Estimation of summary protective efficacy using a frailty mixture model for recurrent event time data
Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within‐subject event dependence, between‐subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the...
Saved in:
Published in | Statistics in medicine Vol. 31; no. 29; pp. 4023 - 4039 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
20.12.2012
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.5458 |
Cover
Loading…
Abstract | Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within‐subject event dependence, between‐subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the summary protective efficacy from recurrent event time data as seen in many infectious disease clinical trials, we propose a two‐part frailty mixture model that simultaneously accommodates all the three issues. In terms of vaccine action models, the proposed model is a combination of the ‘all‐or‐none’ and the ‘leaky’ models, and the summary protective efficacy is a unified measure of the vaccine's twofold effects in completely or partially protecting the vaccinated individuals against the study event. The model parameters of interest are estimated using the expectation‐maximization algorithm with their respective variances estimated using Louis's formula for the expectation‐maximization algorithm. The summary protective efficacy is estimated by a composite estimand with its variance estimated using the delta method. The performance of the proposed estimation approach is investigated by a simulation study. Data from a trial of malaria prophylaxis conducted in Ghana are reanalyzed. Copyright © 2012 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within-subject event dependence, between-subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the summary protective efficacy from recurrent event time data as seen in many infectious disease clinical trials, we propose a two-part frailty mixture model that simultaneously accommodates all the three issues. In terms of vaccine action models, the proposed model is a combination of the 'all-or-none' and the 'leaky' models, and the summary protective efficacy is a unified measure of the vaccine's twofold effects in completely or partially protecting the vaccinated individuals against the study event. The model parameters of interest are estimated using the expectation-maximization algorithm with their respective variances estimated using Louis's formula for the expectation-maximization algorithm. The summary protective efficacy is estimated by a composite estimand with its variance estimated using the delta method. The performance of the proposed estimation approach is investigated by a simulation study. Data from a trial of malaria prophylaxis conducted in Ghana are reanalyzed.Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within-subject event dependence, between-subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the summary protective efficacy from recurrent event time data as seen in many infectious disease clinical trials, we propose a two-part frailty mixture model that simultaneously accommodates all the three issues. In terms of vaccine action models, the proposed model is a combination of the 'all-or-none' and the 'leaky' models, and the summary protective efficacy is a unified measure of the vaccine's twofold effects in completely or partially protecting the vaccinated individuals against the study event. The model parameters of interest are estimated using the expectation-maximization algorithm with their respective variances estimated using Louis's formula for the expectation-maximization algorithm. The summary protective efficacy is estimated by a composite estimand with its variance estimated using the delta method. The performance of the proposed estimation approach is investigated by a simulation study. Data from a trial of malaria prophylaxis conducted in Ghana are reanalyzed. Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within-subject event dependence, between-subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the summary protective efficacy from recurrent event time data as seen in many infectious disease clinical trials, we propose a two-part frailty mixture model that simultaneously accommodates all the three issues. In terms of vaccine action models, the proposed model is a combination of the 'all-or-none' and the 'leaky' models, and the summary protective efficacy is a unified measure of the vaccine's twofold effects in completely or partially protecting the vaccinated individuals against the study event. The model parameters of interest are estimated using the expectation-maximization algorithm with their respective variances estimated using Louis's formula for the expectation-maximization algorithm. The summary protective efficacy is estimated by a composite estimand with its variance estimated using the delta method. The performance of the proposed estimation approach is investigated by a simulation study. Data from a trial of malaria prophylaxis conducted in Ghana are reanalyzed. [PUBLICATION ABSTRACT] Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within-subject event dependence, between-subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the summary protective efficacy from recurrent event time data as seen in many infectious disease clinical trials, we propose a two-part frailty mixture model that simultaneously accommodates all the three issues. In terms of vaccine action models, the proposed model is a combination of the 'all-or-none' and the 'leaky' models, and the summary protective efficacy is a unified measure of the vaccine's twofold effects in completely or partially protecting the vaccinated individuals against the study event. The model parameters of interest are estimated using the expectation-maximization algorithm with their respective variances estimated using Louis's formula for the expectation-maximization algorithm. The summary protective efficacy is estimated by a composite estimand with its variance estimated using the delta method. The performance of the proposed estimation approach is investigated by a simulation study. Data from a trial of malaria prophylaxis conducted in Ghana are reanalyzed. Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within‐subject event dependence, between‐subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the summary protective efficacy from recurrent event time data as seen in many infectious disease clinical trials, we propose a two‐part frailty mixture model that simultaneously accommodates all the three issues. In terms of vaccine action models, the proposed model is a combination of the ‘all‐or‐none’ and the ‘leaky’ models, and the summary protective efficacy is a unified measure of the vaccine's twofold effects in completely or partially protecting the vaccinated individuals against the study event. The model parameters of interest are estimated using the expectation‐maximization algorithm with their respective variances estimated using Louis's formula for the expectation‐maximization algorithm. The summary protective efficacy is estimated by a composite estimand with its variance estimated using the delta method. The performance of the proposed estimation approach is investigated by a simulation study. Data from a trial of malaria prophylaxis conducted in Ghana are reanalyzed. Copyright © 2012 John Wiley & Sons, Ltd. |
Author | Cheung, Yin Bun Xu, Ying Milligan, Paul Lam, K. F. |
Author_xml | – sequence: 1 givenname: Ying surname: Xu fullname: Xu, Ying email: Ying Xu, Singapore Clinical Research Institute, Nanos #02-01, 31 Biopolis Way, Singapore 138669, Singapore., tina.xu@scri.edu.sg organization: Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore – sequence: 2 givenname: Yin Bun surname: Cheung fullname: Cheung, Yin Bun organization: Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore – sequence: 3 givenname: K. F. surname: Lam fullname: Lam, K. F. organization: Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong – sequence: 4 givenname: Paul surname: Milligan fullname: Milligan, Paul organization: Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22764039$$D View this record in MEDLINE/PubMed |
BookMark | eNp10V1rFDEUBuAgFbutgr9AAt54M9uTzGSSXMpS28K2Uvy6DJnsiaTOR00ytfvvnem2FaXeJBCeHA7ve0D2-qFHQl4zWDIAfpRCtxSVUM_IgoGWBXCh9sgCuJRFLZnYJwcpXQEwJrh8QfY5l3UFpV4QPE45dDaHoaeDp2nsOhu39DoOGV0ON0jR--Cs29Ixhf47tdRHG9q8pV24zWNE2g0bbKkfIo3oxhixzxRv5nOajHRjs31JnnvbJnx1fx-SLx-OP69Oi_XHk7PV-3XhKs5UUSPTQinupUeu1fQoXClYo8BZ2QhUutGsLp1uhKp03ZRQCbC2YtJuQEldHpJ3u7nT_j9HTNl0ITlsW9vjMCbDmJaVqoWEib79h14NY-yn7QzjHCoJvJSTenOvxqbDjbmOYc7HPAQ4geUOuDikFNEbF_JdnHmOyTAwc0NmasjMDf1Z8fHDw8wnaLGjv0KL2_868-ns_G8fUsbbR2_jD1PLUgrz7eLEgFitv8pTZS7L3747rVU |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1093_aje_kwv010 crossref_primary_10_1016_j_vaccine_2013_11_007 crossref_primary_10_1186_1475_2875_13_293 crossref_primary_10_1177_1536867X1501500109 crossref_primary_10_1002_sim_7319 crossref_primary_10_1177_1536867X1801800212 crossref_primary_10_1177_0962280219859377 crossref_primary_10_1002_sim_10319 crossref_primary_10_1016_j_vaccine_2020_05_086 crossref_primary_10_1080_02664763_2025_2452966 crossref_primary_10_1080_10543406_2022_2108826 crossref_primary_10_1080_19466315_2018_1473794 crossref_primary_10_1002_sim_6093 crossref_primary_10_1186_1475_2875_12_355 |
Cites_doi | 10.1093/oxfordjournals.aje.a008858 10.1093/biomet/68.2.373 10.1111/j.0006‐341X.2004.00225.x 10.1002/sim.4780071105 10.1016/S0167-9473(02)00158-5 10.2307/2986152 10.1136/bmj.331.7519.727 10.1002/sim.3783 10.1002/sim.687 10.1080/01621459.1989.10478873 10.1214/aos/1176345976 10.1002/sim.3061 10.1080/01621459.1952.10501187 10.1093/ije/17.2.456 10.1111/j.0006‐341X.2000.00227.x 10.1002/bimj.200410141 10.1007/978-94-015-7983-4_22 10.1007/978-1-4757-3294-8 10.1002/(SICI)1097‐0258(20000115)19:1<13::AID‐SIM279>3.0.CO;2‐5 10.1093/ije/13.1.87 10.1111/j.2517-6161.1982.tb01203.x 10.2307/2529885 10.1093/biomet/79.3.531 10.1002/sim.3358 10.1002/sim.2434 10.1111/1467‐9868.00182 10.1177/096228029400300305 |
ContentType | Journal Article |
Copyright | Copyright © 2012 John Wiley & Sons, Ltd. Copyright John Wiley and Sons, Limited Dec 20, 2012 |
Copyright_xml | – notice: Copyright © 2012 John Wiley & Sons, Ltd. – notice: Copyright John Wiley and Sons, Limited Dec 20, 2012 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.5458 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 4039 |
ExternalDocumentID | 2826618201 22764039 10_1002_sim_5458 SIM5458 ark_67375_WNG_05CLV7H8_Q |
Genre | article Journal Article Feature |
GeographicLocations | Ghana |
GeographicLocations_xml | – name: Ghana |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0700837 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AGQPQ ALVPJ AAYXX AEYWJ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c4218-6e195882f7fe298c425c351b80ca7b5e89b9163c9b58496b30450aa417ad08793 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 08:22:27 EDT 2025 Fri Jul 25 04:57:31 EDT 2025 Mon Jul 21 05:50:33 EDT 2025 Tue Jul 01 03:28:03 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Mon Apr 07 06:04:01 EDT 2025 Wed Oct 30 10:05:03 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4218-6e195882f7fe298c425c351b80ca7b5e89b9163c9b58496b30450aa417ad08793 |
Notes | Supplementary InformationSupplementary Information ArticleID:SIM5458 Supporting information may be found in the online version of this article. istex:92CC60BB8E6018D24BC6816C39EE319A4C7DF94B ark:/67375/WNG-05CLV7H8-Q SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/110066 |
PMID | 22764039 |
PQID | 1220470237 |
PQPubID | 48361 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1197486570 proquest_journals_1220470237 pubmed_primary_22764039 crossref_citationtrail_10_1002_sim_5458 crossref_primary_10_1002_sim_5458 wiley_primary_10_1002_sim_5458_SIM5458 istex_primary_ark_67375_WNG_05CLV7H8_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-20 20 December 2012 2012-Dec-20 20121220 |
PublicationDateYYYYMMDD | 2012-12-20 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Berkson J, Gage RP.Survival curve for cancer patients following treatment. Journal of the American Statistical Association 1952; 47:501-515. Cheung YB, Xu Y, Tan SH, Cutts F, Milligan P.Estimation of intervention effects using first or multiple episodes in clinical trials: The Andersen-Gill model re-examined. Statistics in Medicine 2010; 29:328-336. DOI: 10.1002/sim.3783. Henderson R, Oman P.Effect of frailty on marginal regression estimates in survival analysis. Journal of the Royal Statistical Society, Series B 1999; 61:367-379. DOI: 10.1111/1467-9868.00182. Aalen OO.Heterogeneity in survival data analysis. Statistics in Medicine 1988; 7:1121-1137. DOI: 10.1002/sim.4780071105. Pickles A, Crouchlev R.Generalizations and applications of frailty models for survival and event data. Statistical Methods in Medical Research 1994; 3:263-278. DOI: 10.1177/096228029400300305. Longini IM, Halloran ME.A frailty mixture model for estimating vaccine efficacy. Applied Statistics 1996; 45:165-173. Smith PG, Rodrigues LC, Fine PEM.Assessment of the protective efficacy of vaccines against common diseases using case-control and cohort studies. International Journal of Epidemiology 1984; 13:87-93. DOI: 10.1093/ije/13.1.87. Kelly PJ, Lim LL.Survival analysis for recurrent event data: an application to childhood infectious diseases. Statistics in Medicine 2000; 19:13-33. DOI: 10.1002/(SICI)1097-0258(20000115)19:1<13::AID-SIM279>3.0.CO;2-5. Box-Steffensmeier JM, De Boef S.Repeated events survival models: the conditional frailty model. Statistics in Medicine 2006; 25:3518-3533. DOI: 10.1002/sim.2434. Farewell VT.The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982; 38:1041-1046. Liu L, Wolfe RA, Huang XL.Shared frailty models for recurrent events and a terminal event. Biometrics 2004; 60:747-756. DOI: 10.1111/j.0006-341X.2004.00225.x. Louis TA.Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 1982; 44:226-233. Bender R, Kuss O, Hilderbrandt M, Gehrmann U.Estimating adjusted NNT measures in logistic regression analysis. Statistics in Medicine 2007; 26:5586-5595. DOI: 10.1002/sim.3061. Wei LJ, Lin DY, Weissfeld L.Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of the American Statistical Association 1989; 84:1065-1073. Peng YW, Zhang JJ.Estimation method of the semiparametric mixture cure gamma frailty model. Statistics in Medicine 2008; 27:5177-5194. DOI: 10.1002/sim.3358. Price DL, Manatunga AK.Modelling survival data with a cured fraction using frailty models. Statistics in Medicine 2001; 20:1515-1527. DOI: 10.1002/sim.687. Kuk AYC, Chen CH.A mixture model combining logistic regression with proportional hazards regression. Biometrika 1992; 79:531-541. DOI: 10.1093/biomet/79.3.531. Maller RA, Zhou S.Survival Analysis with Long-Term Survivors. Wiley: New York, 1996. Cook RJ, Lawless JF.The Statistical Analysis of Recurrent Events. Springer: New York, NY, 2007. Halloran ME, Longini IM, Struchiner CJ.Estimability and interpretation of vaccine efficacy using frailty mixing models. American Journal of Epidemiology 1996; 144:83-97. Andersen PK, Gill RD.Cox's regression model for counting processes: a large sample study. The Annals of Statistics 1982; 10:1100-1120. DOI: 10.1214/aos/1176345976. Abrahantes JC, Burzykowski T.A version of the EM algorithm for proportional hazard model with random effects. Biometrical Journal 2005; 47:847-862. DOI: 10.1002/bimj.200410141. Duchateau L, Janssen P.The Frailty Model. Springer-Verlag: New York, 2008. Sy JP, Taylor JMG.Estimation in a Cox proportional hazards cure model. Biometrics 2000; 56:227-236. DOI: 10.1111/j.0006-341X.2000.00227.x. Therneau TM, Grambsch PM.Modeling Survival Data: Extending the Cox Model. Springer: New York, 2000. Chandramohan D, Owusu-Agyei S, Carneiro I, Awine T, Amponsa-Achiano K, Mensah N, Jaffar S, Baiden R, Hodgson A, Binka F, Greenwood B.Cluster randomised trial of intermittent preventive treatment for malaria in infants in area of high, seasonal transmission in Ghana. British Medical Journal 2005; 331:727-733. DOI: 10.1136/bmj.331.7519.727. Greenland S, Frerichs RR.On measures and models for the effectiveness of vaccines and vaccination programmes. International Journal of Epidemiology 1988; 17:456-463. DOI: 10.1093/ije/17.2.456. Peng YW.Estimating baseline distribution in proportional hazards cure models. Computational Statistics & Data Analysis 2003; 42:187-201. Prentice RL, Williams BJ, Peterson AV.On the regression analysis of multivariate failure time data. Biometrika 1981; 68:373-379. DOI: 10.1093/biomet/68.2.373. 1989; 84 1982; 38 2004; 60 2005; 331 1982; 10 1988; 17 1981; 68 2008 1996 2007 1996; 144 1992; 79 1992 1999; 61 2001; 20 2005; 47 1952; 47 2000; 19 2000 2010; 29 2000; 56 2006; 25 2008; 27 1988; 7 1984; 13 1982; 44 1994; 3 2003; 42 1996; 45 2007; 26 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Duchateau L (e_1_2_7_18_1) 2008 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_22_1 Maller RA (e_1_2_7_8_1) 1996 e_1_2_7_21_1 Cook RJ (e_1_2_7_14_1) 2007 e_1_2_7_20_1 Louis TA (e_1_2_7_24_1) 1982; 44 |
References_xml | – reference: Sy JP, Taylor JMG.Estimation in a Cox proportional hazards cure model. Biometrics 2000; 56:227-236. DOI: 10.1111/j.0006-341X.2000.00227.x. – reference: Peng YW, Zhang JJ.Estimation method of the semiparametric mixture cure gamma frailty model. Statistics in Medicine 2008; 27:5177-5194. DOI: 10.1002/sim.3358. – reference: Price DL, Manatunga AK.Modelling survival data with a cured fraction using frailty models. Statistics in Medicine 2001; 20:1515-1527. DOI: 10.1002/sim.687. – reference: Smith PG, Rodrigues LC, Fine PEM.Assessment of the protective efficacy of vaccines against common diseases using case-control and cohort studies. International Journal of Epidemiology 1984; 13:87-93. DOI: 10.1093/ije/13.1.87. – reference: Peng YW.Estimating baseline distribution in proportional hazards cure models. Computational Statistics & Data Analysis 2003; 42:187-201. – reference: Box-Steffensmeier JM, De Boef S.Repeated events survival models: the conditional frailty model. Statistics in Medicine 2006; 25:3518-3533. DOI: 10.1002/sim.2434. – reference: Greenland S, Frerichs RR.On measures and models for the effectiveness of vaccines and vaccination programmes. International Journal of Epidemiology 1988; 17:456-463. DOI: 10.1093/ije/17.2.456. – reference: Bender R, Kuss O, Hilderbrandt M, Gehrmann U.Estimating adjusted NNT measures in logistic regression analysis. Statistics in Medicine 2007; 26:5586-5595. DOI: 10.1002/sim.3061. – reference: Louis TA.Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 1982; 44:226-233. – reference: Prentice RL, Williams BJ, Peterson AV.On the regression analysis of multivariate failure time data. Biometrika 1981; 68:373-379. DOI: 10.1093/biomet/68.2.373. – reference: Aalen OO.Heterogeneity in survival data analysis. Statistics in Medicine 1988; 7:1121-1137. DOI: 10.1002/sim.4780071105. – reference: Duchateau L, Janssen P.The Frailty Model. Springer-Verlag: New York, 2008. – reference: Therneau TM, Grambsch PM.Modeling Survival Data: Extending the Cox Model. Springer: New York, 2000. – reference: Pickles A, Crouchlev R.Generalizations and applications of frailty models for survival and event data. Statistical Methods in Medical Research 1994; 3:263-278. DOI: 10.1177/096228029400300305. – reference: Liu L, Wolfe RA, Huang XL.Shared frailty models for recurrent events and a terminal event. Biometrics 2004; 60:747-756. DOI: 10.1111/j.0006-341X.2004.00225.x. – reference: Maller RA, Zhou S.Survival Analysis with Long-Term Survivors. Wiley: New York, 1996. – reference: Cheung YB, Xu Y, Tan SH, Cutts F, Milligan P.Estimation of intervention effects using first or multiple episodes in clinical trials: The Andersen-Gill model re-examined. Statistics in Medicine 2010; 29:328-336. DOI: 10.1002/sim.3783. – reference: Berkson J, Gage RP.Survival curve for cancer patients following treatment. Journal of the American Statistical Association 1952; 47:501-515. – reference: Longini IM, Halloran ME.A frailty mixture model for estimating vaccine efficacy. Applied Statistics 1996; 45:165-173. – reference: Andersen PK, Gill RD.Cox's regression model for counting processes: a large sample study. The Annals of Statistics 1982; 10:1100-1120. DOI: 10.1214/aos/1176345976. – reference: Kuk AYC, Chen CH.A mixture model combining logistic regression with proportional hazards regression. Biometrika 1992; 79:531-541. DOI: 10.1093/biomet/79.3.531. – reference: Abrahantes JC, Burzykowski T.A version of the EM algorithm for proportional hazard model with random effects. Biometrical Journal 2005; 47:847-862. DOI: 10.1002/bimj.200410141. – reference: Cook RJ, Lawless JF.The Statistical Analysis of Recurrent Events. Springer: New York, NY, 2007. – reference: Kelly PJ, Lim LL.Survival analysis for recurrent event data: an application to childhood infectious diseases. Statistics in Medicine 2000; 19:13-33. DOI: 10.1002/(SICI)1097-0258(20000115)19:1<13::AID-SIM279>3.0.CO;2-5. – reference: Chandramohan D, Owusu-Agyei S, Carneiro I, Awine T, Amponsa-Achiano K, Mensah N, Jaffar S, Baiden R, Hodgson A, Binka F, Greenwood B.Cluster randomised trial of intermittent preventive treatment for malaria in infants in area of high, seasonal transmission in Ghana. British Medical Journal 2005; 331:727-733. DOI: 10.1136/bmj.331.7519.727. – reference: Wei LJ, Lin DY, Weissfeld L.Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of the American Statistical Association 1989; 84:1065-1073. – reference: Halloran ME, Longini IM, Struchiner CJ.Estimability and interpretation of vaccine efficacy using frailty mixing models. American Journal of Epidemiology 1996; 144:83-97. – reference: Farewell VT.The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982; 38:1041-1046. – reference: Henderson R, Oman P.Effect of frailty on marginal regression estimates in survival analysis. Journal of the Royal Statistical Society, Series B 1999; 61:367-379. DOI: 10.1111/1467-9868.00182. – volume: 60 start-page: 747 year: 2004 end-page: 756 article-title: Shared frailty models for recurrent events and a terminal event publication-title: Biometrics – volume: 79 start-page: 531 year: 1992 end-page: 541 article-title: A mixture model combining logistic regression with proportional hazards regression publication-title: Biometrika – volume: 20 start-page: 1515 year: 2001 end-page: 1527 article-title: Modelling survival data with a cured fraction using frailty models publication-title: Statistics in Medicine – volume: 331 start-page: 727 year: 2005 end-page: 733 article-title: Cluster randomised trial of intermittent preventive treatment for malaria in infants in area of high, seasonal transmission in Ghana publication-title: British Medical Journal – volume: 56 start-page: 227 year: 2000 end-page: 236 article-title: Estimation in a Cox proportional hazards cure model publication-title: Biometrics – volume: 144 start-page: 83 year: 1996 end-page: 97 article-title: Estimability and interpretation of vaccine efficacy using frailty mixing models publication-title: American Journal of Epidemiology – year: 2007 – volume: 29 start-page: 328 year: 2010 end-page: 336 article-title: Estimation of intervention effects using first or multiple episodes in clinical trials: The Andersen‐Gill model re‐examined publication-title: Statistics in Medicine – year: 1996 – volume: 84 start-page: 1065 year: 1989 end-page: 1073 article-title: Regression analysis of multivariate incomplete failure time data by modeling marginal distributions publication-title: Journal of the American Statistical Association – year: 2000 – volume: 10 start-page: 1100 year: 1982 end-page: 1120 article-title: Cox's regression model for counting processes: a large sample study publication-title: The Annals of Statistics – volume: 19 start-page: 13 year: 2000 end-page: 33 article-title: Survival analysis for recurrent event data: an application to childhood infectious diseases publication-title: Statistics in Medicine – volume: 61 start-page: 367 year: 1999 end-page: 379 article-title: Effect of frailty on marginal regression estimates in survival analysis publication-title: Journal of the Royal Statistical Society, Series B – year: 1992 – volume: 26 start-page: 5586 year: 2007 end-page: 5595 article-title: Estimating adjusted NNT measures in logistic regression analysis publication-title: Statistics in Medicine – volume: 45 start-page: 165 year: 1996 end-page: 173 article-title: A frailty mixture model for estimating vaccine efficacy publication-title: Applied Statistics – volume: 13 start-page: 87 year: 1984 end-page: 93 article-title: Assessment of the protective efficacy of vaccines against common diseases using case‐control and cohort studies publication-title: International Journal of Epidemiology – volume: 38 start-page: 1041 year: 1982 end-page: 1046 article-title: The use of mixture models for the analysis of survival data with long‐term survivors publication-title: Biometrics – volume: 17 start-page: 456 year: 1988 end-page: 463 article-title: On measures and models for the effectiveness of vaccines and vaccination programmes publication-title: International Journal of Epidemiology – volume: 68 start-page: 373 year: 1981 end-page: 379 article-title: On the regression analysis of multivariate failure time data publication-title: Biometrika – volume: 25 start-page: 3518 year: 2006 end-page: 3533 article-title: Repeated events survival models: the conditional frailty model publication-title: Statistics in Medicine – volume: 7 start-page: 1121 year: 1988 end-page: 1137 article-title: Heterogeneity in survival data analysis publication-title: Statistics in Medicine – volume: 47 start-page: 501 year: 1952 end-page: 515 article-title: Survival curve for cancer patients following treatment publication-title: Journal of the American Statistical Association – year: 2008 – volume: 47 start-page: 847 year: 2005 end-page: 862 article-title: A version of the EM algorithm for proportional hazard model with random effects publication-title: Biometrical Journal – volume: 42 start-page: 187 year: 2003 end-page: 201 article-title: Estimating baseline distribution in proportional hazards cure models publication-title: Computational Statistics & Data Analysis – volume: 3 start-page: 263 year: 1994 end-page: 278 article-title: Generalizations and applications of frailty models for survival and event data publication-title: Statistical Methods in Medical Research – volume: 27 start-page: 5177 year: 2008 end-page: 5194 article-title: Estimation method of the semiparametric mixture cure gamma frailty model publication-title: Statistics in Medicine – volume: 44 start-page: 226 year: 1982 end-page: 233 article-title: Finding the observed information matrix when using the EM algorithm publication-title: Journal of the Royal Statistical Society, Series B – ident: e_1_2_7_7_1 doi: 10.1093/oxfordjournals.aje.a008858 – ident: e_1_2_7_11_1 doi: 10.1093/biomet/68.2.373 – ident: e_1_2_7_29_1 doi: 10.1111/j.0006‐341X.2004.00225.x – ident: e_1_2_7_3_1 doi: 10.1002/sim.4780071105 – ident: e_1_2_7_28_1 doi: 10.1016/S0167-9473(02)00158-5 – ident: e_1_2_7_9_1 doi: 10.2307/2986152 – ident: e_1_2_7_31_1 doi: 10.1136/bmj.331.7519.727 – ident: e_1_2_7_2_1 doi: 10.1002/sim.3783 – volume-title: The Statistical Analysis of Recurrent Events year: 2007 ident: e_1_2_7_14_1 – ident: e_1_2_7_22_1 doi: 10.1002/sim.687 – ident: e_1_2_7_10_1 doi: 10.1080/01621459.1989.10478873 – ident: e_1_2_7_12_1 doi: 10.1214/aos/1176345976 – ident: e_1_2_7_26_1 doi: 10.1002/sim.3061 – ident: e_1_2_7_6_1 doi: 10.1080/01621459.1952.10501187 – ident: e_1_2_7_25_1 doi: 10.1093/ije/17.2.456 – ident: e_1_2_7_27_1 doi: 10.1111/j.0006‐341X.2000.00227.x – ident: e_1_2_7_30_1 doi: 10.1002/bimj.200410141 – ident: e_1_2_7_13_1 doi: 10.1007/978-94-015-7983-4_22 – ident: e_1_2_7_16_1 doi: 10.1007/978-1-4757-3294-8 – ident: e_1_2_7_15_1 doi: 10.1002/(SICI)1097‐0258(20000115)19:1<13::AID‐SIM279>3.0.CO;2‐5 – ident: e_1_2_7_19_1 doi: 10.1093/ije/13.1.87 – volume: 44 start-page: 226 year: 1982 ident: e_1_2_7_24_1 article-title: Finding the observed information matrix when using the EM algorithm publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1982.tb01203.x – ident: e_1_2_7_20_1 doi: 10.2307/2529885 – volume-title: Survival Analysis with Long‐Term Survivors year: 1996 ident: e_1_2_7_8_1 – volume-title: The Frailty Model year: 2008 ident: e_1_2_7_18_1 – ident: e_1_2_7_21_1 doi: 10.1093/biomet/79.3.531 – ident: e_1_2_7_23_1 doi: 10.1002/sim.3358 – ident: e_1_2_7_17_1 doi: 10.1002/sim.2434 – ident: e_1_2_7_5_1 doi: 10.1111/1467‐9868.00182 – ident: e_1_2_7_4_1 doi: 10.1177/096228029400300305 |
SSID | ssj0011527 |
Score | 2.1306126 |
Snippet | Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within‐subject event... Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within-subject event... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4023 |
SubjectTerms | Algorithms Antimalarials - therapeutic use Clinical trials Computer Simulation Disease prevention Drug Combinations event dependence expectation-maximization (EM) algorithm frailty mixture model Ghana Humans Infant Louis's formula Malaria Malaria - mortality Malaria - prevention & control Medical statistics Models, Statistical Monte Carlo Method Poisson Distribution Pyrimethamine - therapeutic use Randomized Controlled Trials as Topic - statistics & numerical data Simulation Sulfadoxine - therapeutic use summary protective efficacy Survival Analysis Vaccines |
Title | Estimation of summary protective efficacy using a frailty mixture model for recurrent event time data |
URI | https://api.istex.fr/ark:/67375/WNG-05CLV7H8-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.5458 https://www.ncbi.nlm.nih.gov/pubmed/22764039 https://www.proquest.com/docview/1220470237 https://www.proquest.com/docview/1197486570 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEB_kBDkQH-tr9ZQIop-6l2abJv0ox52ruAc-Tg_8EJI0keXudmUfcOdf70zTVk5OED-1tFOapDOTXzOT3wC8iHWtFJc686GwWTGOPLOhFlle1zj9VmNfNeuQ08NyclS8O5bHbVYl7YVJ_BD9ghtZRuOvycCtW-3-Jg1dzc5GFPVB90upWoSHPvbMUXlXrZUilKXKZcc7y8Vu9-Clmeg6Der5VTDzMmptpp2D2_Cta3DKNjkZbdZu5H_-weX4fz26A7daNMpeJ_W5C9fCfAA3pm28fQA306oeS5uVBrBN2DRRO9-DsI8naecjW0TWboNjLfMDelEWiJ_C-gtG2fXfmWVxaWen6wt2NjunyAVr6vAwxM1sSev-xBTFGkopRjXvGaWv3oejg_3Pe5OsrdqQ-QLxQlYG4q_RIqoYRKXxovRjmTvNvVVOBl05hKSoBA6xT1U6CtVya4tc2ZprdBcPYGu-mIdHwKIqPVUMtBH_erwTTlYaZWuZe_SLMQ7hVfcFjW8pzamyxqlJZMzC4JAaGtIhPO8lfyQajytkXjZK0AvY5QmlvSlpvh6-MVzuvf-iJtp8GMJOpyWmtfiVyYXghUIEpPBd_W20VQrA2HlYbFAmx35oSjYawsOkXf3LhFBlwccVtqLRkb8203x6O6Xj438VfALbiPKaEjaC78DWerkJTxFJrd2zxmZ-Ae59GT8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTYJJiB8FRmGAkRA8pXPcOE7EExobHbSVgG3sAclyHHuqtrWoa6WNv567OAkaGhLiKVFyUWznzv5yd_4O4JUvS6W4zCLrEhMlfc8j40oRxWWJy2_et3nlhxyN08FB8vFIHq3A22YvTOCHaB1uZBnVfE0GTg7prd-soeeTsx6FfW7AGhX0Jqt8_6Xljoqbeq0Uo0xVLBvmWS62mievrEVrNKwX1wHNq7i1Wnh278L3pskh3-Skt1wUPfvzDzbH_-zTPbhTA1L2LmjQfVhx0w7cHNUh9w7cDo49FvYrdWCd4Glgd34AbgdPwuZHNvOs3gnHavIHnEiZI4oKYy8ZJdgfM8P83ExOF5fsbHJBwQtWleJhCJ3ZnFz_RBbFKlYpRmXvGWWwPoSD3Z397UFUF26IbIKQIUodUdhkwivvRJ7hRWn7Mi4ybo0qpMvyAlEp6kGB8CdPC4rWcmOSWJmSZzhjPILV6WzqHgPzKrVUNNB4_PGxhShknqFsKWOLU6P3XXjTfEJta1ZzKq5xqgMfs9A4pJqGtAsvW8kfgcnjGpnXlRa0AmZ-QplvSupv4w-ay-3hoRpk-nMXNhs10bXRn-tYCJ4oBEEK39XeRnOlGIyZutkSZWLsR0b5Rl3YCOrVvkwIlSa8n2MrKiX5azP1170RHZ_8q-ALuDXYHw31cG_86SmsI-irKtoIvgmri_nSPUNgtSieVwb0C2aeHVg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJk2TJj4KjMIAIyF4Sue4cZw8om2lg7Xia2wSD5bj2Kja1k5dK2389dzFSdDQkBBPiZKL4o87-2ff-XcAr3xZKsVlFlmXmCjpex4ZV4ooLkucfvO-zat9yNE4HR4m74_lcR1VSWdhAj9Eu-FGllGN12Tg56Xf_k0aejE565HX5zasJinPaOG1-7mljoqbdK3kokxVLBviWS62my-vTUWr1KqXN-HM67C1mncGd-F7U-IQbnLSWy6Knv35B5nj_1XpHtyp4Sh7G_TnPtxy0w6sjWqHewc2wrYeC6eVOrBO4DRwOz8At4c34egjm3lWn4NjNfUDDqPMEUGFsVeMwut_MMP83ExOF1fsbHJJrgtWJeJhCJzZnDb-iSqKVZxSjJLeM4pffQiHg72vO8OoTtsQ2QQBQ5Q6IrDJhFfeiTzDh9L2ZVxk3BpVSJflBWJS1IICwU-eFuSr5cYksTIl9mPefwQr09nUPQbmVWopZaDxuOyxhShknqFsKWOLA6P3XXjT9KC2Nac5pdY41YGNWWhsUk1N2oWXreR54PG4QeZ1pQStgJmfUNybkvpo_E5zuXPwTQ0z_akLW42W6NrkL3QsBE8UQiCF_2pfo7GSB8ZM3WyJMjHWI6Nooy5sBu1qfyaEShPez7EUlY78tZj6y_6Irk_-VfAFrH3cHeiD_fGHp7COiK9KZyP4Fqws5kv3DFHVonhemc8vGBUcEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+summary+protective+efficacy+using+a+frailty+mixture+model+for+recurrent+event+time+data&rft.jtitle=Statistics+in+medicine&rft.au=Xu%2C+Ying&rft.au=Cheung%2C+Yin+Bun&rft.au=Lam%2C+K+F&rft.au=Milligan%2C+Paul&rft.date=2012-12-20&rft.eissn=1097-0258&rft.volume=31&rft.issue=29&rft.spage=4023&rft_id=info:doi/10.1002%2Fsim.5458&rft_id=info%3Apmid%2F22764039&rft.externalDocID=22764039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |