1016/j.eswa.2014.02.035
– ident: S0219622015500339BIB025
  doi: 10.1080/15427951.2004.10129093
– volume-title: Mapping Crime: Understanding Hot Spots
  year: 2004
  ident: S0219622015500339BIB004
– ident: S0219622015500339BIB035
  doi: 10.1142/S0219622012500095
– volume: 7
  start-page: 91
  issue: 2
  year: 2010
  ident: S0219622015500339BIB014
  publication-title: Journal of Investigative Psychology and Offender Profiling
  doi: 10.1002/jip.120
– ident: S0219622015500339BIB029
  doi: 10.1016/j.cosrev.2007.05.001
– ident: S0219622015500339BIB031
  doi: 10.1093/bioinformatics/bti517
– ident: S0219622015500339BIB034
  doi: 10.1080/01621459.1971.10482356
– ident: S0219622015500339BIB036
  doi: 10.1016/j.ins.2014.02.137
– ident: S0219622015500339BIB012
  doi: 10.1016/j.forsciint.2010.03.017
– ident: S0219622015500339BIB020
  doi: 10.1007/s10506-006-9023-z
SSID ssj0021092
Score 2.1099272
Snippet To identify series of residential burglaries, detecting linked crimes performed by the same constellations of criminals is necessary. Comparison of crime...
SourceID swepub
proquest
crossref
worldscientific
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23
SubjectTerms Burglary
Clustering
combined distance metric
Constellations
Crime
Crime clustering
decision support system
residential burglary analysis
Unstructured data
Title Clustering Residential Burglaries Using Modus Operandi and Spatiotemporal Information
URI http://www.worldscientific.com/doi/abs/10.1142/S0219622015500339
https://www.proquest.com/docview/2116331098
https://urn.kb.se/resolve?urn=urn:nbn:se:bth-11779
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9B98IeJj42URjID_DAqozETtzksWygCVF4YEV7i-zY0SaVdurSF_56zh9xE1qhwUtUWc458f1q3V3ufgfwJq9iqQumojrJTOhG55GMExkxnQuRKprIyhQKT7_yi1n6-Sq72rRVtNUljTytfu2sK_kfreIY6tVUyf6DZoNQHMDfqF-8oobxei8dn83XhufAZ9Dd2Jpb3PIP6xUaxcYHHrmMgOlSre9G3271yhSxuGxNm0ntiakM3UaoYuyaq_14YY9lIswfNSE6b3GkfNee0U_b6Cr4-0uXRzYxTYs3g3PVlgy1HOA-BOFqI_0ZhQdexCmNewdqtgUcfzqy3Yd2Su1nY5RlRBmnKWaO4mgHF_b5zY9JiY9cyubaUpUXD2GPopMQD2Bvcj798j043Elsm2KHh7TFsQWLeJ5m_gs3rv1-a-W-jdJxPByZ7D4cWDpbV7JqMro6JsnlYzjwvgSZOGA8gQd68RT2OwyTz2C2gQjpQIRsIEIsRIiFCGkhQvBC-hAhHYgcwuzTx8uzi8h30oiq1Lx8VeRU1FQxytCi1DxRqqplQWViIkrjWvG81miq4ryKFQJtXPRz65gb6h5BlWBHMFgsF_o5kGysZE1FiqJYWqWZ4Ipnhc604GM099QQ4nbvysrTzJtuJ_PSlcDTcmu7h3ASbrl1HCt_m3zcKqT0sL8raYJuheG4zYfw1ikpSNqNmSG8-0OH4YatJV_cU-ZLeGT-HS5AdwyDZrXWr9BkbeRrj8zfPPGYPw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Residential+Burglaries+Using+Modus+Operandi+and+Spatiotemporal+Information&rft.jtitle=International+journal+of+information+technology+%26+decision+making&rft.au=Borg%2C+Anton&rft.au=Boldt%2C+Martin&rft.date=2016&rft.issn=0219-6220&rft.volume=15&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1142%2FS0219622015500339&rft.externalDocID=oai_DiVA_org_bth_11779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-6220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-6220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-6220&client=summon