SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola

Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 42; no. 4; pp. 1112 - 1124
Main Authors Zhao, Haixia, Wang, Liangsheng, Zhao, Fang‐Jie, Wu, Longhua, Liu, Anna, Xu, Wenzhong
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2019
Subjects
Online AccessGet full text
ISSN0140-7791
1365-3040
1365-3040
DOI10.1111/pce.13456

Cover

Loading…
Abstract Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9‐induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild‐type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola. Cadmium is a highly toxic metal and accumulates in the leaves to very high levels in Cd hyperaccumulators in Sedum plumbizincicola, posing a high risk of Cd toxicity to the chloroplasts. In this study, we demonstrate that SpHMA1 is a Cd exporter localized to the chloroplast envelope, functioning to detoxify Cd in the chloroplasts to protect photosynthetic reactions in S. plumbizincicola. The hyperexpression of SpHMA1 in the leaves of S. plumbizincicola, compared with SaHMA1n in a nonhyperaccumulating ecotype S. alfredii, likely confers an adaptive advantage under Cd stress conditions and contributes to Cd hypertolerance in S. plumbizincicola. These novel findings have important implications for the evolution of metal hyperaccumulation phenotype and the adaptation of plants to metal‐contaminated environments.
AbstractList Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9-induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild-type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9-induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild-type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.
Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii , the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9‐induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild‐type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola . Cadmium is a highly toxic metal and accumulates in the leaves to very high levels in Cd hyperaccumulators in Sedum plumbizincicola , posing a high risk of Cd toxicity to the chloroplasts. In this study, we demonstrate that SpHMA1 is a Cd exporter localized to the chloroplast envelope, functioning to detoxify Cd in the chloroplasts to protect photosynthetic reactions in S. plumbizincicola . The hyperexpression of SpHMA1 in the leaves of S. plumbizincicola , compared with SaHMA1n in a nonhyperaccumulating ecotype S. alfredii , likely confers an adaptive advantage under Cd stress conditions and contributes to Cd hypertolerance in S. plumbizincicola . These novel findings have important implications for the evolution of metal hyperaccumulation phenotype and the adaptation of plants to metal‐contaminated environments.
Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9‐induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild‐type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.
Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9‐induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild‐type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola. Cadmium is a highly toxic metal and accumulates in the leaves to very high levels in Cd hyperaccumulators in Sedum plumbizincicola, posing a high risk of Cd toxicity to the chloroplasts. In this study, we demonstrate that SpHMA1 is a Cd exporter localized to the chloroplast envelope, functioning to detoxify Cd in the chloroplasts to protect photosynthetic reactions in S. plumbizincicola. The hyperexpression of SpHMA1 in the leaves of S. plumbizincicola, compared with SaHMA1n in a nonhyperaccumulating ecotype S. alfredii, likely confers an adaptive advantage under Cd stress conditions and contributes to Cd hypertolerance in S. plumbizincicola. These novel findings have important implications for the evolution of metal hyperaccumulation phenotype and the adaptation of plants to metal‐contaminated environments.
Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9-induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild-type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.
Author Liu, Anna
Wu, Longhua
Wang, Liangsheng
Zhao, Haixia
Zhao, Fang‐Jie
Xu, Wenzhong
Author_xml – sequence: 1
  givenname: Haixia
  surname: Zhao
  fullname: Zhao, Haixia
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Liangsheng
  surname: Wang
  fullname: Wang, Liangsheng
  organization: Institute of Botany, Chinese Academy of Sciences
– sequence: 3
  givenname: Fang‐Jie
  orcidid: 0000-0002-0164-169X
  surname: Zhao
  fullname: Zhao, Fang‐Jie
  organization: Nanjing Agricultural University
– sequence: 4
  givenname: Longhua
  surname: Wu
  fullname: Wu, Longhua
  organization: Institute of Soil Science, Chinese Academy of Sciences
– sequence: 5
  givenname: Anna
  surname: Liu
  fullname: Liu, Anna
  organization: Institute of Botany, Chinese Academy of Sciences
– sequence: 6
  givenname: Wenzhong
  orcidid: 0000-0002-2011-7324
  surname: Xu
  fullname: Xu, Wenzhong
  email: xuwzh@ibcas.ac.cn
  organization: Institute of Botany, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30311663$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS3Uim4LB_4AssQFDmk9sRPXx2pVKFKrIhXOkdeZEFdObGxHZRE_HpctHCpB5zLS-Js3en6HZG_2MxLyCtgxlDoJBo-Bi6Z9RlbA26biTLA9smIgWCWlggNymNItY2Ug1XNywBkHaFu-Ij9vwsXVGVCbqKZmdD764HTK1Oh-sstE8XvwMWOkIfqMJtv5Kw2jz96MOFmjHY2oy9jPidqZ5hHpuqfjNmDUxizT4nT2kd5gX8SCW6aN_WFnY413-gXZH7RL-PKhH5Ev788_ry-qy-sPH9dnl5URNbSVMExKVJthaFs0HHg5qJUaaq300DflrcVi39SDkIINou5lLyTwUyEYawTwI_J2p1s8fFsw5W6yyaBzeka_pK6ua6aUKvjTKIBSIBs4LeibR-itX-JcjBRK8XK7Vm2hXj9Qy2bCvgvRTjpuuz8RFODdDjDRpxRx-IsA6-7j7Uq83e94C3vyiDU26_vPz1Fb97-NO-tw-2_p7tP6fLfxC9ZXtek
CitedBy_id crossref_primary_10_1111_ppl_70063
crossref_primary_10_3390_ijms241411845
crossref_primary_10_1002_tpg2_70013
crossref_primary_10_3390_plants8010011
crossref_primary_10_1016_j_chemosphere_2020_127156
crossref_primary_10_1016_j_envpol_2024_124178
crossref_primary_10_1002_agj2_20398
crossref_primary_10_1016_j_jhazmat_2023_132480
crossref_primary_10_3390_plants11020215
crossref_primary_10_1016_j_jhazmat_2023_132761
crossref_primary_10_3390_ijerph192113910
crossref_primary_10_1016_j_trac_2020_115875
crossref_primary_10_1007_s11356_020_11454_z
crossref_primary_10_3390_genes13122395
crossref_primary_10_1016_j_ecoenv_2023_114882
crossref_primary_10_3390_toxics10080411
crossref_primary_10_1007_s44154_024_00153_1
crossref_primary_10_1016_j_scitotenv_2024_176462
crossref_primary_10_3390_plants11091273
crossref_primary_10_1021_acssuschemeng_9b05518
crossref_primary_10_1016_j_jprot_2020_104097
crossref_primary_10_1016_j_jhazmat_2025_137226
crossref_primary_10_1016_j_chemosphere_2021_132302
crossref_primary_10_1111_pce_15296
crossref_primary_10_3390_cleantechnol4020030
crossref_primary_10_3390_plants12091892
crossref_primary_10_1016_j_envexpbot_2023_105296
crossref_primary_10_1016_j_ecoenv_2024_117588
crossref_primary_10_32615_ps_2021_017
crossref_primary_10_12677_AAC_2023_132022
crossref_primary_10_1016_j_scitotenv_2021_151099
crossref_primary_10_1016_j_scitotenv_2024_171024
crossref_primary_10_1007_s00299_024_03303_x
crossref_primary_10_1007_s00425_024_04393_3
crossref_primary_10_3390_plants10071342
crossref_primary_10_1007_s11356_019_07499_4
crossref_primary_10_1016_j_envres_2023_118054
crossref_primary_10_1016_j_ecoenv_2021_113149
crossref_primary_10_3389_fgene_2021_655885
crossref_primary_10_48130_cas_0024_0018
crossref_primary_10_1007_s11033_023_08521_2
crossref_primary_10_1016_j_jhazmat_2022_129840
crossref_primary_10_3389_fpls_2024_1382121
crossref_primary_10_3390_ijms241210163
crossref_primary_10_3390_cells13110907
crossref_primary_10_1007_s11356_024_35592_w
crossref_primary_10_1016_j_plaphy_2024_109199
crossref_primary_10_3390_cells12071096
crossref_primary_10_1016_j_jbc_2023_105352
crossref_primary_10_1111_pbi_14301
crossref_primary_10_1016_j_envint_2024_108904
crossref_primary_10_1080_15226514_2025_2451714
crossref_primary_10_1007_s10311_020_01095_6
crossref_primary_10_1007_s11274_024_04003_0
crossref_primary_10_1016_j_jhazmat_2023_130970
crossref_primary_10_1016_j_envpol_2023_121546
crossref_primary_10_3390_ijms24043544
crossref_primary_10_1016_j_jplph_2025_154419
crossref_primary_10_3390_biology10060544
crossref_primary_10_1016_j_jhazmat_2019_121177
crossref_primary_10_1016_j_jhazmat_2024_134517
crossref_primary_10_1016_j_jhazmat_2024_135968
crossref_primary_10_1016_j_plaphy_2025_109614
crossref_primary_10_1007_s10653_020_00533_2
Cites_doi 10.1023/B:PRES.0000015391.99477.0d
10.1046/j.1365-313X.2003.01959.x
10.1111/j.1365-313X.2011.04548.x
10.1038/ncomms1486
10.1016/j.bios.2006.10.018
10.1007/s10534-013-9659-6
10.1186/1999-3110-54-45
10.1104/pp.90.3.1029
10.1007/s11356-016-8048-4
10.1371/journal.pgen.1002923
10.1104/pp.126.2.696
10.1111/j.1365-3040.2010.02236.x
10.1016/j.tplants.2005.08.008
10.1371/journal.pone.0049027
10.1046/j.1529-8817.2002.01148.x
10.1073/pnas.1005396107
10.1111/j.1365-313X.2009.03818.x
10.1186/s13059-015-0715-0
10.1105/tpc.104.030452
10.1186/s12870-014-0327-y
10.1016/S0092-8674(00)80747-3
10.1016/0304-4157(95)00017-8
10.1371/journal.pone.0013388
10.1093/jxb/eru020
10.1111/j.1469-8137.2007.02139.x
10.1104/pp.106.095133
10.1007/s00425-004-1392-5
10.1016/j.molp.2016.09.001
10.1111/j.1469-8137.2010.03459.x
10.1007/BF00031869
10.1016/S0014-5793(04)00072-9
10.1073/pnas.90.4.1629
10.1074/jbc.271.11.6509
10.3389/fpls.2013.00544
10.1038/nature06877
10.1104/pp.010820
10.1105/tpc.12.3.443
10.1105/tpc.011817
10.1074/jbc.M508333200
10.1104/pp.104.046292
10.1146/annurev.arplant.59.032607.092759
10.1111/j.1365-313X.2005.02601.x
10.1007/s00128-014-1284-8
10.1105/tpc.020487
10.3389/fpls.2017.01047
10.1111/pce.12747
10.1111/nph.14622
10.1007/s004250000458
10.1046/j.1365-313x.2000.00768.x
10.1074/jbc.M800736200
ContentType Journal Article
Copyright 2018 John Wiley & Sons Ltd
2018 John Wiley & Sons Ltd.
2019 John Wiley & Sons Ltd
Copyright_xml – notice: 2018 John Wiley & Sons Ltd
– notice: 2018 John Wiley & Sons Ltd.
– notice: 2019 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
DOI 10.1111/pce.13456
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
AGRICOLA

MEDLINE
Calcium & Calcified Tissue Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 1124
ExternalDocumentID 30311663
10_1111_pce_13456
PCE13456
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2017YFD0800900
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4216-4c077e9bff66ec313eaca99f2a9afd577e6e134c2f4740f42d7d4713844005413
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Fri Jul 11 18:39:48 EDT 2025
Fri Jul 11 05:23:10 EDT 2025
Fri Jul 25 19:34:07 EDT 2025
Wed Feb 19 02:30:50 EST 2025
Thu Apr 24 22:51:39 EDT 2025
Tue Jul 01 04:28:41 EDT 2025
Wed Jan 22 16:50:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords heavy metal ATPase 1 (HMA1)
Sedum plumbizincicola
hyperaccumulator
CRISPR/Cas9
chloroplast
transporter
cadmium (Cd)
Language English
License 2018 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4216-4c077e9bff66ec313eaca99f2a9afd577e6e134c2f4740f42d7d4713844005413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2011-7324
0000-0002-0164-169X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pce.13456
PMID 30311663
PQID 2193400296
PQPubID 37957
PageCount 13
ParticipantIDs proquest_miscellaneous_2220999440
proquest_miscellaneous_2119917518
proquest_journals_2193400296
pubmed_primary_30311663
crossref_primary_10_1111_pce_13456
crossref_citationtrail_10_1111_pce_13456
wiley_primary_10_1111_pce_13456_PCE13456
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 561
2017; 8
2013; 26
2010; 107
2006; 38
2007; 144
2003; 15
2016; 39
2014; 65
2001; 212
2009; 58
2014; 4
2004; 136
2005; 220
1984; 114
2013; 54
2000; 12
2004; 37
2004; 79
2007; 175
1996; 1286
2011; 66
2014; 14
1999; 97
2006; 281
2010; 5
2007; 22
2014; 93
1989
2002; 38
2015; 16
2011; 2
2017; 24
2008; 59
2011; 34
2001; 126
2017; 215
2008; 283
2001; 127
1993; 15
2006; 45
2004; 16
2017; 10
1989; 90
1996; 271
2006; 142
2005; 10
2008; 453
2012; 7
2005; 17
2011; 189
2012; 8
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
Wu L. H. (e_1_2_6_51_1) 2006; 38
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Sambrook J. (e_1_2_6_37_1) 1989
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 24
  start-page: 2840
  year: 2017
  end-page: 2850
  article-title: Cadmium‐zinc accumulation and photosystem II responses of to Cd and Zn exposure
  publication-title: Environmental Science and Pollution Research
– volume: 12
  start-page: 443
  year: 2000
  end-page: 455
  article-title: A strong loss‐of‐function mutant in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette‐lethal phenotype
  publication-title: The Plant Cell
– volume: 38
  start-page: 632
  year: 2006
  end-page: 633
  article-title: , a new species of the from Zhejiang, China
  publication-title: Soils
– volume: 54
  start-page: 45
  year: 2013
  article-title: Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress
  publication-title: Botanical Studies
– year: 1989
– volume: 136
  start-page: 3712
  year: 2004
  end-page: 3723
  article-title: HMA2, a divalent heavy metal‐transporting P ‐type ATPase, is involved in cytoplasmic Zn homeostasis
  publication-title: Plant Physiology
– volume: 65
  start-page: 1529
  year: 2014
  end-page: 1540
  article-title: HMA1 and PAA1, two chloroplast‐envelope P ‐ATPases, play distinct roles in chloroplast copper homeostasis
  publication-title: Journal of Experimental Botany
– volume: 16
  start-page: 1327
  year: 2004
  end-page: 1339
  article-title: P‐type ATPase heavy metal transporters with roles in essential zinc homeostasis in
  publication-title: The Plant Cell
– volume: 114
  start-page: 177
  year: 1984
  end-page: 187
  article-title: Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis
  publication-title: Hydrobiologia
– volume: 66
  start-page: 852
  year: 2011
  end-page: 862
  article-title: Elevated expression of plays a key role in the extreme Cd tolerance in a Cd‐hyperaccumulating ecotype of
  publication-title: The Plant Journal
– volume: 220
  start-page: 731
  year: 2005
  end-page: 736
  article-title: Subcellular localisation of Cd and Zn in the leaves of a Cd‐hyperaccumulating ecotype of
  publication-title: Planta
– volume: 93
  start-page: 171
  year: 2014
  end-page: 176
  article-title: Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant
  publication-title: Bulletin of Environmental Contamination and Toxicology
– volume: 38
  start-page: 429
  year: 2002
  end-page: 441
  article-title: Heavy metal‐induced inhibition of photosynthesis: Targets of in vivo heavy metal chlorophyll formation
  publication-title: Journal of Phycology
– volume: 189
  start-page: 190
  year: 2011
  end-page: 199
  article-title: , a P ‐type of ATPase affects root‐to‐shoot cadmium translocation in rice by mediating efflux into vacuoles
  publication-title: New Phytologist
– volume: 281
  start-page: 2882
  year: 2006
  end-page: 2892
  article-title: HMA1, a new Cu‐ATPase of the chloroplast envelope, is essential for growth under adverse light conditions
  publication-title: Journal of Biological Chemistry
– volume: 14
  start-page: 327
  year: 2014
  article-title: A CRISPR/Cas9 toolkit for multiplex genome editing in plants
  publication-title: BMC Plant Biology
– volume: 59
  start-page: 89
  year: 2008
  end-page: 113
  article-title: Chlorophyll fluorescence: A probe of photosynthesis in vivo
  publication-title: Annual Review of Plant Biology
– volume: 126
  start-page: 696
  year: 2001
  end-page: 706
  article-title: Inventory of the superfamily of P‐type ion pumps in
  publication-title: Plant Physiology
– volume: 8
  year: 2012
  article-title: Genome‐wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in
  publication-title: PLoS Genetics
– volume: 17
  start-page: 1233
  year: 2005
  end-page: 1251
  article-title: Two P‐type ATPases are required for copper delivery in chloroplasts
  publication-title: The Plant Cell
– volume: 175
  start-page: 655
  year: 2007
  end-page: 674
  article-title: Cadmium‐induced inhibition of photosynthesis and longterm acclimation to cadmium stress in the hyperaccumulator
  publication-title: New Phytologist
– volume: 1286
  start-page: 1
  year: 1996
  end-page: 51
  article-title: Structural organization, ion transport, and energy transduction of P‐type ATPases
  publication-title: Biochimica et Biophysica Acta
– volume: 283
  start-page: 9633
  year: 2008
  end-page: 9641
  article-title: AtHMA1 is a thapsigargin‐sensitive Ca /heavy metal pump
  publication-title: Journal of Biological Chemistry
– volume: 90
  start-page: 1029
  year: 1989
  end-page: 1034
  article-title: Relationship between the quantum efficiencies of photosystems I and II in pea leaves
  publication-title: Plant Physiology
– volume: 215
  start-page: 687
  year: 2017
  end-page: 698
  article-title: Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator
  publication-title: New Phytologist
– volume: 271
  start-page: 6509
  year: 1996
  end-page: 6517
  article-title: The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S‐conjugate pump
  publication-title: Journal of Biological Chemistry
– volume: 107
  start-page: 16500
  year: 2010
  end-page: 16505
  article-title: Gene limiting cadmium accumulation in rice
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 58
  start-page: 737
  year: 2009
  end-page: 753
  article-title: contributes to the detoxification of excess Zn (II) in
  publication-title: The Plant Journal
– volume: 561
  start-page: 22
  year: 2004
  end-page: 28
  article-title: AtHMA3, a plant P ‐ATPase, functions as a Cd/Pb transporter in yeast
  publication-title: FEBS Letters
– volume: 39
  start-page: 1941
  year: 2016
  end-page: 1954
  article-title: A loss‐of‐function allele of associated with high cadmium accumulation in shoots and grain of rice cultivars
  publication-title: Plant, Cell & Environment
– volume: 10
  start-page: 30
  year: 2017
  end-page: 46
  article-title: Plant carbonic anhydrases: Structures, locations, evolution, and physiological roles
  publication-title: Molecular Plant
– volume: 15
  start-page: 1333
  year: 2003
  end-page: 1346
  article-title: PAA1, a P‐type ATPase of , functions in copper transport in chloroplasts
  publication-title: The Plant Cell
– volume: 79
  start-page: 209
  year: 2004
  end-page: 218
  article-title: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes
  publication-title: Photosynthesis Research
– volume: 34
  start-page: 208
  year: 2011
  end-page: 219
  article-title: Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator
  publication-title: Plant, Cell & Environment
– volume: 8
  start-page: 1047
  year: 2017
  article-title: A genetic transformation method for cadmium hyperaccumulator and non‐hyperaccumulating ecotype of
  publication-title: Frontiers in Plant Science
– volume: 144
  start-page: 1052
  year: 2007
  end-page: 1065
  article-title: A major quantitative trait locus for cadmium tolerance in colocalizes with , a gene encoding a Heavy Metal ATPase
  publication-title: Plant Physiology
– volume: 453
  start-page: 391
  year: 2008
  end-page: 395
  article-title: Evolution of metal hyperaccumulation required cis‐regulatory changes and triplication of
  publication-title: Nature
– volume: 4
  start-page: 544
  year: 2014
  article-title: Origin and evolution of metal P‐type ATPases in Plantae ( )
  publication-title: Frontiers in Plant Science
– volume: 26
  start-page: 633
  year: 2013
  end-page: 638
  article-title: Tolerance to cadmium in plants: The special case of hyperaccumulators
  publication-title: Biometals
– volume: 127
  start-page: 1466
  year: 2001
  end-page: 1475
  article-title: Signal transduction in maize and mesophyll protoplasts
  publication-title: Plant Physiology
– volume: 16
  start-page: 144
  year: 2015
  article-title: Egg cell‐specific promoter‐controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in in a single generation
  publication-title: Genome Biology
– volume: 45
  start-page: 225
  year: 2006
  end-page: 236
  article-title: The heavy metal P‐type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots
  publication-title: The Plant Journal
– volume: 22
  start-page: 2554
  year: 2007
  end-page: 2563
  article-title: Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging
  publication-title: Biosensors and Bioelectronics
– volume: 212
  start-page: 475
  year: 2001
  end-page: 486
  article-title: Molecular mechanisms of plant metal tolerance and homeostasis
  publication-title: Planta
– volume: 37
  start-page: 251
  year: 2004
  end-page: 268
  article-title: Cross‐species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator
  publication-title: The Plant Journal
– volume: 15
  start-page: 1629
  year: 1993
  end-page: 1633
  article-title: Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 5
  year: 2010
  article-title: Functional significance of AtHMA4 C‐terminal domain in
  publication-title: PLoS One
– volume: 7
  year: 2012
  article-title: Barley HvHMA1 is a heavy metal pump involved in mobilizing organellar Zn and Cu and plays a role in metal loading into grains
  publication-title: PLoS One
– volume: 2
  start-page: 477
  year: 2011
  article-title: A chloroplast envelope‐bound PHD transcription factor mediates chloroplast signals to the nucleus
  publication-title: Nature Communications
– volume: 142
  start-page: 148
  year: 2006
  end-page: 167
  article-title: Zinc‐dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator
  publication-title: Plant Physiology
– volume: 97
  start-page: 383
  year: 1999
  end-page: 393
  article-title: Responsive‐to‐antagonist1, a Menkes/Wilson diseaserelated copper transporter, is required for ethylene signaling in
  publication-title: Cell
– volume: 10
  start-page: 491
  year: 2005
  end-page: 502
  article-title: P ‐ATPases‐an ancient family of transition metal pumps with diverse functions in plants
  publication-title: Trends in Plant Science
– ident: e_1_2_6_23_1
  doi: 10.1023/B:PRES.0000015391.99477.0d
– ident: e_1_2_6_7_1
  doi: 10.1046/j.1365-313X.2003.01959.x
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1365-313X.2011.04548.x
– ident: e_1_2_6_43_1
  doi: 10.1038/ncomms1486
– ident: e_1_2_6_39_1
  doi: 10.1016/j.bios.2006.10.018
– ident: e_1_2_6_47_1
  doi: 10.1007/s10534-013-9659-6
– ident: e_1_2_6_36_1
  doi: 10.1186/1999-3110-54-45
– ident: e_1_2_6_19_1
  doi: 10.1104/pp.90.3.1029
– volume: 38
  start-page: 632
  year: 2006
  ident: e_1_2_6_51_1
  article-title: Sedum plumbizincicola, a new species of the Crassulaceae from Zhejiang, China
  publication-title: Soils
– ident: e_1_2_6_6_1
  doi: 10.1007/s11356-016-8048-4
– ident: e_1_2_6_10_1
  doi: 10.1371/journal.pgen.1002923
– ident: e_1_2_6_4_1
  doi: 10.1104/pp.126.2.696
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1365-3040.2010.02236.x
– ident: e_1_2_6_49_1
  doi: 10.1016/j.tplants.2005.08.008
– ident: e_1_2_6_31_1
  doi: 10.1371/journal.pone.0049027
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1529-8817.2002.01148.x
– ident: e_1_2_6_46_1
  doi: 10.1073/pnas.1005396107
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1365-313X.2009.03818.x
– ident: e_1_2_6_48_1
  doi: 10.1186/s13059-015-0715-0
– ident: e_1_2_6_2_1
  doi: 10.1105/tpc.104.030452
– ident: e_1_2_6_52_1
  doi: 10.1186/s12870-014-0327-y
– ident: e_1_2_6_20_1
  doi: 10.1016/S0092-8674(00)80747-3
– ident: e_1_2_6_34_1
  doi: 10.1016/0304-4157(95)00017-8
– ident: e_1_2_6_32_1
  doi: 10.1371/journal.pone.0013388
– ident: e_1_2_6_8_1
  doi: 10.1093/jxb/eru020
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1469-8137.2007.02139.x
– ident: e_1_2_6_12_1
  doi: 10.1104/pp.106.095133
– ident: e_1_2_6_30_1
  doi: 10.1007/s00425-004-1392-5
– ident: e_1_2_6_13_1
  doi: 10.1016/j.molp.2016.09.001
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1469-8137.2010.03459.x
– ident: e_1_2_6_38_1
  doi: 10.1007/BF00031869
– ident: e_1_2_6_15_1
  doi: 10.1016/S0014-5793(04)00072-9
– ident: e_1_2_6_16_1
  doi: 10.1073/pnas.90.4.1629
– ident: e_1_2_6_27_1
  doi: 10.1074/jbc.271.11.6509
– ident: e_1_2_6_17_1
  doi: 10.3389/fpls.2013.00544
– ident: e_1_2_6_18_1
  doi: 10.1038/nature06877
– ident: e_1_2_6_41_1
  doi: 10.1104/pp.010820
– ident: e_1_2_6_50_1
  doi: 10.1105/tpc.12.3.443
– ident: e_1_2_6_42_1
  doi: 10.1105/tpc.011817
– ident: e_1_2_6_40_1
  doi: 10.1074/jbc.M508333200
– volume-title: Molecular cloning: A laboratory manual
  year: 1989
  ident: e_1_2_6_37_1
– ident: e_1_2_6_14_1
  doi: 10.1104/pp.104.046292
– ident: e_1_2_6_5_1
  doi: 10.1146/annurev.arplant.59.032607.092759
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1365-313X.2005.02601.x
– ident: e_1_2_6_9_1
  doi: 10.1007/s00128-014-1284-8
– ident: e_1_2_6_21_1
  doi: 10.1105/tpc.020487
– ident: e_1_2_6_29_1
  doi: 10.3389/fpls.2017.01047
– ident: e_1_2_6_53_1
  doi: 10.1111/pce.12747
– ident: e_1_2_6_28_1
  doi: 10.1111/nph.14622
– ident: e_1_2_6_11_1
  doi: 10.1007/s004250000458
– ident: e_1_2_6_44_1
  doi: 10.1046/j.1365-313x.2000.00768.x
– ident: e_1_2_6_35_1
  doi: 10.1074/jbc.M800736200
SSID ssj0001479
Score 2.520401
Snippet Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its...
Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its...
Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1112
SubjectTerms Accumulation
Adenosine triphosphatase
Adenosine Triphosphatases - metabolism
adenosinetriphosphatase
Baking yeast
Blotting, Southern
Cadmium
cadmium (Cd)
Cadmium - metabolism
Chlorophyll
chloroplast
Chloroplasts
Chloroplasts - metabolism
CRISPR
CRISPR/Cas9
Detoxification
ecotypes
Fluorescence
heavy metal ATPase 1 (HMA1)
Heavy metals
heterologous gene expression
hyperaccumulator
hyperaccumulators
leaves
Membrane Transport Proteins - metabolism
mutants
Organisms, Genetically Modified
Photochemical reactions
Photochemicals
Photosynthesis
Photosystem II
Plant Leaves - metabolism
Plant Proteins - metabolism
Plant tissues
Proteins
Real-Time Polymerase Chain Reaction
Ribonucleic acid
RNA
RNA interference
RNA-mediated interference
Saccharomyces cerevisiae
Sedum - metabolism
Sedum - physiology
Sedum plumbizincicola
tissues
Toxicity
Transgenic plants
transporter
Yeast
yeasts
Title SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13456
https://www.ncbi.nlm.nih.gov/pubmed/30311663
https://www.proquest.com/docview/2193400296
https://www.proquest.com/docview/2119917518
https://www.proquest.com/docview/2220999440
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CaKGXPtLXtmlRSw-9eFlZWmtFT-mSsBRaStNADgUjyxK7pGubXRuSkB_fGfnRpi9KbwaNsWTPaL7xjL4BeIWRv_CJwDDVShXJmfaRmWU-okJ3hy4OIW0okP2QLE7ku9Pp6Q686c_CtPwQww83soywX5OBm2z7g5FX1o25QP-P-y_VahEg-vSdOorLlmePyheV0rxjFaIqnuHO677oF4B5Ha8Gh3N0B770U23rTM7GTZ2N7eVPLI7_uZa7cLsDouyg1Zx7sOOKPbjZtqa82IMbb0uEjRf34eq4Wrw_4Gy1ZYbZJYb3ZYWIu2bW5OtVs2buPHCjb1hH-YC-kFXLsqZWXIGLgCEuDacntmxVMAScbJ6zJca_G2Nts6b-YeWGHaPPW7MK98psdUkJANRQ8wBOjg4_zxdR17IhsjLmSSTtRCmnM--TxFnBBT7AaO1jo43PpziWOFyojb1UcuJlnKsc3aOYSUngkYuHsFuUhXsMzMTC6RgB6lQ7qU2MuAmxS65UZtxkOnEjeN1_vNR2fObUVuNr2sc1-FbT8FZH8HIQrVoSj98J7fcakHZ2vE1xPxeSMpc4_GIYRguktIopXNmQDJWPUfrqLzIxHVHWuMoRPGq1a5gJggjOEfjhgoKO_HmK6cf5Ybh48u-iT-EWYjzdFhvtw269adwzxFF19jwYzDf3jheC
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VAqIXHgXapQUM4sAlq03sTdYSl3ZptUBbIdpKvVSR49jaFd0k2k0kWvHjmXEeUF5C3CJ5otjOjOcbe_wNwCuM_LkNOYapWkSeGEnrqVFiPUp0N-jiENK6BNmjcHIq3p8Nz1bgTXsXpuaH6DbcyDLcek0GThvSP1h5oU3f5wgAbsBNquhN9QvefvpOHuWLmmmPEhijSPoNrxDl8XSvXvdGv0DM64jVuZz9e3DedrbONPncr8qkr69-4nH839Hch7sNFmU7tfI8gBWTrcPtujrl5Trc2s0ROV4-hK_HxeRwx2ezJVNMTzHCzwsE3SXTKp3PqjkzXxw9-oI1rA_oDlkxzUuqxuXoCBhCU3eBYslmGUPMycYpm2IIvFBaV3MqIZYv2DG6vTkrcLlMZld0BoBKqh7B6f7eyXjiNVUbPC0CP_SEHkSRkYm1YWg09zl-QElpAyWVTYfYFhocqA6siMTAiiCNUvSQfCQE4UefP4bVLM_MJjAVcCMDxKhDaYRUAUInhC9pFCXKDIYD04PX7d-LdUNpTpU1LuI2tMFZjd2s9uBlJ1rUPB6_E9puVSBuTHkZ45LOBR1eYvOLrhmNkE5WVGbyimQog4xOsP4iE9AtZYmj7MFGrV5dTxBH-D5iPxyQU5I_dzH-ON5zD0_-XfQ53JmcHB7EB--OPmzBGkI-WecebcNquajMU4RVZfLMWc83WQkbnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V8lAvPAq0CwUM4sAlq3XsjdfiVJaulldVUSr1UClyHFu7optEu4nUVv3xjJ0HlJcQt0ieKHYy4_kmM_4G4CVG_sxGDMNUzUXAR9IGapTYwBW6G3RxCGl9gex-ND3i74-Hx2vwuj0LU_NDdD_cnGX4_doZeJHaH4y80KZPGfr_a3CdR2gsDhF9_s4dRXlNtOfqF4WQtKEVcmU83a1XndEvCPMqYPUeZ3IHTtq51oUmX_tVmfT1xU80jv-5mLtwu0GiZLdWnXuwZrJNuFn3pjzfhBtvcsSN5_fh8rCYftqlZL4iiugZxvd5gZC7JFqli3m1IObMk6MvScP5gM6QFLO8dL24PBkBQWDqj0-syDwjiDjJOCUzDICXSutq4RqI5UtyiE5vQQrcLJP5hcsAoIqqB3A02fsyngZNz4ZA85BGAdcDIYxMrI0ioxll-AAlpQ2VVDYd4lhkcKE6tFzwgeVhKlL0j2zEuUOPlD2E9SzPzDYQFTIjQ0SoQ2m4VCECJwQvqRCJMoPhwPTgVfvxYt0Qmru-GqdxG9jgW439W-3Bi060qFk8fie002pA3BjyKsYNnXGXusTh590wmqDLq6jM5JWTcfVjLn_1F5nQnVGWuMoebNXa1c0EUQSliPxwQV5H_jzF-GC85y8e_bvoM7h18HYSf3y3_-ExbCDek3Xh0Q6sl8vKPEFMVSZPve18Aw9eGlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpHMA1+is+a+chloroplast+cadmium+exporter+protecting+photochemical+reactions+in+the+Cd+hyperaccumulator+Sedum+plumbizincicola&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Zhao%2C+Haixia&rft.au=Wang%2C+Liangsheng&rft.au=Zhao%2C+Fang-Jie&rft.au=Wu%2C+Longhua&rft.date=2019-04-01&rft.issn=1365-3040&rft.eissn=1365-3040&rft.volume=42&rft.issue=4&rft.spage=1112&rft_id=info:doi/10.1111%2Fpce.13456&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon