A role for fermentation in aerobic conditions as revealed by computational analysis of maize root metabolism during growth by cell elongation
SUMMARY The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral ro...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 116; no. 6; pp. 1553 - 1570 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional‐structural model captured the cell‐anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end‐products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues.
Significance Statement
Fermentation is usually associated with low oxygen conditions but here we show how fermentation can be important in aerobic tissues. Specifically, the provision of carbon skeletons and energy for expanding cells in the maize root is most efficiently achieved by a high rate of glycolysis facilitated by fermentative production of lactate and ethanol. |
---|---|
AbstractList | The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional‐structural model captured the cell‐anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end‐products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues. SUMMARYThe root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional‐structural model captured the cell‐anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end‐products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues. The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional‐structural model captured the cell‐anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end‐products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues. Fermentation is usually associated with low oxygen conditions but here we show how fermentation can be important in aerobic tissues. Specifically, the provision of carbon skeletons and energy for expanding cells in the maize root is most efficiently achieved by a high rate of glycolysis facilitated by fermentative production of lactate and ethanol. The root is a well-studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional-structural model captured the cell-anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end-products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues.The root is a well-studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional-structural model captured the cell-anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end-products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues. SUMMARY The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional‐structural model captured the cell‐anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end‐products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues. Significance Statement Fermentation is usually associated with low oxygen conditions but here we show how fermentation can be important in aerobic tissues. Specifically, the provision of carbon skeletons and energy for expanding cells in the maize root is most efficiently achieved by a high rate of glycolysis facilitated by fermentative production of lactate and ethanol. |
Author | Sweetlove, Lee J. Sidhu, Jagdeep Singh Leape, Stefan Ratcliffe, R. George Ajmera, Ishan Hunt, Hilary Lynch, Jonathan P. |
Author_xml | – sequence: 1 givenname: Hilary surname: Hunt fullname: Hunt, Hilary organization: University of Oxford – sequence: 2 givenname: Stefan surname: Leape fullname: Leape, Stefan organization: University of Oxford – sequence: 3 givenname: Jagdeep Singh surname: Sidhu fullname: Sidhu, Jagdeep Singh organization: The Pennsylvania State University – sequence: 4 givenname: Ishan surname: Ajmera fullname: Ajmera, Ishan organization: The Pennsylvania State University – sequence: 5 givenname: Jonathan P. orcidid: 0000-0002-7265-9790 surname: Lynch fullname: Lynch, Jonathan P. organization: The Pennsylvania State University – sequence: 6 givenname: R. George surname: Ratcliffe fullname: Ratcliffe, R. George organization: University of Oxford – sequence: 7 givenname: Lee J. orcidid: 0000-0002-2461-4133 surname: Sweetlove fullname: Sweetlove, Lee J. email: lee.sweetlove@biology.ox.ac.uk organization: University of Oxford |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37831626$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u3CAUhVGVqJmkXfQFKqRu2oUTMBjwMor6q0jJIpG6Q9i-TBlhMwU70fQd-s7F48kmalUWFwm-c3R1zik6GsIACL2h5JzmczFuN-dUcKleoBVloioYZd-P0IrUghSS0_IEnaa0IYRKJvhLdMKkYlSUYoV-X-IYPGAbIrYQexhGM7owYDdgAzE0rsVtGDo3PyZsEo7wAMZDh5td_um30yIwHps8dsklHCzujfsF2TqMuIfRNMG71ONuim5Y43UMj-OPvQF4j8GHYb03eYWOrfEJXh_uM3T_6ePd1Zfi-ubz16vL66LlJVWFqQ2ldVcRakqjFK0JaTkvic3TNsZ2QipuVV2pGoSgynJWVhXYGlrTSdmyM_R-8d3G8HOCNOrepXkXM0CYkmaEE1ZxXrP_oqWSco6Tz-i7Z-gmTDGHkqm8YkmE3Bu-PVBT00Ont9H1Ju70UycZuFiANoaUIljduiXjMRrnNSV6bl3n1vW-9az48EzxZPo39uD-6Dzs_g3qu9tvi-IP_Ba9FQ |
CitedBy_id | crossref_primary_10_1111_tpj_16565 crossref_primary_10_1093_jxb_erae398 crossref_primary_10_3390_fermentation10090468 |
Cites_doi | 10.1073/pnas.0700690104 10.1111/j.1399-3054.2009.01253.x 10.1104/pp.87.2.529 10.1016/j.biochi.2009.01.004 10.1038/s41586-019-1203-6 10.1146/annurev-arplant-050718-100221 10.1093/jxb/erx406 10.1016/j.copbio.2017.07.009 10.1016/j.molp.2019.01.007 10.3389/fpls.2020.00639 10.3390/ijms21238987 10.1007/978-1-4939-7292-0_23 10.1146/annurev-arplant-042811-105453 10.1093/plphys/kiab478 10.1146/annurev-cellbio-092910-154237 10.1126/science.aag1125 10.1111/pce.12555 10.1042/BSR20170224 10.1016/j.tplants.2016.07.011 10.1093/plphys/kiaa080 10.1016/j.cub.2020.02.086 10.1007/s40626-018-0132-3 10.1007/s11306-018-1359-3 10.1016/j.copbio.2019.11.003 10.1104/pp.110.166488 10.1104/pp.16.01359 10.1371/journal.pcbi.1005568 10.1104/pp.110.158535 10.1093/jxb/err410 10.1002/cpz1.153 10.1371/journal.pcbi.1002018 10.1111/tpj.14003 10.1111/tpj.16357 10.1104/pp.15.00138 10.1111/tpj.15317 10.3389/fpls.2018.00973 10.1007/s00018-019-03379-9 10.1093/aob/mch056 10.1111/pce.14552 10.1038/s41598-018-30884-x 10.1073/pnas.81.11.3379 10.1126/science.1160809 10.1111/nph.16424 10.1093/pcp/pcs034 10.1111/tpj.16214 10.3389/fpls.2018.00143 10.1038/nrc1478 10.1007/BF02370419 10.1111/pce.12451 10.1007/BF00385551 10.1093/jxb/erz271 10.1111/ppl.13682 10.1021/pr5007813 10.1126/science.1252076 10.1111/tpj.14707 10.1111/tpj.12252 10.1201/b14550-28 10.1038/sj.onc.1209528 10.1104/pp.105.065953 10.1111/tpj.13889 10.1158/0008-5472.CAN-03-2904 10.3389/fpls.2015.00004 10.3835/plantgenome2015.04.0025 10.1111/plb.12869 10.1002/j.1460-2075.1994.tb06569.x 10.1093/jxb/erw414 10.1038/s41598-017-07132-9 10.1016/j.devcel.2022.01.008 10.1016/S0176-1617(11)80023-4 10.1093/jxb/erw059 10.1126/science.124.3215.269 10.1126/science.abm3452 10.1007/s11104-021-05010-y 10.1073/pnas.1302019110 10.1111/tpj.14722 10.3390/metabo7040059 10.15252/embj.201696151 10.1186/1752-0509-7-74 10.1007/s11306-015-0814-7 10.1101/2020.07.06.189514 10.1104/pp.114.246124 10.1016/j.jtbi.2013.09.017 10.1021/bp0100880 10.1007/BF00202588 10.1038/msb.2009.82 10.1038/s41598-018-26232-8 10.1105/tpc.20.00132 10.1104/pp.113.224006 10.1038/msb.2010.47 10.1038/s41477-018-0112-2 10.1093/aob/mci207 10.1093/bioinformatics/btad186 10.1038/srep36074 10.1126/science.1146265 10.1038/s41598-020-73704-x 10.1093/jxb/erab389 10.1007/s00294-015-0482-1 10.3389/fpls.2014.00668 |
ContentType | Journal Article |
Copyright | 2023 Society for Experimental Biology and John Wiley & Sons Ltd. Copyright © 2023 Society for Experimental Biology and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2023 Society for Experimental Biology and John Wiley & Sons Ltd. – notice: Copyright © 2023 Society for Experimental Biology and John Wiley & Sons Ltd |
DBID | AAYXX CITATION NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/tpj.16478 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Genetics Abstracts PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 1570 |
ExternalDocumentID | 37831626 10_1111_tpj_16478 TPJ16478 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Foundation for Food and Agriculture Research funderid: 602757 – fundername: Foundation for Food and Agriculture Research grantid: 602757 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4218-a9a119d501a2a881900c4420fc44fbafd6784f89589e6618f43255ef9ecad77c3 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Fri Jul 11 18:36:28 EDT 2025 Fri Jul 11 12:14:57 EDT 2025 Tue Aug 12 22:02:05 EDT 2025 Thu Apr 03 06:54:11 EDT 2025 Tue Jul 01 03:57:45 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Sun Jul 06 04:45:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | computational biology aerobic fermentation flux balance analysis root growth maize energy metabolism |
Language | English |
License | 2023 Society for Experimental Biology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4218-a9a119d501a2a881900c4420fc44fbafd6784f89589e6618f43255ef9ecad77c3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7265-9790 0000-0002-2461-4133 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tpj.16478 |
PMID | 37831626 |
PQID | 2900206793 |
PQPubID | 31702 |
PageCount | 1570 |
ParticipantIDs | proquest_miscellaneous_3040354493 proquest_miscellaneous_2877378343 proquest_journals_2900206793 pubmed_primary_37831626 crossref_citationtrail_10_1111_tpj_16478 crossref_primary_10_1111_tpj_16478 wiley_primary_10_1111_tpj_16478_TPJ16478 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 2023-Dec 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2007; 104 2017; 7 2004; 64 2015; 38 2022; 174 1989; 119 2020; 64 2023; 39 2019; 12 2005; 139 2004; 4 2013; 163 2020; 11 2020; 10 2019; 569 2013; 7 2021; 72 2018; 49 2012; 53 1973; 111 2018; 9 2017; 1670 2018; 8 2014; 5 1990; 137 2018; 4 2009; 91 2017; 36 2019; 21 2006; 25 2010; 154 1988; 87 2023; 379 2016; 353 2014; 13 2001; 17 2013; 110 2014; 166 2011; 27 2018; 38 2010; 6 2009; 324 2012; 63 2015; 6 2019; 70 1984; 81 2019; 31 2015; 168 2021; 466 2017; 68 2015; 11 2021; 229 2021; 107 2017; 173 2021; 185 2020; 77 2020; 103 2020; 32 2021; 1 1995; 195 2009; 137 2011; 7 2022; 188 2016; 6 2023; 46 2004; 93 2020; 30 2015; 61 2020 2020; 71 2013; 75 2017; 13 2016; 21 2005; 96 2023; 116 2022; 57 1994; 13 2023; 114 2018; 95 2018; 94 2009; 5 2020; 21 2013 2014; 341 2007; 318 2016; 9 2018; 14 2016; 67 2014; 344 1956; 124 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 103 start-page: 68 year: 2020 end-page: 82 article-title: Flux balance analysis of metabolism during growth by osmotic cell expansion and its application to tomato fruits publication-title: The Plant Journal – volume: 166 start-page: 528 year: 2014 end-page: 537 article-title: Radial transport of nutrients: the plant root as a polarized epithelium publication-title: Plant Physiology – volume: 324 start-page: 1029 year: 2009 end-page: 1033 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science – volume: 116 start-page: 38 year: 2023 end-page: 57 article-title: Efficient sugar utilization and transition from oxidative to substrate‐level phosphorylation in high starch storage roots of African cassava genotypes publication-title: The Plant Journal – volume: 229 start-page: 24 year: 2021 end-page: 35 article-title: Molecular oxygen as a signaling component in plant development publication-title: The New Phytologist – volume: 154 start-page: 311 year: 2010 end-page: 323 article-title: A genome‐scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions publication-title: Plant Physiology – volume: 27 start-page: 441 year: 2011 end-page: 464 article-title: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation publication-title: Annual Review of Cell and Developmental Biology – volume: 91 start-page: 697 year: 2009 end-page: 702 article-title: Insights into plant metabolic networks from steady‐state metabolic flux analysis publication-title: Biochimie – volume: 154 start-page: 1871 year: 2010 end-page: 1885 article-title: C4GEM, a genome‐scale metabolic model to study C4 plant Metabolism1[W][OA] publication-title: Plant Physiology – volume: 68 start-page: 283 year: 2017 end-page: 298 article-title: Metabolite pools and carbon flow during C4 photosynthesis in maize: CO labeling kinetics and cell type fractionation publication-title: Journal of Experimental Botany – volume: 6 start-page: 36074 year: 2016 article-title: High‐resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of publication-title: Scientific Reports – volume: 67 start-page: 3731 year: 2016 end-page: 3745 article-title: Root spatial metabolite profiling of two genotypes of barley ( L.) reveals differences in response to short‐term salt stress publication-title: Journal of Experimental Botany – volume: 341 start-page: 1 year: 2014 end-page: 8 article-title: Evolutionary dynamics of the Warburg effect: glycolysis as a collective action problem among cancer cells publication-title: Journal of Theoretical Biology – volume: 4 start-page: 165 year: 2018 end-page: 171 article-title: Computational analysis of the productivity potential of CAM publication-title: Nature Plants – volume: 11 start-page: 639 year: 2020 article-title: Visualizing genotypic and developmental differences of free amino acids in maize roots with mass spectrometry imaging publication-title: Frontiers in Plant Science – volume: 7 start-page: 59 year: 2017 article-title: Cell‐type specific metabolic flux analysis: a challenge for metabolic phenotyping and a potential solution in plants publication-title: Metabolites – volume: 17 start-page: 791 year: 2001 end-page: 797 article-title: Minimal reaction sets for metabolism under different growth requirements and uptake environments publication-title: Biotechnology Progress – volume: 38 year: 2018 article-title: Advances in metabolic flux analysis toward genome‐scale profiling of higher organisms publication-title: Bioscience Reports – volume: 195 start-page: 324 year: 1995 end-page: 330 article-title: Manipulating cytoplasmic pH under anoxia: a critical test of the role of pH in the switch from aerobic to anaerobic metabolism publication-title: Planta – volume: 104 start-page: 6223 year: 2007 end-page: 6228 article-title: Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 63 start-page: 1997 year: 2012 end-page: 2006 article-title: Deposition of ammonium and nitrate in the roots of maize seedlings supplied with different nitrogen salts publication-title: Journal of Experimental Botany – volume: 119 start-page: 271 year: 1989 end-page: 279 article-title: Relationship between root elongation rate and diameter and duration of growth of lateral roots of maize publication-title: Plant and Soil – volume: 9 year: 2018 article-title: Unraveling the functional role of NPF6 transporters publication-title: Frontiers in Plant Science – volume: 8 start-page: 12504 year: 2018 article-title: The intertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling publication-title: Scientific Reports – volume: 9 year: 2016 article-title: An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development publication-title: The Plant Genome – volume: 107 start-page: 713 year: 2021 end-page: 726 article-title: Mitochondrial ATP synthase subunit d, a component of the peripheral stalk, is essential for growth and heat stress tolerance in publication-title: The Plant Journal – volume: 10 start-page: 16669 year: 2020 article-title: Arabidopsis phenotyping reveals the importance of alcohol dehydrogenase and pyruvate decarboxylase for aerobic plant growth publication-title: Scientific Reports – volume: 163 start-page: 637 year: 2013 end-page: 647 article-title: Multiscale metabolic modeling: dynamic flux balance analysis on a whole‐plant scale publication-title: Plant Physiology – volume: 569 start-page: 714 year: 2019 end-page: 717 article-title: An apical hypoxic niche sets the pace of shoot meristem activity publication-title: Nature – volume: 466 start-page: 21 year: 2021 end-page: 63 article-title: Root anatomy and soil resource capture publication-title: Plant and Soil – volume: 4 start-page: 891 year: 2004 end-page: 899 article-title: Why do cancers have high aerobic glycolysis? publication-title: Nature Reviews Cancer – volume: 38 start-page: 2353 year: 2015 end-page: 2371 article-title: Tobacco guard cells fix CO by both Rubisco and PEPcase while sucrose acts as a substrate during light‐induced stomatal opening publication-title: Plant, Cell & Environment – volume: 13 start-page: 5879 year: 2014 end-page: 5887 article-title: Novel quantitative metabolomic approach for the study of stress responses of plant root metabolism publication-title: Journal of Proteome Research – volume: 31 start-page: 215 year: 2019 end-page: 226 article-title: Insights into the spatial and temporal organisation of plant metabolism from network flux analysis publication-title: Theoretical and Experimental Plant Physiology – volume: 124 start-page: 269 year: 1956 end-page: 270 article-title: On respiratory impairment in cancer cells publication-title: Science – volume: 7 year: 2011 article-title: Genome‐scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect publication-title: PLoS Computational Biology – volume: 14 start-page: 63 year: 2018 article-title: High‐mass‐resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress publication-title: Metabolomics – volume: 344 start-page: 510 year: 2014 end-page: 513 article-title: Genomic signatures of specialized metabolism in plants publication-title: Science – volume: 46 start-page: 1671 issue: 5 year: 2023 end-page: 1690 article-title: RootSlice—a novel functional‐structural model for root anatomical phenotypes publication-title: Plant, Cell & Environment – volume: 110 start-page: E1232 year: 2013 end-page: E1241 article-title: High‐resolution metabolic mapping of cell types in plant roots publication-title: Proceedings of the National Academy of Sciences – volume: 13 year: 2017 article-title: On the effects of alternative optima in context‐specific metabolic model predictions publication-title: PLoS Computational Biology – volume: 64 start-page: 3892 year: 2004 end-page: 3899 article-title: Akt stimulates aerobic glycolysis in cancer cells publication-title: Cancer Research – volume: 57 start-page: 543 year: 2022 end-page: 560.e9 article-title: A single‐cell Arabidopsis root atlas reveals developmental trajectories in wild‐type and cell identity mutants publication-title: Developmental Cell – volume: 13 start-page: 2755 year: 1994 end-page: 2763 article-title: Ethanolic fermentation in transgenic tobacco expressing pyruvate decarboxylase publication-title: The EMBO Journal – volume: 6 start-page: 4 year: 2015 article-title: A multi‐tissue genome‐scale metabolic modeling framework for the analysis of whole plant systems publication-title: Frontiers in Plant Science – volume: 12 start-page: 538 year: 2019 end-page: 551 article-title: Endogenous hypoxia in lateral root primordia controls root architecture by antagonizing auxin signaling in Arabidopsis publication-title: Molecular Plant – volume: 1670 start-page: 267 year: 2017 end-page: 281 article-title: Measuring spatial and temporal oxygen flux near plant tissues using a self‐referencing optrode publication-title: Methods in Molecular Biology – volume: 7 start-page: 74 year: 2013 article-title: COBRApy: constraints‐based reconstruction and analysis for python publication-title: BMC Systems Biology – volume: 21 start-page: 951 year: 2016 end-page: 961 article-title: Genetic control of lateral root formation in cereals publication-title: Trends in Plant Science – volume: 6 year: 2010 article-title: Omic data from evolved are consistent with computed optimal growth from genome-scale models publication-title: Molecular Systems Biology – start-page: 23‐1 year: 2013 end-page: 23‐18 – volume: 96 start-page: 519 year: 2005 end-page: 532 article-title: pH regulation in anoxic plants publication-title: Annals of Botany – volume: 72 start-page: 7653 year: 2021 end-page: 7657 article-title: Whither metabolic flux analysis in plants? publication-title: Journal of Experimental Botany – volume: 64 start-page: 92 year: 2020 end-page: 100 article-title: Tracing metabolic flux through time and space with isotope l experiments publication-title: Current Opinion in Biotechnology – volume: 21 start-page: 8987 year: 2020 article-title: Plant single‐cell metabolomics—challenges and perspectives publication-title: International Journal of Molecular Sciences – volume: 70 start-page: 5327 year: 2019 end-page: 5342 article-title: Laser ablation tomography for visualization of root colonization by edaphic organisms publication-title: Journal of Experimental Botany – volume: 173 start-page: 1355 year: 2017 end-page: 1370 article-title: Physiological characterization of a plant mitochondrial calcium uniporter in vitro and in vivo publication-title: Plant Physiology – volume: 93 start-page: 359 year: 2004 end-page: 368 article-title: Genetic dissection of root formation in maize ( ) reveals root‐type specific developmental programmes publication-title: Annals of Botany – volume: 95 start-page: 1102 year: 2018 end-page: 1113 article-title: PlantSEED enables automated annotation and reconstruction of plant primary metabolism with improved compartmentalization and comparative consistency publication-title: The Plant Journal – volume: 75 start-page: 1050 year: 2013 end-page: 1061 article-title: A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions publication-title: The Plant Journal – volume: 174 year: 2022 article-title: Oxygen uptake rates have contrasting responses to temperature in the root meristem and elongation zone publication-title: Physiologia Plantarum – volume: 77 start-page: 433 year: 2020 end-page: 440 article-title: Computational systems biology of cellular processes in : an overview publication-title: Cellular and Molecular Life Sciences – volume: 114 start-page: 1093 year: 2023 end-page: 1114 article-title: Cell‐type‐specific metabolism in plants publication-title: The Plant Journal – volume: 32 start-page: 3689 year: 2020 end-page: 3705 article-title: Alternative crassulacean acid metabolism modes provide environment‐specific water‐saving benefits in a leaf metabolic model publication-title: The Plant Cell – volume: 1 year: 2021 article-title: Cell‐type‐specific proteomics analysis of a small number of plant cells by integrating laser capture microdissection with a nanodroplet sample processing platform publication-title: Current Protocols – volume: 25 start-page: 5391 year: 2006 end-page: 5404 article-title: Ras‐dependent carbon metabolism and transformation in mouse fibroblasts publication-title: Oncogene – volume: 68 start-page: 5695 year: 2017 end-page: 5698 article-title: Subcellular metabolomics: the choice of method depends on the aim of the study publication-title: Journal of Experimental Botany – volume: 5 start-page: 668 year: 2014 article-title: Transcript abundance on its own cannot be used to infer fluxes in central metabolism publication-title: Frontiers in Plant Science – volume: 188 start-page: 749 year: 2022 end-page: 755 article-title: Single‐cell genomics in plants: current state, future directions, and hurdles to overcome publication-title: Plant Physiology – volume: 21 start-page: 21 year: 2019 end-page: 30 article-title: Malate valves: old shuttles with new perspectives publication-title: Plant Biology – volume: 94 start-page: 583 year: 2018 end-page: 594 article-title: Sucrose breakdown within guard cells provides substrates for glycolysis and glutamine biosynthesis during light‐induced stomatal opening publication-title: The Plant Journal – volume: 39 year: 2023 article-title: Accurate flux predictions using tissue‐specific gene expression in plant metabolic modeling publication-title: Bioinformatics – volume: 30 start-page: 1783 year: 2020 end-page: 1800.e11 article-title: Multiple metabolic innovations and losses are associated with major transitions in land plant evolution publication-title: Current Biology – volume: 87 start-page: 529 year: 1988 end-page: 532 article-title: Effect of temperature on spatial and temporal aspects of growth in the primary maize root publication-title: Plant Physiology – volume: 137 start-page: 383 year: 2009 end-page: 391 article-title: Regulation of respiration when the oxygen availability changes publication-title: Physiologia Plantarum – volume: 137 start-page: 125 year: 1990 end-page: 128 article-title: 31P nuclear magnetic resonance evidence for differences in intracellular pH in the roots of maize seedlings grown with nitrate or ammonium publication-title: Journal of Plant Physiology – volume: 168 start-page: 233 year: 2015 end-page: 246 article-title: A high‐resolution tissue‐specific proteome and phosphoproteome atlas of maize primary roots reveals functional gradients along the root axes publication-title: Plant Physiology – volume: 353 start-page: 814 year: 2016 end-page: 818 article-title: Integration of omic networks in a developmental atlas of maize publication-title: Science – volume: 103 start-page: 21 year: 2020 end-page: 31 article-title: Multiscale computational models can guide experimentation and targeted measurements for crop improvement publication-title: The Plant Journal – volume: 36 start-page: 1302 year: 2017 end-page: 1315 article-title: Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine publication-title: The EMBO Journal – volume: 139 start-page: 39 year: 2005 end-page: 51 article-title: A comprehensive analysis of the NADP‐malic enzyme gene family of Arabidopsis publication-title: Plant Physiology – volume: 379 start-page: 996 year: 2023 end-page: 1003 article-title: Protein‐metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase publication-title: Science – volume: 5 start-page: 323 year: 2009 article-title: Shifts in growth strategies reflect tradeoffs in cellular economics publication-title: Molecular Systems Biology – volume: 81 start-page: 3379 year: 1984 end-page: 3383 article-title: Mechanisms of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: 143 year: 2018 article-title: Proteomics of maize root development publication-title: Frontiers in Plant Science – volume: 8 start-page: 7919 year: 2018 article-title: Integration of large‐scale data for extraction of integrated Arabidopsis root cell‐type specific models publication-title: Scientific Reports – volume: 49 start-page: 42 year: 2018 end-page: 48 article-title: Plant genome‐scale reconstruction: from single cell to multi‐tissue modelling and omics analyses publication-title: Current Opinion in Biotechnology – volume: 38 start-page: 1775 year: 2015 end-page: 1784 article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture publication-title: Plant, Cell & Environment – volume: 111 start-page: 323 year: 1973 end-page: 328 article-title: Measurement of a gradient of oxygen partial pressure across the intact root publication-title: Planta – volume: 63 start-page: 239 year: 2012 end-page: 260 article-title: Plasmodesmata paradigm shift: regulation from without versus within publication-title: Annual Review of Plant Biology – volume: 11 start-page: 1679 year: 2015 end-page: 1689 article-title: Cell‐type specific metabolic profiling of protoplasts as a tool for plant systems biology publication-title: Metabolomics – volume: 53 start-page: 912 year: 2012 end-page: 920 article-title: Local root apex hypoxia induces no‐mediated hypoxic acclimation of the entire root publication-title: Plant and Cell Physiology – volume: 185 start-page: 781 year: 2021 end-page: 795 article-title: A multiple ion‐uptake phenotyping platform reveals shared mechanisms affecting nutrient uptake by roots publication-title: Plant Physiology – year: 2020 – volume: 7 start-page: 8307 year: 2017 article-title: Resolving the central metabolism of Arabidopsis guard cells publication-title: Scientific Reports – volume: 318 start-page: 801 year: 2007 end-page: 806 article-title: A high‐resolution root spatiotemporal map reveals dominant expression patterns publication-title: Science – volume: 71 start-page: 303 year: 2020 end-page: 326 article-title: Modeling plant metabolism: from network reconstruction to mechanistic models publication-title: Annual Review of Plant Biology – volume: 61 start-page: 591 year: 2015 end-page: 600 article-title: Organellar genome copy number variation and integrity during moderate maturation of roots and leaves of maize seedlings publication-title: Current Genetics – ident: e_1_2_9_31_1 doi: 10.1073/pnas.0700690104 – ident: e_1_2_9_39_1 doi: 10.1111/j.1399-3054.2009.01253.x – ident: e_1_2_9_64_1 doi: 10.1104/pp.87.2.529 – ident: e_1_2_9_45_1 doi: 10.1016/j.biochi.2009.01.004 – ident: e_1_2_9_91_1 doi: 10.1038/s41586-019-1203-6 – ident: e_1_2_9_20_1 doi: 10.1146/annurev-arplant-050718-100221 – ident: e_1_2_9_26_1 doi: 10.1093/jxb/erx406 – ident: e_1_2_9_35_1 doi: 10.1016/j.copbio.2017.07.009 – ident: e_1_2_9_81_1 doi: 10.1016/j.molp.2019.01.007 – ident: e_1_2_9_63_1 doi: 10.3389/fpls.2020.00639 – ident: e_1_2_9_25_1 doi: 10.3390/ijms21238987 – ident: e_1_2_9_57_1 doi: 10.1007/978-1-4939-7292-0_23 – ident: e_1_2_9_13_1 doi: 10.1146/annurev-arplant-042811-105453 – ident: e_1_2_9_21_1 doi: 10.1093/plphys/kiab478 – ident: e_1_2_9_52_1 doi: 10.1146/annurev-cellbio-092910-154237 – ident: e_1_2_9_89_1 doi: 10.1126/science.aag1125 – ident: e_1_2_9_22_1 doi: 10.1111/pce.12555 – ident: e_1_2_9_7_1 doi: 10.1042/BSR20170224 – ident: e_1_2_9_97_1 doi: 10.1016/j.tplants.2016.07.011 – ident: e_1_2_9_38_1 doi: 10.1093/plphys/kiaa080 – ident: e_1_2_9_16_1 doi: 10.1016/j.cub.2020.02.086 – ident: e_1_2_9_60_1 doi: 10.1007/s40626-018-0132-3 – ident: e_1_2_9_71_1 doi: 10.1007/s11306-018-1359-3 – ident: e_1_2_9_2_1 doi: 10.1016/j.copbio.2019.11.003 – ident: e_1_2_9_24_1 doi: 10.1104/pp.110.166488 – ident: e_1_2_9_85_1 doi: 10.1104/pp.16.01359 – ident: e_1_2_9_68_1 doi: 10.1371/journal.pcbi.1005568 – ident: e_1_2_9_95_1 doi: 10.1104/pp.110.158535 – ident: e_1_2_9_9_1 doi: 10.1093/jxb/err410 – ident: e_1_2_9_5_1 doi: 10.1002/cpz1.153 – ident: e_1_2_9_80_1 doi: 10.1371/journal.pcbi.1002018 – ident: e_1_2_9_74_1 doi: 10.1111/tpj.14003 – ident: e_1_2_9_47_1 doi: 10.1111/tpj.16357 – ident: e_1_2_9_56_1 doi: 10.1104/pp.15.00138 – ident: e_1_2_9_51_1 doi: 10.1111/tpj.15317 – ident: e_1_2_9_93_1 doi: 10.3389/fpls.2018.00973 – ident: e_1_2_9_43_1 doi: 10.1007/s00018-019-03379-9 – ident: e_1_2_9_42_1 doi: 10.1093/aob/mch056 – ident: e_1_2_9_82_1 doi: 10.1111/pce.14552 – ident: e_1_2_9_66_1 doi: 10.1038/s41598-018-30884-x – ident: e_1_2_9_69_1 doi: 10.1073/pnas.81.11.3379 – ident: e_1_2_9_87_1 doi: 10.1126/science.1160809 – ident: e_1_2_9_92_1 doi: 10.1111/nph.16424 – ident: e_1_2_9_62_1 doi: 10.1093/pcp/pcs034 – ident: e_1_2_9_23_1 doi: 10.1111/tpj.16214 – ident: e_1_2_9_41_1 doi: 10.3389/fpls.2018.00143 – ident: e_1_2_9_32_1 doi: 10.1038/nrc1478 – ident: e_1_2_9_15_1 doi: 10.1007/BF02370419 – ident: e_1_2_9_53_1 doi: 10.1111/pce.12451 – ident: e_1_2_9_10_1 doi: 10.1007/BF00385551 – ident: e_1_2_9_84_1 doi: 10.1093/jxb/erz271 – ident: e_1_2_9_99_1 doi: 10.1111/ppl.13682 – ident: e_1_2_9_50_1 doi: 10.1021/pr5007813 – ident: e_1_2_9_17_1 doi: 10.1126/science.1252076 – ident: e_1_2_9_78_1 doi: 10.1111/tpj.14707 – ident: e_1_2_9_18_1 doi: 10.1111/tpj.12252 – ident: e_1_2_9_33_1 doi: 10.1201/b14550-28 – ident: e_1_2_9_19_1 doi: 10.1038/sj.onc.1209528 – ident: e_1_2_9_94_1 doi: 10.1104/pp.105.065953 – ident: e_1_2_9_58_1 doi: 10.1111/tpj.13889 – ident: e_1_2_9_28_1 doi: 10.1158/0008-5472.CAN-03-2904 – ident: e_1_2_9_36_1 doi: 10.3389/fpls.2015.00004 – ident: e_1_2_9_83_1 doi: 10.3835/plantgenome2015.04.0025 – ident: e_1_2_9_75_1 doi: 10.1111/plb.12869 – ident: e_1_2_9_12_1 doi: 10.1002/j.1460-2075.1994.tb06569.x – ident: e_1_2_9_4_1 doi: 10.1093/jxb/erw414 – ident: e_1_2_9_67_1 doi: 10.1038/s41598-017-07132-9 – ident: e_1_2_9_76_1 doi: 10.1016/j.devcel.2022.01.008 – ident: e_1_2_9_34_1 doi: 10.1016/S0176-1617(11)80023-4 – ident: e_1_2_9_79_1 doi: 10.1093/jxb/erw059 – ident: e_1_2_9_90_1 doi: 10.1126/science.124.3215.269 – ident: e_1_2_9_40_1 doi: 10.1126/science.abm3452 – ident: e_1_2_9_54_1 doi: 10.1007/s11104-021-05010-y – ident: e_1_2_9_61_1 doi: 10.1073/pnas.1302019110 – ident: e_1_2_9_8_1 doi: 10.1111/tpj.14722 – ident: e_1_2_9_70_1 doi: 10.3390/metabo7040059 – ident: e_1_2_9_98_1 doi: 10.15252/embj.201696151 – ident: e_1_2_9_27_1 doi: 10.1186/1752-0509-7-74 – ident: e_1_2_9_65_1 doi: 10.1007/s11306-015-0814-7 – ident: e_1_2_9_96_1 doi: 10.1101/2020.07.06.189514 – ident: e_1_2_9_6_1 doi: 10.1104/pp.114.246124 – ident: e_1_2_9_3_1 doi: 10.1016/j.jtbi.2013.09.017 – ident: e_1_2_9_14_1 doi: 10.1021/bp0100880 – ident: e_1_2_9_30_1 doi: 10.1007/BF00202588 – ident: e_1_2_9_59_1 doi: 10.1038/msb.2009.82 – ident: e_1_2_9_72_1 doi: 10.1038/s41598-018-26232-8 – ident: e_1_2_9_86_1 doi: 10.1105/tpc.20.00132 – ident: e_1_2_9_37_1 doi: 10.1104/pp.113.224006 – ident: e_1_2_9_48_1 doi: 10.1038/msb.2010.47 – ident: e_1_2_9_77_1 doi: 10.1038/s41477-018-0112-2 – ident: e_1_2_9_29_1 doi: 10.1093/aob/mci207 – ident: e_1_2_9_44_1 doi: 10.1093/bioinformatics/btad186 – ident: e_1_2_9_49_1 doi: 10.1038/srep36074 – ident: e_1_2_9_11_1 doi: 10.1126/science.1146265 – ident: e_1_2_9_88_1 doi: 10.1038/s41598-020-73704-x – ident: e_1_2_9_46_1 doi: 10.1093/jxb/erab389 – ident: e_1_2_9_55_1 doi: 10.1007/s00294-015-0482-1 – ident: e_1_2_9_73_1 doi: 10.3389/fpls.2014.00668 |
SSID | ssj0017364 |
Score | 2.4567087 |
Snippet | SUMMARY
The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of... The root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of... The root is a well-studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of... SUMMARYThe root is a well‐studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1553 |
SubjectTerms | Acidification Aerobic conditions aerobic fermentation carbon cell growth computational biology Computer applications Corn Elongated structure Elongation endodermis energy energy metabolism Epidermis Ethanol Fermentation flux balance analysis Glycolysis Hypoxia lactic acid lateral roots Lipids maize Metabolic flux Metabolism Metabolites plant root cells Protons root growth Structural models Structure-function relationships |
Title | A role for fermentation in aerobic conditions as revealed by computational analysis of maize root metabolism during growth by cell elongation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.16478 https://www.ncbi.nlm.nih.gov/pubmed/37831626 https://www.proquest.com/docview/2900206793 https://www.proquest.com/docview/2877378343 https://www.proquest.com/docview/3040354493 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9VAFB5K8cEXl7pdbctRfPAl5WZmsuFTK5ZSUERa6IMQZq0Xc5PSm4u0_8H_7DkzSbBuiC8hkJNhlrN8M5zzDWMvFbdUP6UTb51IpMl1gj6PJyovtDe51MbQece79_nRqTw-y8422OuxFibyQ0wHbmQZwV-TgSu9-sHI-ws0c6qURP9LuVoEiD5O1FFpISJ1FCL0BKMmH1iFKItn-vNmLPoFYN7EqyHgHN5ln8auxjyTL3vrXu-Z659YHP9zLPfYnQGIwn7UnPtsw7Vb7NZBh2Dx6gH7tg-UdwgIacGj8x4qlFpYtKAccTcZwJ20jQlfoFZAVFAYbCzoKzDhqojhmBHUwHsCnYelWlw7bLrrYel6VMBmsVpCrJWE88vua_85NOCaBlzTteehkYfs9PDtyZujZLi5ITESMUOiKpWmlc3mqeKqJNAxN1Lyucen18pbDJHSl1VWVg4BQumlwK2N85UzyhaFEY_YZtu17gmDzODipS4vbM6lsE5RPBW2yLgVFtHajL0a17A2A6053a7R1OP2Bie3DpM7Yy8m0YvI5fE7oe1REerBnFc1rwhW5-jLZuz59BkNkaZDta5bo0xZFIKuLfmLjECXKTIpqZ3HUcmmntC_KW4vcUBBVf7cxfrkw3F4efrvos_YbY7wLCbibLPN_nLtdhBO9Xo32M137NcdVw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEG2FgAQX9sUQoEAgcZnI092zHTgEQuSsQsiRcht6ekmsjGeieKzI-Qf-hF_hn6iaTYRNXHLgYo3kmlK7u9Z21SvGXiluqH8q85yxwpM6zDy0edxTYZQ5HcpMa7rv2N0LR_ty6yA4WGJfu16YBh-iv3AjzajtNSk4XUj_oOXVCeo5tUq2JZXbdnGGCdvs7eY6nu5rzjc-jN-PvHamgKclejNPJcr3ExMMfcVVTO5wqKXkQ4efLlPOoPGWLk6COLHoumInBQbd1iVWKxNFWiDfK-wqTRAnpP71Tz1YlR-JBqwKcwIP_TRvcYyobqhf6kXv90tIezFCrl3cxi32rducprLleHVeZav6_CfcyP9l926zm22sDWuNctxhS7a4y669KzEeXtxjX9aASisBo3Zw6J_aJqwCJgUoS_BUGnRJ_-iTZoKaAaFdoT81kC1A19Mw2ptUUC20C5QOpmpybpF1WcHUVqhj-WQ2haYdFA5Py7PqqGZg8xxsXhaHNZP7bP9StuIBWy7Kwj5iEGiUFt-GkQm5FMYqChmEiQJuhMGAdMDedEKT6ha5nQaI5GmXweFhpvVhDtjLnvSkgSv5HdFKJ3lpa7FmKU8ocwjRXA_Yi_5rtDW0Haqw5Rxp4igSNJnlLzQCvYIIpCQ-Dxup7ldC7_qYQeMPqmXzz0tMxx-36ofH_076nF0fjXd30p3Nve0n7AbHaLSpO1phy9Xp3D7F6LHKntVKC-zzZcv5d4JGekA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEG2FgBAX9sUQoEAgcZnI092zHTgEjJUFogglUm6Tnl6CxXjGiseKnH_gS_gVPoqq2UTYxCUHLtZIrim1u2t51a6FsReKG6qfyjxnrPCkDjMPbR73VBhlTocy05ruOz7shpsHcvswOFxhX7tamKY_RH_hRppR22tS8JlxPyh5NUM1p0rJNqNyxy5PMV6bv94a4eG-5Hz8bv_tpteOFPC0RGfmqUT5fmKCoa-4iskbDrWUfOjw02XKGbTd0sVJECcWPVfspEDMbV1itTJRpAXyvcQuy3CY0JyI0ce-V5UfiaZXFYYEHrpp3rYxorShfqnnnd8viPY8QK493PgG-9btTZPY8nl9UWXr-uyntpH_yebdZNdbpA0bjWrcYiu2uM2uvCkRDS_vsC8bQImVgJgdHHqntgSrgEkBylJzKg26pP_zSS9BzYF6XaE3NZAtQdezMNp7VFBtYxcoHUzV5Mwi67KCqa1Qw_LJfApNMSgcn5Sn1aeagc1zsHlZHNdM7rKDC9mKe2y1KAv7gEGgUVh8G0Ym5FIYqwgwCBMF3AiDcHTAXnUyk-q2bzuND8nTLn7Dw0zrwxyw5z3prGlW8juitU7w0tZezVOeUNwQorEesGf912hpaDtUYcsF0sRRJGguy19oBPoEEUhJfO43Qt2vhN71MX7GH1SL5p-XmO7vbdcPD_-d9Cm7ujcap--3dncesWscoWiTdLTGVquThX2M0LHKntQqC-zoosX8O4iveO8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+role+for+fermentation+in+aerobic+conditions+as+revealed+by+computational+analysis+of+maize+root+metabolism+during+growth+by+cell+elongation&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Hunt%2C+Hilary&rft.au=Leape%2C+Stefan&rft.au=Jagdeep+Singh+Sidhu&rft.au=Ajmera%2C+Ishan&rft.date=2023-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=116&rft.issue=6&rft.spage=1553&rft.epage=1570&rft_id=info:doi/10.1111%2Ftpj.16478&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |