The MYB transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from Medicago truncatula hairy roots

Summary Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcrip...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 99; no. 4; pp. 637 - 654
Main Authors Pollier, Jacob, De Geyter, Nathan, Moses, Tessa, Boachon, Benoît, Franco‐Zorrilla, José M., Bai, Yuechen, Lacchini, Elia, Gholami, Azra, Vanden Bossche, Robin, Werck‐Reichhart, Danièle, Goormachtig, Sofie, Goossens, Alain
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate‐elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA‐Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O‐methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA‐Seq data and identified the repressor protein M. truncatula plant AT‐rich sequence and zinc‐binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism. Significance Statement Volatiles play an important role in the interaction of a plant with its environment. Here, we have identified a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate in the model legume Medicago truncatula.
AbstractList Summary Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate‐elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA‐Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O‐methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA‐Seq data and identified the repressor protein M. truncatula plant AT‐rich sequence and zinc‐binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism. Significance Statement Volatiles play an important role in the interaction of a plant with its environment. Here, we have identified a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate in the model legume Medicago truncatula.
Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate‐elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate ( EMA ) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing ( RNA ‐Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O ‐methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (Mt AAMT ) 1. Given that direct activation of the Mt AAMT 1 promoter by EMA 1 could not be unambiguously demonstrated, we further probed the RNA ‐Seq data and identified the repressor protein M. truncatula plant AT ‐rich sequence and zinc‐binding (Mt PLATZ ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the Mt PLATZ 1 promoter to transactivate gene expression. Overexpression of Mt PLATZ 1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA 1 , indicating that Mt PLATZ 1 may be part of a negative feedback loop to control the expression of EMA 1 . Finally, application of exogenous methyl anthranilate boosted EMA 1 and Mt AAMT 1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism. Volatiles play an important role in the interaction of a plant with its environment. Here, we have identified a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate in the model legume Medicago truncatula .
Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate-elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA-Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O-methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA-Seq data and identified the repressor protein M. truncatula plant AT-rich sequence and zinc-binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism.
Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate-elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA-Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O-methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA-Seq data and identified the repressor protein M. truncatula plant AT-rich sequence and zinc-binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism.Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate-elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA-Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O-methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA-Seq data and identified the repressor protein M. truncatula plant AT-rich sequence and zinc-binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism.
Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate‐elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA‐Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O‐methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA‐Seq data and identified the repressor protein M. truncatula plant AT‐rich sequence and zinc‐binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism.
Author Gholami, Azra
Bai, Yuechen
Goormachtig, Sofie
Moses, Tessa
Franco‐Zorrilla, José M.
Werck‐Reichhart, Danièle
Lacchini, Elia
Vanden Bossche, Robin
De Geyter, Nathan
Pollier, Jacob
Boachon, Benoît
Goossens, Alain
Author_xml – sequence: 1
  givenname: Jacob
  orcidid: 0000-0002-1134-9238
  surname: Pollier
  fullname: Pollier, Jacob
  organization: VIB Center for Plant Systems Biology
– sequence: 2
  givenname: Nathan
  surname: De Geyter
  fullname: De Geyter, Nathan
  organization: VIB Center for Plant Systems Biology
– sequence: 3
  givenname: Tessa
  surname: Moses
  fullname: Moses, Tessa
  organization: VIB Center for Plant Systems Biology
– sequence: 4
  givenname: Benoît
  surname: Boachon
  fullname: Boachon, Benoît
  organization: Université de Strasbourg
– sequence: 5
  givenname: José M.
  surname: Franco‐Zorrilla
  fullname: Franco‐Zorrilla, José M.
  organization: Centro Nacional de Biotecnología‐CSIC
– sequence: 6
  givenname: Yuechen
  surname: Bai
  fullname: Bai, Yuechen
  organization: VIB Center for Plant Systems Biology
– sequence: 7
  givenname: Elia
  surname: Lacchini
  fullname: Lacchini, Elia
  organization: VIB Center for Plant Systems Biology
– sequence: 8
  givenname: Azra
  surname: Gholami
  fullname: Gholami, Azra
  organization: VIB Center for Plant Systems Biology
– sequence: 9
  givenname: Robin
  surname: Vanden Bossche
  fullname: Vanden Bossche, Robin
  organization: VIB Center for Plant Systems Biology
– sequence: 10
  givenname: Danièle
  surname: Werck‐Reichhart
  fullname: Werck‐Reichhart, Danièle
  organization: Université de Strasbourg
– sequence: 11
  givenname: Sofie
  surname: Goormachtig
  fullname: Goormachtig, Sofie
  organization: VIB Center for Plant Systems Biology
– sequence: 12
  givenname: Alain
  orcidid: 0000-0002-1599-551X
  surname: Goossens
  fullname: Goossens, Alain
  email: alain.goossens@psb.vib-ugent.be
  organization: VIB Center for Plant Systems Biology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31009122$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1rFDEYB_AgFbutHvwCEvBiD9PmZTKZOdZS32jRwwp6CkkmcbPMTNYkg-yX8DP3WXcLpSjmkgR-z5OX_wk6muLkEHpJyTmFcVE263Na81o-QQvKG1Fxyr8doQXpGlLJmrJjdJLzmhAqeVM_Q8ecEtJRxhbo93Ll8O33t7gkPWWbwqaEOGGvbYkJX48h590-enzrymo74MuprICGQReHKc4ljPNunbF7gMc91g-xT3GELn2w-keE8-bJ6gK1eKVD2uIUY8nP0VOvh-xeHOZT9PXd9fLqQ3Xz-f3Hq8ubytaMysoxZrU3hojG1PA-yrThppaitdQJ0-qe98IwaTrXN17Xvu-a1rTCCuuE9Jyfojf7vpsUf84uFwWXt24Y9OTinBXjTHZNJ1r5fwqnSwbf3wB9_Yiu45wmeAgoMLxjTIB6dVCzGV2vNimMOm3VfSgALvbApphzcl7ZUPQuFwgpDIoStYtdQezqT-xQcfao4r7p3-yh-68wuO2_oVp--bSvuAOe3r4M
CitedBy_id crossref_primary_10_1111_tpj_16202
crossref_primary_10_1111_tpj_16269
crossref_primary_10_1016_j_plantsci_2021_110821
crossref_primary_10_1093_molbev_msac007
crossref_primary_10_1111_tpj_16922
crossref_primary_10_1146_annurev_cellbio_011620_031429
crossref_primary_10_1186_s12934_021_01532_3
crossref_primary_10_1016_j_hpj_2023_03_003
crossref_primary_10_1016_j_plantsci_2025_112400
crossref_primary_10_1016_j_tplants_2020_12_008
crossref_primary_10_1080_07352689_2024_2388013
crossref_primary_10_1016_j_plaphy_2023_107854
crossref_primary_10_1007_s10340_021_01369_0
Cites_doi 10.1104/pp.110.158360
10.1111/pce.12314
10.1046/j.1365-313x.2000.00709.x
10.1093/molbev/msr121
10.1016/j.phytochem.2013.06.014
10.1104/pp.15.01645
10.1104/pp.19.00009
10.1046/j.1365-313X.2002.01497.x
10.1111/j.1365-313X.2005.02552.x
10.1111/nph.12145
10.1007/978-1-62703-414-2_24
10.1039/c3np70104b
10.1111/pbi.12205
10.1016/j.phytochem.2016.08.006
10.1016/S1369-5266(00)00199-0
10.1093/jxb/erv291
10.1186/s12870-017-1088-1
10.1016/j.tplants.2010.06.005
10.1038/nature06006
10.1146/annurev-arplant-042110-103814
10.1105/tpc.17.00576
10.1111/pbi.12108
10.1105/tpc.104.028837
10.1105/tpc.111.089300
10.1016/j.pbi.2016.07.005
10.1006/abbi.1999.1255
10.1111/j.1365-313X.2011.04644.x
10.1016/j.biotechadv.2016.02.004
10.1016/j.tplants.2012.03.001
10.1104/pp.104.041806
10.1371/journal.pgen.1002506
10.1111/pce.12318
10.1111/j.1365-313X.2005.02586.x
10.1105/tpc.112.105247
10.1016/j.nbt.2017.09.007
10.1093/nar/29.20.4097
10.1073/pnas.0708697104
10.1021/ac051437y
10.1073/pnas.1316278111
10.1073/pnas.87.21.8452
10.1093/jxb/erq342
10.1093/jee/tow090
10.1111/pce.12330
10.1111/j.1365-313X.2010.04128.x
10.1371/journal.pgen.1000440
10.1105/tpc.111.083089
10.1111/j.1365-313X.2011.04519.x
10.1186/1471-2164-15-312
10.1038/nbt.1621
10.1007/s12010-010-9080-3
10.1111/pbi.12701
10.1111/pce.12301
10.1186/s12870-018-1443-x
10.1104/pp.108.132597
10.1111/nph.15291
10.1007/978-1-62703-414-2_22
10.1603/EC10220
10.1093/bioinformatics/btp120
10.1021/jf404255a
10.1186/1472-6807-5-19
10.1093/jxb/eri058
10.1007/s11103-016-0480-9
10.1186/s12870-018-1416-0
10.1046/j.1365-313x.1998.00278.x
10.1007/s00425-004-1387-2
10.1016/S0003-9861(02)00458-7
10.1104/pp.103.038315
10.1104/pp.114.252908
10.1105/tpc.109.067280
10.1093/nar/30.1.325
10.1105/tpc.112.098749
10.1016/j.tplants.2017.12.006
10.1002/ps.3288
10.1093/pcp/pcw168
10.1110/ps.051718605
10.1093/aob/mct067
10.1093/jxb/erx316
10.1007/978-1-62703-414-2_18
10.1016/S1360-1385(02)02251-3
10.1038/nature12685
10.1111/j.1469-8137.2011.04001.x
10.1101/gr.2445504
10.1146/annurev-arplant-042110-103854
10.1105/tpc.4.6.721
10.1186/1471-2105-10-441
10.1021/np200218r
10.1016/j.tplants.2008.11.005
10.1105/tpc.5.9.1011
ContentType Journal Article
Copyright 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd
2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.
Copyright © 2019 John Wiley & Sons Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd
– notice: 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.
– notice: Copyright © 2019 John Wiley & Sons Ltd and the Society for Experimental Biology
DBID AAYXX
CITATION
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/tpj.14347
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Genetics Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 654
ExternalDocumentID 31009122
10_1111_tpj_14347
TPJ14347
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Iranian Ministry for Health and Medical Education
– fundername: Research Foundation Flanders
– fundername: Agency for Innovation by Science and Technology
– fundername: Chinese Scholarship Council
– fundername: VIB International PhD Fellowship Program
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7QO
7QP
7QR
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4217-e22cafbb056b441212ab3b4758c1e5b8ad3d5b27b9ed6fa4fd968b85c5ce57f33
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 18:27:03 EDT 2025
Thu Jul 10 17:41:37 EDT 2025
Fri Jul 25 10:59:52 EDT 2025
Wed Feb 19 02:31:53 EST 2025
Tue Jul 01 03:57:29 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
Wed Jan 22 16:40:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Medicago truncatula
methyl anthranilate
volatile organic compounds
methyl transferase
PLATZ transcription factor
MYB transcription factor
jasmonate signaling
Language English
License 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4217-e22cafbb056b441212ab3b4758c1e5b8ad3d5b27b9ed6fa4fd968b85c5ce57f33
Notes Corrections added on 22 June 2019, after first online publication: the correct capitalization of Emission of Methyl Anthranilate 1 (EMA1) has been applied in the article title and throughout the text.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1134-9238
0000-0002-1599-551X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tpj.14347
PMID 31009122
PQID 2272139225
PQPubID 31702
PageCount 18
ParticipantIDs proquest_miscellaneous_2327969587
proquest_miscellaneous_2212721436
proquest_journals_2272139225
pubmed_primary_31009122
crossref_citationtrail_10_1111_tpj_14347
crossref_primary_10_1111_tpj_14347
wiley_primary_10_1111_tpj_14347_TPJ14347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2007; 104
2010; 15
2013; 69
2013; 1011
2006; 78
2016; 109
2013; 61
2011; 62
2012; 17
1999; 367
2010; 62
1993; 5
2016; 34
2016; 33
1998; 16
2010; 22
2009; 14
1990; 87
2009; 10
2004; 135
2013; 11
2005; 220
2010; 28
2013; 94
2014; 15
2013; 111
2011; 66
2010; 153
2011; 23
2011; 67
2013; 198
2011; 163
2011; 28
2012; 24
2014; 12
2017a; 29
2012; 63
1992; 4
2009; 25
2018; 220
2007; 448
2017b; 68
2002; 30
2015; 168
2013a; 504
2016b; 57
2000; 22
2017; 68
2002; 7
2002; 32
2011; 74
2016; 91
2001; 29
2018; 23
2014; 111
2005; 44
2011; 104
2018; 18
2019; 180
2015; 27
2013b; 1101
2017; 15
2017; 17
2013; 1101
2001; 4
2004; 14
2016a; 170
2015; 66
2019; 48
2012; 193
2005; 5
2014; 37
2009; 5
2002; 406
2005; 17
2016; 131
2005; 56
2009; 149
2012; 8
2014; 31
2005; 14
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
Boachon B. (e_1_2_9_4_1) 2015; 27
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
Goossens J. (e_1_2_9_26_1) 2017; 68
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
Wasternack C. (e_1_2_9_88_1) 2017; 68
References_xml – volume: 24
  start-page: 2635
  year: 2012
  end-page: 2648
  article-title: MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression
  publication-title: Plant Cell
– volume: 62
  start-page: 113
  year: 2010
  end-page: 123
  article-title: Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate
  publication-title: Plant J.
– volume: 11
  start-page: 1135
  year: 2013
  end-page: 1145
  article-title: Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode
  publication-title: Plant Biotechnol. J.
– volume: 15
  start-page: 573
  year: 2010
  end-page: 581
  article-title: MYB transcription factors in
  publication-title: Trends Plant Sci.
– volume: 22
  start-page: 29
  year: 2000
  end-page: 38
  article-title: Three ethylene‐responsive transcription factors in tobacco with distinct transactivation functions
  publication-title: Plant J.
– volume: 87
  start-page: 8452
  year: 1990
  end-page: 8456
  article-title: Role of tryptophan repeats and flanking amino acids in Myb‐DNA interactions
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 149
  start-page: 851
  year: 2009
  end-page: 862
  article-title: MYB108 acts together with MYB24 to regulate jasmonate‐mediated stamen maturation in Arabidopsis
  publication-title: Plant Physiol.
– volume: 170
  start-page: 194
  year: 2016a
  end-page: 210
  article-title: The bHLH transcription factors TSAR1 and TSAR2 regulate triterpene saponin biosynthesis in
  publication-title: Plant Physiol.
– volume: 91
  start-page: 673
  year: 2016
  end-page: 689
  article-title: Jasmonates: signal transduction components and their roles in environmental stress responses
  publication-title: Plant Mol. Biol.
– volume: 104
  start-page: 1195
  year: 2011
  end-page: 1203
  article-title: A novel attractant for (Diptera: Tephritidae) from a Concord grape product
  publication-title: J. Econ. Entomol.
– volume: 28
  start-page: 511
  year: 2010
  end-page: 515
  article-title: Transcript assembly and quantification by RNA‐Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol.
– volume: 29
  start-page: 2661
  year: 2017a
  end-page: 2675
  article-title: The maize imprinted gene ncodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III
  publication-title: Plant Cell
– volume: 18
  start-page: 218
  year: 2018
  article-title: Expression of cotton PLATZ1 in transgenic reduces sensitivity to osmotic and salt stress for germination and seedling establishment associated with modification of the abscisic acid, gibberellin, and ethylene signalling pathways
  publication-title: BMC Plant Biol.
– volume: 15
  start-page: 1105
  year: 2017
  end-page: 1119
  article-title: Spearmint R2R3‐MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit ( )
  publication-title: Plant Biotechnol. J.
– volume: 69
  start-page: 425
  year: 2013
  end-page: 430
  article-title: Assessing the effects of three potential chemical repellents to prevent bird damage to corn seeds and seedlings
  publication-title: Pest Manag. Sci.
– volume: 56
  start-page: 323
  year: 2005
  end-page: 336
  article-title: Metabolic profiling of cell cultures reveals the effects of biotic and abiotic elicitors on metabolism
  publication-title: J. Exp. Bot.
– volume: 44
  start-page: 1065
  year: 2005
  end-page: 1076
  article-title: Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells
  publication-title: Plant J.
– volume: 37
  start-page: 1845
  year: 2014
  end-page: 1853
  article-title: Ecology of plant volatiles: taking a plant community perspective
  publication-title: Plant Cell Environ.
– volume: 111
  start-page: 2367
  year: 2014
  end-page: 2372
  article-title: DNA‐binding specificities of plant transcription factors and their potential to define target genes
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 17
  start-page: 147
  year: 2017
  article-title: Identification of a methyltransferase catalyzing the final step of methyl anthranilate synthesis in cultivated strawberry
  publication-title: BMC Plant Biol.
– volume: 48
  start-page: 1
  year: 2019
  end-page: 11
  article-title: Jasmonates are signals in the biosynthesis of secondary metabolites — Pathways, transcription factors and applied aspects — A brief review
  publication-title: New Biotechnol.
– volume: 25
  start-page: 1105
  year: 2009
  end-page: 1111
  article-title: TopHat: discovering splice junctions with RNA‐Seq
  publication-title: Bioinformatics
– volume: 14
  start-page: 87
  year: 2009
  end-page: 91
  article-title: Jasmonate‐inducible gene: what does it mean?
  publication-title: Trends Plant Sci.
– volume: 37
  start-page: 1741
  year: 2014
  end-page: 1752
  article-title: Direct and indirect chemical defences against insects in a multitrophic framework
  publication-title: Plant Cell Environ.
– volume: 29
  start-page: 4097
  year: 2001
  end-page: 4105
  article-title: A novel class of plant‐specific zinc‐dependent DNA‐binding protein that binds to A/T‐rich DNA sequences
  publication-title: Nucleic Acids Res.
– volume: 33
  start-page: 147
  year: 2016
  end-page: 156
  article-title: Redundancy and specificity in jasmonate signalling
  publication-title: Curr. Opin. Plant Biol.
– volume: 7
  start-page: 193
  year: 2002
  end-page: 195
  article-title: GATEWAY™ vectors for ‐mediated plant transformation
  publication-title: Trends Plant Sci.
– volume: 23
  start-page: 3089
  year: 2011
  end-page: 3100
  article-title: The JAZ proteins: a crucial interface in the jasmonate signaling cascade
  publication-title: Plant Cell
– volume: 44
  start-page: 606
  year: 2005
  end-page: 619
  article-title: The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including ‘foxy’ methylanthranilate
  publication-title: Plant J.
– volume: 448
  start-page: 666
  year: 2007
  end-page: 671
  article-title: The JAZ family of repressors is the missing link in jasmonate signalling
  publication-title: Nature
– volume: 68
  start-page: 4929
  year: 2017b
  end-page: 4938
  article-title: Transcription factor CitERF71 activates the terpene synthase gene involved in the synthesis of ‐geraniol in sweet orange fruit
  publication-title: J. Exp. Bot.
– volume: 12
  start-page: 971
  year: 2014
  end-page: 983
  article-title: Taximin, a conserved plant‐specific peptide is involved in the modulation of plant‐specialized metabolism
  publication-title: Plant Biotechnol. J.
– volume: 5
  start-page: 19
  year: 2005
  article-title: Natural history of ‐adenosylmethionine‐binding proteins
  publication-title: BMC Struct. Biol.
– volume: 135
  start-page: 1946
  year: 2004
  end-page: 1955
  article-title: Biochemical and structural characterization of benzenoid carboxyl methyltransferases involved in floral scent production in and
  publication-title: Plant Physiol.
– volume: 78
  start-page: 779
  year: 2006
  end-page: 787
  article-title: XCMS: processing mass spectrometry data for metabolite profiling using Nonlinear peak alignment, matching, and identification
  publication-title: Anal. Chem.
– volume: 193
  start-page: 997
  year: 2012
  end-page: 1008
  article-title: The major volatile organic compound emitted from flowers, the sesquiterpene ( )‐β‐caryophyllene, is a defense against a bacterial pathogen
  publication-title: New Phytol.
– volume: 74
  start-page: 1462
  year: 2011
  end-page: 1476
  article-title: Metabolite profiling of triterpene saponins in hairy roots by liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry
  publication-title: J. Nat. Prod.
– volume: 17
  start-page: 349
  year: 2012
  end-page: 359
  article-title: Transcriptional machineries in jasmonate‐elicited plant secondary metabolism
  publication-title: Trends Plant Sci.
– volume: 28
  start-page: 2731
  year: 2011
  end-page: 2739
  article-title: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods
  publication-title: Mol. Biol. Evol.
– volume: 14
  start-page: 2964
  year: 2005
  end-page: 2971
  article-title: Gateway vectors for the production of combinatorially‐tagged His ‐MBP fusion proteins in the cytoplasm and periplasm of
  publication-title: Protein Sci.
– volume: 111
  start-page: 1021
  year: 2013
  end-page: 1058
  article-title: Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in
  publication-title: Ann. Bot.
– volume: 22
  start-page: 1961
  year: 2010
  end-page: 1976
  article-title: , a gene encoding a flower‐specific regulator of phenylpropanoid volatiles’ biosynthesis in petunia
  publication-title: Plant Cell
– volume: 220
  start-page: 609
  year: 2018
  end-page: 623
  article-title: ORESARA15, a PLATZ transcription factor, mediates leaf growth and senescence in
  publication-title: New Phytol.
– volume: 31
  start-page: 356
  year: 2014
  end-page: 380
  article-title: Natural product biosynthesis in species
  publication-title: Nat. Prod. Rep.
– volume: 18
  start-page: 221
  year: 2018
  article-title: Genome‐wide analysis of the plant‐specific PLATZ proteins in maize and identification of their general role in interaction with RNA polymerase III complex
  publication-title: BMC Plant Biol.
– volume: 406
  start-page: 261
  year: 2002
  end-page: 270
  article-title: Novel ‐adenosyl‐L‐methionine:salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers
  publication-title: Arch. Biochem. Biophys.
– volume: 62
  start-page: 549
  year: 2011
  end-page: 566
  article-title: Convergent evolution in plant specialized metabolism
  publication-title: Annu. Rev. Plant Biol.
– volume: 27
  start-page: 2972
  year: 2015
  end-page: 2990
  article-title: CYP76C1 (Cytochrome P450)‐mediated linalool metabolism and the formation of volatile and soluble linalool oxides in flowers: a strategy for defense against floral antagonists
  publication-title: Plant Cell
– volume: 61
  start-page: 12625
  year: 2013
  end-page: 12633
  article-title: Methyl anthranilate and γ‐decalactone inhibit strawberry pathogen growth and achene germination
  publication-title: J. Agric. Food Chem.
– volume: 57
  start-page: 2564
  year: 2016b
  end-page: 2575
  article-title: Clade IVa basic helix‐loop‐helix transcription factors form part of a conserved jasmonate signaling circuit for the regulation of bioactive plant terpenoid biosynthesis
  publication-title: Plant Cell Physiol.
– volume: 109
  start-page: 1683
  year: 2016
  end-page: 1690
  article-title: Methyl anthranilate as a repellent for Western corn rootworm larvae (Coleoptera: Chrysomelidae)
  publication-title: J. Econ. Entomol.
– volume: 66
  start-page: 700
  year: 2011
  end-page: 711
  article-title: Improved protein‐binding microarrays for the identification of DNA‐binding specificities of transcription factors
  publication-title: Plant J.
– volume: 24
  start-page: 5089
  year: 2012
  end-page: 5105
  article-title: The R2R3‐MYB‐like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating and structural scent‐related genes in petunia
  publication-title: Plant Cell
– volume: 168
  start-page: 598
  year: 2015
  end-page: 614
  article-title: A R2R3‐MYB transcription factor regulates eugenol production in ripe strawberry fruit receptacles
  publication-title: Plant Physiol.
– volume: 5
  start-page: e1000440
  year: 2009
  article-title: Gibberellin acts through jasmonate to control the expression of , , and to promote stamen filament growth in
  publication-title: PLoS Genet.
– volume: 4
  start-page: 721
  year: 1992
  end-page: 733
  article-title: Two anthranilate synthase genes in Arabidopsis: defense‐related regulation of the tryptophan pathway
  publication-title: Plant Cell
– volume: 37
  start-page: 1924
  year: 2014
  end-page: 1935
  article-title: Caterpillar‐induced plant volatiles remain a reliable signal for foraging wasps during dual attack with a plant pathogen or non‐host insect herbivore
  publication-title: Plant Cell Environ.
– volume: 198
  start-page: 16
  year: 2013
  end-page: 32
  article-title: Biosynthesis, function and metabolic engineering of plant volatile organic compounds
  publication-title: New Phytol.
– volume: 68
  start-page: 1303
  year: 2017
  end-page: 1321
  article-title: Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription
  publication-title: J. Exp. Bot.
– volume: 23
  start-page: 1000
  year: 2011
  end-page: 1013
  article-title: The Jasmonate‐ZIM domain proteins interact with the R2R3‐MYB transcription factors MYB21 and MYB24 to affect jasmonate‐regulated stamen development in
  publication-title: Plant Cell
– volume: 180
  start-page: 87
  year: 2019
  end-page: 108
  article-title: A MYB triad controls primary and phenylpropanoid metabolites for pollen coat patterning
  publication-title: Plant Physiol.
– volume: 8
  start-page: e1002506
  year: 2012
  article-title: A regulatory network for coordinated flower maturation
  publication-title: PLoS Genet.
– volume: 62
  start-page: 1133
  year: 2011
  end-page: 1143
  article-title: fine‐tunes the floral volatile signature of through
  publication-title: J. Exp. Bot.
– volume: 220
  start-page: 696
  year: 2005
  end-page: 707
  article-title: Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re‐programming in cell suspension cultures of the model legume
  publication-title: Planta
– volume: 67
  start-page: 917
  year: 2011
  end-page: 928
  article-title: The transcription factor EMISSION OF BENZENOIDS II activates the MYB promoter at a MYB binding site specific for fragrant petunias
  publication-title: Plant J.
– volume: 37
  start-page: 1936
  year: 2014
  end-page: 1949
  article-title: Floral volatiles: from biosynthesis to function
  publication-title: Plant Cell Environ.
– volume: 32
  start-page: 1033
  year: 2002
  end-page: 1048
  article-title: A genomics approach to the early stages of triterpene saponin biosynthesis in
  publication-title: Plant J.
– volume: 68
  start-page: 1333
  year: 2017
  end-page: 1347
  article-title: Role and functioning of bHLH transcription factors in jasmonate signalling
  publication-title: J. Exp. Bot.
– volume: 16
  start-page: 263
  year: 1998
  end-page: 276
  article-title: Towards functional characterisation of the members of the gene family from
  publication-title: Plant J.
– volume: 163
  start-page: 756
  year: 2011
  end-page: 764
  article-title: Bioprocess optimization of furanocoumarin elicitation by medium renewal and re‐elicitation: a perfusion‐based approach
  publication-title: Appl. Biochem. Biotechnol.
– volume: 30
  start-page: 325
  year: 2002
  end-page: 327
  article-title: PlantCARE, a database of plant ‐acting regulatory elements and a portal to tools for analysis of promoter sequences
  publication-title: Nucleic Acids Res.
– volume: 23
  start-page: 324
  year: 2018
  end-page: 336
  article-title: Combinatorial transcriptional control of plant specialized metabolism
  publication-title: Trends Plant Sci.
– volume: 10
  start-page: 441
  year: 2009
  article-title: The gene expression atlas web server
  publication-title: BMC Bioinformatics
– volume: 34
  start-page: 441
  year: 2016
  end-page: 449
  article-title: Jasmonate‐responsive transcription factors regulating plant secondary metabolism
  publication-title: Biotechnol. Adv.
– volume: 94
  start-page: 74
  year: 2013
  end-page: 81
  article-title: Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood ( )
  publication-title: Phytochemistry
– volume: 504
  start-page: 148
  year: 2013a
  end-page: 152
  article-title: The protein quality control system manages plant defence compound synthesis
  publication-title: Nature
– volume: 104
  start-page: 17909
  year: 2007
  end-page: 17915
  article-title: Different mechanisms for phytoalexin induction by pathogen and wound signals in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 66
  start-page: 5337
  year: 2015
  end-page: 5349
  article-title: Overexpression of the signalling peptide TAXIMIN1 affects lateral organ development
  publication-title: J. Exp. Bot.
– volume: 14
  start-page: 2093
  year: 2004
  end-page: 2101
  article-title: A gateway‐compatible yeast one‐hybrid system
  publication-title: Genome Res.
– volume: 1011
  start-page: 277
  year: 2013
  end-page: 286
  article-title: Metabolite profiling of plant tissues by liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry
  publication-title: Methods Mol. Biol.
– volume: 1101
  start-page: 227
  year: 2013
  end-page: 239
  article-title: Transient expression assays in tobacco protoplasts
  publication-title: Methods Mol. Biol.
– volume: 15
  start-page: 312
  year: 2014
  article-title: An improved genome release (version Mt4.0) for the model legume Medicago truncatula
  publication-title: BMC Genom.
– volume: 1101
  start-page: 305
  year: 2013b
  end-page: 315
  article-title: Analysis of RNA‐Seq data with TopHat and Cufflinks for genome‐wide expression analysis of jasmonate‐treated plants and plant cultures
  publication-title: Methods Mol. Biol.
– volume: 153
  start-page: 1795
  year: 2010
  end-page: 1807
  article-title: Herbivore‐induced SABATH methyltransferases of maize that methylate anthranilic acid using S‐adenosyl‐L‐methionine
  publication-title: Plant Physiol.
– volume: 63
  start-page: 431
  year: 2012
  end-page: 450
  article-title: Plant defense against herbivores: chemical aspects
  publication-title: Annu. Rev. Plant Biol.
– volume: 131
  start-page: 26
  year: 2016
  end-page: 43
  article-title: Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs
  publication-title: Phytochemistry
– volume: 17
  start-page: 1612
  year: 2005
  end-page: 1624
  article-title: regulates fragrance biosynthesis in petunia flowers
  publication-title: Plant Cell
– volume: 135
  start-page: 483
  year: 2004
  end-page: 495
  article-title: Differential timing of spider mite‐induced direct and indirect defenses in tomato plants
  publication-title: Plant Physiol.
– volume: 4
  start-page: 447
  year: 2001
  end-page: 456
  article-title: The gene family in
  publication-title: Curr. Opin. Plant Biol.
– volume: 367
  start-page: 9
  year: 1999
  end-page: 16
  article-title: ‐Adenosyl‐L‐methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases
  publication-title: Arch. Biochem. Biophys.
– volume: 5
  start-page: 1011
  year: 1993
  end-page: 1027
  article-title: Suppressors of trp1 fluorescence identify a new Arabidopsis gene, TRP4, encoding the anthranilate synthase beta subunit
  publication-title: Plant Cell
– ident: e_1_2_9_33_1
  doi: 10.1104/pp.110.158360
– ident: e_1_2_9_45_1
  doi: 10.1111/pce.12314
– volume: 27
  start-page: 2972
  year: 2015
  ident: e_1_2_9_4_1
  article-title: CYP76C1 (Cytochrome P450)‐mediated linalool metabolism and the formation of volatile and soluble linalool oxides in Arabidopsis flowers: a strategy for defense against floral antagonists
  publication-title: Plant Cell
– ident: e_1_2_9_52_1
  doi: 10.1046/j.1365-313x.2000.00709.x
– ident: e_1_2_9_77_1
  doi: 10.1093/molbev/msr121
– ident: e_1_2_9_91_1
  doi: 10.1016/j.phytochem.2013.06.014
– ident: e_1_2_9_42_1
  doi: 10.1104/pp.15.01645
– ident: e_1_2_9_2_1
  doi: 10.1104/pp.19.00009
– ident: e_1_2_9_75_1
  doi: 10.1046/j.1365-313X.2002.01497.x
– ident: e_1_2_9_85_1
  doi: 10.1111/j.1365-313X.2005.02552.x
– ident: e_1_2_9_19_1
  doi: 10.1111/nph.12145
– ident: e_1_2_9_62_1
  doi: 10.1007/978-1-62703-414-2_24
– ident: e_1_2_9_22_1
  doi: 10.1039/c3np70104b
– ident: e_1_2_9_53_1
  doi: 10.1111/pbi.12205
– ident: e_1_2_9_8_1
  doi: 10.1016/j.phytochem.2016.08.006
– ident: e_1_2_9_74_1
  doi: 10.1016/S1369-5266(00)00199-0
– ident: e_1_2_9_12_1
  doi: 10.1093/jxb/erv291
– ident: e_1_2_9_58_1
  doi: 10.1186/s12870-017-1088-1
– ident: e_1_2_9_18_1
  doi: 10.1016/j.tplants.2010.06.005
– volume: 68
  start-page: 1303
  year: 2017
  ident: e_1_2_9_88_1
  article-title: Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription
  publication-title: J. Exp. Bot.
– ident: e_1_2_9_9_1
  doi: 10.1038/nature06006
– ident: e_1_2_9_56_1
  doi: 10.1146/annurev-arplant-042110-103814
– ident: e_1_2_9_37_1
  doi: 10.1105/tpc.17.00576
– ident: e_1_2_9_39_1
  doi: 10.1111/pbi.12108
– ident: e_1_2_9_84_1
  doi: 10.1105/tpc.104.028837
– ident: e_1_2_9_54_1
  doi: 10.1105/tpc.111.089300
– ident: e_1_2_9_10_1
  doi: 10.1016/j.pbi.2016.07.005
– ident: e_1_2_9_68_1
  doi: 10.1006/abbi.1999.1255
– ident: e_1_2_9_82_1
  doi: 10.1111/j.1365-313X.2011.04644.x
– ident: e_1_2_9_92_1
  doi: 10.1016/j.biotechadv.2016.02.004
– ident: e_1_2_9_14_1
  doi: 10.1016/j.tplants.2012.03.001
– ident: e_1_2_9_64_1
  doi: 10.1104/pp.104.041806
– ident: e_1_2_9_66_1
  doi: 10.1371/journal.pgen.1002506
– ident: e_1_2_9_24_1
  doi: 10.1111/pce.12318
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1365-313X.2005.02586.x
– ident: e_1_2_9_73_1
  doi: 10.1105/tpc.112.105247
– ident: e_1_2_9_89_1
  doi: 10.1016/j.nbt.2017.09.007
– ident: e_1_2_9_46_1
  doi: 10.1093/nar/29.20.4097
– ident: e_1_2_9_48_1
  doi: 10.1073/pnas.0708697104
– ident: e_1_2_9_70_1
  doi: 10.1021/ac051437y
– ident: e_1_2_9_21_1
  doi: 10.1073/pnas.1316278111
– ident: e_1_2_9_69_1
  doi: 10.1073/pnas.87.21.8452
– ident: e_1_2_9_13_1
  doi: 10.1093/jxb/erq342
– ident: e_1_2_9_3_1
  doi: 10.1093/jee/tow090
– ident: e_1_2_9_57_1
  doi: 10.1111/pce.12330
– ident: e_1_2_9_79_1
  doi: 10.1111/j.1365-313X.2010.04128.x
– ident: e_1_2_9_7_1
  doi: 10.1371/journal.pgen.1000440
– ident: e_1_2_9_71_1
  doi: 10.1105/tpc.111.083089
– ident: e_1_2_9_23_1
  doi: 10.1111/j.1365-313X.2011.04519.x
– ident: e_1_2_9_78_1
  doi: 10.1186/1471-2164-15-312
– ident: e_1_2_9_81_1
  doi: 10.1038/nbt.1621
– ident: e_1_2_9_17_1
  doi: 10.1007/s12010-010-9080-3
– ident: e_1_2_9_65_1
  doi: 10.1111/pbi.12701
– ident: e_1_2_9_63_1
  doi: 10.1111/pce.12301
– ident: e_1_2_9_86_1
  doi: 10.1186/s12870-018-1443-x
– ident: e_1_2_9_40_1
  doi: 10.1104/pp.108.132597
– ident: e_1_2_9_32_1
  doi: 10.1111/nph.15291
– ident: e_1_2_9_59_1
  doi: 10.1007/978-1-62703-414-2_22
– ident: e_1_2_9_67_1
  doi: 10.1603/EC10220
– ident: e_1_2_9_80_1
  doi: 10.1093/bioinformatics/btp120
– ident: e_1_2_9_6_1
  doi: 10.1021/jf404255a
– ident: e_1_2_9_34_1
  doi: 10.1186/1472-6807-5-19
– ident: e_1_2_9_5_1
  doi: 10.1093/jxb/eri058
– ident: e_1_2_9_25_1
  doi: 10.1007/s11103-016-0480-9
– ident: e_1_2_9_90_1
  doi: 10.1186/s12870-018-1416-0
– ident: e_1_2_9_35_1
  doi: 10.1046/j.1365-313x.1998.00278.x
– ident: e_1_2_9_76_1
  doi: 10.1007/s00425-004-1387-2
– ident: e_1_2_9_49_1
  doi: 10.1016/S0003-9861(02)00458-7
– ident: e_1_2_9_30_1
  doi: 10.1104/pp.103.038315
– ident: e_1_2_9_41_1
  doi: 10.1104/pp.114.252908
– ident: e_1_2_9_72_1
  doi: 10.1105/tpc.109.067280
– volume: 68
  start-page: 1333
  year: 2017
  ident: e_1_2_9_26_1
  article-title: Role and functioning of bHLH transcription factors in jasmonate signalling
  publication-title: J. Exp. Bot.
– ident: e_1_2_9_36_1
  doi: 10.1093/nar/30.1.325
– ident: e_1_2_9_28_1
  doi: 10.1105/tpc.112.098749
– ident: e_1_2_9_11_1
  doi: 10.1016/j.tplants.2017.12.006
– ident: e_1_2_9_20_1
  doi: 10.1002/ps.3288
– ident: e_1_2_9_43_1
  doi: 10.1093/pcp/pcw168
– ident: e_1_2_9_47_1
  doi: 10.1110/ps.051718605
– ident: e_1_2_9_87_1
  doi: 10.1093/aob/mct067
– ident: e_1_2_9_38_1
  doi: 10.1093/jxb/erx316
– ident: e_1_2_9_83_1
  doi: 10.1007/978-1-62703-414-2_18
– ident: e_1_2_9_31_1
  doi: 10.1016/S1360-1385(02)02251-3
– ident: e_1_2_9_61_1
  doi: 10.1038/nature12685
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1469-8137.2011.04001.x
– ident: e_1_2_9_16_1
  doi: 10.1101/gr.2445504
– ident: e_1_2_9_44_1
  doi: 10.1146/annurev-arplant-042110-103854
– ident: e_1_2_9_50_1
  doi: 10.1105/tpc.4.6.721
– ident: e_1_2_9_27_1
  doi: 10.1186/1471-2105-10-441
– ident: e_1_2_9_60_1
  doi: 10.1021/np200218r
– ident: e_1_2_9_55_1
  doi: 10.1016/j.tplants.2008.11.005
– ident: e_1_2_9_51_1
  doi: 10.1105/tpc.5.9.1011
SSID ssj0017364
Score 2.3771703
Snippet Summary Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized...
Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 637
SubjectTerms Alfalfa
Allelochemicals
Anthranilic acid
Control theory
Defense programs
Emission
Emissions
Feedback
Feedback loops
Gene expression
gene expression regulation
gene overexpression
Gene sequencing
Gene silencing
genetically modified organisms
Hairy root
herbivores
jasmonate signaling
Jasmonic acid
Medicago truncatula
messenger RNA
metabolism
Metabolites
Methyl anthranilate
methyl transferase
Methylation
Methyltransferase
methyltransferases
MYB transcription factor
Negative feedback
odors
pathogens
PLATZ transcription factor
Ribonucleic acid
RNA
Roots
sequence analysis
transcription (genetics)
Transcription factors
transcriptomics
Volatile compounds
volatile organic compounds
Volatiles
Title The MYB transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from Medicago truncatula hairy roots
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.14347
https://www.ncbi.nlm.nih.gov/pubmed/31009122
https://www.proquest.com/docview/2272139225
https://www.proquest.com/docview/2212721436
https://www.proquest.com/docview/2327969587
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWiEMv5VEKy0su4tBLEHHsbCJOgEBopa0qxEpbCSnyeG26KiSIzR7gR_CbmYmTaKGlqnqLlC-JY894vrHHM4ztGxQEkKkLQNA2YxUEYEEFTurQHiYuhSoT0-BbfDGU_ZEaddhRcxbG54doF9xIM6r5mhRcw3ROyct7UvNI0klyitUiQnTZpo4Ke5FPHYUMPUCrKeqsQhTF0z752hb9RjBf89XK4JwvseumqT7O5NfBrIQD8_Qmi-N__ssy-1gTUX7sJWeFdWy-yhZPCiSLj5_YM4oPH_w44SXZsmZm4b46Dz9D4aBVNl44PrA41PgeKrig88ktclcecpw47qgwmJ1yOwe-82A9D6YDLtzvF90U-L0ZpanFZ_lPPXl45Mjsy-kaG56fXZ1eBHXphsBIdHICK4TRDgDpFSDhQvuoIQKJzokJrYJEj6OxAtGD1I5jp6Ubp3ECiTLKWNVzUfSZLeRFbjcYtwKUlsoYhOKrksRp0LHUSGXI2Tzssq_NIGamzmtO5TVus8a_wd7Nqt7tsr0Weu-TefwJtN1IQlbr8zQTAj1lpJJCddmX9jb2H22v6NwWM8KEhJJR_BdMJHppnKoEP7PupaxtCW21pKEQ-EOVrLzfxOzqe7-62Px36Bb7gFwv9bGL22wBh9PuIJ8qYbdSnBc7Rh4p
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RWqlc6BPYFlq36qGXIOLYeUi9FATaUhZV1SLRQxXZXhsQkCA2e6A_or-5M3YSLX2p6m2l_ZI49oznG9v5BuCNQUPQonCR5rTN6A8BWC0jJ1Rst3JXaK_ENDpMh0di_1geL8C77luYoA_RL7iRZ_j5mhycFqTnvLy5Ij9PRHYH7lJFb59Qfe7Fo-IsCeJRyNEjjJu81RWiczz9pbej0S8U8zZj9SFn7wF87RobTpqcb84avWm-_aTj-L9v8xCWWy7K3gfjeQQLtnoM97Zr5Is3T-A7WhAbfdlmDYWzbnJhoUAP20X7oIU2Vjs2sjjaeB-quaCqswukryxmOHdcUm0wO2V2DnwZwGoeTN-4sLBldFLj82akVIvXslN1dn3DkNw306dwtLc73hlGbfWGyAjMcyLLuVFOa2RYGjkXhkilEy0wPzGxlTpXk2QiNc90YSepU8JNijTXuTTSWJm5JFmBxaqu7Bowy7VUQhqDULxVnjulVSoUshnKN7cG8LYbxdK00uZUYeOi7FIc7N3S9-4AXvfQq6Dn8TvQemcKZevS05JzTJaRTXI5gFf939h_tMOiKlvPCBMTSiTpXzAJz4q0kDk-ZjWYWd8S2m0pYs7xhbyx_LmJ5fjTvv_x7N-hL-H-cDw6KA8-HH58DktI_YpwlHEdFnFo7QbSq0a_8F70A_t4IkQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9RAEJ4gGMOL4g_wFHU1PvhSct3u9kd8EuGC6BFiIMHEpNnd7gIR2ovXe8A_gr-ZmW7bHIjG-NakX9vt7szON93tNwBvDRqCFpkLNKdlxmYTgNUycEKFdpi6TDdKTOO9eOdQ7B7JowV43_0L4_Uh-g9u5BnNfE0OPincnJPXE3LzSCR3YEnEw5RMeutrrx0VJpHXjkKKHmDY5K2sEG3j6S-9Hox-Y5jXCWsTcUYP4HvXVr_R5MfGrNYb5tcNGcf_fJkVuN8yUfbBm85DWLDlI7i7WSFbvHgMl2g_bPxtk9UUzLqphfnyPGwbrYM-s7HKsbHFscb7UMUFVZ6eIXllIcOZ45wqg9kps3Pgcw9W82D6w4X5BaPjCp83I51avJadqNOfFwypfT19Aoej7YOPO0FbuyEwArOcwHJulNMa-ZVGxoUBUulIC8xOTGilTlURFVLzRGe2iJ0SrsjiVKfSSGNl4qJoFRbLqrRPgVmupRLSGITirdLUKa1ioZDLULY5HMC7bhBz0wqbU32Ns7xLcLB386Z3B_Cmh068msdtoPXOEvLWoac555gqI5fkcgCv-9PYf7S-okpbzQgTEkpE8V8wEU-yOJMpPmbNW1nfElpryULO8YUaW_lzE_OD_d3m4Nm_Q1_Bvf2tUf7l097n57CMvC_z-xjXYRFH1r5AblXrl40PXQGiOiD8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+MYB+transcription+factor+Emission+of+Methyl+Anthranilate+1+stimulates+emission+of+methyl+anthranilate+from+Medicago+truncatula+hairy+roots&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Pollier%2C+Jacob&rft.au=De+Geyter%2C+Nathan&rft.au=Moses%2C+Tessa&rft.au=Boachon%2C+Beno%C3%AEt&rft.date=2019-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=99&rft.issue=4&rft.spage=637&rft.epage=654&rft_id=info:doi/10.1111%2Ftpj.14347&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon