A role for fermentation in aerobic conditions as revealed by computational analysis of maize root metabolism during growth by cell elongation

SUMMARY The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral ro...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 116; no. 6; pp. 1553 - 1570
Main Authors Hunt, Hilary, Leape, Stefan, Sidhu, Jagdeep Singh, Ajmera, Ishan, Lynch, Jonathan P., Ratcliffe, R. George, Sweetlove, Lee J.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARY The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional‐structural model captured the cell‐anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end‐products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues. Significance Statement Fermentation is usually associated with low oxygen conditions but here we show how fermentation can be important in aerobic tissues. Specifically, the provision of carbon skeletons and energy for expanding cells in the maize root is most efficiently achieved by a high rate of glycolysis facilitated by fermentative production of lactate and ethanol.
AbstractList The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional‐structural model captured the cell‐anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end‐products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues.
SUMMARYThe root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional‐structural model captured the cell‐anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end‐products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues.
The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional‐structural model captured the cell‐anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end‐products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues. Fermentation is usually associated with low oxygen conditions but here we show how fermentation can be important in aerobic tissues. Specifically, the provision of carbon skeletons and energy for expanding cells in the maize root is most efficiently achieved by a high rate of glycolysis facilitated by fermentative production of lactate and ethanol.
The root is a well-studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional-structural model captured the cell-anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end-products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues.The root is a well-studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional-structural model captured the cell-anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end-products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues.
SUMMARY The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional‐structural model captured the cell‐anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end‐products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues. Significance Statement Fermentation is usually associated with low oxygen conditions but here we show how fermentation can be important in aerobic tissues. Specifically, the provision of carbon skeletons and energy for expanding cells in the maize root is most efficiently achieved by a high rate of glycolysis facilitated by fermentative production of lactate and ethanol.
Author Sweetlove, Lee J.
Sidhu, Jagdeep Singh
Leape, Stefan
Ratcliffe, R. George
Ajmera, Ishan
Hunt, Hilary
Lynch, Jonathan P.
Author_xml – sequence: 1
  givenname: Hilary
  surname: Hunt
  fullname: Hunt, Hilary
  organization: University of Oxford
– sequence: 2
  givenname: Stefan
  surname: Leape
  fullname: Leape, Stefan
  organization: University of Oxford
– sequence: 3
  givenname: Jagdeep Singh
  surname: Sidhu
  fullname: Sidhu, Jagdeep Singh
  organization: The Pennsylvania State University
– sequence: 4
  givenname: Ishan
  surname: Ajmera
  fullname: Ajmera, Ishan
  organization: The Pennsylvania State University
– sequence: 5
  givenname: Jonathan P.
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P.
  organization: The Pennsylvania State University
– sequence: 6
  givenname: R. George
  surname: Ratcliffe
  fullname: Ratcliffe, R. George
  organization: University of Oxford
– sequence: 7
  givenname: Lee J.
  orcidid: 0000-0002-2461-4133
  surname: Sweetlove
  fullname: Sweetlove, Lee J.
  email: lee.sweetlove@biology.ox.ac.uk
  organization: University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37831626$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u3CAUhVGVqJmkXfQFKqRu2oUTMBjwMor6q0jJIpG6Q9i-TBlhMwU70fQd-s7F48kmalUWFwm-c3R1zik6GsIACL2h5JzmczFuN-dUcKleoBVloioYZd-P0IrUghSS0_IEnaa0IYRKJvhLdMKkYlSUYoV-X-IYPGAbIrYQexhGM7owYDdgAzE0rsVtGDo3PyZsEo7wAMZDh5td_um30yIwHps8dsklHCzujfsF2TqMuIfRNMG71ONuim5Y43UMj-OPvQF4j8GHYb03eYWOrfEJXh_uM3T_6ePd1Zfi-ubz16vL66LlJVWFqQ2ldVcRakqjFK0JaTkvic3TNsZ2QipuVV2pGoSgynJWVhXYGlrTSdmyM_R-8d3G8HOCNOrepXkXM0CYkmaEE1ZxXrP_oqWSco6Tz-i7Z-gmTDGHkqm8YkmE3Bu-PVBT00Ont9H1Ju70UycZuFiANoaUIljduiXjMRrnNSV6bl3n1vW-9az48EzxZPo39uD-6Dzs_g3qu9tvi-IP_Ba9FQ
CitedBy_id crossref_primary_10_1111_tpj_16565
crossref_primary_10_1093_jxb_erae398
crossref_primary_10_3390_fermentation10090468
Cites_doi 10.1073/pnas.0700690104
10.1111/j.1399-3054.2009.01253.x
10.1104/pp.87.2.529
10.1016/j.biochi.2009.01.004
10.1038/s41586-019-1203-6
10.1146/annurev-arplant-050718-100221
10.1093/jxb/erx406
10.1016/j.copbio.2017.07.009
10.1016/j.molp.2019.01.007
10.3389/fpls.2020.00639
10.3390/ijms21238987
10.1007/978-1-4939-7292-0_23
10.1146/annurev-arplant-042811-105453
10.1093/plphys/kiab478
10.1146/annurev-cellbio-092910-154237
10.1126/science.aag1125
10.1111/pce.12555
10.1042/BSR20170224
10.1016/j.tplants.2016.07.011
10.1093/plphys/kiaa080
10.1016/j.cub.2020.02.086
10.1007/s40626-018-0132-3
10.1007/s11306-018-1359-3
10.1016/j.copbio.2019.11.003
10.1104/pp.110.166488
10.1104/pp.16.01359
10.1371/journal.pcbi.1005568
10.1104/pp.110.158535
10.1093/jxb/err410
10.1002/cpz1.153
10.1371/journal.pcbi.1002018
10.1111/tpj.14003
10.1111/tpj.16357
10.1104/pp.15.00138
10.1111/tpj.15317
10.3389/fpls.2018.00973
10.1007/s00018-019-03379-9
10.1093/aob/mch056
10.1111/pce.14552
10.1038/s41598-018-30884-x
10.1073/pnas.81.11.3379
10.1126/science.1160809
10.1111/nph.16424
10.1093/pcp/pcs034
10.1111/tpj.16214
10.3389/fpls.2018.00143
10.1038/nrc1478
10.1007/BF02370419
10.1111/pce.12451
10.1007/BF00385551
10.1093/jxb/erz271
10.1111/ppl.13682
10.1021/pr5007813
10.1126/science.1252076
10.1111/tpj.14707
10.1111/tpj.12252
10.1201/b14550-28
10.1038/sj.onc.1209528
10.1104/pp.105.065953
10.1111/tpj.13889
10.1158/0008-5472.CAN-03-2904
10.3389/fpls.2015.00004
10.3835/plantgenome2015.04.0025
10.1111/plb.12869
10.1002/j.1460-2075.1994.tb06569.x
10.1093/jxb/erw414
10.1038/s41598-017-07132-9
10.1016/j.devcel.2022.01.008
10.1016/S0176-1617(11)80023-4
10.1093/jxb/erw059
10.1126/science.124.3215.269
10.1126/science.abm3452
10.1007/s11104-021-05010-y
10.1073/pnas.1302019110
10.1111/tpj.14722
10.3390/metabo7040059
10.15252/embj.201696151
10.1186/1752-0509-7-74
10.1007/s11306-015-0814-7
10.1101/2020.07.06.189514
10.1104/pp.114.246124
10.1016/j.jtbi.2013.09.017
10.1021/bp0100880
10.1007/BF00202588
10.1038/msb.2009.82
10.1038/s41598-018-26232-8
10.1105/tpc.20.00132
10.1104/pp.113.224006
10.1038/msb.2010.47
10.1038/s41477-018-0112-2
10.1093/aob/mci207
10.1093/bioinformatics/btad186
10.1038/srep36074
10.1126/science.1146265
10.1038/s41598-020-73704-x
10.1093/jxb/erab389
10.1007/s00294-015-0482-1
10.3389/fpls.2014.00668
ContentType Journal Article
Copyright 2023 Society for Experimental Biology and John Wiley & Sons Ltd.
Copyright © 2023 Society for Experimental Biology and John Wiley & Sons Ltd
Copyright_xml – notice: 2023 Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: Copyright © 2023 Society for Experimental Biology and John Wiley & Sons Ltd
DBID AAYXX
CITATION
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/tpj.16478
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Genetics Abstracts
PubMed
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 1570
ExternalDocumentID 37831626
10_1111_tpj_16478
TPJ16478
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Foundation for Food and Agriculture Research
  funderid: 602757
– fundername: Foundation for Food and Agriculture Research
  grantid: 602757
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4218-a9a119d501a2a881900c4420fc44fbafd6784f89589e6618f43255ef9ecad77c3
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 18:36:28 EDT 2025
Fri Jul 11 12:14:57 EDT 2025
Tue Aug 12 22:02:05 EDT 2025
Thu Apr 03 06:54:11 EDT 2025
Tue Jul 01 03:57:45 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Sun Jul 06 04:45:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords computational biology
aerobic fermentation
flux balance analysis
root growth
maize
energy metabolism
Language English
License 2023 Society for Experimental Biology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4218-a9a119d501a2a881900c4420fc44fbafd6784f89589e6618f43255ef9ecad77c3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7265-9790
0000-0002-2461-4133
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tpj.16478
PMID 37831626
PQID 2900206793
PQPubID 31702
PageCount 1570
ParticipantIDs proquest_miscellaneous_3040354493
proquest_miscellaneous_2877378343
proquest_journals_2900206793
pubmed_primary_37831626
crossref_citationtrail_10_1111_tpj_16478
crossref_primary_10_1111_tpj_16478
wiley_primary_10_1111_tpj_16478_TPJ16478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
2023-Dec
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2007; 104
2017; 7
2004; 64
2015; 38
2022; 174
1989; 119
2020; 64
2023; 39
2019; 12
2005; 139
2004; 4
2013; 163
2020; 11
2020; 10
2019; 569
2013; 7
2021; 72
2018; 49
2012; 53
1973; 111
2018; 9
2017; 1670
2018; 8
2014; 5
1990; 137
2018; 4
2009; 91
2017; 36
2019; 21
2006; 25
2010; 154
1988; 87
2023; 379
2016; 353
2014; 13
2001; 17
2013; 110
2014; 166
2011; 27
2018; 38
2010; 6
2009; 324
2012; 63
2015; 6
2019; 70
1984; 81
2019; 31
2015; 168
2021; 466
2017; 68
2015; 11
2021; 229
2021; 107
2017; 173
2021; 185
2020; 77
2020; 103
2020; 32
2021; 1
1995; 195
2009; 137
2011; 7
2022; 188
2016; 6
2023; 46
2004; 93
2020; 30
2015; 61
2020
2020; 71
2013; 75
2017; 13
2016; 21
2005; 96
2023; 116
2022; 57
1994; 13
2023; 114
2018; 95
2018; 94
2009; 5
2020; 21
2013
2014; 341
2007; 318
2016; 9
2018; 14
2016; 67
2014; 344
1956; 124
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 103
  start-page: 68
  year: 2020
  end-page: 82
  article-title: Flux balance analysis of metabolism during growth by osmotic cell expansion and its application to tomato fruits
  publication-title: The Plant Journal
– volume: 166
  start-page: 528
  year: 2014
  end-page: 537
  article-title: Radial transport of nutrients: the plant root as a polarized epithelium
  publication-title: Plant Physiology
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
– volume: 116
  start-page: 38
  year: 2023
  end-page: 57
  article-title: Efficient sugar utilization and transition from oxidative to substrate‐level phosphorylation in high starch storage roots of African cassava genotypes
  publication-title: The Plant Journal
– volume: 229
  start-page: 24
  year: 2021
  end-page: 35
  article-title: Molecular oxygen as a signaling component in plant development
  publication-title: The New Phytologist
– volume: 154
  start-page: 311
  year: 2010
  end-page: 323
  article-title: A genome‐scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions
  publication-title: Plant Physiology
– volume: 27
  start-page: 441
  year: 2011
  end-page: 464
  article-title: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
  publication-title: Annual Review of Cell and Developmental Biology
– volume: 91
  start-page: 697
  year: 2009
  end-page: 702
  article-title: Insights into plant metabolic networks from steady‐state metabolic flux analysis
  publication-title: Biochimie
– volume: 154
  start-page: 1871
  year: 2010
  end-page: 1885
  article-title: C4GEM, a genome‐scale metabolic model to study C4 plant Metabolism1[W][OA]
  publication-title: Plant Physiology
– volume: 68
  start-page: 283
  year: 2017
  end-page: 298
  article-title: Metabolite pools and carbon flow during C4 photosynthesis in maize: CO labeling kinetics and cell type fractionation
  publication-title: Journal of Experimental Botany
– volume: 6
  start-page: 36074
  year: 2016
  article-title: High‐resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of
  publication-title: Scientific Reports
– volume: 67
  start-page: 3731
  year: 2016
  end-page: 3745
  article-title: Root spatial metabolite profiling of two genotypes of barley ( L.) reveals differences in response to short‐term salt stress
  publication-title: Journal of Experimental Botany
– volume: 341
  start-page: 1
  year: 2014
  end-page: 8
  article-title: Evolutionary dynamics of the Warburg effect: glycolysis as a collective action problem among cancer cells
  publication-title: Journal of Theoretical Biology
– volume: 4
  start-page: 165
  year: 2018
  end-page: 171
  article-title: Computational analysis of the productivity potential of CAM
  publication-title: Nature Plants
– volume: 11
  start-page: 639
  year: 2020
  article-title: Visualizing genotypic and developmental differences of free amino acids in maize roots with mass spectrometry imaging
  publication-title: Frontiers in Plant Science
– volume: 7
  start-page: 59
  year: 2017
  article-title: Cell‐type specific metabolic flux analysis: a challenge for metabolic phenotyping and a potential solution in plants
  publication-title: Metabolites
– volume: 17
  start-page: 791
  year: 2001
  end-page: 797
  article-title: Minimal reaction sets for metabolism under different growth requirements and uptake environments
  publication-title: Biotechnology Progress
– volume: 38
  year: 2018
  article-title: Advances in metabolic flux analysis toward genome‐scale profiling of higher organisms
  publication-title: Bioscience Reports
– volume: 195
  start-page: 324
  year: 1995
  end-page: 330
  article-title: Manipulating cytoplasmic pH under anoxia: a critical test of the role of pH in the switch from aerobic to anaerobic metabolism
  publication-title: Planta
– volume: 104
  start-page: 6223
  year: 2007
  end-page: 6228
  article-title: Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 63
  start-page: 1997
  year: 2012
  end-page: 2006
  article-title: Deposition of ammonium and nitrate in the roots of maize seedlings supplied with different nitrogen salts
  publication-title: Journal of Experimental Botany
– volume: 119
  start-page: 271
  year: 1989
  end-page: 279
  article-title: Relationship between root elongation rate and diameter and duration of growth of lateral roots of maize
  publication-title: Plant and Soil
– volume: 9
  year: 2018
  article-title: Unraveling the functional role of NPF6 transporters
  publication-title: Frontiers in Plant Science
– volume: 8
  start-page: 12504
  year: 2018
  article-title: The intertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling
  publication-title: Scientific Reports
– volume: 9
  year: 2016
  article-title: An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development
  publication-title: The Plant Genome
– volume: 107
  start-page: 713
  year: 2021
  end-page: 726
  article-title: Mitochondrial ATP synthase subunit d, a component of the peripheral stalk, is essential for growth and heat stress tolerance in
  publication-title: The Plant Journal
– volume: 10
  start-page: 16669
  year: 2020
  article-title: Arabidopsis phenotyping reveals the importance of alcohol dehydrogenase and pyruvate decarboxylase for aerobic plant growth
  publication-title: Scientific Reports
– volume: 163
  start-page: 637
  year: 2013
  end-page: 647
  article-title: Multiscale metabolic modeling: dynamic flux balance analysis on a whole‐plant scale
  publication-title: Plant Physiology
– volume: 569
  start-page: 714
  year: 2019
  end-page: 717
  article-title: An apical hypoxic niche sets the pace of shoot meristem activity
  publication-title: Nature
– volume: 466
  start-page: 21
  year: 2021
  end-page: 63
  article-title: Root anatomy and soil resource capture
  publication-title: Plant and Soil
– volume: 4
  start-page: 891
  year: 2004
  end-page: 899
  article-title: Why do cancers have high aerobic glycolysis?
  publication-title: Nature Reviews Cancer
– volume: 38
  start-page: 2353
  year: 2015
  end-page: 2371
  article-title: Tobacco guard cells fix CO by both Rubisco and PEPcase while sucrose acts as a substrate during light‐induced stomatal opening
  publication-title: Plant, Cell & Environment
– volume: 13
  start-page: 5879
  year: 2014
  end-page: 5887
  article-title: Novel quantitative metabolomic approach for the study of stress responses of plant root metabolism
  publication-title: Journal of Proteome Research
– volume: 31
  start-page: 215
  year: 2019
  end-page: 226
  article-title: Insights into the spatial and temporal organisation of plant metabolism from network flux analysis
  publication-title: Theoretical and Experimental Plant Physiology
– volume: 124
  start-page: 269
  year: 1956
  end-page: 270
  article-title: On respiratory impairment in cancer cells
  publication-title: Science
– volume: 7
  year: 2011
  article-title: Genome‐scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect
  publication-title: PLoS Computational Biology
– volume: 14
  start-page: 63
  year: 2018
  article-title: High‐mass‐resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress
  publication-title: Metabolomics
– volume: 344
  start-page: 510
  year: 2014
  end-page: 513
  article-title: Genomic signatures of specialized metabolism in plants
  publication-title: Science
– volume: 46
  start-page: 1671
  issue: 5
  year: 2023
  end-page: 1690
  article-title: RootSlice—a novel functional‐structural model for root anatomical phenotypes
  publication-title: Plant, Cell & Environment
– volume: 110
  start-page: E1232
  year: 2013
  end-page: E1241
  article-title: High‐resolution metabolic mapping of cell types in plant roots
  publication-title: Proceedings of the National Academy of Sciences
– volume: 13
  year: 2017
  article-title: On the effects of alternative optima in context‐specific metabolic model predictions
  publication-title: PLoS Computational Biology
– volume: 64
  start-page: 3892
  year: 2004
  end-page: 3899
  article-title: Akt stimulates aerobic glycolysis in cancer cells
  publication-title: Cancer Research
– volume: 57
  start-page: 543
  year: 2022
  end-page: 560.e9
  article-title: A single‐cell Arabidopsis root atlas reveals developmental trajectories in wild‐type and cell identity mutants
  publication-title: Developmental Cell
– volume: 13
  start-page: 2755
  year: 1994
  end-page: 2763
  article-title: Ethanolic fermentation in transgenic tobacco expressing pyruvate decarboxylase
  publication-title: The EMBO Journal
– volume: 6
  start-page: 4
  year: 2015
  article-title: A multi‐tissue genome‐scale metabolic modeling framework for the analysis of whole plant systems
  publication-title: Frontiers in Plant Science
– volume: 12
  start-page: 538
  year: 2019
  end-page: 551
  article-title: Endogenous hypoxia in lateral root primordia controls root architecture by antagonizing auxin signaling in Arabidopsis
  publication-title: Molecular Plant
– volume: 1670
  start-page: 267
  year: 2017
  end-page: 281
  article-title: Measuring spatial and temporal oxygen flux near plant tissues using a self‐referencing optrode
  publication-title: Methods in Molecular Biology
– volume: 7
  start-page: 74
  year: 2013
  article-title: COBRApy: constraints‐based reconstruction and analysis for python
  publication-title: BMC Systems Biology
– volume: 21
  start-page: 951
  year: 2016
  end-page: 961
  article-title: Genetic control of lateral root formation in cereals
  publication-title: Trends in Plant Science
– volume: 6
  year: 2010
  article-title: Omic data from evolved are consistent with computed optimal growth from genome-scale models
  publication-title: Molecular Systems Biology
– start-page: 23‐1
  year: 2013
  end-page: 23‐18
– volume: 96
  start-page: 519
  year: 2005
  end-page: 532
  article-title: pH regulation in anoxic plants
  publication-title: Annals of Botany
– volume: 72
  start-page: 7653
  year: 2021
  end-page: 7657
  article-title: Whither metabolic flux analysis in plants?
  publication-title: Journal of Experimental Botany
– volume: 64
  start-page: 92
  year: 2020
  end-page: 100
  article-title: Tracing metabolic flux through time and space with isotope l experiments
  publication-title: Current Opinion in Biotechnology
– volume: 21
  start-page: 8987
  year: 2020
  article-title: Plant single‐cell metabolomics—challenges and perspectives
  publication-title: International Journal of Molecular Sciences
– volume: 70
  start-page: 5327
  year: 2019
  end-page: 5342
  article-title: Laser ablation tomography for visualization of root colonization by edaphic organisms
  publication-title: Journal of Experimental Botany
– volume: 173
  start-page: 1355
  year: 2017
  end-page: 1370
  article-title: Physiological characterization of a plant mitochondrial calcium uniporter in vitro and in vivo
  publication-title: Plant Physiology
– volume: 93
  start-page: 359
  year: 2004
  end-page: 368
  article-title: Genetic dissection of root formation in maize ( ) reveals root‐type specific developmental programmes
  publication-title: Annals of Botany
– volume: 95
  start-page: 1102
  year: 2018
  end-page: 1113
  article-title: PlantSEED enables automated annotation and reconstruction of plant primary metabolism with improved compartmentalization and comparative consistency
  publication-title: The Plant Journal
– volume: 75
  start-page: 1050
  year: 2013
  end-page: 1061
  article-title: A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions
  publication-title: The Plant Journal
– volume: 174
  year: 2022
  article-title: Oxygen uptake rates have contrasting responses to temperature in the root meristem and elongation zone
  publication-title: Physiologia Plantarum
– volume: 77
  start-page: 433
  year: 2020
  end-page: 440
  article-title: Computational systems biology of cellular processes in : an overview
  publication-title: Cellular and Molecular Life Sciences
– volume: 114
  start-page: 1093
  year: 2023
  end-page: 1114
  article-title: Cell‐type‐specific metabolism in plants
  publication-title: The Plant Journal
– volume: 32
  start-page: 3689
  year: 2020
  end-page: 3705
  article-title: Alternative crassulacean acid metabolism modes provide environment‐specific water‐saving benefits in a leaf metabolic model
  publication-title: The Plant Cell
– volume: 1
  year: 2021
  article-title: Cell‐type‐specific proteomics analysis of a small number of plant cells by integrating laser capture microdissection with a nanodroplet sample processing platform
  publication-title: Current Protocols
– volume: 25
  start-page: 5391
  year: 2006
  end-page: 5404
  article-title: Ras‐dependent carbon metabolism and transformation in mouse fibroblasts
  publication-title: Oncogene
– volume: 68
  start-page: 5695
  year: 2017
  end-page: 5698
  article-title: Subcellular metabolomics: the choice of method depends on the aim of the study
  publication-title: Journal of Experimental Botany
– volume: 5
  start-page: 668
  year: 2014
  article-title: Transcript abundance on its own cannot be used to infer fluxes in central metabolism
  publication-title: Frontiers in Plant Science
– volume: 188
  start-page: 749
  year: 2022
  end-page: 755
  article-title: Single‐cell genomics in plants: current state, future directions, and hurdles to overcome
  publication-title: Plant Physiology
– volume: 21
  start-page: 21
  year: 2019
  end-page: 30
  article-title: Malate valves: old shuttles with new perspectives
  publication-title: Plant Biology
– volume: 94
  start-page: 583
  year: 2018
  end-page: 594
  article-title: Sucrose breakdown within guard cells provides substrates for glycolysis and glutamine biosynthesis during light‐induced stomatal opening
  publication-title: The Plant Journal
– volume: 39
  year: 2023
  article-title: Accurate flux predictions using tissue‐specific gene expression in plant metabolic modeling
  publication-title: Bioinformatics
– volume: 30
  start-page: 1783
  year: 2020
  end-page: 1800.e11
  article-title: Multiple metabolic innovations and losses are associated with major transitions in land plant evolution
  publication-title: Current Biology
– volume: 87
  start-page: 529
  year: 1988
  end-page: 532
  article-title: Effect of temperature on spatial and temporal aspects of growth in the primary maize root
  publication-title: Plant Physiology
– volume: 137
  start-page: 383
  year: 2009
  end-page: 391
  article-title: Regulation of respiration when the oxygen availability changes
  publication-title: Physiologia Plantarum
– volume: 137
  start-page: 125
  year: 1990
  end-page: 128
  article-title: 31P nuclear magnetic resonance evidence for differences in intracellular pH in the roots of maize seedlings grown with nitrate or ammonium
  publication-title: Journal of Plant Physiology
– volume: 168
  start-page: 233
  year: 2015
  end-page: 246
  article-title: A high‐resolution tissue‐specific proteome and phosphoproteome atlas of maize primary roots reveals functional gradients along the root axes
  publication-title: Plant Physiology
– volume: 353
  start-page: 814
  year: 2016
  end-page: 818
  article-title: Integration of omic networks in a developmental atlas of maize
  publication-title: Science
– volume: 103
  start-page: 21
  year: 2020
  end-page: 31
  article-title: Multiscale computational models can guide experimentation and targeted measurements for crop improvement
  publication-title: The Plant Journal
– volume: 36
  start-page: 1302
  year: 2017
  end-page: 1315
  article-title: Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine
  publication-title: The EMBO Journal
– volume: 139
  start-page: 39
  year: 2005
  end-page: 51
  article-title: A comprehensive analysis of the NADP‐malic enzyme gene family of Arabidopsis
  publication-title: Plant Physiology
– volume: 379
  start-page: 996
  year: 2023
  end-page: 1003
  article-title: Protein‐metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase
  publication-title: Science
– volume: 5
  start-page: 323
  year: 2009
  article-title: Shifts in growth strategies reflect tradeoffs in cellular economics
  publication-title: Molecular Systems Biology
– volume: 81
  start-page: 3379
  year: 1984
  end-page: 3383
  article-title: Mechanisms of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  start-page: 143
  year: 2018
  article-title: Proteomics of maize root development
  publication-title: Frontiers in Plant Science
– volume: 8
  start-page: 7919
  year: 2018
  article-title: Integration of large‐scale data for extraction of integrated Arabidopsis root cell‐type specific models
  publication-title: Scientific Reports
– volume: 49
  start-page: 42
  year: 2018
  end-page: 48
  article-title: Plant genome‐scale reconstruction: from single cell to multi‐tissue modelling and omics analyses
  publication-title: Current Opinion in Biotechnology
– volume: 38
  start-page: 1775
  year: 2015
  end-page: 1784
  article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture
  publication-title: Plant, Cell & Environment
– volume: 111
  start-page: 323
  year: 1973
  end-page: 328
  article-title: Measurement of a gradient of oxygen partial pressure across the intact root
  publication-title: Planta
– volume: 63
  start-page: 239
  year: 2012
  end-page: 260
  article-title: Plasmodesmata paradigm shift: regulation from without versus within
  publication-title: Annual Review of Plant Biology
– volume: 11
  start-page: 1679
  year: 2015
  end-page: 1689
  article-title: Cell‐type specific metabolic profiling of protoplasts as a tool for plant systems biology
  publication-title: Metabolomics
– volume: 53
  start-page: 912
  year: 2012
  end-page: 920
  article-title: Local root apex hypoxia induces no‐mediated hypoxic acclimation of the entire root
  publication-title: Plant and Cell Physiology
– volume: 185
  start-page: 781
  year: 2021
  end-page: 795
  article-title: A multiple ion‐uptake phenotyping platform reveals shared mechanisms affecting nutrient uptake by roots
  publication-title: Plant Physiology
– year: 2020
– volume: 7
  start-page: 8307
  year: 2017
  article-title: Resolving the central metabolism of Arabidopsis guard cells
  publication-title: Scientific Reports
– volume: 318
  start-page: 801
  year: 2007
  end-page: 806
  article-title: A high‐resolution root spatiotemporal map reveals dominant expression patterns
  publication-title: Science
– volume: 71
  start-page: 303
  year: 2020
  end-page: 326
  article-title: Modeling plant metabolism: from network reconstruction to mechanistic models
  publication-title: Annual Review of Plant Biology
– volume: 61
  start-page: 591
  year: 2015
  end-page: 600
  article-title: Organellar genome copy number variation and integrity during moderate maturation of roots and leaves of maize seedlings
  publication-title: Current Genetics
– ident: e_1_2_9_31_1
  doi: 10.1073/pnas.0700690104
– ident: e_1_2_9_39_1
  doi: 10.1111/j.1399-3054.2009.01253.x
– ident: e_1_2_9_64_1
  doi: 10.1104/pp.87.2.529
– ident: e_1_2_9_45_1
  doi: 10.1016/j.biochi.2009.01.004
– ident: e_1_2_9_91_1
  doi: 10.1038/s41586-019-1203-6
– ident: e_1_2_9_20_1
  doi: 10.1146/annurev-arplant-050718-100221
– ident: e_1_2_9_26_1
  doi: 10.1093/jxb/erx406
– ident: e_1_2_9_35_1
  doi: 10.1016/j.copbio.2017.07.009
– ident: e_1_2_9_81_1
  doi: 10.1016/j.molp.2019.01.007
– ident: e_1_2_9_63_1
  doi: 10.3389/fpls.2020.00639
– ident: e_1_2_9_25_1
  doi: 10.3390/ijms21238987
– ident: e_1_2_9_57_1
  doi: 10.1007/978-1-4939-7292-0_23
– ident: e_1_2_9_13_1
  doi: 10.1146/annurev-arplant-042811-105453
– ident: e_1_2_9_21_1
  doi: 10.1093/plphys/kiab478
– ident: e_1_2_9_52_1
  doi: 10.1146/annurev-cellbio-092910-154237
– ident: e_1_2_9_89_1
  doi: 10.1126/science.aag1125
– ident: e_1_2_9_22_1
  doi: 10.1111/pce.12555
– ident: e_1_2_9_7_1
  doi: 10.1042/BSR20170224
– ident: e_1_2_9_97_1
  doi: 10.1016/j.tplants.2016.07.011
– ident: e_1_2_9_38_1
  doi: 10.1093/plphys/kiaa080
– ident: e_1_2_9_16_1
  doi: 10.1016/j.cub.2020.02.086
– ident: e_1_2_9_60_1
  doi: 10.1007/s40626-018-0132-3
– ident: e_1_2_9_71_1
  doi: 10.1007/s11306-018-1359-3
– ident: e_1_2_9_2_1
  doi: 10.1016/j.copbio.2019.11.003
– ident: e_1_2_9_24_1
  doi: 10.1104/pp.110.166488
– ident: e_1_2_9_85_1
  doi: 10.1104/pp.16.01359
– ident: e_1_2_9_68_1
  doi: 10.1371/journal.pcbi.1005568
– ident: e_1_2_9_95_1
  doi: 10.1104/pp.110.158535
– ident: e_1_2_9_9_1
  doi: 10.1093/jxb/err410
– ident: e_1_2_9_5_1
  doi: 10.1002/cpz1.153
– ident: e_1_2_9_80_1
  doi: 10.1371/journal.pcbi.1002018
– ident: e_1_2_9_74_1
  doi: 10.1111/tpj.14003
– ident: e_1_2_9_47_1
  doi: 10.1111/tpj.16357
– ident: e_1_2_9_56_1
  doi: 10.1104/pp.15.00138
– ident: e_1_2_9_51_1
  doi: 10.1111/tpj.15317
– ident: e_1_2_9_93_1
  doi: 10.3389/fpls.2018.00973
– ident: e_1_2_9_43_1
  doi: 10.1007/s00018-019-03379-9
– ident: e_1_2_9_42_1
  doi: 10.1093/aob/mch056
– ident: e_1_2_9_82_1
  doi: 10.1111/pce.14552
– ident: e_1_2_9_66_1
  doi: 10.1038/s41598-018-30884-x
– ident: e_1_2_9_69_1
  doi: 10.1073/pnas.81.11.3379
– ident: e_1_2_9_87_1
  doi: 10.1126/science.1160809
– ident: e_1_2_9_92_1
  doi: 10.1111/nph.16424
– ident: e_1_2_9_62_1
  doi: 10.1093/pcp/pcs034
– ident: e_1_2_9_23_1
  doi: 10.1111/tpj.16214
– ident: e_1_2_9_41_1
  doi: 10.3389/fpls.2018.00143
– ident: e_1_2_9_32_1
  doi: 10.1038/nrc1478
– ident: e_1_2_9_15_1
  doi: 10.1007/BF02370419
– ident: e_1_2_9_53_1
  doi: 10.1111/pce.12451
– ident: e_1_2_9_10_1
  doi: 10.1007/BF00385551
– ident: e_1_2_9_84_1
  doi: 10.1093/jxb/erz271
– ident: e_1_2_9_99_1
  doi: 10.1111/ppl.13682
– ident: e_1_2_9_50_1
  doi: 10.1021/pr5007813
– ident: e_1_2_9_17_1
  doi: 10.1126/science.1252076
– ident: e_1_2_9_78_1
  doi: 10.1111/tpj.14707
– ident: e_1_2_9_18_1
  doi: 10.1111/tpj.12252
– ident: e_1_2_9_33_1
  doi: 10.1201/b14550-28
– ident: e_1_2_9_19_1
  doi: 10.1038/sj.onc.1209528
– ident: e_1_2_9_94_1
  doi: 10.1104/pp.105.065953
– ident: e_1_2_9_58_1
  doi: 10.1111/tpj.13889
– ident: e_1_2_9_28_1
  doi: 10.1158/0008-5472.CAN-03-2904
– ident: e_1_2_9_36_1
  doi: 10.3389/fpls.2015.00004
– ident: e_1_2_9_83_1
  doi: 10.3835/plantgenome2015.04.0025
– ident: e_1_2_9_75_1
  doi: 10.1111/plb.12869
– ident: e_1_2_9_12_1
  doi: 10.1002/j.1460-2075.1994.tb06569.x
– ident: e_1_2_9_4_1
  doi: 10.1093/jxb/erw414
– ident: e_1_2_9_67_1
  doi: 10.1038/s41598-017-07132-9
– ident: e_1_2_9_76_1
  doi: 10.1016/j.devcel.2022.01.008
– ident: e_1_2_9_34_1
  doi: 10.1016/S0176-1617(11)80023-4
– ident: e_1_2_9_79_1
  doi: 10.1093/jxb/erw059
– ident: e_1_2_9_90_1
  doi: 10.1126/science.124.3215.269
– ident: e_1_2_9_40_1
  doi: 10.1126/science.abm3452
– ident: e_1_2_9_54_1
  doi: 10.1007/s11104-021-05010-y
– ident: e_1_2_9_61_1
  doi: 10.1073/pnas.1302019110
– ident: e_1_2_9_8_1
  doi: 10.1111/tpj.14722
– ident: e_1_2_9_70_1
  doi: 10.3390/metabo7040059
– ident: e_1_2_9_98_1
  doi: 10.15252/embj.201696151
– ident: e_1_2_9_27_1
  doi: 10.1186/1752-0509-7-74
– ident: e_1_2_9_65_1
  doi: 10.1007/s11306-015-0814-7
– ident: e_1_2_9_96_1
  doi: 10.1101/2020.07.06.189514
– ident: e_1_2_9_6_1
  doi: 10.1104/pp.114.246124
– ident: e_1_2_9_3_1
  doi: 10.1016/j.jtbi.2013.09.017
– ident: e_1_2_9_14_1
  doi: 10.1021/bp0100880
– ident: e_1_2_9_30_1
  doi: 10.1007/BF00202588
– ident: e_1_2_9_59_1
  doi: 10.1038/msb.2009.82
– ident: e_1_2_9_72_1
  doi: 10.1038/s41598-018-26232-8
– ident: e_1_2_9_86_1
  doi: 10.1105/tpc.20.00132
– ident: e_1_2_9_37_1
  doi: 10.1104/pp.113.224006
– ident: e_1_2_9_48_1
  doi: 10.1038/msb.2010.47
– ident: e_1_2_9_77_1
  doi: 10.1038/s41477-018-0112-2
– ident: e_1_2_9_29_1
  doi: 10.1093/aob/mci207
– ident: e_1_2_9_44_1
  doi: 10.1093/bioinformatics/btad186
– ident: e_1_2_9_49_1
  doi: 10.1038/srep36074
– ident: e_1_2_9_11_1
  doi: 10.1126/science.1146265
– ident: e_1_2_9_88_1
  doi: 10.1038/s41598-020-73704-x
– ident: e_1_2_9_46_1
  doi: 10.1093/jxb/erab389
– ident: e_1_2_9_55_1
  doi: 10.1007/s00294-015-0482-1
– ident: e_1_2_9_73_1
  doi: 10.3389/fpls.2014.00668
SSID ssj0017364
Score 2.4567087
Snippet SUMMARY The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of...
The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of...
The root is a well-studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of...
SUMMARYThe root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1553
SubjectTerms Acidification
Aerobic conditions
aerobic fermentation
carbon
cell growth
computational biology
Computer applications
Corn
Elongated structure
Elongation
endodermis
energy
energy metabolism
Epidermis
Ethanol
Fermentation
flux balance analysis
Glycolysis
Hypoxia
lactic acid
lateral roots
Lipids
maize
Metabolic flux
Metabolism
Metabolites
plant root cells
Protons
root growth
Structural models
Structure-function relationships
Title A role for fermentation in aerobic conditions as revealed by computational analysis of maize root metabolism during growth by cell elongation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.16478
https://www.ncbi.nlm.nih.gov/pubmed/37831626
https://www.proquest.com/docview/2900206793
https://www.proquest.com/docview/2877378343
https://www.proquest.com/docview/3040354493
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9VAFB5K8cEXl7pdbctRfPAl5WZmsuFTK5ZSUERa6IMQZq0Xc5PSm4u0_8H_7DkzSbBuiC8hkJNhlrN8M5zzDWMvFbdUP6UTb51IpMl1gj6PJyovtDe51MbQece79_nRqTw-y8422OuxFibyQ0wHbmQZwV-TgSu9-sHI-ws0c6qURP9LuVoEiD5O1FFpISJ1FCL0BKMmH1iFKItn-vNmLPoFYN7EqyHgHN5ln8auxjyTL3vrXu-Z659YHP9zLPfYnQGIwn7UnPtsw7Vb7NZBh2Dx6gH7tg-UdwgIacGj8x4qlFpYtKAccTcZwJ20jQlfoFZAVFAYbCzoKzDhqojhmBHUwHsCnYelWlw7bLrrYel6VMBmsVpCrJWE88vua_85NOCaBlzTteehkYfs9PDtyZujZLi5ITESMUOiKpWmlc3mqeKqJNAxN1Lyucen18pbDJHSl1VWVg4BQumlwK2N85UzyhaFEY_YZtu17gmDzODipS4vbM6lsE5RPBW2yLgVFtHajL0a17A2A6053a7R1OP2Bie3DpM7Yy8m0YvI5fE7oe1REerBnFc1rwhW5-jLZuz59BkNkaZDta5bo0xZFIKuLfmLjECXKTIpqZ3HUcmmntC_KW4vcUBBVf7cxfrkw3F4efrvos_YbY7wLCbibLPN_nLtdhBO9Xo32M137NcdVw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEG2FgAQX9sUQoEAgcZnI092zHTgEQuSsQsiRcht6ekmsjGeieKzI-Qf-hF_hn6iaTYRNXHLgYo3kmlK7u9Z21SvGXiluqH8q85yxwpM6zDy0edxTYZQ5HcpMa7rv2N0LR_ty6yA4WGJfu16YBh-iv3AjzajtNSk4XUj_oOXVCeo5tUq2JZXbdnGGCdvs7eY6nu5rzjc-jN-PvHamgKclejNPJcr3ExMMfcVVTO5wqKXkQ4efLlPOoPGWLk6COLHoumInBQbd1iVWKxNFWiDfK-wqTRAnpP71Tz1YlR-JBqwKcwIP_TRvcYyobqhf6kXv90tIezFCrl3cxi32rducprLleHVeZav6_CfcyP9l926zm22sDWuNctxhS7a4y669KzEeXtxjX9aASisBo3Zw6J_aJqwCJgUoS_BUGnRJ_-iTZoKaAaFdoT81kC1A19Mw2ptUUC20C5QOpmpybpF1WcHUVqhj-WQ2haYdFA5Py7PqqGZg8xxsXhaHNZP7bP9StuIBWy7Kwj5iEGiUFt-GkQm5FMYqChmEiQJuhMGAdMDedEKT6ha5nQaI5GmXweFhpvVhDtjLnvSkgSv5HdFKJ3lpa7FmKU8ocwjRXA_Yi_5rtDW0Haqw5Rxp4igSNJnlLzQCvYIIpCQ-Dxup7ldC7_qYQeMPqmXzz0tMxx-36ofH_076nF0fjXd30p3Nve0n7AbHaLSpO1phy9Xp3D7F6LHKntVKC-zzZcv5d4JGekA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEG2FgBAX9sUQoEAgcZnI092zHTgEjJUFogglUm6Tnl6CxXjGiseKnH_gS_gVPoqq2UTYxCUHLtZIrim1u2t51a6FsReKG6qfyjxnrPCkDjMPbR73VBhlTocy05ruOz7shpsHcvswOFxhX7tamKY_RH_hRppR22tS8JlxPyh5NUM1p0rJNqNyxy5PMV6bv94a4eG-5Hz8bv_tpteOFPC0RGfmqUT5fmKCoa-4iskbDrWUfOjw02XKGbTd0sVJECcWPVfspEDMbV1itTJRpAXyvcQuy3CY0JyI0ce-V5UfiaZXFYYEHrpp3rYxorShfqnnnd8viPY8QK493PgG-9btTZPY8nl9UWXr-uyntpH_yebdZNdbpA0bjWrcYiu2uM2uvCkRDS_vsC8bQImVgJgdHHqntgSrgEkBylJzKg26pP_zSS9BzYF6XaE3NZAtQdezMNp7VFBtYxcoHUzV5Mwi67KCqa1Qw_LJfApNMSgcn5Sn1aeagc1zsHlZHNdM7rKDC9mKe2y1KAv7gEGgUVh8G0Ym5FIYqwgwCBMF3AiDcHTAXnUyk-q2bzuND8nTLn7Dw0zrwxyw5z3prGlW8juitU7w0tZezVOeUNwQorEesGf912hpaDtUYcsF0sRRJGguy19oBPoEEUhJfO43Qt2vhN71MX7GH1SL5p-XmO7vbdcPD_-d9Cm7ujcap--3dncesWscoWiTdLTGVquThX2M0LHKntQqC-zoosX8O4iveO8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+role+for+fermentation+in+aerobic+conditions+as+revealed+by+computational+analysis+of+maize+root+metabolism+during+growth+by+cell+elongation&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Hunt%2C+Hilary&rft.au=Leape%2C+Stefan&rft.au=Jagdeep+Singh+Sidhu&rft.au=Ajmera%2C+Ishan&rft.date=2023-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=116&rft.issue=6&rft.spage=1553&rft.epage=1570&rft_id=info:doi/10.1111%2Ftpj.16478&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon