Clustering Residential Burglaries Using Modus Operandi and Spatiotemporal Information
To identify series of residential burglaries, detecting linked crimes performed by the same constellations of criminals is necessary. Comparison of crime reports today is difficult as crime reports traditionally have been written as unstructured text and often lack a common information-basis. Based...
Saved in:
Published in | International journal of information technology & decision making Vol. 15; no. 1; pp. 23 - 42 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
01.01.2016
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0219-6220 1793-6845 1793-6845 |
DOI | 10.1142/S0219622015500339 |
Cover
Loading…
Abstract | To identify series of residential burglaries, detecting linked crimes performed by the same constellations of criminals is necessary. Comparison of crime reports today is difficult as crime reports traditionally have been written as unstructured text and often lack a common information-basis. Based on a novel process for collecting structured crime scene information, the present study investigates the use of clustering algorithms to group similar crime reports based on combined crime characteristics from the structured form. Clustering quality is measured using Connectivity and Silhouette index (SI), stability using Jaccard index, and accuracy is measured using Rand index (RI) and a Series Rand index (SRI). The performance of clustering using combined characteristics was compared with spatial characteristic. The results suggest that the combined characteristics perform better or similar to the spatial characteristic. In terms of practical significance, the presented clustering approach is capable of clustering cases using a broader decision basis. |
---|---|
AbstractList | To identify series of residential burglaries, detecting linked crimes performed by the same constellations of criminals is necessary. Comparison of crime reports today is difficult as crime reports traditionally have been written as unstructured text and often lack a common information-basis. Based on a novel process for collecting structured crime scene information, the present study investigates the use of clustering algorithms to group similar crime reports based on combined crime characteristics from the structured form. Clustering quality is measured using Connectivity and Silhouette index (SI), stability using Jaccard index, and accuracy is measured using Rand index (RI) and a Series Rand index (SRI). The performance of clustering using combined characteristics was compared with spatial characteristic. The results suggest that the combined characteristics perform better or similar to the spatial characteristic. In terms of practical significance, the presented clustering approach is capable of clustering cases using a broader decision basis. |
Author | Borg, Anton Boldt, Martin |
Author_xml | – sequence: 1 givenname: Anton surname: Borg fullname: Borg, Anton – sequence: 2 givenname: Martin surname: Boldt fullname: Boldt, Martin |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:bth-11779$$DView record from Swedish Publication Index |
BookMark | eNp9kV1PwyAYhYmZidv0B3jXxFurfKy0XM75tWRmiXPeElpgsnSlQpvFfy-16oVLvIHAOc-bw2EEBpWtFADnCF4hNMHXK4gRoxhDlCQQEsKOwBCljMQ0myQDMOzkuNNPwMj7LQxnyPAQrGdl6xvlTLWJnpU3UlWNEWV007pNKZxRPlr7TnyysvXRslZOVNJEYYlWtWiMbdSuti4g80pbt-uuqlNwrEXp1dn3Pgbr-7uX2WO8WD7MZ9NFXEy6PAXLsNBYEkxSBBVFUhY6ZzhHGEKaakkzrQhjwVcQJhKUUEw1pIxRKLAUZAwu-7l-r-o257UzO-E-uBWG35rXKbduw_PmjSOUhjLG4KK3186-t8o3fGtbV4WEHCNECQmdZMGV9q7CWe-d0rwwzdezGidMyRHkXeX8oPJAoj_kT6D_GNgze-tK6QvTfYA2xS96iHwC5AGUBg |
CitedBy_id | crossref_primary_10_1016_j_knosys_2020_105738 crossref_primary_10_1590_0101_7438_2022_042_00257930 crossref_primary_10_3233_IDA_163220 crossref_primary_10_1142_S0219622018500141 crossref_primary_10_1016_j_jocs_2019_101024 crossref_primary_10_1016_j_knosys_2017_02_017 |
Cites_doi | 10.1016/0377-0427(87)90125-7 10.1002/jip.21 10.1348/135532506X118631 10.1111/j.1469-8137.1912.tb05611.x 10.1109/TNN.2005.845141 10.1177/0093854811418599 10.1109/34.868688 10.1016/j.apgeog.2013.04.001 10.1109/TSMCC.2003.809867 10.1016/S1355-0306(02)71820-0 10.1080/1561426042000191305 10.1348/135532508X349336 10.1177/1477370808095124 10.1198/016214503000000666 10.1080/10683160902971030 10.1080/10439460500399791 10.1007/s10707-010-0116-1 10.1002/9781118685181 10.1111/rssa.12076 10.1016/j.eswa.2014.02.035 10.1080/15427951.2004.10129093 10.1142/S0219622012500095 10.1002/jip.120 10.1016/j.cosrev.2007.05.001 10.1093/bioinformatics/bti517 10.1080/01621459.1971.10482356 10.1016/j.ins.2014.02.137 10.1016/j.forsciint.2010.03.017 10.1007/s10506-006-9023-z |
ContentType | Journal Article |
Copyright | 2016, World Scientific Publishing Company 2016. World Scientific Publishing Company |
Copyright_xml | – notice: 2016, World Scientific Publishing Company – notice: 2016. World Scientific Publishing Company |
DBID | AAYXX CITATION ADTPV AOWAS DF3 |
DOI | 10.1142/S0219622015500339 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Blekinge Tekniska Högskola |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1793-6845 |
EndPage | 42 |
ExternalDocumentID | oai_DiVA_org_bth_11779 10_1142_S0219622015500339 S0219622015500339 |
GroupedDBID | .DC 0R~ 4.4 5GY 8VB ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EBS EBU EJD F5P HZ~ K1G O9- P2P P71 QWB RWJ ZL0 AAYXX ADMLS CITATION ADTPV AOWAS DF3 |
ID | FETCH-LOGICAL-c4219-c982af2d323710e61ddcfb92b120067fd68fe399c98c39a515626f069960a2da3 |
ISSN | 0219-6220 1793-6845 |
IngestDate | Thu Aug 21 06:51:31 EDT 2025 Mon Jun 30 05:43:11 EDT 2025 Tue Jul 01 02:25:06 EDT 2025 Thu Apr 24 23:04:17 EDT 2025 Fri Aug 23 08:20:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | residential burglary analysis Crime clustering decision support system combined distance metric |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4219-c982af2d323710e61ddcfb92b120067fd68fe399c98c39a515626f069960a2da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2116331098 |
PQPubID | 2049870 |
PageCount | 20 |
ParticipantIDs | swepub_primary_oai_DiVA_org_bth_11779 crossref_citationtrail_10_1142_S0219622015500339 crossref_primary_10_1142_S0219622015500339 proquest_journals_2116331098 worldscientific_primary_S0219622015500339 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160100 2016-01-00 20160101 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 20160100 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | International journal of information technology & decision making |
PublicationYear | 2016 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | Zelnik-Manor L. (S0219622015500339BIB026) 2004 Markson L. (S0219622015500339BIB014) 2010; 7 Bowers K. (S0219622015500339BIB007) 2004; 5 S0219622015500339BIB008 S0219622015500339BIB009 S0219622015500339BIB005 S0219622015500339BIB027 S0219622015500339BIB029 S0219622015500339BIB022 S0219622015500339BIB001 S0219622015500339BIB002 S0219622015500339BIB024 S0219622015500339BIB003 S0219622015500339BIB025 S0219622015500339BIB020 S0219622015500339BIB021 Eck J. E. (S0219622015500339BIB004) 2004 S0219622015500339BIB019 Maguire M. (S0219622015500339BIB006) 2006; 16 S0219622015500339BIB015 Witten I. H. (S0219622015500339BIB028) 2011 S0219622015500339BIB016 S0219622015500339BIB011 S0219622015500339BIB033 S0219622015500339BIB012 S0219622015500339BIB034 S0219622015500339BIB013 S0219622015500339BIB035 S0219622015500339BIB036 S0219622015500339BIB030 S0219622015500339BIB031 S0219622015500339BIB010 S0219622015500339BIB032 |
References_xml | – ident: S0219622015500339BIB032 doi: 10.1016/0377-0427(87)90125-7 – volume: 5 start-page: 12 issue: 3 year: 2004 ident: S0219622015500339BIB007 publication-title: Western Criminology Review – ident: S0219622015500339BIB022 doi: 10.1002/jip.21 – ident: S0219622015500339BIB002 doi: 10.1348/135532506X118631 – volume-title: Data Mining — Practical Machine Learning Tools and Techniques year: 2011 ident: S0219622015500339BIB028 – ident: S0219622015500339BIB033 doi: 10.1111/j.1469-8137.1912.tb05611.x – ident: S0219622015500339BIB027 doi: 10.1109/TNN.2005.845141 – ident: S0219622015500339BIB001 doi: 10.1177/0093854811418599 – ident: S0219622015500339BIB030 doi: 10.1109/34.868688 – ident: S0219622015500339BIB009 doi: 10.1016/j.apgeog.2013.04.001 – ident: S0219622015500339BIB016 doi: 10.1109/TSMCC.2003.809867 – ident: S0219622015500339BIB010 doi: 10.1016/S1355-0306(02)71820-0 – volume-title: Self-Tuning Spectral Clustering year: 2004 ident: S0219622015500339BIB026 – ident: S0219622015500339BIB003 doi: 10.1080/1561426042000191305 – ident: S0219622015500339BIB011 doi: 10.1348/135532508X349336 – ident: S0219622015500339BIB008 doi: 10.1177/1477370808095124 – ident: S0219622015500339BIB024 doi: 10.1198/016214503000000666 – ident: S0219622015500339BIB013 doi: 10.1080/10683160902971030 – volume: 16 start-page: 67 issue: 1 year: 2006 ident: S0219622015500339BIB006 publication-title: Policing and Society: An International Journal of Research and Policy doi: 10.1080/10439460500399791 – ident: S0219622015500339BIB019 doi: 10.1007/s10707-010-0116-1 – ident: S0219622015500339BIB021 doi: 10.1002/9781118685181 – ident: S0219622015500339BIB015 doi: 10.1111/rssa.12076 – ident: S0219622015500339BIB005 doi: 10.1016/j.eswa.2014.02.035 – ident: S0219622015500339BIB025 doi: 10.1080/15427951.2004.10129093 – volume-title: Mapping Crime: Understanding Hot Spots year: 2004 ident: S0219622015500339BIB004 – ident: S0219622015500339BIB035 doi: 10.1142/S0219622012500095 – volume: 7 start-page: 91 issue: 2 year: 2010 ident: S0219622015500339BIB014 publication-title: Journal of Investigative Psychology and Offender Profiling doi: 10.1002/jip.120 – ident: S0219622015500339BIB029 doi: 10.1016/j.cosrev.2007.05.001 – ident: S0219622015500339BIB031 doi: 10.1093/bioinformatics/bti517 – ident: S0219622015500339BIB034 doi: 10.1080/01621459.1971.10482356 – ident: S0219622015500339BIB036 doi: 10.1016/j.ins.2014.02.137 – ident: S0219622015500339BIB012 doi: 10.1016/j.forsciint.2010.03.017 – ident: S0219622015500339BIB020 doi: 10.1007/s10506-006-9023-z |
SSID | ssj0021092 |
Score | 2.1099272 |
Snippet | To identify series of residential burglaries, detecting linked crimes performed by the same constellations of criminals is necessary. Comparison of crime... |
SourceID | swepub proquest crossref worldscientific |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23 |
SubjectTerms | Burglary Clustering combined distance metric Constellations Crime Crime clustering decision support system residential burglary analysis Unstructured data |
Title | Clustering Residential Burglaries Using Modus Operandi and Spatiotemporal Information |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0219622015500339 https://www.proquest.com/docview/2116331098 https://urn.kb.se/resolve?urn=urn:nbn:se:bth-11779 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9B98IeJj42URjID_DAqozETtzksWygCVF4YEV7i-zY0SaVdurSF_56zh9xE1qhwUtUWc458f1q3V3ufgfwJq9iqQumojrJTOhG55GMExkxnQuRKprIyhQKT7_yi1n6-Sq72rRVtNUljTytfu2sK_kfreIY6tVUyf6DZoNQHMDfqF-8oobxei8dn83XhufAZ9Dd2Jpb3PIP6xUaxcYHHrmMgOlSre9G3271yhSxuGxNm0ntiakM3UaoYuyaq_14YY9lIswfNSE6b3GkfNee0U_b6Cr4-0uXRzYxTYs3g3PVlgy1HOA-BOFqI_0ZhQdexCmNewdqtgUcfzqy3Yd2Su1nY5RlRBmnKWaO4mgHF_b5zY9JiY9cyubaUpUXD2GPopMQD2Bvcj798j043Elsm2KHh7TFsQWLeJ5m_gs3rv1-a-W-jdJxPByZ7D4cWDpbV7JqMro6JsnlYzjwvgSZOGA8gQd68RT2OwyTz2C2gQjpQIRsIEIsRIiFCGkhQvBC-hAhHYgcwuzTx8uzi8h30oiq1Lx8VeRU1FQxytCi1DxRqqplQWViIkrjWvG81miq4ryKFQJtXPRz65gb6h5BlWBHMFgsF_o5kGysZE1FiqJYWqWZ4Ipnhc604GM099QQ4nbvysrTzJtuJ_PSlcDTcmu7h3ASbrl1HCt_m3zcKqT0sL8raYJuheG4zYfw1ikpSNqNmSG8-0OH4YatJV_cU-ZLeGT-HS5AdwyDZrXWr9BkbeRrj8zfPPGYPw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Residential+Burglaries+Using+Modus+Operandi+and+Spatiotemporal+Information&rft.jtitle=International+journal+of+information+technology+%26+decision+making&rft.au=Borg%2C+Anton&rft.au=Boldt%2C+Martin&rft.date=2016&rft.issn=0219-6220&rft.volume=15&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1142%2FS0219622015500339&rft.externalDocID=oai_DiVA_org_bth_11779 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-6220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-6220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-6220&client=summon |