Estimation of summary protective efficacy using a frailty mixture model for recurrent event time data

Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within‐subject event dependence, between‐subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 31; no. 29; pp. 4023 - 4039
Main Authors Xu, Ying, Cheung, Yin Bun, Lam, K. F., Milligan, Paul
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 20.12.2012
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.5458

Cover

Loading…
Abstract Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within‐subject event dependence, between‐subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the summary protective efficacy from recurrent event time data as seen in many infectious disease clinical trials, we propose a two‐part frailty mixture model that simultaneously accommodates all the three issues. In terms of vaccine action models, the proposed model is a combination of the ‘all‐or‐none’ and the ‘leaky’ models, and the summary protective efficacy is a unified measure of the vaccine's twofold effects in completely or partially protecting the vaccinated individuals against the study event. The model parameters of interest are estimated using the expectation‐maximization algorithm with their respective variances estimated using Louis's formula for the expectation‐maximization algorithm. The summary protective efficacy is estimated by a composite estimand with its variance estimated using the delta method. The performance of the proposed estimation approach is investigated by a simulation study. Data from a trial of malaria prophylaxis conducted in Ghana are reanalyzed. Copyright © 2012 John Wiley & Sons, Ltd.
AbstractList Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within-subject event dependence, between-subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the summary protective efficacy from recurrent event time data as seen in many infectious disease clinical trials, we propose a two-part frailty mixture model that simultaneously accommodates all the three issues. In terms of vaccine action models, the proposed model is a combination of the 'all-or-none' and the 'leaky' models, and the summary protective efficacy is a unified measure of the vaccine's twofold effects in completely or partially protecting the vaccinated individuals against the study event. The model parameters of interest are estimated using the expectation-maximization algorithm with their respective variances estimated using Louis's formula for the expectation-maximization algorithm. The summary protective efficacy is estimated by a composite estimand with its variance estimated using the delta method. The performance of the proposed estimation approach is investigated by a simulation study. Data from a trial of malaria prophylaxis conducted in Ghana are reanalyzed.Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within-subject event dependence, between-subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the summary protective efficacy from recurrent event time data as seen in many infectious disease clinical trials, we propose a two-part frailty mixture model that simultaneously accommodates all the three issues. In terms of vaccine action models, the proposed model is a combination of the 'all-or-none' and the 'leaky' models, and the summary protective efficacy is a unified measure of the vaccine's twofold effects in completely or partially protecting the vaccinated individuals against the study event. The model parameters of interest are estimated using the expectation-maximization algorithm with their respective variances estimated using Louis's formula for the expectation-maximization algorithm. The summary protective efficacy is estimated by a composite estimand with its variance estimated using the delta method. The performance of the proposed estimation approach is investigated by a simulation study. Data from a trial of malaria prophylaxis conducted in Ghana are reanalyzed.
Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within-subject event dependence, between-subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the summary protective efficacy from recurrent event time data as seen in many infectious disease clinical trials, we propose a two-part frailty mixture model that simultaneously accommodates all the three issues. In terms of vaccine action models, the proposed model is a combination of the 'all-or-none' and the 'leaky' models, and the summary protective efficacy is a unified measure of the vaccine's twofold effects in completely or partially protecting the vaccinated individuals against the study event. The model parameters of interest are estimated using the expectation-maximization algorithm with their respective variances estimated using Louis's formula for the expectation-maximization algorithm. The summary protective efficacy is estimated by a composite estimand with its variance estimated using the delta method. The performance of the proposed estimation approach is investigated by a simulation study. Data from a trial of malaria prophylaxis conducted in Ghana are reanalyzed. [PUBLICATION ABSTRACT]
Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within-subject event dependence, between-subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the summary protective efficacy from recurrent event time data as seen in many infectious disease clinical trials, we propose a two-part frailty mixture model that simultaneously accommodates all the three issues. In terms of vaccine action models, the proposed model is a combination of the 'all-or-none' and the 'leaky' models, and the summary protective efficacy is a unified measure of the vaccine's twofold effects in completely or partially protecting the vaccinated individuals against the study event. The model parameters of interest are estimated using the expectation-maximization algorithm with their respective variances estimated using Louis's formula for the expectation-maximization algorithm. The summary protective efficacy is estimated by a composite estimand with its variance estimated using the delta method. The performance of the proposed estimation approach is investigated by a simulation study. Data from a trial of malaria prophylaxis conducted in Ghana are reanalyzed.
Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within‐subject event dependence, between‐subject heterogeneity in event rates, and the possibility of a nonsusceptible fraction. Motivated by the need to estimate the summary protective efficacy from recurrent event time data as seen in many infectious disease clinical trials, we propose a two‐part frailty mixture model that simultaneously accommodates all the three issues. In terms of vaccine action models, the proposed model is a combination of the ‘all‐or‐none’ and the ‘leaky’ models, and the summary protective efficacy is a unified measure of the vaccine's twofold effects in completely or partially protecting the vaccinated individuals against the study event. The model parameters of interest are estimated using the expectation‐maximization algorithm with their respective variances estimated using Louis's formula for the expectation‐maximization algorithm. The summary protective efficacy is estimated by a composite estimand with its variance estimated using the delta method. The performance of the proposed estimation approach is investigated by a simulation study. Data from a trial of malaria prophylaxis conducted in Ghana are reanalyzed. Copyright © 2012 John Wiley & Sons, Ltd.
Author Cheung, Yin Bun
Xu, Ying
Milligan, Paul
Lam, K. F.
Author_xml – sequence: 1
  givenname: Ying
  surname: Xu
  fullname: Xu, Ying
  email: Ying Xu, Singapore Clinical Research Institute, Nanos #02-01, 31 Biopolis Way, Singapore 138669, Singapore., tina.xu@scri.edu.sg
  organization: Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore
– sequence: 2
  givenname: Yin Bun
  surname: Cheung
  fullname: Cheung, Yin Bun
  organization: Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore
– sequence: 3
  givenname: K. F.
  surname: Lam
  fullname: Lam, K. F.
  organization: Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Paul
  surname: Milligan
  fullname: Milligan, Paul
  organization: Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22764039$$D View this record in MEDLINE/PubMed
BookMark eNp10V1rFDEUBuAgFbutgr9AAt54M9uTzGSSXMpS28K2Uvy6DJnsiaTOR00ytfvvnem2FaXeJBCeHA7ve0D2-qFHQl4zWDIAfpRCtxSVUM_IgoGWBXCh9sgCuJRFLZnYJwcpXQEwJrh8QfY5l3UFpV4QPE45dDaHoaeDp2nsOhu39DoOGV0ON0jR--Cs29Ixhf47tdRHG9q8pV24zWNE2g0bbKkfIo3oxhixzxRv5nOajHRjs31JnnvbJnx1fx-SLx-OP69Oi_XHk7PV-3XhKs5UUSPTQinupUeu1fQoXClYo8BZ2QhUutGsLp1uhKp03ZRQCbC2YtJuQEldHpJ3u7nT_j9HTNl0ITlsW9vjMCbDmJaVqoWEib79h14NY-yn7QzjHCoJvJSTenOvxqbDjbmOYc7HPAQ4geUOuDikFNEbF_JdnHmOyTAwc0NmasjMDf1Z8fHDw8wnaLGjv0KL2_868-ns_G8fUsbbR2_jD1PLUgrz7eLEgFitv8pTZS7L3747rVU
CODEN SMEDDA
CitedBy_id crossref_primary_10_1093_aje_kwv010
crossref_primary_10_1016_j_vaccine_2013_11_007
crossref_primary_10_1186_1475_2875_13_293
crossref_primary_10_1177_1536867X1501500109
crossref_primary_10_1002_sim_7319
crossref_primary_10_1177_1536867X1801800212
crossref_primary_10_1177_0962280219859377
crossref_primary_10_1002_sim_10319
crossref_primary_10_1016_j_vaccine_2020_05_086
crossref_primary_10_1080_02664763_2025_2452966
crossref_primary_10_1080_10543406_2022_2108826
crossref_primary_10_1080_19466315_2018_1473794
crossref_primary_10_1002_sim_6093
crossref_primary_10_1186_1475_2875_12_355
Cites_doi 10.1093/oxfordjournals.aje.a008858
10.1093/biomet/68.2.373
10.1111/j.0006‐341X.2004.00225.x
10.1002/sim.4780071105
10.1016/S0167-9473(02)00158-5
10.2307/2986152
10.1136/bmj.331.7519.727
10.1002/sim.3783
10.1002/sim.687
10.1080/01621459.1989.10478873
10.1214/aos/1176345976
10.1002/sim.3061
10.1080/01621459.1952.10501187
10.1093/ije/17.2.456
10.1111/j.0006‐341X.2000.00227.x
10.1002/bimj.200410141
10.1007/978-94-015-7983-4_22
10.1007/978-1-4757-3294-8
10.1002/(SICI)1097‐0258(20000115)19:1<13::AID‐SIM279>3.0.CO;2‐5
10.1093/ije/13.1.87
10.1111/j.2517-6161.1982.tb01203.x
10.2307/2529885
10.1093/biomet/79.3.531
10.1002/sim.3358
10.1002/sim.2434
10.1111/1467‐9868.00182
10.1177/096228029400300305
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Dec 20, 2012
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Dec 20, 2012
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.5458
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 4039
ExternalDocumentID 2826618201
22764039
10_1002_sim_5458
SIM5458
ark_67375_WNG_05CLV7H8_Q
Genre article
Journal Article
Feature
GeographicLocations Ghana
GeographicLocations_xml – name: Ghana
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0700837
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AGQPQ
ALVPJ
AAYXX
AEYWJ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c4218-6e195882f7fe298c425c351b80ca7b5e89b9163c9b58496b30450aa417ad08793
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 08:22:27 EDT 2025
Fri Jul 25 04:57:31 EDT 2025
Mon Jul 21 05:50:33 EDT 2025
Tue Jul 01 03:28:03 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Mon Apr 07 06:04:01 EDT 2025
Wed Oct 30 10:05:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4218-6e195882f7fe298c425c351b80ca7b5e89b9163c9b58496b30450aa417ad08793
Notes Supplementary InformationSupplementary Information
ArticleID:SIM5458
Supporting information may be found in the online version of this article.
istex:92CC60BB8E6018D24BC6816C39EE319A4C7DF94B
ark:/67375/WNG-05CLV7H8-Q
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/110066
PMID 22764039
PQID 1220470237
PQPubID 48361
PageCount 17
ParticipantIDs proquest_miscellaneous_1197486570
proquest_journals_1220470237
pubmed_primary_22764039
crossref_citationtrail_10_1002_sim_5458
crossref_primary_10_1002_sim_5458
wiley_primary_10_1002_sim_5458_SIM5458
istex_primary_ark_67375_WNG_05CLV7H8_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-20
20 December 2012
2012-Dec-20
20121220
PublicationDateYYYYMMDD 2012-12-20
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-20
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Berkson J, Gage RP.Survival curve for cancer patients following treatment. Journal of the American Statistical Association 1952; 47:501-515.
Cheung YB, Xu Y, Tan SH, Cutts F, Milligan P.Estimation of intervention effects using first or multiple episodes in clinical trials: The Andersen-Gill model re-examined. Statistics in Medicine 2010; 29:328-336. DOI: 10.1002/sim.3783.
Henderson R, Oman P.Effect of frailty on marginal regression estimates in survival analysis. Journal of the Royal Statistical Society, Series B 1999; 61:367-379. DOI: 10.1111/1467-9868.00182.
Aalen OO.Heterogeneity in survival data analysis. Statistics in Medicine 1988; 7:1121-1137. DOI: 10.1002/sim.4780071105.
Pickles A, Crouchlev R.Generalizations and applications of frailty models for survival and event data. Statistical Methods in Medical Research 1994; 3:263-278. DOI: 10.1177/096228029400300305.
Longini IM, Halloran ME.A frailty mixture model for estimating vaccine efficacy. Applied Statistics 1996; 45:165-173.
Smith PG, Rodrigues LC, Fine PEM.Assessment of the protective efficacy of vaccines against common diseases using case-control and cohort studies. International Journal of Epidemiology 1984; 13:87-93. DOI: 10.1093/ije/13.1.87.
Kelly PJ, Lim LL.Survival analysis for recurrent event data: an application to childhood infectious diseases. Statistics in Medicine 2000; 19:13-33. DOI: 10.1002/(SICI)1097-0258(20000115)19:1<13::AID-SIM279>3.0.CO;2-5.
Box-Steffensmeier JM, De Boef S.Repeated events survival models: the conditional frailty model. Statistics in Medicine 2006; 25:3518-3533. DOI: 10.1002/sim.2434.
Farewell VT.The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982; 38:1041-1046.
Liu L, Wolfe RA, Huang XL.Shared frailty models for recurrent events and a terminal event. Biometrics 2004; 60:747-756. DOI: 10.1111/j.0006-341X.2004.00225.x.
Louis TA.Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 1982; 44:226-233.
Bender R, Kuss O, Hilderbrandt M, Gehrmann U.Estimating adjusted NNT measures in logistic regression analysis. Statistics in Medicine 2007; 26:5586-5595. DOI: 10.1002/sim.3061.
Wei LJ, Lin DY, Weissfeld L.Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of the American Statistical Association 1989; 84:1065-1073.
Peng YW, Zhang JJ.Estimation method of the semiparametric mixture cure gamma frailty model. Statistics in Medicine 2008; 27:5177-5194. DOI: 10.1002/sim.3358.
Price DL, Manatunga AK.Modelling survival data with a cured fraction using frailty models. Statistics in Medicine 2001; 20:1515-1527. DOI: 10.1002/sim.687.
Kuk AYC, Chen CH.A mixture model combining logistic regression with proportional hazards regression. Biometrika 1992; 79:531-541. DOI: 10.1093/biomet/79.3.531.
Maller RA, Zhou S.Survival Analysis with Long-Term Survivors. Wiley: New York, 1996.
Cook RJ, Lawless JF.The Statistical Analysis of Recurrent Events. Springer: New York, NY, 2007.
Halloran ME, Longini IM, Struchiner CJ.Estimability and interpretation of vaccine efficacy using frailty mixing models. American Journal of Epidemiology 1996; 144:83-97.
Andersen PK, Gill RD.Cox's regression model for counting processes: a large sample study. The Annals of Statistics 1982; 10:1100-1120. DOI: 10.1214/aos/1176345976.
Abrahantes JC, Burzykowski T.A version of the EM algorithm for proportional hazard model with random effects. Biometrical Journal 2005; 47:847-862. DOI: 10.1002/bimj.200410141.
Duchateau L, Janssen P.The Frailty Model. Springer-Verlag: New York, 2008.
Sy JP, Taylor JMG.Estimation in a Cox proportional hazards cure model. Biometrics 2000; 56:227-236. DOI: 10.1111/j.0006-341X.2000.00227.x.
Therneau TM, Grambsch PM.Modeling Survival Data: Extending the Cox Model. Springer: New York, 2000.
Chandramohan D, Owusu-Agyei S, Carneiro I, Awine T, Amponsa-Achiano K, Mensah N, Jaffar S, Baiden R, Hodgson A, Binka F, Greenwood B.Cluster randomised trial of intermittent preventive treatment for malaria in infants in area of high, seasonal transmission in Ghana. British Medical Journal 2005; 331:727-733. DOI: 10.1136/bmj.331.7519.727.
Greenland S, Frerichs RR.On measures and models for the effectiveness of vaccines and vaccination programmes. International Journal of Epidemiology 1988; 17:456-463. DOI: 10.1093/ije/17.2.456.
Peng YW.Estimating baseline distribution in proportional hazards cure models. Computational Statistics & Data Analysis 2003; 42:187-201.
Prentice RL, Williams BJ, Peterson AV.On the regression analysis of multivariate failure time data. Biometrika 1981; 68:373-379. DOI: 10.1093/biomet/68.2.373.
1989; 84
1982; 38
2004; 60
2005; 331
1982; 10
1988; 17
1981; 68
2008
1996
2007
1996; 144
1992; 79
1992
1999; 61
2001; 20
2005; 47
1952; 47
2000; 19
2000
2010; 29
2000; 56
2006; 25
2008; 27
1988; 7
1984; 13
1982; 44
1994; 3
2003; 42
1996; 45
2007; 26
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Duchateau L (e_1_2_7_18_1) 2008
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_22_1
Maller RA (e_1_2_7_8_1) 1996
e_1_2_7_21_1
Cook RJ (e_1_2_7_14_1) 2007
e_1_2_7_20_1
Louis TA (e_1_2_7_24_1) 1982; 44
References_xml – reference: Sy JP, Taylor JMG.Estimation in a Cox proportional hazards cure model. Biometrics 2000; 56:227-236. DOI: 10.1111/j.0006-341X.2000.00227.x.
– reference: Peng YW, Zhang JJ.Estimation method of the semiparametric mixture cure gamma frailty model. Statistics in Medicine 2008; 27:5177-5194. DOI: 10.1002/sim.3358.
– reference: Price DL, Manatunga AK.Modelling survival data with a cured fraction using frailty models. Statistics in Medicine 2001; 20:1515-1527. DOI: 10.1002/sim.687.
– reference: Smith PG, Rodrigues LC, Fine PEM.Assessment of the protective efficacy of vaccines against common diseases using case-control and cohort studies. International Journal of Epidemiology 1984; 13:87-93. DOI: 10.1093/ije/13.1.87.
– reference: Peng YW.Estimating baseline distribution in proportional hazards cure models. Computational Statistics & Data Analysis 2003; 42:187-201.
– reference: Box-Steffensmeier JM, De Boef S.Repeated events survival models: the conditional frailty model. Statistics in Medicine 2006; 25:3518-3533. DOI: 10.1002/sim.2434.
– reference: Greenland S, Frerichs RR.On measures and models for the effectiveness of vaccines and vaccination programmes. International Journal of Epidemiology 1988; 17:456-463. DOI: 10.1093/ije/17.2.456.
– reference: Bender R, Kuss O, Hilderbrandt M, Gehrmann U.Estimating adjusted NNT measures in logistic regression analysis. Statistics in Medicine 2007; 26:5586-5595. DOI: 10.1002/sim.3061.
– reference: Louis TA.Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 1982; 44:226-233.
– reference: Prentice RL, Williams BJ, Peterson AV.On the regression analysis of multivariate failure time data. Biometrika 1981; 68:373-379. DOI: 10.1093/biomet/68.2.373.
– reference: Aalen OO.Heterogeneity in survival data analysis. Statistics in Medicine 1988; 7:1121-1137. DOI: 10.1002/sim.4780071105.
– reference: Duchateau L, Janssen P.The Frailty Model. Springer-Verlag: New York, 2008.
– reference: Therneau TM, Grambsch PM.Modeling Survival Data: Extending the Cox Model. Springer: New York, 2000.
– reference: Pickles A, Crouchlev R.Generalizations and applications of frailty models for survival and event data. Statistical Methods in Medical Research 1994; 3:263-278. DOI: 10.1177/096228029400300305.
– reference: Liu L, Wolfe RA, Huang XL.Shared frailty models for recurrent events and a terminal event. Biometrics 2004; 60:747-756. DOI: 10.1111/j.0006-341X.2004.00225.x.
– reference: Maller RA, Zhou S.Survival Analysis with Long-Term Survivors. Wiley: New York, 1996.
– reference: Cheung YB, Xu Y, Tan SH, Cutts F, Milligan P.Estimation of intervention effects using first or multiple episodes in clinical trials: The Andersen-Gill model re-examined. Statistics in Medicine 2010; 29:328-336. DOI: 10.1002/sim.3783.
– reference: Berkson J, Gage RP.Survival curve for cancer patients following treatment. Journal of the American Statistical Association 1952; 47:501-515.
– reference: Longini IM, Halloran ME.A frailty mixture model for estimating vaccine efficacy. Applied Statistics 1996; 45:165-173.
– reference: Andersen PK, Gill RD.Cox's regression model for counting processes: a large sample study. The Annals of Statistics 1982; 10:1100-1120. DOI: 10.1214/aos/1176345976.
– reference: Kuk AYC, Chen CH.A mixture model combining logistic regression with proportional hazards regression. Biometrika 1992; 79:531-541. DOI: 10.1093/biomet/79.3.531.
– reference: Abrahantes JC, Burzykowski T.A version of the EM algorithm for proportional hazard model with random effects. Biometrical Journal 2005; 47:847-862. DOI: 10.1002/bimj.200410141.
– reference: Cook RJ, Lawless JF.The Statistical Analysis of Recurrent Events. Springer: New York, NY, 2007.
– reference: Kelly PJ, Lim LL.Survival analysis for recurrent event data: an application to childhood infectious diseases. Statistics in Medicine 2000; 19:13-33. DOI: 10.1002/(SICI)1097-0258(20000115)19:1<13::AID-SIM279>3.0.CO;2-5.
– reference: Chandramohan D, Owusu-Agyei S, Carneiro I, Awine T, Amponsa-Achiano K, Mensah N, Jaffar S, Baiden R, Hodgson A, Binka F, Greenwood B.Cluster randomised trial of intermittent preventive treatment for malaria in infants in area of high, seasonal transmission in Ghana. British Medical Journal 2005; 331:727-733. DOI: 10.1136/bmj.331.7519.727.
– reference: Wei LJ, Lin DY, Weissfeld L.Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of the American Statistical Association 1989; 84:1065-1073.
– reference: Halloran ME, Longini IM, Struchiner CJ.Estimability and interpretation of vaccine efficacy using frailty mixing models. American Journal of Epidemiology 1996; 144:83-97.
– reference: Farewell VT.The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982; 38:1041-1046.
– reference: Henderson R, Oman P.Effect of frailty on marginal regression estimates in survival analysis. Journal of the Royal Statistical Society, Series B 1999; 61:367-379. DOI: 10.1111/1467-9868.00182.
– volume: 60
  start-page: 747
  year: 2004
  end-page: 756
  article-title: Shared frailty models for recurrent events and a terminal event
  publication-title: Biometrics
– volume: 79
  start-page: 531
  year: 1992
  end-page: 541
  article-title: A mixture model combining logistic regression with proportional hazards regression
  publication-title: Biometrika
– volume: 20
  start-page: 1515
  year: 2001
  end-page: 1527
  article-title: Modelling survival data with a cured fraction using frailty models
  publication-title: Statistics in Medicine
– volume: 331
  start-page: 727
  year: 2005
  end-page: 733
  article-title: Cluster randomised trial of intermittent preventive treatment for malaria in infants in area of high, seasonal transmission in Ghana
  publication-title: British Medical Journal
– volume: 56
  start-page: 227
  year: 2000
  end-page: 236
  article-title: Estimation in a Cox proportional hazards cure model
  publication-title: Biometrics
– volume: 144
  start-page: 83
  year: 1996
  end-page: 97
  article-title: Estimability and interpretation of vaccine efficacy using frailty mixing models
  publication-title: American Journal of Epidemiology
– year: 2007
– volume: 29
  start-page: 328
  year: 2010
  end-page: 336
  article-title: Estimation of intervention effects using first or multiple episodes in clinical trials: The Andersen‐Gill model re‐examined
  publication-title: Statistics in Medicine
– year: 1996
– volume: 84
  start-page: 1065
  year: 1989
  end-page: 1073
  article-title: Regression analysis of multivariate incomplete failure time data by modeling marginal distributions
  publication-title: Journal of the American Statistical Association
– year: 2000
– volume: 10
  start-page: 1100
  year: 1982
  end-page: 1120
  article-title: Cox's regression model for counting processes: a large sample study
  publication-title: The Annals of Statistics
– volume: 19
  start-page: 13
  year: 2000
  end-page: 33
  article-title: Survival analysis for recurrent event data: an application to childhood infectious diseases
  publication-title: Statistics in Medicine
– volume: 61
  start-page: 367
  year: 1999
  end-page: 379
  article-title: Effect of frailty on marginal regression estimates in survival analysis
  publication-title: Journal of the Royal Statistical Society, Series B
– year: 1992
– volume: 26
  start-page: 5586
  year: 2007
  end-page: 5595
  article-title: Estimating adjusted NNT measures in logistic regression analysis
  publication-title: Statistics in Medicine
– volume: 45
  start-page: 165
  year: 1996
  end-page: 173
  article-title: A frailty mixture model for estimating vaccine efficacy
  publication-title: Applied Statistics
– volume: 13
  start-page: 87
  year: 1984
  end-page: 93
  article-title: Assessment of the protective efficacy of vaccines against common diseases using case‐control and cohort studies
  publication-title: International Journal of Epidemiology
– volume: 38
  start-page: 1041
  year: 1982
  end-page: 1046
  article-title: The use of mixture models for the analysis of survival data with long‐term survivors
  publication-title: Biometrics
– volume: 17
  start-page: 456
  year: 1988
  end-page: 463
  article-title: On measures and models for the effectiveness of vaccines and vaccination programmes
  publication-title: International Journal of Epidemiology
– volume: 68
  start-page: 373
  year: 1981
  end-page: 379
  article-title: On the regression analysis of multivariate failure time data
  publication-title: Biometrika
– volume: 25
  start-page: 3518
  year: 2006
  end-page: 3533
  article-title: Repeated events survival models: the conditional frailty model
  publication-title: Statistics in Medicine
– volume: 7
  start-page: 1121
  year: 1988
  end-page: 1137
  article-title: Heterogeneity in survival data analysis
  publication-title: Statistics in Medicine
– volume: 47
  start-page: 501
  year: 1952
  end-page: 515
  article-title: Survival curve for cancer patients following treatment
  publication-title: Journal of the American Statistical Association
– year: 2008
– volume: 47
  start-page: 847
  year: 2005
  end-page: 862
  article-title: A version of the EM algorithm for proportional hazard model with random effects
  publication-title: Biometrical Journal
– volume: 42
  start-page: 187
  year: 2003
  end-page: 201
  article-title: Estimating baseline distribution in proportional hazards cure models
  publication-title: Computational Statistics & Data Analysis
– volume: 3
  start-page: 263
  year: 1994
  end-page: 278
  article-title: Generalizations and applications of frailty models for survival and event data
  publication-title: Statistical Methods in Medical Research
– volume: 27
  start-page: 5177
  year: 2008
  end-page: 5194
  article-title: Estimation method of the semiparametric mixture cure gamma frailty model
  publication-title: Statistics in Medicine
– volume: 44
  start-page: 226
  year: 1982
  end-page: 233
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: Journal of the Royal Statistical Society, Series B
– ident: e_1_2_7_7_1
  doi: 10.1093/oxfordjournals.aje.a008858
– ident: e_1_2_7_11_1
  doi: 10.1093/biomet/68.2.373
– ident: e_1_2_7_29_1
  doi: 10.1111/j.0006‐341X.2004.00225.x
– ident: e_1_2_7_3_1
  doi: 10.1002/sim.4780071105
– ident: e_1_2_7_28_1
  doi: 10.1016/S0167-9473(02)00158-5
– ident: e_1_2_7_9_1
  doi: 10.2307/2986152
– ident: e_1_2_7_31_1
  doi: 10.1136/bmj.331.7519.727
– ident: e_1_2_7_2_1
  doi: 10.1002/sim.3783
– volume-title: The Statistical Analysis of Recurrent Events
  year: 2007
  ident: e_1_2_7_14_1
– ident: e_1_2_7_22_1
  doi: 10.1002/sim.687
– ident: e_1_2_7_10_1
  doi: 10.1080/01621459.1989.10478873
– ident: e_1_2_7_12_1
  doi: 10.1214/aos/1176345976
– ident: e_1_2_7_26_1
  doi: 10.1002/sim.3061
– ident: e_1_2_7_6_1
  doi: 10.1080/01621459.1952.10501187
– ident: e_1_2_7_25_1
  doi: 10.1093/ije/17.2.456
– ident: e_1_2_7_27_1
  doi: 10.1111/j.0006‐341X.2000.00227.x
– ident: e_1_2_7_30_1
  doi: 10.1002/bimj.200410141
– ident: e_1_2_7_13_1
  doi: 10.1007/978-94-015-7983-4_22
– ident: e_1_2_7_16_1
  doi: 10.1007/978-1-4757-3294-8
– ident: e_1_2_7_15_1
  doi: 10.1002/(SICI)1097‐0258(20000115)19:1<13::AID‐SIM279>3.0.CO;2‐5
– ident: e_1_2_7_19_1
  doi: 10.1093/ije/13.1.87
– volume: 44
  start-page: 226
  year: 1982
  ident: e_1_2_7_24_1
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– ident: e_1_2_7_20_1
  doi: 10.2307/2529885
– volume-title: Survival Analysis with Long‐Term Survivors
  year: 1996
  ident: e_1_2_7_8_1
– volume-title: The Frailty Model
  year: 2008
  ident: e_1_2_7_18_1
– ident: e_1_2_7_21_1
  doi: 10.1093/biomet/79.3.531
– ident: e_1_2_7_23_1
  doi: 10.1002/sim.3358
– ident: e_1_2_7_17_1
  doi: 10.1002/sim.2434
– ident: e_1_2_7_5_1
  doi: 10.1111/1467‐9868.00182
– ident: e_1_2_7_4_1
  doi: 10.1177/096228029400300305
SSID ssj0011527
Score 2.1306126
Snippet Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within‐subject event...
Recurrent event time data are common in experimental and observational studies. The analytic strategy needs to consider three issues: within-subject event...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4023
SubjectTerms Algorithms
Antimalarials - therapeutic use
Clinical trials
Computer Simulation
Disease prevention
Drug Combinations
event dependence
expectation-maximization (EM) algorithm
frailty mixture model
Ghana
Humans
Infant
Louis's formula
Malaria
Malaria - mortality
Malaria - prevention & control
Medical statistics
Models, Statistical
Monte Carlo Method
Poisson Distribution
Pyrimethamine - therapeutic use
Randomized Controlled Trials as Topic - statistics & numerical data
Simulation
Sulfadoxine - therapeutic use
summary protective efficacy
Survival Analysis
Vaccines
Title Estimation of summary protective efficacy using a frailty mixture model for recurrent event time data
URI https://api.istex.fr/ark:/67375/WNG-05CLV7H8-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.5458
https://www.ncbi.nlm.nih.gov/pubmed/22764039
https://www.proquest.com/docview/1220470237
https://www.proquest.com/docview/1197486570
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEB_kBDkQH-tr9ZQIop-6l2abJv0ox52ruAc-Tg_8EJI0keXudmUfcOdf70zTVk5OED-1tFOapDOTXzOT3wC8iHWtFJc686GwWTGOPLOhFlle1zj9VmNfNeuQ08NyclS8O5bHbVYl7YVJ_BD9ghtZRuOvycCtW-3-Jg1dzc5GFPVB90upWoSHPvbMUXlXrZUilKXKZcc7y8Vu9-Clmeg6Der5VTDzMmptpp2D2_Cta3DKNjkZbdZu5H_-weX4fz26A7daNMpeJ_W5C9fCfAA3pm28fQA306oeS5uVBrBN2DRRO9-DsI8naecjW0TWboNjLfMDelEWiJ_C-gtG2fXfmWVxaWen6wt2NjunyAVr6vAwxM1sSev-xBTFGkopRjXvGaWv3oejg_3Pe5OsrdqQ-QLxQlYG4q_RIqoYRKXxovRjmTvNvVVOBl05hKSoBA6xT1U6CtVya4tc2ZprdBcPYGu-mIdHwKIqPVUMtBH_erwTTlYaZWuZe_SLMQ7hVfcFjW8pzamyxqlJZMzC4JAaGtIhPO8lfyQajytkXjZK0AvY5QmlvSlpvh6-MVzuvf-iJtp8GMJOpyWmtfiVyYXghUIEpPBd_W20VQrA2HlYbFAmx35oSjYawsOkXf3LhFBlwccVtqLRkb8203x6O6Xj438VfALbiPKaEjaC78DWerkJTxFJrd2zxmZ-Ae59GT8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTYJJiB8FRmGAkRA8pXPcOE7EExobHbSVgG3sAclyHHuqtrWoa6WNv567OAkaGhLiKVFyUWznzv5yd_4O4JUvS6W4zCLrEhMlfc8j40oRxWWJy2_et3nlhxyN08FB8vFIHq3A22YvTOCHaB1uZBnVfE0GTg7prd-soeeTsx6FfW7AGhX0Jqt8_6Xljoqbeq0Uo0xVLBvmWS62mievrEVrNKwX1wHNq7i1Wnh278L3pskh3-Skt1wUPfvzDzbH_-zTPbhTA1L2LmjQfVhx0w7cHNUh9w7cDo49FvYrdWCd4Glgd34AbgdPwuZHNvOs3gnHavIHnEiZI4oKYy8ZJdgfM8P83ExOF5fsbHJBwQtWleJhCJ3ZnFz_RBbFKlYpRmXvGWWwPoSD3Z397UFUF26IbIKQIUodUdhkwivvRJ7hRWn7Mi4ybo0qpMvyAlEp6kGB8CdPC4rWcmOSWJmSZzhjPILV6WzqHgPzKrVUNNB4_PGxhShknqFsKWOLU6P3XXjTfEJta1ZzKq5xqgMfs9A4pJqGtAsvW8kfgcnjGpnXlRa0AmZ-QplvSupv4w-ay-3hoRpk-nMXNhs10bXRn-tYCJ4oBEEK39XeRnOlGIyZutkSZWLsR0b5Rl3YCOrVvkwIlSa8n2MrKiX5azP1170RHZ_8q-ALuDXYHw31cG_86SmsI-irKtoIvgmri_nSPUNgtSieVwb0C2aeHVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJk2TJj4KjMIAIyF4Sue4cZw8om2lg7Xia2wSD5bj2Kja1k5dK2389dzFSdDQkBBPiZKL4o87-2ff-XcAr3xZKsVlFlmXmCjpex4ZV4ooLkucfvO-zat9yNE4HR4m74_lcR1VSWdhAj9Eu-FGllGN12Tg56Xf_k0aejE565HX5zasJinPaOG1-7mljoqbdK3kokxVLBviWS62my-vTUWr1KqXN-HM67C1mncGd-F7U-IQbnLSWy6Knv35B5nj_1XpHtyp4Sh7G_TnPtxy0w6sjWqHewc2wrYeC6eVOrBO4DRwOz8At4c34egjm3lWn4NjNfUDDqPMEUGFsVeMwut_MMP83ExOF1fsbHJJrgtWJeJhCJzZnDb-iSqKVZxSjJLeM4pffQiHg72vO8OoTtsQ2QQBQ5Q6IrDJhFfeiTzDh9L2ZVxk3BpVSJflBWJS1IICwU-eFuSr5cYksTIl9mPefwQr09nUPQbmVWopZaDxuOyxhShknqFsKWOLA6P3XXjT9KC2Nac5pdY41YGNWWhsUk1N2oWXreR54PG4QeZ1pQStgJmfUNybkvpo_E5zuXPwTQ0z_akLW42W6NrkL3QsBE8UQiCF_2pfo7GSB8ZM3WyJMjHWI6Nooy5sBu1qfyaEShPez7EUlY78tZj6y_6Irk_-VfAFrH3cHeiD_fGHp7COiK9KZyP4Fqws5kv3DFHVonhemc8vGBUcEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+summary+protective+efficacy+using+a+frailty+mixture+model+for+recurrent+event+time+data&rft.jtitle=Statistics+in+medicine&rft.au=Xu%2C+Ying&rft.au=Cheung%2C+Yin+Bun&rft.au=Lam%2C+K+F&rft.au=Milligan%2C+Paul&rft.date=2012-12-20&rft.eissn=1097-0258&rft.volume=31&rft.issue=29&rft.spage=4023&rft_id=info:doi/10.1002%2Fsim.5458&rft_id=info%3Apmid%2F22764039&rft.externalDocID=22764039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon