New perspectives on microbiome and nutrient sequestration in soil aggregates during long‐term grazing exclusion

Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long‐term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36‐year exclusion experiment to inve...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 30; no. 1; pp. e17027 - n/a
Main Authors Ju, Wenliang, Fang, Linchuan, Shen, Guoting, Delgado‐Baquerizo, Manuel, Chen, Ji, Zhou, Guiyao, Ma, Dengke, Bing, Haijian, Liu, Lei, Liu, Ji, Jin, Xiaolian, Guo, Liang, Tan, Wenfeng, Blagodatskaya, Evgenia
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long‐term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36‐year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long‐term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long‐term GE. In contrast, 11–26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate‐smart and resource‐efficient grasslands. We linked the soil microscale‐associated microbiomes with the carbon sequestration and biogeochemical cycling of livestock excluded grasslands for up to 36 years. Long‐term grazing exclusion reduced microbial diversity, community stability, and microbial functional genes associated with carbon sequestration and nutrient cycling. Moreover, we emphasize that the interaction between grazing exclusion and longevity as well as the structure of soil aggregates have substantial impacts the grassland biogeochemical cycles and global climate change in which the soil microbiome is involved.
AbstractList Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long‐term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36‐year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long‐term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long‐term GE. In contrast, 11–26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate‐smart and resource‐efficient grasslands.
Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long‐term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36‐year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long‐term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long‐term GE. In contrast, 11–26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate‐smart and resource‐efficient grasslands. We linked the soil microscale‐associated microbiomes with the carbon sequestration and biogeochemical cycling of livestock excluded grasslands for up to 36 years. Long‐term grazing exclusion reduced microbial diversity, community stability, and microbial functional genes associated with carbon sequestration and nutrient cycling. Moreover, we emphasize that the interaction between grazing exclusion and longevity as well as the structure of soil aggregates have substantial impacts the grassland biogeochemical cycles and global climate change in which the soil microbiome is involved.
Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long-term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36-year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long-term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long-term GE. In contrast, 11-26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate-smart and resource-efficient grasslands.Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long-term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36-year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long-term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long-term GE. In contrast, 11-26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate-smart and resource-efficient grasslands.
Author Liu, Ji
Fang, Linchuan
Liu, Lei
Delgado‐Baquerizo, Manuel
Ma, Dengke
Shen, Guoting
Chen, Ji
Zhou, Guiyao
Jin, Xiaolian
Bing, Haijian
Blagodatskaya, Evgenia
Ju, Wenliang
Guo, Liang
Tan, Wenfeng
Author_xml – sequence: 1
  givenname: Wenliang
  orcidid: 0000-0001-9203-6921
  surname: Ju
  fullname: Ju, Wenliang
  organization: Tsinghua University
– sequence: 2
  givenname: Linchuan
  orcidid: 0000-0003-1923-7908
  surname: Fang
  fullname: Fang, Linchuan
  email: flinc629@hotmail.com
  organization: Wuhan University of Technology
– sequence: 3
  givenname: Guoting
  surname: Shen
  fullname: Shen, Guoting
  organization: Helmholtz Centre for Environmental Research – UFZ
– sequence: 4
  givenname: Manuel
  orcidid: 0000-0002-6499-576X
  surname: Delgado‐Baquerizo
  fullname: Delgado‐Baquerizo, Manuel
  organization: Universidad Pablo de Olavide
– sequence: 5
  givenname: Ji
  orcidid: 0000-0001-7026-6312
  surname: Chen
  fullname: Chen, Ji
  organization: Aarhus University
– sequence: 6
  givenname: Guiyao
  orcidid: 0000-0002-1385-3913
  surname: Zhou
  fullname: Zhou, Guiyao
  organization: Universidad Pablo de Olavide
– sequence: 7
  givenname: Dengke
  surname: Ma
  fullname: Ma, Dengke
  organization: Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources
– sequence: 8
  givenname: Haijian
  orcidid: 0000-0002-9813-6939
  surname: Bing
  fullname: Bing, Haijian
  organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
– sequence: 9
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
  organization: University of Groningen, University Medical Center Groningen
– sequence: 10
  givenname: Ji
  orcidid: 0000-0003-2496-9521
  surname: Liu
  fullname: Liu, Ji
  organization: Central China Normal University
– sequence: 11
  givenname: Xiaolian
  surname: Jin
  fullname: Jin, Xiaolian
  organization: Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources
– sequence: 12
  givenname: Liang
  surname: Guo
  fullname: Guo, Liang
  organization: Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources
– sequence: 13
  givenname: Wenfeng
  orcidid: 0000-0002-3098-2928
  surname: Tan
  fullname: Tan, Wenfeng
  organization: Huazhong Agricultural University
– sequence: 14
  givenname: Evgenia
  orcidid: 0000-0002-8284-4017
  surname: Blagodatskaya
  fullname: Blagodatskaya, Evgenia
  organization: Helmholtz Centre for Environmental Research – UFZ
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37946660$$D View this record in MEDLINE/PubMed
BookMark eNqFkb9uFDEQhy0URJKDghdAlmhCsYn_nb0u4QQBKSIN1JbXnls52rUv9i5JqHgEnpEnwXcXKCJBprFlfb_ReL5jdBBTBIReUnJKa531rjulijD1BB1RLpcNE6082N6XoqGE8kN0XMoVIYQzIp-hQ660kFKSI3T9GW7wBnLZgJvCNyg4RTwGl1MX0gjYRo_jPOUAccIFrmcoU7ZTqFSIuKQwYNv3GXo71ayfc4g9HlLsf_34OUEecZ_t9-0b3LphLjX3HD1d26HAi_tzgb5-eP9l9bG5uDz_tHp70TjBqGo041Z76z2XQlNuOSFUdEpxqkXb1Vp7qlvpBCy5ohKIAu70UhPf0g6c5wt0su-7yWk3thlDcTAMNkKai-FEEK65UPxRlLWtZkIyuUVfP0Cv0pxj_YhhmrZUtqxiC_Tqnpq7EbzZ5DDafGf-7L0Cb_ZAXXQpGdZ_EUrM1qmpTs3OaWXPHrAuTDsF1UQY_pe4CQPc_bu1OV-92yd-A4K3sz8
CitedBy_id crossref_primary_10_1021_acs_est_4c06081
crossref_primary_10_1016_j_apsoil_2025_106034
crossref_primary_10_1016_j_pedsph_2024_05_011
crossref_primary_10_1016_j_agee_2024_109403
crossref_primary_10_5194_bg_22_135_2025
crossref_primary_10_1016_j_soilbio_2024_109638
crossref_primary_10_1016_j_still_2024_106278
crossref_primary_10_1002_ldr_5422
crossref_primary_10_1016_j_agee_2024_109190
crossref_primary_10_1016_j_catena_2024_108264
crossref_primary_10_3389_fpls_2024_1366821
crossref_primary_10_3389_fmicb_2024_1403338
crossref_primary_10_1016_j_ejsobi_2024_103704
crossref_primary_10_1002_ldr_5330
crossref_primary_10_1007_s40333_024_0063_6
crossref_primary_10_3390_d16110696
Cites_doi 10.1038/ismej.2017.56
10.1038/s41396-019-0369-0
10.1038/s43017-022-00366-w
10.1126/sciadv.aaz1834
10.1111/gcb.12065
10.1038/s43017-021-00207-2
10.1093/nar/29.9.e45
10.1111/gcb.16600
10.1038/nature16461
10.1038/s41564-019-0449-y
10.1126/science.abq4062
10.1038/ncomms7707
10.1111/2041-210X.13800
10.1038/s41467-018-05980-1
10.1007/s11104-020-04452-0
10.1038/ncomms14349
10.1111/j.1469-8137.2009.03003.x
10.1111/gcb.15220
10.1016/j.soilbio.2005.08.006
10.1038/s41396-020-00801-0
10.1038/s41467-021-23605-y
10.3389/fmicb.2021.625697
10.1126/science.aap9516
10.1038/nplants.2015.80
10.1002/ecy.1879
10.1186/s40168-019-0668-8
10.1016/j.soilbio.2017.12.018
10.1038/s41559-022-01756-5
10.1111/nph.12765
10.1111/gcb.12475
10.1016/j.funeco.2015.06.006
10.1111/1462-2920.13778
10.1111/1365-2664.12478
10.1126/science.aaf4507
10.1038/ismej.2014.196
10.1111/ele.13527
10.1016/j.soilbio.2020.107814
10.1016/j.micres.2016.04.001
10.1073/pnas.1000080107
10.1038/s41396-021-01045-2
10.1111/gcb.14113
10.1146/annurev-arplant-102820-124504
10.1016/j.soilbio.2015.08.034
10.1111/j.1365-2486.2010.02219.x
10.1111/gcb.16305
10.1038/s41467-021-24192-8
10.1111/j.2041-210X.2009.00001.x
10.1128/AEM.03269-14
10.1111/gcb.13133
10.1128/AEM.03054-09
10.1126/science.aad2602
10.1038/s41467-018-05516-7
10.1038/ismej.2012.116
10.1038/ismej.2013.87
10.1016/j.soilbio.2022.108907
10.1016/j.soilbio.2011.12.015
10.1073/pnas.1700298114
10.1016/j.soilbio.2010.08.014
10.1111/j.1365-2486.2009.01844.x
10.1111/j.1469-8137.2012.04349.x
10.1016/j.geoderma.2022.115767
10.1038/s41396-020-00882-x
10.1101/133462
10.1016/j.soilbio.2018.05.026
10.1073/pnas.1516684112
10.1126/science.abo2380
10.1111/gcb.15308
10.1038/nmeth.f.303
10.1038/s43017-020-0063-9
10.1038/s41396-019-0354-7
10.1111/gcb.16563
10.1038/nbt.2676
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
Copyright © 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: Copyright © 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
DOI 10.1111/gcb.17027
DatabaseName CrossRef
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage n/a
ExternalDocumentID 37946660
10_1111_gcb_17027
GCB17027
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Hubei Province
  funderid: 2020CFA013
– fundername: National Natural Science Foundation of China
  funderid: 32061123007; 41977031
– fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  funderid: XDB40020202
– fundername: National Natural Science Foundation of China
  grantid: 41977031
– fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  grantid: XDB40020202
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2020CFA013
– fundername: National Natural Science Foundation of China
  grantid: 32061123007
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
ID FETCH-LOGICAL-c4217-923a9dadd364913a30014b7731948bbbbfd1986c4e53716e07e3c9590d81becd3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:30:20 EDT 2025
Fri Jul 11 12:28:10 EDT 2025
Tue Aug 12 21:54:04 EDT 2025
Mon Jul 21 05:39:50 EDT 2025
Tue Jul 01 05:28:29 EDT 2025
Thu Apr 24 23:11:58 EDT 2025
Wed Aug 20 07:25:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords grazing exclusion
soil aggregates
grasslands
nitrogen and phosphorus accumulation
microbial communities and functions
carbon sequestration
Language English
License 2023 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4217-923a9dadd364913a30014b7731948bbbbfd1986c4e53716e07e3c9590d81becd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3098-2928
0000-0001-9203-6921
0000-0001-7026-6312
0000-0003-2496-9521
0000-0002-1385-3913
0000-0002-6499-576X
0000-0002-9813-6939
0000-0003-1923-7908
0000-0002-8284-4017
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.17027
PMID 37946660
PQID 2918168226
PQPubID 30327
PageCount 15
ParticipantIDs proquest_miscellaneous_3040393473
proquest_miscellaneous_2889246263
proquest_journals_2918168226
pubmed_primary_37946660
crossref_primary_10_1111_gcb_17027
crossref_citationtrail_10_1111_gcb_17027
wiley_primary_10_1111_gcb_17027_GCB17027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
2024-Jan
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 8
2023; 4
2022; 73
2006; 38
2019; 13
2018; 124
2020; 448
2013; 7
2011; 17
2016; 186
2022; 413
2022; 28
2022; 377
2014; 20
2022; 378
2013; 19
2018; 9
2010; 1
2020; 1
2015; 81
2023; 29
2023; 177
2016; 353
2015; 91
2010; 7
2009; 15
2014; 203
2015; 1
2019; 7
2010; 76
2019; 4
2015; 6
2021; 2
2019; 5
2015; 52
2015; 528
2020; 147
2001; 29
2015; 9
2018; 24
2015; 350
2012; 196
2010; 42
2021; 15
2011; 108
2021; 12
2018; 359
2018; 118
2022; 6
2017; 11
2017; 98
2015; 112
2018; 115
2013; 31
2022; 13
2016; 20
2020; 26
2017
2017; 19
2009; 184
2020; 23
2012; 47
2022; 16
2016; 22
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 359
  start-page: 320
  year: 2018
  end-page: 325
  article-title: A global atlas of the dominant bacteria found in soil
  publication-title: Science
– volume: 13
  start-page: 1639
  year: 2019
  end-page: 1646
  article-title: Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi
  publication-title: The ISME Journal
– volume: 20
  start-page: 241
  year: 2016
  end-page: 248
  article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild
  publication-title: Fungal Ecology
– volume: 350
  start-page: 663
  year: 2015
  end-page: 666
  article-title: The ecology of the microbiome: Networks, competition, and stability
  publication-title: Science
– volume: 24
  start-page: 2818
  year: 2018
  end-page: 2827
  article-title: Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents
  publication-title: Global Change Biology
– volume: 1
  start-page: 15080
  year: 2015
  article-title: Grassland productivity limited by multiple nutrients
  publication-title: Nature Plants
– volume: 353
  start-page: 1272
  year: 2016
  end-page: 1277
  article-title: Decoupling function and taxonomy in the global ocean microbiome
  publication-title: Science
– volume: 17
  start-page: 495
  year: 2011
  end-page: 504
  article-title: Topographic and ungulate regulation of soil C turnover in a temperate grassland ecosystem
  publication-title: Global Change Biology
– volume: 9
  start-page: 980
  year: 2015
  end-page: 989
  article-title: Selection on soil microbiomes reveals reproducible impacts on plant function
  publication-title: The ISME Journal
– volume: 12
  year: 2021
  article-title: Bridging microbial functional traits with localized process rates at soil interfaces
  publication-title: Frontiers in Microbiology
– volume: 9
  start-page: 3591
  year: 2018
  article-title: Land use driven change in soil pH affects microbial carbon cycling processes
  publication-title: Nature Communications
– volume: 203
  start-page: 233
  year: 2014
  end-page: 244
  article-title: Species richness of arbuscular mycorrhizal fungi: Associations with grassland plant richness and biomass
  publication-title: New Phytologist
– volume: 26
  start-page: 5320
  year: 2020
  end-page: 5332
  article-title: Interactive global change factors mitigate soil aggregation and carbon change in a semi‐arid grassland
  publication-title: Global Change Biology
– volume: 7
  start-page: 477
  year: 2013
  end-page: 486
  article-title: Fungal community on decomposing leaf litter undergoes rapid successional changes
  publication-title: The ISME Journal
– volume: 7
  start-page: 76
  year: 2019
  article-title: Rhizosphere microbiomes diverge among plant‐host genotypes and chemotypes, but it depends on soil origin
  publication-title: Microbiome
– volume: 31
  start-page: 814
  year: 2013
  end-page: 821
  article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences
  publication-title: Nature Biotechnology
– volume: 7
  start-page: 2044
  year: 2013
  end-page: 2053
  article-title: Linking microbial community structure to beta‐glucosidic function in soil aggregates
  publication-title: The ISME Journal
– volume: 15
  start-page: 1603
  year: 2009
  end-page: 1614
  article-title: Stimulation of microbial extracellular enzyme activities by elevated CO depends on soil aggregate size
  publication-title: Global Change Biology
– volume: 22
  start-page: 1385
  year: 2016
  end-page: 1393
  article-title: A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China
  publication-title: Global Change Biology
– volume: 28
  start-page: 5492
  year: 2022
  end-page: 5504
  article-title: Grazing and global change factors differentially affect biodiversity‐ecosystem functioning relationships in grassland ecosystems
  publication-title: Global Change Biology
– volume: 1
  start-page: 3
  year: 2010
  end-page: 14
  article-title: A protocol for data exploration to avoid common statistical problems
  publication-title: Methods in Ecology and Evolution
– volume: 147
  year: 2020
  article-title: Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region
  publication-title: Soil Biology and Biochemistry
– volume: 23
  start-page: 1298
  year: 2020
  end-page: 1309
  article-title: The effects of livestock grazing on biodiversity are multi‐trophic: A meta‐analysis
  publication-title: Ecology Letters
– volume: 52
  start-page: 1188
  year: 2015
  end-page: 1196
  article-title: Simple measures of climate, soil properties and plant traits predict national‐scale grassland soil carbon stocks
  publication-title: Journal of Applied Ecology
– volume: 196
  start-page: 807
  year: 2012
  end-page: 815
  article-title: Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland
  publication-title: New Phytologist
– volume: 377
  start-page: 603
  year: 2022
  end-page: 608
  article-title: Grassland soil carbon sequestration: Current understanding, challenges, and solutions
  publication-title: Science
– volume: 528
  start-page: 504
  year: 2015
  end-page: 509
  article-title: Complete nitrification by Nitrospira bacteria
  publication-title: Nature
– volume: 8
  start-page: 14349
  year: 2017
  article-title: Soil networks become more connected and take up more carbon as nature restoration progresses
  publication-title: Nature Communications
– volume: 11
  start-page: 1943
  year: 2017
  end-page: 1948
  article-title: Soil aggregates as massively concurrent evolutionary incubators
  publication-title: The ISME Journal
– volume: 19
  start-page: 637
  year: 2013
  end-page: 648
  article-title: Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland
  publication-title: Global Change Biology
– volume: 9
  start-page: 3033
  year: 2018
  article-title: Soil bacterial networks are less stable under drought than fungal networks
  publication-title: Nature Communications
– volume: 6
  start-page: 6707
  year: 2015
  article-title: Plant diversity increases soil microbial activity and soil carbon storage
  publication-title: Nature Communications
– volume: 29
  year: 2001
  article-title: A new mathematical model for relative quantification in real‐time RT‐PCR
  publication-title: Nucleic Acids Research
– volume: 13
  start-page: 1370
  year: 2019
  end-page: 1373
  article-title: Microbial functional traits are sensitive indicators of mild disturbance by lamb grazing
  publication-title: The ISME Journal
– volume: 4
  start-page: 4
  year: 2023
  end-page: 18
  article-title: Soil structure and microbiome functions in agroecosystems
  publication-title: Nature Reviews Earth and Environment
– volume: 26
  start-page: 7173
  year: 2020
  end-page: 7185
  article-title: Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties
  publication-title: Global Change Biology
– volume: 29
  start-page: 1660
  year: 2023
  end-page: 1679
  article-title: Effects of experimental nitrogen deposition on soil organic carbon storage in Southern California drylands
  publication-title: Global Change Biology
– volume: 47
  start-page: 78
  year: 2012
  end-page: 92
  article-title: Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil
  publication-title: Soil Biology and Biochemistry
– volume: 73
  start-page: 649
  year: 2022
  end-page: 672
  article-title: The costs and benefits of plant‐arbuscular mycorrhizal fungal interactions
  publication-title: Annual Review of Plant Biology
– volume: 15
  start-page: 1722
  year: 2021
  end-page: 1734
  article-title: Environmental stress destabilizes microbial networks
  publication-title: The ISME Journal
– volume: 13
  start-page: 782
  year: 2022
  end-page: 788
  article-title: Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package
  publication-title: Methods in Ecology and Evolution
– volume: 108
  start-page: 4516
  year: 2011
  end-page: 4522
  article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 124
  start-page: 47
  year: 2018
  end-page: 58
  article-title: Interactions of soil bacteria and fungi with plants during long‐term grazing exclusion in semiarid grasslands
  publication-title: Soil Biology and Biochemistry
– volume: 76
  start-page: 5547
  year: 2010
  end-page: 5555
  article-title: The abundance of microbial functional genes in grassy woodlands is influenced more by soil nutrient enrichment than by recent weed invasion or livestock exclusion
  publication-title: Applied and Environmental Microbiology
– volume: 91
  start-page: 169
  year: 2015
  end-page: 181
  article-title: Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities
  publication-title: Soil Biology and Biochemistry
– volume: 4
  start-page: 1356
  year: 2019
  end-page: 1367
  article-title: Mediterranean grassland soil C‐N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms
  publication-title: Nature Microbiology
– volume: 413
  year: 2022
  article-title: Will fungi solve the carbon dilemma?
  publication-title: Geoderma
– volume: 6
  start-page: 900
  year: 2022
  end-page: 909
  article-title: Phylotype diversity within soil fungal functional groups drives ecosystem stability
  publication-title: Nature Ecology and Evolution
– volume: 2
  start-page: 720
  year: 2021
  end-page: 735
  article-title: Combatting global grassland degradation
  publication-title: Nature Reviews Earth and Environment
– volume: 177
  year: 2023
  article-title: Soil aggregate development and associated microbial metabolic limitations alter grassland carbon storage following livestock removal
  publication-title: Soil Biology and Biochemistry
– volume: 15
  start-page: 623
  year: 2021
  end-page: 635
  article-title: Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline
  publication-title: The ISME Journal
– volume: 12
  start-page: 4115
  year: 2021
  article-title: Particulate organic matter as a functional soil component for persistent soil organic carbon
  publication-title: Nature Communications
– volume: 118
  start-page: 217
  year: 2018
  end-page: 226
  article-title: Greatest soil microbial diversity found in micro‐habitats
  publication-title: Soil Biology and Biochemistry
– volume: 98
  start-page: 1922
  year: 2017
  end-page: 1931
  article-title: Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores
  publication-title: Ecology
– volume: 19
  start-page: 2740
  year: 2017
  end-page: 2753
  article-title: Land‐use influences phosphatase gene microdiversity in soils
  publication-title: Environmental Microbiology
– volume: 184
  start-page: 449
  year: 2009
  end-page: 456
  article-title: 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity
  publication-title: New Phytologist
– volume: 29
  start-page: 2141
  year: 2023
  end-page: 2155
  article-title: Functional substitutability of native herbivores by livestock for soil carbon stock is mediated by microbial decomposers
  publication-title: Global Change Biology
– volume: 38
  start-page: 898
  year: 2006
  end-page: 911
  article-title: pH regulation of carbon and nitrogen dynamics in two agricultural soils
  publication-title: Soil Biology and Biochemistry
– volume: 5
  year: 2019
  article-title: Climate change effects on plant‐soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems
  publication-title: Science Advances
– volume: 112
  start-page: 15684
  year: 2015
  end-page: 15689
  article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 1
  start-page: 420
  year: 2020
  end-page: 434
  article-title: Nitrous oxide emissions from permafrost‐affected soils
  publication-title: Nature Reviews Earth and Environment
– volume: 81
  start-page: 2384
  year: 2015
  end-page: 2394
  article-title: Large fractions of CO ‐fixing microorganisms in pristine limestone aquifers appear to Be involved in the oxidation of reduced sulfur and nitrogen compounds
  publication-title: Applied and Environmental Microbiology
– volume: 42
  start-page: 2182
  year: 2010
  end-page: 2191
  article-title: Soil texture affects soil microbial and structural recovery during grassland restoration
  publication-title: Soil Biology and Biochemistry
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  article-title: QIIME allows analysis of high‐throughput community sequencing data
  publication-title: Nature Methods
– volume: 12
  start-page: 3484
  year: 2021
  article-title: Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils
  publication-title: Nature Communications
– volume: 115
  start-page: 4027
  year: 2018
  end-page: 4032
  article-title: Plant diversity enhances productivity and soil carbon storage
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 186
  start-page: 99
  year: 2016
  end-page: 118
  article-title: Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution
  publication-title: Microbiological Research
– year: 2017
– volume: 378
  start-page: 915
  year: 2022
  end-page: 920
  article-title: Grazing and ecosystem service delivery in global drylands
  publication-title: Science
– volume: 16
  start-page: 26
  year: 2022
  end-page: 37
  article-title: Linking meta‐omics to the kinetics of denitrification intermediates reveals pH‐dependent causes of N O emissions and nitrite accumulation in soil
  publication-title: The ISME Journal
– volume: 448
  start-page: 495
  year: 2020
  end-page: 508
  article-title: Effect of long‐term destocking on soil fungal functional groups and interactions with plants
  publication-title: Plant and Soil
– volume: 20
  start-page: 2356
  year: 2014
  end-page: 2367
  article-title: Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories
  publication-title: Global Change Biology
– ident: e_1_2_10_60_1
  doi: 10.1038/ismej.2017.56
– ident: e_1_2_10_51_1
  doi: 10.1038/s41396-019-0369-0
– ident: e_1_2_10_30_1
  doi: 10.1038/s43017-022-00366-w
– ident: e_1_2_10_58_1
  doi: 10.1126/sciadv.aaz1834
– ident: e_1_2_10_71_1
  doi: 10.1111/gcb.12065
– ident: e_1_2_10_7_1
  doi: 10.1038/s43017-021-00207-2
– ident: e_1_2_10_57_1
  doi: 10.1093/nar/29.9.e45
– ident: e_1_2_10_62_1
  doi: 10.1111/gcb.16600
– ident: e_1_2_10_18_1
  doi: 10.1038/nature16461
– ident: e_1_2_10_21_1
  doi: 10.1038/s41564-019-0449-y
– ident: e_1_2_10_47_1
  doi: 10.1126/science.abq4062
– ident: e_1_2_10_39_1
  doi: 10.1038/ncomms7707
– ident: e_1_2_10_38_1
  doi: 10.1111/2041-210X.13800
– ident: e_1_2_10_48_1
  doi: 10.1038/s41467-018-05980-1
– ident: e_1_2_10_68_1
  doi: 10.1007/s11104-020-04452-0
– ident: e_1_2_10_50_1
  doi: 10.1038/ncomms14349
– ident: e_1_2_10_11_1
  doi: 10.1111/j.1469-8137.2009.03003.x
– ident: e_1_2_10_4_1
  doi: 10.1111/gcb.15220
– ident: e_1_2_10_37_1
  doi: 10.1016/j.soilbio.2005.08.006
– ident: e_1_2_10_63_1
  doi: 10.1038/s41396-020-00801-0
– ident: e_1_2_10_41_1
  doi: 10.1038/s41467-021-23605-y
– ident: e_1_2_10_9_1
  doi: 10.3389/fmicb.2021.625697
– ident: e_1_2_10_20_1
  doi: 10.1126/science.aap9516
– ident: e_1_2_10_25_1
  doi: 10.1038/nplants.2015.80
– ident: e_1_2_10_24_1
  doi: 10.1002/ecy.1879
– ident: e_1_2_10_65_1
  doi: 10.1186/s40168-019-0668-8
– ident: e_1_2_10_3_1
  doi: 10.1016/j.soilbio.2017.12.018
– ident: e_1_2_10_43_1
  doi: 10.1038/s41559-022-01756-5
– ident: e_1_2_10_34_1
  doi: 10.1111/nph.12765
– ident: e_1_2_10_14_1
  doi: 10.1111/gcb.12475
– ident: e_1_2_10_53_1
  doi: 10.1016/j.funeco.2015.06.006
– ident: e_1_2_10_52_1
  doi: 10.1111/1462-2920.13778
– ident: e_1_2_10_49_1
  doi: 10.1111/1365-2664.12478
– ident: e_1_2_10_44_1
  doi: 10.1126/science.aaf4507
– ident: e_1_2_10_56_1
  doi: 10.1038/ismej.2014.196
– ident: e_1_2_10_26_1
  doi: 10.1111/ele.13527
– ident: e_1_2_10_17_1
  doi: 10.1016/j.soilbio.2020.107814
– ident: e_1_2_10_54_1
  doi: 10.1016/j.micres.2016.04.001
– ident: e_1_2_10_13_1
  doi: 10.1073/pnas.1000080107
– ident: e_1_2_10_28_1
  doi: 10.1038/s41396-021-01045-2
– ident: e_1_2_10_55_1
  doi: 10.1111/gcb.14113
– ident: e_1_2_10_8_1
  doi: 10.1146/annurev-arplant-102820-124504
– ident: e_1_2_10_64_1
  doi: 10.1016/j.soilbio.2015.08.034
– ident: e_1_2_10_27_1
  doi: 10.1111/j.1365-2486.2010.02219.x
– ident: e_1_2_10_31_1
  doi: 10.1111/gcb.16305
– ident: e_1_2_10_70_1
  doi: 10.1038/s41467-021-24192-8
– ident: e_1_2_10_73_1
  doi: 10.1111/j.2041-210X.2009.00001.x
– ident: e_1_2_10_33_1
  doi: 10.1128/AEM.03269-14
– ident: e_1_2_10_35_1
  doi: 10.1111/gcb.13133
– ident: e_1_2_10_42_1
  doi: 10.1128/AEM.03054-09
– ident: e_1_2_10_16_1
  doi: 10.1126/science.aad2602
– ident: e_1_2_10_19_1
  doi: 10.1038/s41467-018-05516-7
– ident: e_1_2_10_67_1
  doi: 10.1038/ismej.2012.116
– ident: e_1_2_10_6_1
  doi: 10.1038/ismej.2013.87
– ident: e_1_2_10_36_1
  doi: 10.1016/j.soilbio.2022.108907
– ident: e_1_2_10_10_1
  doi: 10.1016/j.soilbio.2011.12.015
– ident: e_1_2_10_15_1
  doi: 10.1073/pnas.1700298114
– ident: e_1_2_10_2_1
  doi: 10.1016/j.soilbio.2010.08.014
– ident: e_1_2_10_23_1
  doi: 10.1111/j.1365-2486.2009.01844.x
– ident: e_1_2_10_22_1
  doi: 10.1111/j.1469-8137.2012.04349.x
– ident: e_1_2_10_29_1
  doi: 10.1016/j.geoderma.2022.115767
– ident: e_1_2_10_32_1
  doi: 10.1038/s41396-020-00882-x
– ident: e_1_2_10_69_1
  doi: 10.1101/133462
– ident: e_1_2_10_72_1
  doi: 10.1016/j.soilbio.2018.05.026
– ident: e_1_2_10_46_1
  doi: 10.1073/pnas.1516684112
– ident: e_1_2_10_5_1
  doi: 10.1126/science.abo2380
– ident: e_1_2_10_61_1
  doi: 10.1111/gcb.15308
– ident: e_1_2_10_12_1
  doi: 10.1038/nmeth.f.303
– ident: e_1_2_10_66_1
  doi: 10.1038/s43017-020-0063-9
– ident: e_1_2_10_45_1
  doi: 10.1038/s41396-019-0354-7
– ident: e_1_2_10_59_1
  doi: 10.1111/gcb.16563
– ident: e_1_2_10_40_1
  doi: 10.1038/nbt.2676
SSID ssj0003206
Score 2.5548687
Snippet Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long‐term effects of grazing exclusion...
Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long-term effects of grazing exclusion...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e17027
SubjectTerms Aggregates
Aggregation
Biological Sciences
carbon
carbon sequestration
Ecological distribution
Ecological function
ecosystems
Fungi
Genes
global change
grassland soils
Grasslands
Grazing
grazing exclusion
Microbial activity
microbial communities and functions
Microbiology
microbiome
Microbiomes
Microhabitat
Microhabitats
Microorganisms
nitrogen and phosphorus accumulation
Nutrient cycles
Nutrient dynamics
Pathogens
Soil
Soil aggregates
soil aggregation
Soil biology
Soil chemistry
Soil microorganisms
Soil pH
Soils
Title New perspectives on microbiome and nutrient sequestration in soil aggregates during long‐term grazing exclusion
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.17027
https://www.ncbi.nlm.nih.gov/pubmed/37946660
https://www.proquest.com/docview/2918168226
https://www.proquest.com/docview/2889246263
https://www.proquest.com/docview/3040393473
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC6WBcGLj9HV0VVaEfGSIUl3pxM86bDrIqwHcWEPQujXhGGznXUyA-rJn-Bv9JdY3XmMqy6It4RUQndSVf1VpesrgGeKLZhRgkdxoUXEpKCRyoWNpJF8YQ1NlPLVyMfvsqMT9vaUn-7Ay6EWpuOHGBNu3jKCv_YGLlX7i5FXWs0SgVEV-l-_V8sDovdb6iiahr6aCeUMXU1Ce1Yhv4tnvPPyWvQHwLyMV8OCc3gTPg5D7faZnM02azXTX39jcfzPudyCGz0QJa86zbkNO9ZN4FrXmvLLBPYOthVwKNa7gHYC02OE2c0qiJHnZF4vEfOGszvwCV0mudiWb7akceR82XE9nVsinSHO0__jQ0nYxD2w9pKlI22zrImsqpX1qb2WdBWUpG5c9ePbd7-EkGrl2bArYj_reuPzfHfh5PDgw_wo6ns6RJph9BMhnpSFQadKM1YkVFIfoykh0BOwHPVCLUxS5JlmllMM5WwsLNUFL2KD-NpqQ_dg1zXO3geijbQ5U1wkqWExXSiZmdTwWBuMwbixU3gxfN1S94Tnvu9GXQ6BD772Mrz2KTwdRS86lo-_Ce0PKlL2ht6WaZH4ziUIYqfwZLyMJur_u0hnmw3K5DlGuZ7252oZis6UFpQJlLnXqd84EhqaAGQxTigo0dVDLN_MX4eDB_8u-hCupwjUurTSPuyuVxv7CIHWWj0OFvUT-rcnXA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIgQXfgKFQIEFAeLiyPauvfaBA6QtKW16QK3Um_H-xIpw7RIngnLiEXgQXoWX4EmYXf-EApW49MAtUUbWZnd-vhnvfAPwRLAJU4IHjhtL7rCUU0dEXDupSoOJVtQTwnQjj_fC0QF7cxgcrsC3them5ofoCm7GMqy_NgZuCtK_WHkmxcDjmFY1Vyp39MlHTNiqF9sbeLpPfX9rc384cpqZAo5kiL4dxDNprNCoachij6bU5AiCc9REFuG6xERhGh5KpgOKqYR2uaYyDmJXIb7TUlF87gW4aCaIG6b-jbdLsirq20meHg0YOjePNjxG5t5Qt9TT0e8PSHsaIdsQt3UNvrebU99seT9YzMVAfv6NN_J_2b3rcLXB2uRlbRw3YEUXPbhUT9886cHa5rLJD8UaL1f1oD_GTKKcWTHyjAzzKcJ6--0mfMCoQI6XHaoVKQtyNK3prI40SQtFCjPhAB9K7D31lpiYTAtSldOcpFk206Z6WZG6SZTkZZH9-PLVREmSzQzhd0b0J5kvTCnzFhycyyatwWpRFvoOEKlSHTERcM9XzKUTkYbKV4ErFaaZgdJ9eN6qUyIbTnczWiRP2twOjzmxx9yHx53ocU1k8jeh9VYnk8aXVYkfe2Y4C-L0PjzqfkYvZF4tpYUuFygTRZjIG2ajs2UoxgsaU8ZR5nat791KqJ1zELr4h6zWnr3E5PXwlf1w999FH8Ll0f54N9nd3tu5B1d8xKV1FW0dVuezhb6PuHIuHlhzJvDuvC3gJ92ghAY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIhCXAoHSQIEFAerFke1d_x04QNLQUlohRKXejPfHVoRrhzgRlBOPwHvwKjwFT8Ls-icUqMSlB262PLLWu_PzzXrnG4BHnKVM8sCz7EgEFksCavEwUFYiEy9Vkjqc62rk_QN_55C9PPKOVuBbWwtT80N0G27aMoy_1gY-lekvRp4JPnACzKqaE5V76uQj5mvV090RLu5j1x1vvx3uWE1LAUswBN8WwpkkkmjT1GeRQxOqUwQeBKiILMRh8VRiFu4LpjyKmYSyA0VF5EW2RHinhKT43gtwkfl2pPtEjN4suaqoaxp5OtRj6Nsc2tAY6WND3VBPB78_EO1pgGwi3PgqfG_npj7Y8n6wmPOB-PwbbeR_MnnXYK1B2uRZbRrXYUUVPbhU99486cH69rLED8UaH1f1oL-PeUQ5M2LkCRnmEwT15u4GfMCYQKbL-tSKlAU5ntRkVseKJIUkhe5vgC8l5pR6S0tMJgWpyklOkiybKb13WZG6RJTkZZH9-PJVx0iSzTTdd0bUJ5Ev9EbmTTg8l0lah9WiLNQGECETFTLuBY4rmU1TnvjSlZ4tJCaZnlR92Gq1KRYNo7tuLJLHbWaHyxybZe7Dw050WtOY_E1os1XJuPFkVexGjm7Ngii9Dw-6x-iD9I-lpFDlAmXCENN4zWt0tgzFaEEjygKUuVWrezcSaroc-DZ-kFHas4cYvxg-Nxe3_130Plx-PRrHr3YP9u7AFRdBab2Ftgmr89lC3UVQOef3jDETeHfeBvATwQWCtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+perspectives+on+microbiome+and+nutrient+sequestration+in+soil+aggregates+during+long%E2%80%90term+grazing+exclusion&rft.jtitle=Global+change+biology&rft.au=Ju%2C+Wenliang&rft.au=Fang%2C+Linchuan&rft.au=Shen%2C+Guoting&rft.au=Manuel+Delgado%E2%80%90Baquerizo&rft.date=2024-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=30&rft.issue=1&rft_id=info:doi/10.1111%2Fgcb.17027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon