The effect of canopy architecture on the patterning of “windflecks” within a wheat canopy

Under field conditions, plants are subject to wind‐induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat (Triticum aestivum) canopies during full sun conditions w...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 44; no. 11; pp. 3524 - 3537
Main Authors Burgess, Alexandra J., Durand, Maxime, Gibbs, Jonathon A., Retkute, Renata, Robson, T. Matthew, Murchie, Erik H.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.11.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Under field conditions, plants are subject to wind‐induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat (Triticum aestivum) canopies during full sun conditions was measured using a spectroradiometer to determine the frequency, duration and magnitude of low‐ to high‐light events plus the spectral composition during wind‐induced movement. Similarly, a static canopy was modelled using three‐dimensional reconstruction and ray tracing to determine fleck characteristics without the presence of wind. Corresponding architectural traits were measured manually and in silico including plant height, leaf area and angle plus biomechanical properties. Light intensity can differ up to 40% during a windfleck, with changes occurring on a sub‐second scale compared to ~5 min in canopies not subject to wind. Features such as a shorter height, more erect leaf stature and having an open structure led to an increased frequency and reduced time interval of light flecks in the CMH79A canopy compared to Paragon. This finding illustrates the potential for architectural traits to be selected to improve the canopy light environment and provides the foundation to further explore the links between plant form and function in crop canopies. High‐resolution analysis indicates sub‐second changes in solar spectral irradiance in wheat (Triticum aestivum) canopies subject to wind‐induced movement. Such changes can be linked to architectural traits with potential consequences for photosynthetic productivity.
AbstractList Under field conditions, plants are subject to wind‐induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat ( Triticum aestivum ) canopies during full sun conditions was measured using a spectroradiometer to determine the frequency, duration and magnitude of low‐ to high‐light events plus the spectral composition during wind‐induced movement. Similarly, a static canopy was modelled using three‐dimensional reconstruction and ray tracing to determine fleck characteristics without the presence of wind. Corresponding architectural traits were measured manually and in silico including plant height, leaf area and angle plus biomechanical properties. Light intensity can differ up to 40% during a windfleck, with changes occurring on a sub‐second scale compared to ~5 min in canopies not subject to wind. Features such as a shorter height, more erect leaf stature and having an open structure led to an increased frequency and reduced time interval of light flecks in the CMH79A canopy compared to Paragon. This finding illustrates the potential for architectural traits to be selected to improve the canopy light environment and provides the foundation to further explore the links between plant form and function in crop canopies. High‐resolution analysis indicates sub‐second changes in solar spectral irradiance in wheat ( Triticum aestivum ) canopies subject to wind‐induced movement. Such changes can be linked to architectural traits with potential consequences for photosynthetic productivity.
Under field conditions, plants are subject to wind‐induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat (Triticum aestivum) canopies during full sun conditions was measured using a spectroradiometer to determine the frequency, duration and magnitude of low‐ to high‐light events plus the spectral composition during wind‐induced movement. Similarly, a static canopy was modelled using three‐dimensional reconstruction and ray tracing to determine fleck characteristics without the presence of wind. Corresponding architectural traits were measured manually and in silico including plant height, leaf area and angle plus biomechanical properties. Light intensity can differ up to 40% during a windfleck, with changes occurring on a sub‐second scale compared to ~5 min in canopies not subject to wind. Features such as a shorter height, more erect leaf stature and having an open structure led to an increased frequency and reduced time interval of light flecks in the CMH79A canopy compared to Paragon. This finding illustrates the potential for architectural traits to be selected to improve the canopy light environment and provides the foundation to further explore the links between plant form and function in crop canopies.
Under field conditions, plants are subject to wind‐induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat (Triticum aestivum) canopies during full sun conditions was measured using a spectroradiometer to determine the frequency, duration and magnitude of low‐ to high‐light events plus the spectral composition during wind‐induced movement. Similarly, a static canopy was modelled using three‐dimensional reconstruction and ray tracing to determine fleck characteristics without the presence of wind. Corresponding architectural traits were measured manually and in silico including plant height, leaf area and angle plus biomechanical properties. Light intensity can differ up to 40% during a windfleck, with changes occurring on a sub‐second scale compared to ~5 min in canopies not subject to wind. Features such as a shorter height, more erect leaf stature and having an open structure led to an increased frequency and reduced time interval of light flecks in the CMH79A canopy compared to Paragon. This finding illustrates the potential for architectural traits to be selected to improve the canopy light environment and provides the foundation to further explore the links between plant form and function in crop canopies. High‐resolution analysis indicates sub‐second changes in solar spectral irradiance in wheat (Triticum aestivum) canopies subject to wind‐induced movement. Such changes can be linked to architectural traits with potential consequences for photosynthetic productivity.
Under field conditions, plants are subject to wind-induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat (Triticum aestivum) canopies during full sun conditions was measured using a spectroradiometer to determine the frequency, duration and magnitude of low- to high-light events plus the spectral composition during wind-induced movement. Similarly, a static canopy was modelled using three-dimensional reconstruction and ray tracing to determine fleck characteristics without the presence of wind. Corresponding architectural traits were measured manually and in silico including plant height, leaf area and angle plus biomechanical properties. Light intensity can differ up to 40% during a windfleck, with changes occurring on a sub-second scale compared to ~5 min in canopies not subject to wind. Features such as a shorter height, more erect leaf stature and having an open structure led to an increased frequency and reduced time interval of light flecks in the CMH79A canopy compared to Paragon. This finding illustrates the potential for architectural traits to be selected to improve the canopy light environment and provides the foundation to further explore the links between plant form and function in crop canopies.Under field conditions, plants are subject to wind-induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat (Triticum aestivum) canopies during full sun conditions was measured using a spectroradiometer to determine the frequency, duration and magnitude of low- to high-light events plus the spectral composition during wind-induced movement. Similarly, a static canopy was modelled using three-dimensional reconstruction and ray tracing to determine fleck characteristics without the presence of wind. Corresponding architectural traits were measured manually and in silico including plant height, leaf area and angle plus biomechanical properties. Light intensity can differ up to 40% during a windfleck, with changes occurring on a sub-second scale compared to ~5 min in canopies not subject to wind. Features such as a shorter height, more erect leaf stature and having an open structure led to an increased frequency and reduced time interval of light flecks in the CMH79A canopy compared to Paragon. This finding illustrates the potential for architectural traits to be selected to improve the canopy light environment and provides the foundation to further explore the links between plant form and function in crop canopies.
Under field conditions, plants are subject to wind-induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat (Triticum aestivum) canopies during full sun conditions was measured using a spectroradiometer to determine the frequency, duration and magnitude of low- to high-light events plus the spectral composition during wind-induced movement. Similarly, a static canopy was modelled using three-dimensional reconstruction and ray tracing to determine fleck characteristics without the presence of wind. Corresponding architectural traits were measured manually and in silico including plant height, leaf area and angle plus biomechanical properties. Light intensity can differ up to 40% during a windfleck, with changes occurring on a sub-second scale compared to ~5 min in canopies not subject to wind. Features such as a shorter height, more erect leaf stature and having an open structure led to an increased frequency and reduced time interval of light flecks in the CMH79A canopy compared to Paragon. This finding illustrates the potential for architectural traits to be selected to improve the canopy light environment and provides the foundation to further explore the links between plant form and function in crop canopies.
Author Murchie, Erik H.
Robson, T. Matthew
Burgess, Alexandra J.
Gibbs, Jonathon A.
Retkute, Renata
Durand, Maxime
Author_xml – sequence: 1
  givenname: Alexandra J.
  orcidid: 0000-0002-1621-6821
  surname: Burgess
  fullname: Burgess, Alexandra J.
  email: alexandra.burgess@nottingham.ac.uk
  organization: University of Nottingham Sutton Bonington Campus
– sequence: 2
  givenname: Maxime
  orcidid: 0000-0002-8991-3601
  surname: Durand
  fullname: Durand, Maxime
  organization: Viikki Plant Science Centre (ViPS), University of Helsinki
– sequence: 3
  givenname: Jonathon A.
  orcidid: 0000-0002-2772-2201
  surname: Gibbs
  fullname: Gibbs, Jonathon A.
  organization: University of Nottingham Jubilee Campus
– sequence: 4
  givenname: Renata
  orcidid: 0000-0002-3877-6440
  surname: Retkute
  fullname: Retkute, Renata
  organization: University of Cambridge
– sequence: 5
  givenname: T. Matthew
  orcidid: 0000-0002-8631-796X
  surname: Robson
  fullname: Robson, T. Matthew
  organization: Viikki Plant Science Centre (ViPS), University of Helsinki
– sequence: 6
  givenname: Erik H.
  orcidid: 0000-0002-7465-845X
  surname: Murchie
  fullname: Murchie, Erik H.
  organization: University of Nottingham Sutton Bonington Campus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34418115$$D View this record in MEDLINE/PubMed
BookMark eNqN0UFLHDEUB_BQLHW1PfgFJNCLPYwmM8lkciyLtoLQHvQoQybz4sbOJmOSYdmbH8R-OT9JY3ftQaiYy4PH7z3I---hHecdIHRAyTHN72TUcEwZrZt3aEarmhcVYWQHzQhlpBBC0l20F-MtIbkh5Ae0WzFGG0r5DF1fLgCDMaAT9gZr5fy4xirohU25NwXA3uGU0ahSguCsu3mCj_cPK-t6M4D-FR_vf-OVTQvrsMKrBai0XfQRvTdqiPBpW_fR1dnp5fx7cfHj2_n860WhWUmbgmsuSyPLThCoWcV5z2tolFSEATdCGJBQ0h4IgDCsM6RSHRDeUFH1knSs2kdHm71j8HcTxNQubdQwDMqBn2Jb1vkqpRTkDZTXFSuJaMpMP7-gt34KLn8kq4ZRyVndZHW4VVO3hL4dg12qsG6fb5zBlw3QwccYwPwjlLRP-bU5v_ZvftmevLDaJpWsdykoO7w2sbIDrP-_uv05P91M_AEHKKvP
CitedBy_id crossref_primary_10_1111_nph_18222
crossref_primary_10_1093_jxb_erad499
crossref_primary_10_1093_jxb_erae334
crossref_primary_10_3389_fpls_2023_1116367
crossref_primary_10_1088_1755_1315_1397_1_012008
crossref_primary_10_1002_fes3_402
crossref_primary_10_1002_fes3_435
crossref_primary_10_1111_nph_19064
crossref_primary_10_1016_j_crope_2022_03_009
crossref_primary_10_3390_plants12101928
crossref_primary_10_3389_fphgy_2024_1341617
crossref_primary_10_3389_fpls_2022_828451
crossref_primary_10_1080_10739149_2024_2350009
crossref_primary_10_1111_nph_18822
crossref_primary_10_1093_plphys_kiad647
Cites_doi 10.1023/A:1006303611365
10.1007/s004840050081
10.1111/pce.13428
10.3389/fpls.2017.00734
10.1104/pp.17.01213
10.1104/pp.17.01234
10.1007/BF00380067
10.3390/agronomy10101527
10.1007/BF00317672
10.1016/j.fcr.2016.06.009
10.1016/S0065-2504(08)60179-8
10.1093/pcp/pcp034
10.1111/nph.16454
10.1111/j.1399-3054.1977.tb05537.x
10.1006/jtbi.1998.0778
10.1155/2013/674848
10.1016/0167-8809(88)90008-4
10.1071/BT96063
10.1111/j.1469-8137.2008.02705.x
10.1098/rstb.2016.0543
10.1111/pce.12609
10.1016/j.agrformet.2011.08.001
10.1104/pp.17.01809
10.1186/s13007-019-0437-5
10.1146/annurev.arplant.58.032806.103844
10.1007/BF02348584
10.1093/aob/mcy067
10.1016/0005-2728(87)90249-0
10.1139/x98-165
10.1007/s00468-002-0213-3
10.1104/pp.114.237107
10.1016/j.fcr.2008.04.001
10.1016/j.plantsci.2016.01.006
10.1016/S0378-4290(02)00174-0
10.1016/j.jtbi.2016.03.011
10.1093/aob/mcy087
10.1111/j.1751-1097.2005.tb00192.x
10.2307/2256830
10.1093/treephys/tps085
10.1016/j.agrformet.2021.108554
10.1146/annurev.pp.41.060190.002225
10.1093/jxb/erz100
10.3389/fpls.2015.00704
10.1046/j.1365-3040.2001.00651.x
10.1104/pp.114.248971
10.3389/fpls.2016.01392
10.1093/jxb/erx098
10.1111/j.1439-037X.2006.00194.x
10.1007/BF00317673
10.1016/j.copbio.2008.02.004
10.1016/S0378-4290(00)00084-8
10.1093/treephys/tps064
10.1002/ece3.4496
10.1093/jxb/erq132
10.1007/s10681-006-9284-3
10.1111/tpj.14663
10.1126/science.aai8878
10.1146/annurev.fluid.40.111406.102135
10.1071/FP12056
10.1046/j.1469-8137.2003.00765.x
10.1007/s11120-016-0323-1
10.1079/9781780648590.0010
10.1038/s42003-018-0026-6
10.1007/978-1-4020-9237-4_16
10.1016/j.fcr.2016.06.007
10.1093/oxfordjournals.pcp.a029298
10.1093/treephys/tpt005
10.1093/jxb/erv055
10.1016/j.febslet.2008.03.040
10.1016/0168-1923(95)02293-7
10.1046/j.0016-8025.2003.01117.x
10.1080/1343943X.2020.1777878
10.2307/1311725
10.1111/pce.13119
10.1115/1.1688773
10.1111/nph.16832
10.1093/jxb/48.5.1125
10.1111/j.1365-3180.1974.tb01084.x
10.1104/pp.15.00722
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd.
2021 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd.
– notice: 2021 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
DOI 10.1111/pce.14168
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

MEDLINE - Academic
Calcium & Calcified Tissue Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 3537
ExternalDocumentID 34418115
10_1111_pce_14168
PCE14168
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Academy of Finland
  funderid: 324555
– fundername: Leverhulme Trust
  funderid: ECF‐2020‐224
– fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/R004633/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G003157/1
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4218-5c592f92b70e64355d56e8a9a04e5f77fe9e21de0ee7f4bf03abe058173d90b43
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Fri Jul 11 18:26:46 EDT 2025
Fri Jul 11 16:19:28 EDT 2025
Mon Aug 25 17:41:05 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Thu Apr 24 22:57:46 EDT 2025
Tue Jul 01 04:28:46 EDT 2025
Wed Jan 22 16:27:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords spectral quality
light intensity
photosynthesis
wheat (Triticum aestivum)
wind-induced movement
Language English
License Attribution
2021 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4218-5c592f92b70e64355d56e8a9a04e5f77fe9e21de0ee7f4bf03abe058173d90b43
Notes Alexandra J. Burgess and Maxime Durand should be considered as joint first authors.
Funding information
Academy of Finland, Grant/Award Number: 324555; Biotechnology and Biological Sciences Research Council, Grant/Award Number: BB/R004633/1; Leverhulme Trust, Grant/Award Number: ECF‐2020‐224
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8631-796X
0000-0002-3877-6440
0000-0002-7465-845X
0000-0002-2772-2201
0000-0002-1621-6821
0000-0002-8991-3601
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14168
PMID 34418115
PQID 2584195468
PQPubID 37957
PageCount 14
ParticipantIDs proquest_miscellaneous_2636529704
proquest_miscellaneous_2563420782
proquest_journals_2584195468
pubmed_primary_34418115
crossref_primary_10_1111_pce_14168
crossref_citationtrail_10_1111_pce_14168
wiley_primary_10_1111_pce_14168_PCE14168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2021
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2018; 122
1974; 14
2017; 8
2004; 126
1993a; 93
1997; 48
1989; 80
2019; 15
1997; 45
2008; 108
2018; 41
2003; 17
2020; 10
2016; 39
2003; 158
1998; 42
2008; 582
1998; 194
2010; 61
1990; 41
2018; 8
2018; 176
2013; 2013
2018; 1
2009; 50
1991; 41
1956; 44
2016; 398
2016; 354
2017; 122
2021; 308–309
2014; 166
2014; 164
2016; 196
2015; 6
2019; 70
2003; 80
1988; 18
2000; 67
2009; 181
2015; 169
2009; 60
1999; 29
2013; 40
2008; 19
2017; 68
2000; 63
2016; 245
2009
2008
2020; 228
2020; 227
1977; 41
1988; 22–23
2006; 192
2017; 372
2020; 101
2005; 81
2017; 131
2001; 24
2012; 32
2012; 152
2016; 7
1998; 39
1988; 3
1987; 892
2019; 42
2013; 33
2007; 154
2015; 66
2003; 26
2017
2016
2020; 23
1996; 80
2008; 40
1993b; 93
e_1_2_9_75_1
e_1_2_9_31_1
Li T. (e_1_2_9_35_1) 2016; 7
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Pallardy S. (e_1_2_9_45_1) 2008
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 2013
  year: 2013
  article-title: Effects of wind on virtual plants in animation
  publication-title: International Journal of Computer Games Technology
– volume: 158
  start-page: 509
  year: 2003
  end-page: 525
  article-title: Leaf size and angle vary widely across species: What consequences for light interception?
  publication-title: New Phytologist
– volume: 42
  start-page: 495
  year: 2019
  end-page: 208
  article-title: Apigenin produced by maize flavone synthase I and II protects plants against UV‐B‐induced damage
  publication-title: Plant Cell and Environment
– volume: 33
  start-page: 233
  year: 2013
  end-page: 237
  article-title: Sunflecks?
  publication-title: Tree Physiology
– volume: 19
  start-page: 153
  year: 2008
  end-page: 159
  article-title: What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?
  publication-title: Current Opinion in Biotechnology
– volume: 398
  start-page: 20
  year: 2016
  end-page: 31
  article-title: Turgidity‐dependent petiole flexibility enables efficient water use by a tree subjected to water stress
  publication-title: Journal of Theoretical Biology
– volume: 80
  start-page: 111
  year: 2003
  end-page: 121
  article-title: Quantifying the contributions and losses of dry matter from non‐surviving shoots in four cultivars of winter wheat
  publication-title: Field Crops Research
– volume: 14
  start-page: 415
  year: 1974
  end-page: 421
  article-title: A decimal growth code for the growth stages of cereals
  publication-title: Weed Research
– volume: 169
  start-page: 1192
  year: 2015
  end-page: 1204
  article-title: High‐resolution three‐dimensional structural data quantify the impact of photoinhibition on long‐term carbon gain in wheat canopies in the field
  publication-title: Plant Physiology
– volume: 245
  start-page: 94
  year: 2016
  end-page: 118
  article-title: Review: Wind impacts on plant growth, mechanics and damage
  publication-title: Plant Science
– volume: 80
  start-page: 249
  year: 1996
  end-page: 261
  article-title: The effect of turbulence on the light environment of alfalfa
  publication-title: Agricultural and Forest Meteorology
– volume: 48
  start-page: 1125
  year: 1997
  end-page: 1132
  article-title: Measurements of the natural frequencies of trees
  publication-title: Journal of Experimental Botany
– start-page: 363
  year: 2009
  end-page: 399
– volume: 18
  start-page: 1
  year: 1988
  end-page: 63
  article-title: Sunflecks and their importance to Forest Understorey plants
  publication-title: Advances in Ecological Research
– volume: 227
  start-page: 1097
  year: 2020
  end-page: 1108
  article-title: Variation in photosynthetic induction between rice accessions and its potential for improving productivity
  publication-title: New Phytologist
– volume: 40
  start-page: 109
  year: 2013
  end-page: 124
  article-title: Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2–A theoretical study using a mechanistic model of canopy photosynthesis
  publication-title: Functional Plant Biology
– start-page: 10
  year: 2017
  end-page: 22
– volume: 892
  start-page: 75
  year: 1987
  end-page: 82
  article-title: Absolute absorption and relative fluorescence excitation spectra of the five major chlorophyll‐protein complexes from spinach thylakoid membranes
  publication-title: BBA‐Bioenergetics
– volume: 39
  start-page: 222
  year: 2016
  end-page: 230
  article-title: Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids
  publication-title: Plant Cell and Environment
– volume: 61
  start-page: 3107
  year: 2010
  end-page: 3117
  article-title: Blue light dose‐responses of leaf photosynthesis, morphology, and chemical composition of grown under different combinations of red and blue light
  publication-title: Journal of Experimental Botany
– volume: 101
  start-page: 874
  year: 2020
  end-page: 884
  article-title: Photosynthesis in the fleeting shadows: An overlooked opportunity for increasing crop productivity?
  publication-title: Plant Journal
– volume: 32
  start-page: 1062
  year: 2012
  end-page: 1065
  article-title: Modelling photosynthesis in highly dynamic environments: The case of sunflecks
  publication-title: Tree Physiology
– volume: 22–23
  start-page: 71
  year: 1988
  end-page: 88
  article-title: Plant response to wind
  publication-title: Agriculture, Ecosystems and Environment
– volume: 131
  start-page: 305
  year: 2017
  end-page: 315
  article-title: Identification of large variation in the photosynthetic induction response among 37 soybean [ (L.) Merr.] genotypes that is not correlated with steady‐state photosynthetic capacity
  publication-title: Photosynthesis Research
– volume: 354
  start-page: 857
  year: 2016
  end-page: 861
  article-title: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection
  publication-title: Science
– volume: 41
  start-page: 95
  year: 1977
  end-page: 98
  article-title: Effect of periodic oscillations of artificial light emission on photosynthetic activity
  publication-title: Physiologia Plantarum
– volume: 154
  start-page: 165
  year: 2007
  end-page: 179
  article-title: Ideotype design for lodging‐resistant wheat
  publication-title: Euphytica
– volume: 24
  start-page: 27
  year: 2001
  end-page: 40
  article-title: Effects of photoinhibition on whole‐plant carbon gain assessed with a photosynthesis model
  publication-title: Plant Cell Environment
– volume: 66
  start-page: 2437
  year: 2015
  end-page: 2447
  article-title: Exploiting heterogeneous environments: Does photosynthetic acclimation optimize carbon gain in fluctuating light?
  publication-title: Journal of Experimental Botany
– volume: 8
  start-page: 734
  year: 2017
  article-title: Exploring relationships between canopy architecture, light distribution, and photosynthesis in contrasting rice genotypes using 3D canopy reconstruction
  publication-title: Frontiers in plant science
– volume: 152
  start-page: 1
  year: 2012
  end-page: 10
  article-title: Long‐term, short‐interval measurements of the frequency distributions of the photosynthetically active photon flux density and net assimilation rate of leaves in a cool‐temperate forest
  publication-title: Agricultural and Forest Meteorology
– year: 2008
– volume: 70
  start-page: 2787
  year: 2019
  end-page: 2796
  article-title: Rate of photosynthetic induction in fluctuating light varies widely among genotypes of wheat
  publication-title: Journal of Experimental Botany
– volume: 45
  start-page: 619
  year: 1997
  article-title: The functional significance of leaf angle in eucalyptus
  publication-title: Australian Journal of Botany
– volume: 26
  start-page: 2005
  year: 2003
  end-page: 2014
  article-title: Chloroplast movements in the field
  publication-title: Plant, Cell and Environment
– volume: 166
  start-page: 1688
  year: 2014
  end-page: 1698
  article-title: Automated recovery of three‐dimensional models of plant shoots from multiple color images
  publication-title: Plant Physiology
– volume: 122
  start-page: 291
  year: 2017
  end-page: 302
  article-title: Three‐dimensional plant architecture and sunlit‐shaded dynamics: A stochastic model to enable high‐throughput physiological analysis
  publication-title: Annals of Botany
– volume: 164
  start-page: 1556
  year: 2014
  end-page: 1570
  article-title: Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency
  publication-title: Plant Physiology
– volume: 42
  start-page: 34
  year: 1998
  end-page: 43
  article-title: Sunfleck dynamics and canopy structure in a L. canopy
  publication-title: International Journal of Biometeorology
– volume: 29
  start-page: 796
  year: 1999
  end-page: 811
  article-title: Predicting and managing light in the understory of boreal forests
  publication-title: Canadian Journal of Forest Research
– volume: 176
  start-page: 1233
  year: 2018
  end-page: 1246
  article-title: Suboptimal acclimation of photosynthesis to light in wheat canopies
  publication-title: Plant Physiology
– volume: 80
  start-page: 465
  year: 1989
  end-page: 470
  article-title: Daily carbon gain by (Asteraceae), a redwood forest understory herb, in relation to its light environment
  publication-title: Oecologia
– volume: 181
  start-page: 532
  year: 2009
  end-page: 552
  article-title: Agriculture and the new challenges for photosynthesis research
  publication-title: New Phytologist
– volume: 39
  start-page: 1020
  year: 1998
  end-page: 1026
  article-title: Green light drives CO2 fixation deep within leaves
  publication-title: Plant and Cell Physiology
– volume: 1
  start-page: 22
  year: 2018
  article-title: Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice
  publication-title: Communications Biology
– volume: 41
  start-page: 421
  year: 1990
  end-page: 453
  article-title: Sunflecks and photosynthesis in plant canopies
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 126
  start-page: 146
  year: 2004
  article-title: Effect of plant interaction on wind‐induced crop motion
  publication-title: Journal of Biomechanical Engineering
– volume: 40
  start-page: 141
  year: 2008
  end-page: 168
  article-title: Effects of wind on plants
  publication-title: Annual Review of Fluid Mechanics
– volume: 44
  start-page: 391
  year: 1956
  end-page: 428
  article-title: An area survey method of investigating the distribution of light intensity in woodlands, with particular reference to Sunflecks
  publication-title: The Journal of Ecology
– volume: 372
  year: 2017
  article-title: Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 176
  start-page: 990
  year: 2018
  end-page: 1003
  article-title: The impacts of fluctuating light on crop performance
  publication-title: Plant Physiology
– volume: 41
  start-page: 589
  year: 2018
  end-page: 604
  article-title: Dynamic modelling of limitations on improving leaf CO2 assimilation under fluctuating irradiance
  publication-title: Plant, Cell & Environment
– volume: 3
  start-page: 395
  year: 1988
  end-page: 402
  article-title: Fluctuation of photosynthetic photon flux density within a canopy
  publication-title: Ecological Research
– volume: 50
  start-page: 684
  year: 2009
  end-page: 697
  article-title: Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green
  publication-title: Plant and Cell Physiology
– volume: 7
  start-page: 1392
  year: 2016
  article-title: The 4‐dimensional plant: Effects of wind‐induced canopy movement on light fluctuations and photosynthesis
  publication-title: Frontiers in Plant Science
– year: 2016
– volume: 228
  start-page: 1767
  year: 2020
  end-page: 1780
  article-title: Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent
  publication-title: New Phytologist
– volume: 6
  start-page: 704
  year: 2015
  article-title: Advantages of diffuse light for horticultural production and perspectives for further research
  publication-title: Frontiers in Plant Science
– volume: 68
  start-page: 2099
  year: 2017
  end-page: 2110
  article-title: Don't ignore the green light: Exploring diverse roles in plant processes
  publication-title: Journal of Experimental Botany
– volume: 41
  start-page: 760
  year: 1991
  end-page: 766
  article-title: The importance of Sunflecks for Forest understory plants
  publication-title: Bioscience
– volume: 10
  start-page: 1527
  year: 2020
  article-title: Estimating organ contribution to grain filling and potential for source upregulation in wheat cultivars with a contrasting source‐sink balance
  publication-title: Agronomy
– volume: 308–309
  year: 2021
  article-title: Sunfleck properties from time series of fluctuating light
  publication-title: Agricultural and Forest Meteorology
– volume: 196
  start-page: 325
  year: 2016
  end-page: 336
  article-title: Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements
  publication-title: Field Crops Research
– volume: 32
  start-page: 1066
  year: 2012
  end-page: 1081
  article-title: Sunflecks in trees and forests: From photosynthetic physiology to global change biology
  publication-title: Tree Physiology
– volume: 8
  start-page: 10206
  year: 2018
  end-page: 10218
  article-title: Assessing scale‐wise similarity of curves with a thick pen: As illustrated through comparisons of spectral irradiance
  publication-title: Ecology and Evolution
– volume: 108
  start-page: 32
  year: 2008
  end-page: 38
  article-title: Progress in ideotype breeding to increase rice yield potential
  publication-title: Field Crops Research
– volume: 7
  start-page: 56
  year: 2016
  article-title: Effects of diffuse light on radiation use efficiency of two Anthurium cultivars depend on the response of stomatal conductance to dynamic light intensity
  publication-title: Frontiers in Plant Science
– volume: 192
  start-page: 151
  year: 2006
  end-page: 158
  article-title: Development of a model of lodging for barley
  publication-title: Journal of Agronomy and Crop Science
– volume: 582
  start-page: 1477
  year: 2008
  end-page: 1482
  article-title: The Lhcb protein and xanthophyll composition of the light harvesting antenna controls the ΔpH‐dependency of non‐photochemical quenching in
  publication-title: FEBS Letters
– volume: 17
  start-page: 117
  year: 2003
  end-page: 126
  article-title: Modeling the light interception and carbon gain of individual fluttering aspen ( Michx) leaves
  publication-title: Trees‐Structure and Function
– volume: 196
  start-page: 64
  year: 2016
  end-page: 74
  article-title: Avoiding lodging in irrigated spring wheat. II. Genetic variation of stem and root structural properties
  publication-title: Field Crops Research
– volume: 122
  start-page: 207
  year: 2018
  end-page: 220
  article-title: Measuring the dynamic photosynthome
  publication-title: Annals of Botany
– volume: 67
  start-page: 59
  year: 2000
  end-page: 81
  article-title: Controlling plant form through husbandry to minimise lodging in wheat
  publication-title: Field Crops Research
– volume: 63
  start-page: 97
  year: 2000
  end-page: 107
  article-title: Photosynthetic acclimation of higher plants to growth in fluctuating light environments
  publication-title: Photosynthesis Research
– volume: 176
  start-page: 1939
  issue: 3
  year: 2018
  end-page: 1951
  article-title: Acclimation to fluctuating light impacts the rapidity and diurnal rhythm of stomatal conductance
  publication-title: Plant Physiology
– volume: 23
  start-page: 513
  year: 2020
  end-page: 521
  article-title: Genetic variation in the photosynthetic induction response in rice ( L.)
  publication-title: Plant Production Science
– volume: 81
  start-page: 333
  year: 2005
  end-page: 341
  article-title: Evaluation of a single‐monochromator diode array spectroradiometer for sunbed UV‐radiation measurements
  publication-title: Photochemistry and Photobiology
– volume: 93
  start-page: 201
  year: 1993b
  end-page: 207
  article-title: Effect of leaf flutter on the light environment of poplars
  publication-title: Oecologia
– volume: 60
  start-page: 239
  year: 2009
  end-page: 260
  article-title: Sensing and responding to excess light
  publication-title: Annual Review of Plant Biology
– volume: 194
  start-page: 587
  year: 1998
  end-page: 603
  article-title: A method for the assessment of the risk of wheat lodging
  publication-title: Journal of Theoretical Biology
– volume: 93
  start-page: 208
  year: 1993a
  end-page: 214
  article-title: Photosynthetic gas exchange response of poplars to steady‐state and dynamic light environments
  publication-title: Oecologia
– volume: 15
  start-page: 55
  year: 2019
  article-title: Quantifying cereal crop movement through hemispherical video analysis of agricultural plots
  publication-title: Plant Methods
– ident: e_1_2_9_80_1
  doi: 10.1023/A:1006303611365
– ident: e_1_2_9_8_1
  doi: 10.1007/s004840050081
– ident: e_1_2_9_56_1
  doi: 10.1111/pce.13428
– ident: e_1_2_9_15_1
  doi: 10.3389/fpls.2017.00734
– ident: e_1_2_9_75_1
  doi: 10.1104/pp.17.01213
– ident: e_1_2_9_62_1
  doi: 10.1104/pp.17.01234
– ident: e_1_2_9_49_1
  doi: 10.1007/BF00380067
– ident: e_1_2_9_57_1
  doi: 10.3390/agronomy10101527
– ident: e_1_2_9_60_1
  doi: 10.1007/BF00317672
– ident: e_1_2_9_51_1
  doi: 10.1016/j.fcr.2016.06.009
– ident: e_1_2_9_16_1
  doi: 10.1016/S0065-2504(08)60179-8
– ident: e_1_2_9_73_1
  doi: 10.1093/pcp/pcp034
– ident: e_1_2_9_2_1
  doi: 10.1111/nph.16454
– ident: e_1_2_9_4_1
– ident: e_1_2_9_26_1
  doi: 10.1111/j.1399-3054.1977.tb05537.x
– ident: e_1_2_9_6_1
  doi: 10.1006/jtbi.1998.0778
– ident: e_1_2_9_19_1
  doi: 10.1155/2013/674848
– ident: e_1_2_9_28_1
  doi: 10.1016/0167-8809(88)90008-4
– ident: e_1_2_9_32_1
  doi: 10.1071/BT96063
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1469-8137.2008.02705.x
– ident: e_1_2_9_72_1
  doi: 10.1098/rstb.2016.0543
– ident: e_1_2_9_7_1
  doi: 10.1111/pce.12609
– ident: e_1_2_9_40_1
  doi: 10.1016/j.agrformet.2011.08.001
– ident: e_1_2_9_38_1
  doi: 10.1104/pp.17.01809
– ident: e_1_2_9_69_1
  doi: 10.1186/s13007-019-0437-5
– ident: e_1_2_9_37_1
  doi: 10.1146/annurev.arplant.58.032806.103844
– ident: e_1_2_9_70_1
  doi: 10.1007/BF02348584
– ident: e_1_2_9_55_1
  doi: 10.1093/aob/mcy067
– ident: e_1_2_9_23_1
  doi: 10.1016/0005-2728(87)90249-0
– ident: e_1_2_9_67_1
  doi: 10.1139/x98-165
– ident: e_1_2_9_58_1
  doi: 10.1007/s00468-002-0213-3
– ident: e_1_2_9_34_1
  doi: 10.1104/pp.114.237107
– ident: e_1_2_9_47_1
  doi: 10.1016/j.fcr.2008.04.001
– ident: e_1_2_9_25_1
  doi: 10.1016/j.plantsci.2016.01.006
– ident: e_1_2_9_10_1
  doi: 10.1016/S0378-4290(02)00174-0
– ident: e_1_2_9_27_1
  doi: 10.1016/j.jtbi.2016.03.011
– ident: e_1_2_9_42_1
  doi: 10.1093/aob/mcy087
– ident: e_1_2_9_81_1
  doi: 10.1111/j.1751-1097.2005.tb00192.x
– ident: e_1_2_9_22_1
  doi: 10.2307/2256830
– ident: e_1_2_9_52_1
  doi: 10.1093/treephys/tps085
– ident: e_1_2_9_21_1
  doi: 10.1016/j.agrformet.2021.108554
– ident: e_1_2_9_46_1
  doi: 10.1146/annurev.pp.41.060190.002225
– ident: e_1_2_9_61_1
  doi: 10.1093/jxb/erz100
– ident: e_1_2_9_36_1
  doi: 10.3389/fpls.2015.00704
– ident: e_1_2_9_78_1
  doi: 10.1046/j.1365-3040.2001.00651.x
– ident: e_1_2_9_53_1
  doi: 10.1104/pp.114.248971
– ident: e_1_2_9_14_1
  doi: 10.3389/fpls.2016.01392
– ident: e_1_2_9_63_1
  doi: 10.1093/jxb/erx098
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1439-037X.2006.00194.x
– ident: e_1_2_9_59_1
  doi: 10.1007/BF00317673
– ident: e_1_2_9_83_1
  doi: 10.1016/j.copbio.2008.02.004
– ident: e_1_2_9_9_1
  doi: 10.1016/S0378-4290(00)00084-8
– ident: e_1_2_9_77_1
  doi: 10.1093/treephys/tps064
– ident: e_1_2_9_29_1
  doi: 10.1002/ece3.4496
– ident: e_1_2_9_30_1
  doi: 10.1093/jxb/erq132
– ident: e_1_2_9_12_1
  doi: 10.1007/s10681-006-9284-3
– ident: e_1_2_9_76_1
  doi: 10.1111/tpj.14663
– ident: e_1_2_9_33_1
  doi: 10.1126/science.aai8878
– ident: e_1_2_9_18_1
  doi: 10.1146/annurev.fluid.40.111406.102135
– ident: e_1_2_9_66_1
  doi: 10.1071/FP12056
– ident: e_1_2_9_24_1
  doi: 10.1046/j.1469-8137.2003.00765.x
– ident: e_1_2_9_65_1
  doi: 10.1007/s11120-016-0323-1
– ident: e_1_2_9_3_1
  doi: 10.1079/9781780648590.0010
– ident: e_1_2_9_31_1
  doi: 10.1038/s42003-018-0026-6
– ident: e_1_2_9_44_1
  doi: 10.1007/978-1-4020-9237-4_16
– ident: e_1_2_9_50_1
  doi: 10.1016/j.fcr.2016.06.007
– ident: e_1_2_9_68_1
  doi: 10.1093/oxfordjournals.pcp.a029298
– ident: e_1_2_9_64_1
  doi: 10.1093/treephys/tpt005
– ident: e_1_2_9_54_1
  doi: 10.1093/jxb/erv055
– ident: e_1_2_9_48_1
  doi: 10.1016/j.febslet.2008.03.040
– ident: e_1_2_9_74_1
  doi: 10.1016/0168-1923(95)02293-7
– ident: e_1_2_9_79_1
  doi: 10.1046/j.0016-8025.2003.01117.x
– ident: e_1_2_9_71_1
  doi: 10.1080/1343943X.2020.1777878
– ident: e_1_2_9_17_1
  doi: 10.2307/1311725
– ident: e_1_2_9_41_1
  doi: 10.1111/pce.13119
– ident: e_1_2_9_20_1
  doi: 10.1115/1.1688773
– volume-title: Physiology of woody plants
  year: 2008
  ident: e_1_2_9_45_1
– volume: 7
  start-page: 56
  year: 2016
  ident: e_1_2_9_35_1
  article-title: Effects of diffuse light on radiation use efficiency of two Anthurium cultivars depend on the response of stomatal conductance to dynamic light intensity
  publication-title: Frontiers in Plant Science
– ident: e_1_2_9_39_1
  doi: 10.1111/nph.16832
– ident: e_1_2_9_5_1
  doi: 10.1093/jxb/48.5.1125
– ident: e_1_2_9_82_1
  doi: 10.1111/j.1365-3180.1974.tb01084.x
– ident: e_1_2_9_13_1
  doi: 10.1104/pp.15.00722
SSID ssj0001479
Score 2.4510589
Snippet Under field conditions, plants are subject to wind‐induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves,...
Under field conditions, plants are subject to wind-induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3524
SubjectTerms Biomechanical Phenomena
Biomechanics
Canopies
canopy
computer simulation
environment
Irradiance
Leaf area
Leaves
Light
Light intensity
Luminous intensity
Mechanical properties
Phenotype
photosynthesis
plant height
Plant Leaves - growth & development
Ray tracing
Spectral composition
spectral quality
Spectroradiometers
Triticum - growth & development
Triticum aestivum
Wheat
wheat (Triticum aestivum)
Wind
Wind effects
wind‐induced movement
Title The effect of canopy architecture on the patterning of “windflecks” within a wheat canopy
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14168
https://www.ncbi.nlm.nih.gov/pubmed/34418115
https://www.proquest.com/docview/2584195468
https://www.proquest.com/docview/2563420782
https://www.proquest.com/docview/2636529704
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxUxEB5qUfBFa70dW0sUH3zZsrtJNrv0SUtL8UGKWOiDsiTZWSgtuwfPOZTjU3-I_rn-Emeyl7beEN8WMhtymZl8mUy-ALyqbJxZK6tIK-MjwrdZZI2XkcmTmtaDzHsMbJ_vs4Mj9e5YH6_AznAXpuOHGANubBnBX7OBWze7ZuRTj2TmScYXfTlXiwHRhyvqqER1PHucvmhMkfSsQpzFM_55cy36BWDexKthwdm_D5-GpnZ5Jqfbi7nb9l9_YnH8z76swb0eiIo3neY8gBVs1uFO9zTlch1uv20JNi4fwmdSJNFlfYi2FjQT7XQprp8_iLYRBCPFNFB1cpyFBS8vvp3Tfr8-Q386u7z4Ljjie9IIK87Z__cVPYKj_b2PuwdR_yZD5BWhgUh7XaR1kToTI4EZrSudYW4LGyvUtTE1FpgmFcaIplaujqV1GOs8MbIqYqfkY1ht2gafgnCyqBJyKkibJGU0kuewhLeMdDqnuuQEXg-zU_qesJzfzTgrh40LDVsZhm0CL0fRacfS8TuhzWGKy95QZ2VKAIxJ77j4xVhMJsbnJrbBdsEymVQpY6m_yGSkgmlhYjWBJ536jC2RBDlzQt7UoaAEf25iebi7Fz6e_bvoBtxNOc8m3I_chNX5lwU-J6A0d1twK1WHW8EufgAPoQ7j
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBVQ2BQqUgQIGgcQmVeJHnCxYQB-a0lIh1ErdVMFxbqSqVTJiZjQaVv0Q-gf9lf5Ev4TrvGh5iU0X7CL5yrLj-zi2r88FeJkZPzRGZJ6S2nqEb0PPaCs8HQU5xYPQWqzYPrfD_q58v6f2ZuC0fQtT80N0B27OMip_7QzcHUhfsPKBRbLzIIyalMpNnE5owzZ8s7FKq_uK8_W1nZW-19QU8KykaOYpq2KexzzVPlIwVipTIUYmNr5ElWudY4w8yNBH1LlMc1-YFH0VBVpksZ9KQf1eg-uugrhj6l_99IOsKpA1s59LmNQ6DhoeI5c31A31cvT7BdJeRshViFu_DWftz6kzWw6Xx6N02X79iTfyf_l7d2C-wdrsbW0cd2EGiwW4WVffnC7AjXclIePpPdgnW2F1Ygsrc0bKVg6m7OIVCysLRkiZDSo2UneU5ATPj79NDoosP0J7ODw_PmHuUPugYIZNXIhrOroPu1cyyQcwW5QFPgSWijgLyG8i7QOlVkjO0RCk1CJVEfUlevC6VYfENpzsrjTIUdLuzWiZkmqZevCiEx3URCS_E1pqdSppfNEw4YQxHa-fa37eNZMXcVdDpsBy7GRCIbmDi3-RCUWoeKx92YPFWl-7kQhC1RFtLmhCldb9eYjJx5W16uPRv4s-g7n-zoetZGtje_Mx3OIurah6DroEs6MvY3xCuHCUPq3MkcHnq9bg7xLqbAY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V8hCXCgqFpQUMAolLpMSPODlw6GvVUlTtgUq9oOA4Y6miSiK21Wpv_SHwC_hX_SWMnWzUioe49BbJI8uZ8cx8tsefAd5UJk6NEVWkpLYR4ds0MtqKSGeJo3yQWouB7fMw3TuSH47V8RL8XNyF6fghhg037xkhXnsHbyt3xclbi-TmSZr1FZUHOJ_Rem36fn-HjPuW8_Hup-29qH9SILKSklmkrMq5y3mpY6RcrFSlUsxMbmKJymntMEeeVBgjaidLFwtTYqyyRIsqj0spqN9bcNsfLvr6MS4nQ9hPZEfs5-sltc6TnsbIlw0NQ72e_H5DtNcBcshw4wew0kNTttnNpYewhPUq3O0eq5yvwp2thoDk_BF8pqnFujoQ1jhGtmnaObt6IsGamhGwZG0g7_Q7L17w8uL77KSu3Cnar9PLix_M7wGf1Mywmc8IfUeP4ehGVLoGy3VT41NgpcirhMIM0rJJaoUUSwwhMC1KlVFfYgTvFuorbE9h7l_SOC0WSxnSdBE0PYLXg2jb8Xb8SWhjYYOid91pwcm2ngbPN78amsnp_EmKqbE59zKpkNyjq3_IpCJVPNexHMGTzr7DSASB0IywOP1QMPjfh1hMtnfDx7P_F30J9yY74-Lj_uHBOtznvggnXJ7cgOWzb-f4nFDUWfkizF4GX27aXX4BA98qfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+canopy+architecture+on+the+patterning+of+%E2%80%9Cwindflecks%E2%80%9D+within+a+wheat+canopy&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Burgess%2C+Alexandra+J&rft.au=Durand%2C+Maxime&rft.au=Gibbs%2C+Jonathon+A.&rft.au=Retkute%2C+Renata&rft.date=2021-11-01&rft.issn=0140-7791&rft.volume=44&rft.issue=11+p.3524-3537&rft.spage=3524&rft.epage=3537&rft_id=info:doi/10.1111%2Fpce.14168&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon