New perspectives on microbiome and nutrient sequestration in soil aggregates during long‐term grazing exclusion
Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long‐term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36‐year exclusion experiment to inve...
Saved in:
Published in | Global change biology Vol. 30; no. 1; pp. e17027 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long‐term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36‐year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long‐term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long‐term GE. In contrast, 11–26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate‐smart and resource‐efficient grasslands.
We linked the soil microscale‐associated microbiomes with the carbon sequestration and biogeochemical cycling of livestock excluded grasslands for up to 36 years. Long‐term grazing exclusion reduced microbial diversity, community stability, and microbial functional genes associated with carbon sequestration and nutrient cycling. Moreover, we emphasize that the interaction between grazing exclusion and longevity as well as the structure of soil aggregates have substantial impacts the grassland biogeochemical cycles and global climate change in which the soil microbiome is involved. |
---|---|
AbstractList | Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long‐term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36‐year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long‐term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long‐term GE. In contrast, 11–26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate‐smart and resource‐efficient grasslands. Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long‐term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36‐year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long‐term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long‐term GE. In contrast, 11–26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate‐smart and resource‐efficient grasslands. We linked the soil microscale‐associated microbiomes with the carbon sequestration and biogeochemical cycling of livestock excluded grasslands for up to 36 years. Long‐term grazing exclusion reduced microbial diversity, community stability, and microbial functional genes associated with carbon sequestration and nutrient cycling. Moreover, we emphasize that the interaction between grazing exclusion and longevity as well as the structure of soil aggregates have substantial impacts the grassland biogeochemical cycles and global climate change in which the soil microbiome is involved. Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long-term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36-year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long-term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long-term GE. In contrast, 11-26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate-smart and resource-efficient grasslands.Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long-term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36-year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long-term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long-term GE. In contrast, 11-26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate-smart and resource-efficient grasslands. |
Author | Liu, Ji Fang, Linchuan Liu, Lei Delgado‐Baquerizo, Manuel Ma, Dengke Shen, Guoting Chen, Ji Zhou, Guiyao Jin, Xiaolian Bing, Haijian Blagodatskaya, Evgenia Ju, Wenliang Guo, Liang Tan, Wenfeng |
Author_xml | – sequence: 1 givenname: Wenliang orcidid: 0000-0001-9203-6921 surname: Ju fullname: Ju, Wenliang organization: Tsinghua University – sequence: 2 givenname: Linchuan orcidid: 0000-0003-1923-7908 surname: Fang fullname: Fang, Linchuan email: flinc629@hotmail.com organization: Wuhan University of Technology – sequence: 3 givenname: Guoting surname: Shen fullname: Shen, Guoting organization: Helmholtz Centre for Environmental Research – UFZ – sequence: 4 givenname: Manuel orcidid: 0000-0002-6499-576X surname: Delgado‐Baquerizo fullname: Delgado‐Baquerizo, Manuel organization: Universidad Pablo de Olavide – sequence: 5 givenname: Ji orcidid: 0000-0001-7026-6312 surname: Chen fullname: Chen, Ji organization: Aarhus University – sequence: 6 givenname: Guiyao orcidid: 0000-0002-1385-3913 surname: Zhou fullname: Zhou, Guiyao organization: Universidad Pablo de Olavide – sequence: 7 givenname: Dengke surname: Ma fullname: Ma, Dengke organization: Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources – sequence: 8 givenname: Haijian orcidid: 0000-0002-9813-6939 surname: Bing fullname: Bing, Haijian organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 9 givenname: Lei surname: Liu fullname: Liu, Lei organization: University of Groningen, University Medical Center Groningen – sequence: 10 givenname: Ji orcidid: 0000-0003-2496-9521 surname: Liu fullname: Liu, Ji organization: Central China Normal University – sequence: 11 givenname: Xiaolian surname: Jin fullname: Jin, Xiaolian organization: Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources – sequence: 12 givenname: Liang surname: Guo fullname: Guo, Liang organization: Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources – sequence: 13 givenname: Wenfeng orcidid: 0000-0002-3098-2928 surname: Tan fullname: Tan, Wenfeng organization: Huazhong Agricultural University – sequence: 14 givenname: Evgenia orcidid: 0000-0002-8284-4017 surname: Blagodatskaya fullname: Blagodatskaya, Evgenia organization: Helmholtz Centre for Environmental Research – UFZ |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37946660$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb9uFDEQhy0URJKDghdAlmhCsYn_nb0u4QQBKSIN1JbXnls52rUv9i5JqHgEnpEnwXcXKCJBprFlfb_ReL5jdBBTBIReUnJKa531rjulijD1BB1RLpcNE6082N6XoqGE8kN0XMoVIYQzIp-hQ660kFKSI3T9GW7wBnLZgJvCNyg4RTwGl1MX0gjYRo_jPOUAccIFrmcoU7ZTqFSIuKQwYNv3GXo71ayfc4g9HlLsf_34OUEecZ_t9-0b3LphLjX3HD1d26HAi_tzgb5-eP9l9bG5uDz_tHp70TjBqGo041Z76z2XQlNuOSFUdEpxqkXb1Vp7qlvpBCy5ohKIAu70UhPf0g6c5wt0su-7yWk3thlDcTAMNkKai-FEEK65UPxRlLWtZkIyuUVfP0Cv0pxj_YhhmrZUtqxiC_Tqnpq7EbzZ5DDafGf-7L0Cb_ZAXXQpGdZ_EUrM1qmpTs3OaWXPHrAuTDsF1UQY_pe4CQPc_bu1OV-92yd-A4K3sz8 |
CitedBy_id | crossref_primary_10_1021_acs_est_4c06081 crossref_primary_10_1016_j_apsoil_2025_106034 crossref_primary_10_1016_j_pedsph_2024_05_011 crossref_primary_10_1016_j_agee_2024_109403 crossref_primary_10_5194_bg_22_135_2025 crossref_primary_10_1016_j_soilbio_2024_109638 crossref_primary_10_1016_j_still_2024_106278 crossref_primary_10_1002_ldr_5422 crossref_primary_10_1016_j_agee_2024_109190 crossref_primary_10_1016_j_catena_2024_108264 crossref_primary_10_3389_fpls_2024_1366821 crossref_primary_10_3389_fmicb_2024_1403338 crossref_primary_10_1016_j_ejsobi_2024_103704 crossref_primary_10_1002_ldr_5330 crossref_primary_10_1007_s40333_024_0063_6 crossref_primary_10_3390_d16110696 |
Cites_doi | 10.1038/ismej.2017.56 10.1038/s41396-019-0369-0 10.1038/s43017-022-00366-w 10.1126/sciadv.aaz1834 10.1111/gcb.12065 10.1038/s43017-021-00207-2 10.1093/nar/29.9.e45 10.1111/gcb.16600 10.1038/nature16461 10.1038/s41564-019-0449-y 10.1126/science.abq4062 10.1038/ncomms7707 10.1111/2041-210X.13800 10.1038/s41467-018-05980-1 10.1007/s11104-020-04452-0 10.1038/ncomms14349 10.1111/j.1469-8137.2009.03003.x 10.1111/gcb.15220 10.1016/j.soilbio.2005.08.006 10.1038/s41396-020-00801-0 10.1038/s41467-021-23605-y 10.3389/fmicb.2021.625697 10.1126/science.aap9516 10.1038/nplants.2015.80 10.1002/ecy.1879 10.1186/s40168-019-0668-8 10.1016/j.soilbio.2017.12.018 10.1038/s41559-022-01756-5 10.1111/nph.12765 10.1111/gcb.12475 10.1016/j.funeco.2015.06.006 10.1111/1462-2920.13778 10.1111/1365-2664.12478 10.1126/science.aaf4507 10.1038/ismej.2014.196 10.1111/ele.13527 10.1016/j.soilbio.2020.107814 10.1016/j.micres.2016.04.001 10.1073/pnas.1000080107 10.1038/s41396-021-01045-2 10.1111/gcb.14113 10.1146/annurev-arplant-102820-124504 10.1016/j.soilbio.2015.08.034 10.1111/j.1365-2486.2010.02219.x 10.1111/gcb.16305 10.1038/s41467-021-24192-8 10.1111/j.2041-210X.2009.00001.x 10.1128/AEM.03269-14 10.1111/gcb.13133 10.1128/AEM.03054-09 10.1126/science.aad2602 10.1038/s41467-018-05516-7 10.1038/ismej.2012.116 10.1038/ismej.2013.87 10.1016/j.soilbio.2022.108907 10.1016/j.soilbio.2011.12.015 10.1073/pnas.1700298114 10.1016/j.soilbio.2010.08.014 10.1111/j.1365-2486.2009.01844.x 10.1111/j.1469-8137.2012.04349.x 10.1016/j.geoderma.2022.115767 10.1038/s41396-020-00882-x 10.1101/133462 10.1016/j.soilbio.2018.05.026 10.1073/pnas.1516684112 10.1126/science.abo2380 10.1111/gcb.15308 10.1038/nmeth.f.303 10.1038/s43017-020-0063-9 10.1038/s41396-019-0354-7 10.1111/gcb.16563 10.1038/nbt.2676 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. Copyright © 2024 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: Copyright © 2024 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
DOI | 10.1111/gcb.17027 |
DatabaseName | CrossRef PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | n/a |
ExternalDocumentID | 37946660 10_1111_gcb_17027 GCB17027 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province funderid: 2020CFA013 – fundername: National Natural Science Foundation of China funderid: 32061123007; 41977031 – fundername: Strategic Priority Research Program of Chinese Academy of Sciences funderid: XDB40020202 – fundername: National Natural Science Foundation of China grantid: 41977031 – fundername: Strategic Priority Research Program of Chinese Academy of Sciences grantid: XDB40020202 – fundername: Natural Science Foundation of Hubei Province grantid: 2020CFA013 – fundername: National Natural Science Foundation of China grantid: 32061123007 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4217-923a9dadd364913a30014b7731948bbbbfd1986c4e53716e07e3c9590d81becd3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:30:20 EDT 2025 Fri Jul 11 12:28:10 EDT 2025 Tue Aug 12 21:54:04 EDT 2025 Mon Jul 21 05:39:50 EDT 2025 Tue Jul 01 05:28:29 EDT 2025 Thu Apr 24 23:11:58 EDT 2025 Wed Aug 20 07:25:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | grazing exclusion soil aggregates grasslands nitrogen and phosphorus accumulation microbial communities and functions carbon sequestration |
Language | English |
License | 2023 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4217-923a9dadd364913a30014b7731948bbbbfd1986c4e53716e07e3c9590d81becd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3098-2928 0000-0001-9203-6921 0000-0001-7026-6312 0000-0003-2496-9521 0000-0002-1385-3913 0000-0002-6499-576X 0000-0002-9813-6939 0000-0003-1923-7908 0000-0002-8284-4017 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.17027 |
PMID | 37946660 |
PQID | 2918168226 |
PQPubID | 30327 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3040393473 proquest_miscellaneous_2889246263 proquest_journals_2918168226 pubmed_primary_37946660 crossref_primary_10_1111_gcb_17027 crossref_citationtrail_10_1111_gcb_17027 wiley_primary_10_1111_gcb_17027_GCB17027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 2024-Jan 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2024 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2017; 8 2023; 4 2022; 73 2006; 38 2019; 13 2018; 124 2020; 448 2013; 7 2011; 17 2016; 186 2022; 413 2022; 28 2022; 377 2014; 20 2022; 378 2013; 19 2018; 9 2010; 1 2020; 1 2015; 81 2023; 29 2023; 177 2016; 353 2015; 91 2010; 7 2009; 15 2014; 203 2015; 1 2019; 7 2010; 76 2019; 4 2015; 6 2021; 2 2019; 5 2015; 52 2015; 528 2020; 147 2001; 29 2015; 9 2018; 24 2015; 350 2012; 196 2010; 42 2021; 15 2011; 108 2021; 12 2018; 359 2018; 118 2022; 6 2017; 11 2017; 98 2015; 112 2018; 115 2013; 31 2022; 13 2016; 20 2020; 26 2017 2017; 19 2009; 184 2020; 23 2012; 47 2022; 16 2016; 22 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 359 start-page: 320 year: 2018 end-page: 325 article-title: A global atlas of the dominant bacteria found in soil publication-title: Science – volume: 13 start-page: 1639 year: 2019 end-page: 1646 article-title: Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi publication-title: The ISME Journal – volume: 20 start-page: 241 year: 2016 end-page: 248 article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild publication-title: Fungal Ecology – volume: 350 start-page: 663 year: 2015 end-page: 666 article-title: The ecology of the microbiome: Networks, competition, and stability publication-title: Science – volume: 24 start-page: 2818 year: 2018 end-page: 2827 article-title: Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents publication-title: Global Change Biology – volume: 1 start-page: 15080 year: 2015 article-title: Grassland productivity limited by multiple nutrients publication-title: Nature Plants – volume: 353 start-page: 1272 year: 2016 end-page: 1277 article-title: Decoupling function and taxonomy in the global ocean microbiome publication-title: Science – volume: 17 start-page: 495 year: 2011 end-page: 504 article-title: Topographic and ungulate regulation of soil C turnover in a temperate grassland ecosystem publication-title: Global Change Biology – volume: 9 start-page: 980 year: 2015 end-page: 989 article-title: Selection on soil microbiomes reveals reproducible impacts on plant function publication-title: The ISME Journal – volume: 12 year: 2021 article-title: Bridging microbial functional traits with localized process rates at soil interfaces publication-title: Frontiers in Microbiology – volume: 9 start-page: 3591 year: 2018 article-title: Land use driven change in soil pH affects microbial carbon cycling processes publication-title: Nature Communications – volume: 203 start-page: 233 year: 2014 end-page: 244 article-title: Species richness of arbuscular mycorrhizal fungi: Associations with grassland plant richness and biomass publication-title: New Phytologist – volume: 26 start-page: 5320 year: 2020 end-page: 5332 article-title: Interactive global change factors mitigate soil aggregation and carbon change in a semi‐arid grassland publication-title: Global Change Biology – volume: 7 start-page: 477 year: 2013 end-page: 486 article-title: Fungal community on decomposing leaf litter undergoes rapid successional changes publication-title: The ISME Journal – volume: 7 start-page: 76 year: 2019 article-title: Rhizosphere microbiomes diverge among plant‐host genotypes and chemotypes, but it depends on soil origin publication-title: Microbiome – volume: 31 start-page: 814 year: 2013 end-page: 821 article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences publication-title: Nature Biotechnology – volume: 7 start-page: 2044 year: 2013 end-page: 2053 article-title: Linking microbial community structure to beta‐glucosidic function in soil aggregates publication-title: The ISME Journal – volume: 15 start-page: 1603 year: 2009 end-page: 1614 article-title: Stimulation of microbial extracellular enzyme activities by elevated CO depends on soil aggregate size publication-title: Global Change Biology – volume: 22 start-page: 1385 year: 2016 end-page: 1393 article-title: A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China publication-title: Global Change Biology – volume: 28 start-page: 5492 year: 2022 end-page: 5504 article-title: Grazing and global change factors differentially affect biodiversity‐ecosystem functioning relationships in grassland ecosystems publication-title: Global Change Biology – volume: 1 start-page: 3 year: 2010 end-page: 14 article-title: A protocol for data exploration to avoid common statistical problems publication-title: Methods in Ecology and Evolution – volume: 147 year: 2020 article-title: Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region publication-title: Soil Biology and Biochemistry – volume: 23 start-page: 1298 year: 2020 end-page: 1309 article-title: The effects of livestock grazing on biodiversity are multi‐trophic: A meta‐analysis publication-title: Ecology Letters – volume: 52 start-page: 1188 year: 2015 end-page: 1196 article-title: Simple measures of climate, soil properties and plant traits predict national‐scale grassland soil carbon stocks publication-title: Journal of Applied Ecology – volume: 196 start-page: 807 year: 2012 end-page: 815 article-title: Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland publication-title: New Phytologist – volume: 377 start-page: 603 year: 2022 end-page: 608 article-title: Grassland soil carbon sequestration: Current understanding, challenges, and solutions publication-title: Science – volume: 528 start-page: 504 year: 2015 end-page: 509 article-title: Complete nitrification by Nitrospira bacteria publication-title: Nature – volume: 8 start-page: 14349 year: 2017 article-title: Soil networks become more connected and take up more carbon as nature restoration progresses publication-title: Nature Communications – volume: 11 start-page: 1943 year: 2017 end-page: 1948 article-title: Soil aggregates as massively concurrent evolutionary incubators publication-title: The ISME Journal – volume: 19 start-page: 637 year: 2013 end-page: 648 article-title: Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland publication-title: Global Change Biology – volume: 9 start-page: 3033 year: 2018 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nature Communications – volume: 6 start-page: 6707 year: 2015 article-title: Plant diversity increases soil microbial activity and soil carbon storage publication-title: Nature Communications – volume: 29 year: 2001 article-title: A new mathematical model for relative quantification in real‐time RT‐PCR publication-title: Nucleic Acids Research – volume: 13 start-page: 1370 year: 2019 end-page: 1373 article-title: Microbial functional traits are sensitive indicators of mild disturbance by lamb grazing publication-title: The ISME Journal – volume: 4 start-page: 4 year: 2023 end-page: 18 article-title: Soil structure and microbiome functions in agroecosystems publication-title: Nature Reviews Earth and Environment – volume: 26 start-page: 7173 year: 2020 end-page: 7185 article-title: Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties publication-title: Global Change Biology – volume: 29 start-page: 1660 year: 2023 end-page: 1679 article-title: Effects of experimental nitrogen deposition on soil organic carbon storage in Southern California drylands publication-title: Global Change Biology – volume: 47 start-page: 78 year: 2012 end-page: 92 article-title: Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil publication-title: Soil Biology and Biochemistry – volume: 73 start-page: 649 year: 2022 end-page: 672 article-title: The costs and benefits of plant‐arbuscular mycorrhizal fungal interactions publication-title: Annual Review of Plant Biology – volume: 15 start-page: 1722 year: 2021 end-page: 1734 article-title: Environmental stress destabilizes microbial networks publication-title: The ISME Journal – volume: 13 start-page: 782 year: 2022 end-page: 788 article-title: Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package publication-title: Methods in Ecology and Evolution – volume: 108 start-page: 4516 year: 2011 end-page: 4522 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 124 start-page: 47 year: 2018 end-page: 58 article-title: Interactions of soil bacteria and fungi with plants during long‐term grazing exclusion in semiarid grasslands publication-title: Soil Biology and Biochemistry – volume: 76 start-page: 5547 year: 2010 end-page: 5555 article-title: The abundance of microbial functional genes in grassy woodlands is influenced more by soil nutrient enrichment than by recent weed invasion or livestock exclusion publication-title: Applied and Environmental Microbiology – volume: 91 start-page: 169 year: 2015 end-page: 181 article-title: Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities publication-title: Soil Biology and Biochemistry – volume: 4 start-page: 1356 year: 2019 end-page: 1367 article-title: Mediterranean grassland soil C‐N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms publication-title: Nature Microbiology – volume: 413 year: 2022 article-title: Will fungi solve the carbon dilemma? publication-title: Geoderma – volume: 6 start-page: 900 year: 2022 end-page: 909 article-title: Phylotype diversity within soil fungal functional groups drives ecosystem stability publication-title: Nature Ecology and Evolution – volume: 2 start-page: 720 year: 2021 end-page: 735 article-title: Combatting global grassland degradation publication-title: Nature Reviews Earth and Environment – volume: 177 year: 2023 article-title: Soil aggregate development and associated microbial metabolic limitations alter grassland carbon storage following livestock removal publication-title: Soil Biology and Biochemistry – volume: 15 start-page: 623 year: 2021 end-page: 635 article-title: Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline publication-title: The ISME Journal – volume: 12 start-page: 4115 year: 2021 article-title: Particulate organic matter as a functional soil component for persistent soil organic carbon publication-title: Nature Communications – volume: 118 start-page: 217 year: 2018 end-page: 226 article-title: Greatest soil microbial diversity found in micro‐habitats publication-title: Soil Biology and Biochemistry – volume: 98 start-page: 1922 year: 2017 end-page: 1931 article-title: Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores publication-title: Ecology – volume: 19 start-page: 2740 year: 2017 end-page: 2753 article-title: Land‐use influences phosphatase gene microdiversity in soils publication-title: Environmental Microbiology – volume: 184 start-page: 449 year: 2009 end-page: 456 article-title: 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity publication-title: New Phytologist – volume: 29 start-page: 2141 year: 2023 end-page: 2155 article-title: Functional substitutability of native herbivores by livestock for soil carbon stock is mediated by microbial decomposers publication-title: Global Change Biology – volume: 38 start-page: 898 year: 2006 end-page: 911 article-title: pH regulation of carbon and nitrogen dynamics in two agricultural soils publication-title: Soil Biology and Biochemistry – volume: 5 year: 2019 article-title: Climate change effects on plant‐soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems publication-title: Science Advances – volume: 112 start-page: 15684 year: 2015 end-page: 15689 article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 1 start-page: 420 year: 2020 end-page: 434 article-title: Nitrous oxide emissions from permafrost‐affected soils publication-title: Nature Reviews Earth and Environment – volume: 81 start-page: 2384 year: 2015 end-page: 2394 article-title: Large fractions of CO ‐fixing microorganisms in pristine limestone aquifers appear to Be involved in the oxidation of reduced sulfur and nitrogen compounds publication-title: Applied and Environmental Microbiology – volume: 42 start-page: 2182 year: 2010 end-page: 2191 article-title: Soil texture affects soil microbial and structural recovery during grassland restoration publication-title: Soil Biology and Biochemistry – volume: 7 start-page: 335 year: 2010 end-page: 336 article-title: QIIME allows analysis of high‐throughput community sequencing data publication-title: Nature Methods – volume: 12 start-page: 3484 year: 2021 article-title: Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils publication-title: Nature Communications – volume: 115 start-page: 4027 year: 2018 end-page: 4032 article-title: Plant diversity enhances productivity and soil carbon storage publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 186 start-page: 99 year: 2016 end-page: 118 article-title: Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution publication-title: Microbiological Research – year: 2017 – volume: 378 start-page: 915 year: 2022 end-page: 920 article-title: Grazing and ecosystem service delivery in global drylands publication-title: Science – volume: 16 start-page: 26 year: 2022 end-page: 37 article-title: Linking meta‐omics to the kinetics of denitrification intermediates reveals pH‐dependent causes of N O emissions and nitrite accumulation in soil publication-title: The ISME Journal – volume: 448 start-page: 495 year: 2020 end-page: 508 article-title: Effect of long‐term destocking on soil fungal functional groups and interactions with plants publication-title: Plant and Soil – volume: 20 start-page: 2356 year: 2014 end-page: 2367 article-title: Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories publication-title: Global Change Biology – ident: e_1_2_10_60_1 doi: 10.1038/ismej.2017.56 – ident: e_1_2_10_51_1 doi: 10.1038/s41396-019-0369-0 – ident: e_1_2_10_30_1 doi: 10.1038/s43017-022-00366-w – ident: e_1_2_10_58_1 doi: 10.1126/sciadv.aaz1834 – ident: e_1_2_10_71_1 doi: 10.1111/gcb.12065 – ident: e_1_2_10_7_1 doi: 10.1038/s43017-021-00207-2 – ident: e_1_2_10_57_1 doi: 10.1093/nar/29.9.e45 – ident: e_1_2_10_62_1 doi: 10.1111/gcb.16600 – ident: e_1_2_10_18_1 doi: 10.1038/nature16461 – ident: e_1_2_10_21_1 doi: 10.1038/s41564-019-0449-y – ident: e_1_2_10_47_1 doi: 10.1126/science.abq4062 – ident: e_1_2_10_39_1 doi: 10.1038/ncomms7707 – ident: e_1_2_10_38_1 doi: 10.1111/2041-210X.13800 – ident: e_1_2_10_48_1 doi: 10.1038/s41467-018-05980-1 – ident: e_1_2_10_68_1 doi: 10.1007/s11104-020-04452-0 – ident: e_1_2_10_50_1 doi: 10.1038/ncomms14349 – ident: e_1_2_10_11_1 doi: 10.1111/j.1469-8137.2009.03003.x – ident: e_1_2_10_4_1 doi: 10.1111/gcb.15220 – ident: e_1_2_10_37_1 doi: 10.1016/j.soilbio.2005.08.006 – ident: e_1_2_10_63_1 doi: 10.1038/s41396-020-00801-0 – ident: e_1_2_10_41_1 doi: 10.1038/s41467-021-23605-y – ident: e_1_2_10_9_1 doi: 10.3389/fmicb.2021.625697 – ident: e_1_2_10_20_1 doi: 10.1126/science.aap9516 – ident: e_1_2_10_25_1 doi: 10.1038/nplants.2015.80 – ident: e_1_2_10_24_1 doi: 10.1002/ecy.1879 – ident: e_1_2_10_65_1 doi: 10.1186/s40168-019-0668-8 – ident: e_1_2_10_3_1 doi: 10.1016/j.soilbio.2017.12.018 – ident: e_1_2_10_43_1 doi: 10.1038/s41559-022-01756-5 – ident: e_1_2_10_34_1 doi: 10.1111/nph.12765 – ident: e_1_2_10_14_1 doi: 10.1111/gcb.12475 – ident: e_1_2_10_53_1 doi: 10.1016/j.funeco.2015.06.006 – ident: e_1_2_10_52_1 doi: 10.1111/1462-2920.13778 – ident: e_1_2_10_49_1 doi: 10.1111/1365-2664.12478 – ident: e_1_2_10_44_1 doi: 10.1126/science.aaf4507 – ident: e_1_2_10_56_1 doi: 10.1038/ismej.2014.196 – ident: e_1_2_10_26_1 doi: 10.1111/ele.13527 – ident: e_1_2_10_17_1 doi: 10.1016/j.soilbio.2020.107814 – ident: e_1_2_10_54_1 doi: 10.1016/j.micres.2016.04.001 – ident: e_1_2_10_13_1 doi: 10.1073/pnas.1000080107 – ident: e_1_2_10_28_1 doi: 10.1038/s41396-021-01045-2 – ident: e_1_2_10_55_1 doi: 10.1111/gcb.14113 – ident: e_1_2_10_8_1 doi: 10.1146/annurev-arplant-102820-124504 – ident: e_1_2_10_64_1 doi: 10.1016/j.soilbio.2015.08.034 – ident: e_1_2_10_27_1 doi: 10.1111/j.1365-2486.2010.02219.x – ident: e_1_2_10_31_1 doi: 10.1111/gcb.16305 – ident: e_1_2_10_70_1 doi: 10.1038/s41467-021-24192-8 – ident: e_1_2_10_73_1 doi: 10.1111/j.2041-210X.2009.00001.x – ident: e_1_2_10_33_1 doi: 10.1128/AEM.03269-14 – ident: e_1_2_10_35_1 doi: 10.1111/gcb.13133 – ident: e_1_2_10_42_1 doi: 10.1128/AEM.03054-09 – ident: e_1_2_10_16_1 doi: 10.1126/science.aad2602 – ident: e_1_2_10_19_1 doi: 10.1038/s41467-018-05516-7 – ident: e_1_2_10_67_1 doi: 10.1038/ismej.2012.116 – ident: e_1_2_10_6_1 doi: 10.1038/ismej.2013.87 – ident: e_1_2_10_36_1 doi: 10.1016/j.soilbio.2022.108907 – ident: e_1_2_10_10_1 doi: 10.1016/j.soilbio.2011.12.015 – ident: e_1_2_10_15_1 doi: 10.1073/pnas.1700298114 – ident: e_1_2_10_2_1 doi: 10.1016/j.soilbio.2010.08.014 – ident: e_1_2_10_23_1 doi: 10.1111/j.1365-2486.2009.01844.x – ident: e_1_2_10_22_1 doi: 10.1111/j.1469-8137.2012.04349.x – ident: e_1_2_10_29_1 doi: 10.1016/j.geoderma.2022.115767 – ident: e_1_2_10_32_1 doi: 10.1038/s41396-020-00882-x – ident: e_1_2_10_69_1 doi: 10.1101/133462 – ident: e_1_2_10_72_1 doi: 10.1016/j.soilbio.2018.05.026 – ident: e_1_2_10_46_1 doi: 10.1073/pnas.1516684112 – ident: e_1_2_10_5_1 doi: 10.1126/science.abo2380 – ident: e_1_2_10_61_1 doi: 10.1111/gcb.15308 – ident: e_1_2_10_12_1 doi: 10.1038/nmeth.f.303 – ident: e_1_2_10_66_1 doi: 10.1038/s43017-020-0063-9 – ident: e_1_2_10_45_1 doi: 10.1038/s41396-019-0354-7 – ident: e_1_2_10_59_1 doi: 10.1111/gcb.16563 – ident: e_1_2_10_40_1 doi: 10.1038/nbt.2676 |
SSID | ssj0003206 |
Score | 2.5548687 |
Snippet | Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long‐term effects of grazing exclusion... Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long-term effects of grazing exclusion... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e17027 |
SubjectTerms | Aggregates Aggregation Biological Sciences carbon carbon sequestration Ecological distribution Ecological function ecosystems Fungi Genes global change grassland soils Grasslands Grazing grazing exclusion Microbial activity microbial communities and functions Microbiology microbiome Microbiomes Microhabitat Microhabitats Microorganisms nitrogen and phosphorus accumulation Nutrient cycles Nutrient dynamics Pathogens Soil Soil aggregates soil aggregation Soil biology Soil chemistry Soil microorganisms Soil pH Soils |
Title | New perspectives on microbiome and nutrient sequestration in soil aggregates during long‐term grazing exclusion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.17027 https://www.ncbi.nlm.nih.gov/pubmed/37946660 https://www.proquest.com/docview/2918168226 https://www.proquest.com/docview/2889246263 https://www.proquest.com/docview/3040393473 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC6WBcGLj9HV0VVaEfGSIUl3pxM86bDrIqwHcWEPQujXhGGznXUyA-rJn-Bv9JdY3XmMqy6It4RUQndSVf1VpesrgGeKLZhRgkdxoUXEpKCRyoWNpJF8YQ1NlPLVyMfvsqMT9vaUn-7Ay6EWpuOHGBNu3jKCv_YGLlX7i5FXWs0SgVEV-l-_V8sDovdb6iiahr6aCeUMXU1Ce1Yhv4tnvPPyWvQHwLyMV8OCc3gTPg5D7faZnM02azXTX39jcfzPudyCGz0QJa86zbkNO9ZN4FrXmvLLBPYOthVwKNa7gHYC02OE2c0qiJHnZF4vEfOGszvwCV0mudiWb7akceR82XE9nVsinSHO0__jQ0nYxD2w9pKlI22zrImsqpX1qb2WdBWUpG5c9ePbd7-EkGrl2bArYj_reuPzfHfh5PDgw_wo6ns6RJph9BMhnpSFQadKM1YkVFIfoykh0BOwHPVCLUxS5JlmllMM5WwsLNUFL2KD-NpqQ_dg1zXO3geijbQ5U1wkqWExXSiZmdTwWBuMwbixU3gxfN1S94Tnvu9GXQ6BD772Mrz2KTwdRS86lo-_Ce0PKlL2ht6WaZH4ziUIYqfwZLyMJur_u0hnmw3K5DlGuZ7252oZis6UFpQJlLnXqd84EhqaAGQxTigo0dVDLN_MX4eDB_8u-hCupwjUurTSPuyuVxv7CIHWWj0OFvUT-rcnXA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIgQXfgKFQIEFAeLiyPauvfaBA6QtKW16QK3Um_H-xIpw7RIngnLiEXgQXoWX4EmYXf-EApW49MAtUUbWZnd-vhnvfAPwRLAJU4IHjhtL7rCUU0dEXDupSoOJVtQTwnQjj_fC0QF7cxgcrsC3them5ofoCm7GMqy_NgZuCtK_WHkmxcDjmFY1Vyp39MlHTNiqF9sbeLpPfX9rc384cpqZAo5kiL4dxDNprNCoachij6bU5AiCc9REFuG6xERhGh5KpgOKqYR2uaYyDmJXIb7TUlF87gW4aCaIG6b-jbdLsirq20meHg0YOjePNjxG5t5Qt9TT0e8PSHsaIdsQt3UNvrebU99seT9YzMVAfv6NN_J_2b3rcLXB2uRlbRw3YEUXPbhUT9886cHa5rLJD8UaL1f1oD_GTKKcWTHyjAzzKcJ6--0mfMCoQI6XHaoVKQtyNK3prI40SQtFCjPhAB9K7D31lpiYTAtSldOcpFk206Z6WZG6SZTkZZH9-PLVREmSzQzhd0b0J5kvTCnzFhycyyatwWpRFvoOEKlSHTERcM9XzKUTkYbKV4ErFaaZgdJ9eN6qUyIbTnczWiRP2twOjzmxx9yHx53ocU1k8jeh9VYnk8aXVYkfe2Y4C-L0PjzqfkYvZF4tpYUuFygTRZjIG2ajs2UoxgsaU8ZR5nat791KqJ1zELr4h6zWnr3E5PXwlf1w999FH8Ll0f54N9nd3tu5B1d8xKV1FW0dVuezhb6PuHIuHlhzJvDuvC3gJ92ghAY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIhCXAoHSQIEFAerFke1d_x04QNLQUlohRKXejPfHVoRrhzgRlBOPwHvwKjwFT8Ls-icUqMSlB262PLLWu_PzzXrnG4BHnKVM8sCz7EgEFksCavEwUFYiEy9Vkjqc62rk_QN_55C9PPKOVuBbWwtT80N0G27aMoy_1gY-lekvRp4JPnACzKqaE5V76uQj5mvV090RLu5j1x1vvx3uWE1LAUswBN8WwpkkkmjT1GeRQxOqUwQeBKiILMRh8VRiFu4LpjyKmYSyA0VF5EW2RHinhKT43gtwkfl2pPtEjN4suaqoaxp5OtRj6Nsc2tAY6WND3VBPB78_EO1pgGwi3PgqfG_npj7Y8n6wmPOB-PwbbeR_MnnXYK1B2uRZbRrXYUUVPbhU99486cH69rLED8UaH1f1oL-PeUQ5M2LkCRnmEwT15u4GfMCYQKbL-tSKlAU5ntRkVseKJIUkhe5vgC8l5pR6S0tMJgWpyklOkiybKb13WZG6RJTkZZH9-PJVx0iSzTTdd0bUJ5Ev9EbmTTg8l0lah9WiLNQGECETFTLuBY4rmU1TnvjSlZ4tJCaZnlR92Gq1KRYNo7tuLJLHbWaHyxybZe7Dw050WtOY_E1os1XJuPFkVexGjm7Ngii9Dw-6x-iD9I-lpFDlAmXCENN4zWt0tgzFaEEjygKUuVWrezcSaroc-DZ-kFHas4cYvxg-Nxe3_130Plx-PRrHr3YP9u7AFRdBab2Ftgmr89lC3UVQOef3jDETeHfeBvATwQWCtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+perspectives+on+microbiome+and+nutrient+sequestration+in+soil+aggregates+during+long%E2%80%90term+grazing+exclusion&rft.jtitle=Global+change+biology&rft.au=Ju%2C+Wenliang&rft.au=Fang%2C+Linchuan&rft.au=Shen%2C+Guoting&rft.au=Manuel+Delgado%E2%80%90Baquerizo&rft.date=2024-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=30&rft.issue=1&rft_id=info:doi/10.1111%2Fgcb.17027&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |