SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola
Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role...
Saved in:
Published in | Plant, cell and environment Vol. 42; no. 4; pp. 1112 - 1124 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0140-7791 1365-3040 1365-3040 |
DOI | 10.1111/pce.13456 |
Cover
Loading…
Abstract | Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9‐induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild‐type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.
Cadmium is a highly toxic metal and accumulates in the leaves to very high levels in Cd hyperaccumulators in Sedum plumbizincicola, posing a high risk of Cd toxicity to the chloroplasts. In this study, we demonstrate that SpHMA1 is a Cd exporter localized to the chloroplast envelope, functioning to detoxify Cd in the chloroplasts to protect photosynthetic reactions in S. plumbizincicola. The hyperexpression of SpHMA1 in the leaves of S. plumbizincicola, compared with SaHMA1n in a nonhyperaccumulating ecotype S. alfredii, likely confers an adaptive advantage under Cd stress conditions and contributes to Cd hypertolerance in S. plumbizincicola. These novel findings have important implications for the evolution of metal hyperaccumulation phenotype and the adaptation of plants to metal‐contaminated environments. |
---|---|
AbstractList | Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9-induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild-type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9-induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild-type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola. Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii , the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9‐induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild‐type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola . Cadmium is a highly toxic metal and accumulates in the leaves to very high levels in Cd hyperaccumulators in Sedum plumbizincicola , posing a high risk of Cd toxicity to the chloroplasts. In this study, we demonstrate that SpHMA1 is a Cd exporter localized to the chloroplast envelope, functioning to detoxify Cd in the chloroplasts to protect photosynthetic reactions in S. plumbizincicola . The hyperexpression of SpHMA1 in the leaves of S. plumbizincicola , compared with SaHMA1n in a nonhyperaccumulating ecotype S. alfredii , likely confers an adaptive advantage under Cd stress conditions and contributes to Cd hypertolerance in S. plumbizincicola . These novel findings have important implications for the evolution of metal hyperaccumulation phenotype and the adaptation of plants to metal‐contaminated environments. Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9‐induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild‐type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola. Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9‐induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild‐type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola. Cadmium is a highly toxic metal and accumulates in the leaves to very high levels in Cd hyperaccumulators in Sedum plumbizincicola, posing a high risk of Cd toxicity to the chloroplasts. In this study, we demonstrate that SpHMA1 is a Cd exporter localized to the chloroplast envelope, functioning to detoxify Cd in the chloroplasts to protect photosynthetic reactions in S. plumbizincicola. The hyperexpression of SpHMA1 in the leaves of S. plumbizincicola, compared with SaHMA1n in a nonhyperaccumulating ecotype S. alfredii, likely confers an adaptive advantage under Cd stress conditions and contributes to Cd hypertolerance in S. plumbizincicola. These novel findings have important implications for the evolution of metal hyperaccumulation phenotype and the adaptation of plants to metal‐contaminated environments. Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9-induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild-type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola. |
Author | Liu, Anna Wu, Longhua Wang, Liangsheng Zhao, Haixia Zhao, Fang‐Jie Xu, Wenzhong |
Author_xml | – sequence: 1 givenname: Haixia surname: Zhao fullname: Zhao, Haixia organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Liangsheng surname: Wang fullname: Wang, Liangsheng organization: Institute of Botany, Chinese Academy of Sciences – sequence: 3 givenname: Fang‐Jie orcidid: 0000-0002-0164-169X surname: Zhao fullname: Zhao, Fang‐Jie organization: Nanjing Agricultural University – sequence: 4 givenname: Longhua surname: Wu fullname: Wu, Longhua organization: Institute of Soil Science, Chinese Academy of Sciences – sequence: 5 givenname: Anna surname: Liu fullname: Liu, Anna organization: Institute of Botany, Chinese Academy of Sciences – sequence: 6 givenname: Wenzhong orcidid: 0000-0002-2011-7324 surname: Xu fullname: Xu, Wenzhong email: xuwzh@ibcas.ac.cn organization: Institute of Botany, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30311663$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS3Uim4LB_4AssQFDmk9sRPXx2pVKFKrIhXOkdeZEFdObGxHZRE_HpctHCpB5zLS-Js3en6HZG_2MxLyCtgxlDoJBo-Bi6Z9RlbA26biTLA9smIgWCWlggNymNItY2Ug1XNywBkHaFu-Ij9vwsXVGVCbqKZmdD764HTK1Oh-sstE8XvwMWOkIfqMJtv5Kw2jz96MOFmjHY2oy9jPidqZ5hHpuqfjNmDUxizT4nT2kd5gX8SCW6aN_WFnY413-gXZH7RL-PKhH5Ev788_ry-qy-sPH9dnl5URNbSVMExKVJthaFs0HHg5qJUaaq300DflrcVi39SDkIINou5lLyTwUyEYawTwI_J2p1s8fFsw5W6yyaBzeka_pK6ua6aUKvjTKIBSIBs4LeibR-itX-JcjBRK8XK7Vm2hXj9Qy2bCvgvRTjpuuz8RFODdDjDRpxRx-IsA6-7j7Uq83e94C3vyiDU26_vPz1Fb97-NO-tw-2_p7tP6fLfxC9ZXtek |
CitedBy_id | crossref_primary_10_1111_ppl_70063 crossref_primary_10_3390_ijms241411845 crossref_primary_10_1002_tpg2_70013 crossref_primary_10_3390_plants8010011 crossref_primary_10_1016_j_chemosphere_2020_127156 crossref_primary_10_1016_j_envpol_2024_124178 crossref_primary_10_1002_agj2_20398 crossref_primary_10_1016_j_jhazmat_2023_132480 crossref_primary_10_3390_plants11020215 crossref_primary_10_1016_j_jhazmat_2023_132761 crossref_primary_10_3390_ijerph192113910 crossref_primary_10_1016_j_trac_2020_115875 crossref_primary_10_1007_s11356_020_11454_z crossref_primary_10_3390_genes13122395 crossref_primary_10_1016_j_ecoenv_2023_114882 crossref_primary_10_3390_toxics10080411 crossref_primary_10_1007_s44154_024_00153_1 crossref_primary_10_1016_j_scitotenv_2024_176462 crossref_primary_10_3390_plants11091273 crossref_primary_10_1021_acssuschemeng_9b05518 crossref_primary_10_1016_j_jprot_2020_104097 crossref_primary_10_1016_j_jhazmat_2025_137226 crossref_primary_10_1016_j_chemosphere_2021_132302 crossref_primary_10_1111_pce_15296 crossref_primary_10_3390_cleantechnol4020030 crossref_primary_10_3390_plants12091892 crossref_primary_10_1016_j_envexpbot_2023_105296 crossref_primary_10_1016_j_ecoenv_2024_117588 crossref_primary_10_32615_ps_2021_017 crossref_primary_10_12677_AAC_2023_132022 crossref_primary_10_1016_j_scitotenv_2021_151099 crossref_primary_10_1016_j_scitotenv_2024_171024 crossref_primary_10_1007_s00299_024_03303_x crossref_primary_10_1007_s00425_024_04393_3 crossref_primary_10_3390_plants10071342 crossref_primary_10_1007_s11356_019_07499_4 crossref_primary_10_1016_j_envres_2023_118054 crossref_primary_10_1016_j_ecoenv_2021_113149 crossref_primary_10_3389_fgene_2021_655885 crossref_primary_10_48130_cas_0024_0018 crossref_primary_10_1007_s11033_023_08521_2 crossref_primary_10_1016_j_jhazmat_2022_129840 crossref_primary_10_3389_fpls_2024_1382121 crossref_primary_10_3390_ijms241210163 crossref_primary_10_3390_cells13110907 crossref_primary_10_1007_s11356_024_35592_w crossref_primary_10_1016_j_plaphy_2024_109199 crossref_primary_10_3390_cells12071096 crossref_primary_10_1016_j_jbc_2023_105352 crossref_primary_10_1111_pbi_14301 crossref_primary_10_1016_j_envint_2024_108904 crossref_primary_10_1080_15226514_2025_2451714 crossref_primary_10_1007_s10311_020_01095_6 crossref_primary_10_1007_s11274_024_04003_0 crossref_primary_10_1016_j_jhazmat_2023_130970 crossref_primary_10_1016_j_envpol_2023_121546 crossref_primary_10_3390_ijms24043544 crossref_primary_10_1016_j_jplph_2025_154419 crossref_primary_10_3390_biology10060544 crossref_primary_10_1016_j_jhazmat_2019_121177 crossref_primary_10_1016_j_jhazmat_2024_134517 crossref_primary_10_1016_j_jhazmat_2024_135968 crossref_primary_10_1016_j_plaphy_2025_109614 crossref_primary_10_1007_s10653_020_00533_2 |
Cites_doi | 10.1023/B:PRES.0000015391.99477.0d 10.1046/j.1365-313X.2003.01959.x 10.1111/j.1365-313X.2011.04548.x 10.1038/ncomms1486 10.1016/j.bios.2006.10.018 10.1007/s10534-013-9659-6 10.1186/1999-3110-54-45 10.1104/pp.90.3.1029 10.1007/s11356-016-8048-4 10.1371/journal.pgen.1002923 10.1104/pp.126.2.696 10.1111/j.1365-3040.2010.02236.x 10.1016/j.tplants.2005.08.008 10.1371/journal.pone.0049027 10.1046/j.1529-8817.2002.01148.x 10.1073/pnas.1005396107 10.1111/j.1365-313X.2009.03818.x 10.1186/s13059-015-0715-0 10.1105/tpc.104.030452 10.1186/s12870-014-0327-y 10.1016/S0092-8674(00)80747-3 10.1016/0304-4157(95)00017-8 10.1371/journal.pone.0013388 10.1093/jxb/eru020 10.1111/j.1469-8137.2007.02139.x 10.1104/pp.106.095133 10.1007/s00425-004-1392-5 10.1016/j.molp.2016.09.001 10.1111/j.1469-8137.2010.03459.x 10.1007/BF00031869 10.1016/S0014-5793(04)00072-9 10.1073/pnas.90.4.1629 10.1074/jbc.271.11.6509 10.3389/fpls.2013.00544 10.1038/nature06877 10.1104/pp.010820 10.1105/tpc.12.3.443 10.1105/tpc.011817 10.1074/jbc.M508333200 10.1104/pp.104.046292 10.1146/annurev.arplant.59.032607.092759 10.1111/j.1365-313X.2005.02601.x 10.1007/s00128-014-1284-8 10.1105/tpc.020487 10.3389/fpls.2017.01047 10.1111/pce.12747 10.1111/nph.14622 10.1007/s004250000458 10.1046/j.1365-313x.2000.00768.x 10.1074/jbc.M800736200 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons Ltd 2018 John Wiley & Sons Ltd. 2019 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2018 John Wiley & Sons Ltd – notice: 2018 John Wiley & Sons Ltd. – notice: 2019 John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 |
DOI | 10.1111/pce.13456 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef AGRICOLA MEDLINE Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 1124 |
ExternalDocumentID | 30311663 10_1111_pce_13456 PCE13456 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2017YFD0800900 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST AAMMB AEFGJ AGXDD AIDQK AIDYY C1K SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4216-4c077e9bff66ec313eaca99f2a9afd577e6e134c2f4740f42d7d4713844005413 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Fri Jul 11 18:39:48 EDT 2025 Fri Jul 11 05:23:10 EDT 2025 Fri Jul 25 19:34:07 EDT 2025 Wed Feb 19 02:30:50 EST 2025 Thu Apr 24 22:51:39 EDT 2025 Tue Jul 01 04:28:41 EDT 2025 Wed Jan 22 16:50:55 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | heavy metal ATPase 1 (HMA1) Sedum plumbizincicola hyperaccumulator CRISPR/Cas9 chloroplast transporter cadmium (Cd) |
Language | English |
License | 2018 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4216-4c077e9bff66ec313eaca99f2a9afd577e6e134c2f4740f42d7d4713844005413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2011-7324 0000-0002-0164-169X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pce.13456 |
PMID | 30311663 |
PQID | 2193400296 |
PQPubID | 37957 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2220999440 proquest_miscellaneous_2119917518 proquest_journals_2193400296 pubmed_primary_30311663 crossref_primary_10_1111_pce_13456 crossref_citationtrail_10_1111_pce_13456 wiley_primary_10_1111_pce_13456_PCE13456 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 2019-04-00 20190401 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 561 2017; 8 2013; 26 2010; 107 2006; 38 2007; 144 2003; 15 2016; 39 2014; 65 2001; 212 2009; 58 2014; 4 2004; 136 2005; 220 1984; 114 2013; 54 2000; 12 2004; 37 2004; 79 2007; 175 1996; 1286 2011; 66 2014; 14 1999; 97 2006; 281 2010; 5 2007; 22 2014; 93 1989 2002; 38 2015; 16 2011; 2 2017; 24 2008; 59 2011; 34 2001; 126 2017; 215 2008; 283 2001; 127 1993; 15 2006; 45 2004; 16 2017; 10 1989; 90 1996; 271 2006; 142 2005; 10 2008; 453 2012; 7 2005; 17 2011; 189 2012; 8 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 Wu L. H. (e_1_2_6_51_1) 2006; 38 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Sambrook J. (e_1_2_6_37_1) 1989 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 24 start-page: 2840 year: 2017 end-page: 2850 article-title: Cadmium‐zinc accumulation and photosystem II responses of to Cd and Zn exposure publication-title: Environmental Science and Pollution Research – volume: 12 start-page: 443 year: 2000 end-page: 455 article-title: A strong loss‐of‐function mutant in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette‐lethal phenotype publication-title: The Plant Cell – volume: 38 start-page: 632 year: 2006 end-page: 633 article-title: , a new species of the from Zhejiang, China publication-title: Soils – volume: 54 start-page: 45 year: 2013 article-title: Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress publication-title: Botanical Studies – year: 1989 – volume: 136 start-page: 3712 year: 2004 end-page: 3723 article-title: HMA2, a divalent heavy metal‐transporting P ‐type ATPase, is involved in cytoplasmic Zn homeostasis publication-title: Plant Physiology – volume: 65 start-page: 1529 year: 2014 end-page: 1540 article-title: HMA1 and PAA1, two chloroplast‐envelope P ‐ATPases, play distinct roles in chloroplast copper homeostasis publication-title: Journal of Experimental Botany – volume: 16 start-page: 1327 year: 2004 end-page: 1339 article-title: P‐type ATPase heavy metal transporters with roles in essential zinc homeostasis in publication-title: The Plant Cell – volume: 114 start-page: 177 year: 1984 end-page: 187 article-title: Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis publication-title: Hydrobiologia – volume: 66 start-page: 852 year: 2011 end-page: 862 article-title: Elevated expression of plays a key role in the extreme Cd tolerance in a Cd‐hyperaccumulating ecotype of publication-title: The Plant Journal – volume: 220 start-page: 731 year: 2005 end-page: 736 article-title: Subcellular localisation of Cd and Zn in the leaves of a Cd‐hyperaccumulating ecotype of publication-title: Planta – volume: 93 start-page: 171 year: 2014 end-page: 176 article-title: Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant publication-title: Bulletin of Environmental Contamination and Toxicology – volume: 38 start-page: 429 year: 2002 end-page: 441 article-title: Heavy metal‐induced inhibition of photosynthesis: Targets of in vivo heavy metal chlorophyll formation publication-title: Journal of Phycology – volume: 189 start-page: 190 year: 2011 end-page: 199 article-title: , a P ‐type of ATPase affects root‐to‐shoot cadmium translocation in rice by mediating efflux into vacuoles publication-title: New Phytologist – volume: 281 start-page: 2882 year: 2006 end-page: 2892 article-title: HMA1, a new Cu‐ATPase of the chloroplast envelope, is essential for growth under adverse light conditions publication-title: Journal of Biological Chemistry – volume: 14 start-page: 327 year: 2014 article-title: A CRISPR/Cas9 toolkit for multiplex genome editing in plants publication-title: BMC Plant Biology – volume: 59 start-page: 89 year: 2008 end-page: 113 article-title: Chlorophyll fluorescence: A probe of photosynthesis in vivo publication-title: Annual Review of Plant Biology – volume: 126 start-page: 696 year: 2001 end-page: 706 article-title: Inventory of the superfamily of P‐type ion pumps in publication-title: Plant Physiology – volume: 8 year: 2012 article-title: Genome‐wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in publication-title: PLoS Genetics – volume: 17 start-page: 1233 year: 2005 end-page: 1251 article-title: Two P‐type ATPases are required for copper delivery in chloroplasts publication-title: The Plant Cell – volume: 175 start-page: 655 year: 2007 end-page: 674 article-title: Cadmium‐induced inhibition of photosynthesis and longterm acclimation to cadmium stress in the hyperaccumulator publication-title: New Phytologist – volume: 1286 start-page: 1 year: 1996 end-page: 51 article-title: Structural organization, ion transport, and energy transduction of P‐type ATPases publication-title: Biochimica et Biophysica Acta – volume: 283 start-page: 9633 year: 2008 end-page: 9641 article-title: AtHMA1 is a thapsigargin‐sensitive Ca /heavy metal pump publication-title: Journal of Biological Chemistry – volume: 90 start-page: 1029 year: 1989 end-page: 1034 article-title: Relationship between the quantum efficiencies of photosystems I and II in pea leaves publication-title: Plant Physiology – volume: 215 start-page: 687 year: 2017 end-page: 698 article-title: Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator publication-title: New Phytologist – volume: 271 start-page: 6509 year: 1996 end-page: 6517 article-title: The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S‐conjugate pump publication-title: Journal of Biological Chemistry – volume: 107 start-page: 16500 year: 2010 end-page: 16505 article-title: Gene limiting cadmium accumulation in rice publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 58 start-page: 737 year: 2009 end-page: 753 article-title: contributes to the detoxification of excess Zn (II) in publication-title: The Plant Journal – volume: 561 start-page: 22 year: 2004 end-page: 28 article-title: AtHMA3, a plant P ‐ATPase, functions as a Cd/Pb transporter in yeast publication-title: FEBS Letters – volume: 39 start-page: 1941 year: 2016 end-page: 1954 article-title: A loss‐of‐function allele of associated with high cadmium accumulation in shoots and grain of rice cultivars publication-title: Plant, Cell & Environment – volume: 10 start-page: 30 year: 2017 end-page: 46 article-title: Plant carbonic anhydrases: Structures, locations, evolution, and physiological roles publication-title: Molecular Plant – volume: 15 start-page: 1333 year: 2003 end-page: 1346 article-title: PAA1, a P‐type ATPase of , functions in copper transport in chloroplasts publication-title: The Plant Cell – volume: 79 start-page: 209 year: 2004 end-page: 218 article-title: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes publication-title: Photosynthesis Research – volume: 34 start-page: 208 year: 2011 end-page: 219 article-title: Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator publication-title: Plant, Cell & Environment – volume: 8 start-page: 1047 year: 2017 article-title: A genetic transformation method for cadmium hyperaccumulator and non‐hyperaccumulating ecotype of publication-title: Frontiers in Plant Science – volume: 144 start-page: 1052 year: 2007 end-page: 1065 article-title: A major quantitative trait locus for cadmium tolerance in colocalizes with , a gene encoding a Heavy Metal ATPase publication-title: Plant Physiology – volume: 453 start-page: 391 year: 2008 end-page: 395 article-title: Evolution of metal hyperaccumulation required cis‐regulatory changes and triplication of publication-title: Nature – volume: 4 start-page: 544 year: 2014 article-title: Origin and evolution of metal P‐type ATPases in Plantae ( ) publication-title: Frontiers in Plant Science – volume: 26 start-page: 633 year: 2013 end-page: 638 article-title: Tolerance to cadmium in plants: The special case of hyperaccumulators publication-title: Biometals – volume: 127 start-page: 1466 year: 2001 end-page: 1475 article-title: Signal transduction in maize and mesophyll protoplasts publication-title: Plant Physiology – volume: 16 start-page: 144 year: 2015 article-title: Egg cell‐specific promoter‐controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in in a single generation publication-title: Genome Biology – volume: 45 start-page: 225 year: 2006 end-page: 236 article-title: The heavy metal P‐type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots publication-title: The Plant Journal – volume: 22 start-page: 2554 year: 2007 end-page: 2563 article-title: Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging publication-title: Biosensors and Bioelectronics – volume: 212 start-page: 475 year: 2001 end-page: 486 article-title: Molecular mechanisms of plant metal tolerance and homeostasis publication-title: Planta – volume: 37 start-page: 251 year: 2004 end-page: 268 article-title: Cross‐species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator publication-title: The Plant Journal – volume: 15 start-page: 1629 year: 1993 end-page: 1633 article-title: Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 5 year: 2010 article-title: Functional significance of AtHMA4 C‐terminal domain in publication-title: PLoS One – volume: 7 year: 2012 article-title: Barley HvHMA1 is a heavy metal pump involved in mobilizing organellar Zn and Cu and plays a role in metal loading into grains publication-title: PLoS One – volume: 2 start-page: 477 year: 2011 article-title: A chloroplast envelope‐bound PHD transcription factor mediates chloroplast signals to the nucleus publication-title: Nature Communications – volume: 142 start-page: 148 year: 2006 end-page: 167 article-title: Zinc‐dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator publication-title: Plant Physiology – volume: 97 start-page: 383 year: 1999 end-page: 393 article-title: Responsive‐to‐antagonist1, a Menkes/Wilson diseaserelated copper transporter, is required for ethylene signaling in publication-title: Cell – volume: 10 start-page: 491 year: 2005 end-page: 502 article-title: P ‐ATPases‐an ancient family of transition metal pumps with diverse functions in plants publication-title: Trends in Plant Science – ident: e_1_2_6_23_1 doi: 10.1023/B:PRES.0000015391.99477.0d – ident: e_1_2_6_7_1 doi: 10.1046/j.1365-313X.2003.01959.x – ident: e_1_2_6_45_1 doi: 10.1111/j.1365-313X.2011.04548.x – ident: e_1_2_6_43_1 doi: 10.1038/ncomms1486 – ident: e_1_2_6_39_1 doi: 10.1016/j.bios.2006.10.018 – ident: e_1_2_6_47_1 doi: 10.1007/s10534-013-9659-6 – ident: e_1_2_6_36_1 doi: 10.1186/1999-3110-54-45 – ident: e_1_2_6_19_1 doi: 10.1104/pp.90.3.1029 – volume: 38 start-page: 632 year: 2006 ident: e_1_2_6_51_1 article-title: Sedum plumbizincicola, a new species of the Crassulaceae from Zhejiang, China publication-title: Soils – ident: e_1_2_6_6_1 doi: 10.1007/s11356-016-8048-4 – ident: e_1_2_6_10_1 doi: 10.1371/journal.pgen.1002923 – ident: e_1_2_6_4_1 doi: 10.1104/pp.126.2.696 – ident: e_1_2_6_26_1 doi: 10.1111/j.1365-3040.2010.02236.x – ident: e_1_2_6_49_1 doi: 10.1016/j.tplants.2005.08.008 – ident: e_1_2_6_31_1 doi: 10.1371/journal.pone.0049027 – ident: e_1_2_6_25_1 doi: 10.1046/j.1529-8817.2002.01148.x – ident: e_1_2_6_46_1 doi: 10.1073/pnas.1005396107 – ident: e_1_2_6_22_1 doi: 10.1111/j.1365-313X.2009.03818.x – ident: e_1_2_6_48_1 doi: 10.1186/s13059-015-0715-0 – ident: e_1_2_6_2_1 doi: 10.1105/tpc.104.030452 – ident: e_1_2_6_52_1 doi: 10.1186/s12870-014-0327-y – ident: e_1_2_6_20_1 doi: 10.1016/S0092-8674(00)80747-3 – ident: e_1_2_6_34_1 doi: 10.1016/0304-4157(95)00017-8 – ident: e_1_2_6_32_1 doi: 10.1371/journal.pone.0013388 – ident: e_1_2_6_8_1 doi: 10.1093/jxb/eru020 – ident: e_1_2_6_24_1 doi: 10.1111/j.1469-8137.2007.02139.x – ident: e_1_2_6_12_1 doi: 10.1104/pp.106.095133 – ident: e_1_2_6_30_1 doi: 10.1007/s00425-004-1392-5 – ident: e_1_2_6_13_1 doi: 10.1016/j.molp.2016.09.001 – ident: e_1_2_6_33_1 doi: 10.1111/j.1469-8137.2010.03459.x – ident: e_1_2_6_38_1 doi: 10.1007/BF00031869 – ident: e_1_2_6_15_1 doi: 10.1016/S0014-5793(04)00072-9 – ident: e_1_2_6_16_1 doi: 10.1073/pnas.90.4.1629 – ident: e_1_2_6_27_1 doi: 10.1074/jbc.271.11.6509 – ident: e_1_2_6_17_1 doi: 10.3389/fpls.2013.00544 – ident: e_1_2_6_18_1 doi: 10.1038/nature06877 – ident: e_1_2_6_41_1 doi: 10.1104/pp.010820 – ident: e_1_2_6_50_1 doi: 10.1105/tpc.12.3.443 – ident: e_1_2_6_42_1 doi: 10.1105/tpc.011817 – ident: e_1_2_6_40_1 doi: 10.1074/jbc.M508333200 – volume-title: Molecular cloning: A laboratory manual year: 1989 ident: e_1_2_6_37_1 – ident: e_1_2_6_14_1 doi: 10.1104/pp.104.046292 – ident: e_1_2_6_5_1 doi: 10.1146/annurev.arplant.59.032607.092759 – ident: e_1_2_6_3_1 doi: 10.1111/j.1365-313X.2005.02601.x – ident: e_1_2_6_9_1 doi: 10.1007/s00128-014-1284-8 – ident: e_1_2_6_21_1 doi: 10.1105/tpc.020487 – ident: e_1_2_6_29_1 doi: 10.3389/fpls.2017.01047 – ident: e_1_2_6_53_1 doi: 10.1111/pce.12747 – ident: e_1_2_6_28_1 doi: 10.1111/nph.14622 – ident: e_1_2_6_11_1 doi: 10.1007/s004250000458 – ident: e_1_2_6_44_1 doi: 10.1046/j.1365-313x.2000.00768.x – ident: e_1_2_6_35_1 doi: 10.1074/jbc.M800736200 |
SSID | ssj0001479 |
Score | 2.520401 |
Snippet | Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its... Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its... Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1112 |
SubjectTerms | Accumulation Adenosine triphosphatase Adenosine Triphosphatases - metabolism adenosinetriphosphatase Baking yeast Blotting, Southern Cadmium cadmium (Cd) Cadmium - metabolism Chlorophyll chloroplast Chloroplasts Chloroplasts - metabolism CRISPR CRISPR/Cas9 Detoxification ecotypes Fluorescence heavy metal ATPase 1 (HMA1) Heavy metals heterologous gene expression hyperaccumulator hyperaccumulators leaves Membrane Transport Proteins - metabolism mutants Organisms, Genetically Modified Photochemical reactions Photochemicals Photosynthesis Photosystem II Plant Leaves - metabolism Plant Proteins - metabolism Plant tissues Proteins Real-Time Polymerase Chain Reaction Ribonucleic acid RNA RNA interference RNA-mediated interference Saccharomyces cerevisiae Sedum - metabolism Sedum - physiology Sedum plumbizincicola tissues Toxicity Transgenic plants transporter Yeast yeasts |
Title | SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13456 https://www.ncbi.nlm.nih.gov/pubmed/30311663 https://www.proquest.com/docview/2193400296 https://www.proquest.com/docview/2119917518 https://www.proquest.com/docview/2220999440 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CaKGXPtLXtmlRSw-9eFlZWmtFT-mSsBRaStNADgUjyxK7pGubXRuSkB_fGfnRpi9KbwaNsWTPaL7xjL4BeIWRv_CJwDDVShXJmfaRmWU-okJ3hy4OIW0okP2QLE7ku9Pp6Q686c_CtPwQww83soywX5OBm2z7g5FX1o25QP-P-y_VahEg-vSdOorLlmePyheV0rxjFaIqnuHO677oF4B5Ha8Gh3N0B770U23rTM7GTZ2N7eVPLI7_uZa7cLsDouyg1Zx7sOOKPbjZtqa82IMbb0uEjRf34eq4Wrw_4Gy1ZYbZJYb3ZYWIu2bW5OtVs2buPHCjb1hH-YC-kFXLsqZWXIGLgCEuDacntmxVMAScbJ6zJca_G2Nts6b-YeWGHaPPW7MK98psdUkJANRQ8wBOjg4_zxdR17IhsjLmSSTtRCmnM--TxFnBBT7AaO1jo43PpziWOFyojb1UcuJlnKsc3aOYSUngkYuHsFuUhXsMzMTC6RgB6lQ7qU2MuAmxS65UZtxkOnEjeN1_vNR2fObUVuNr2sc1-FbT8FZH8HIQrVoSj98J7fcakHZ2vE1xPxeSMpc4_GIYRguktIopXNmQDJWPUfrqLzIxHVHWuMoRPGq1a5gJggjOEfjhgoKO_HmK6cf5Ybh48u-iT-EWYjzdFhvtw269adwzxFF19jwYzDf3jheC |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VAqIXHgXapQUM4sAlq03sTdYSl3ZptUBbIdpKvVSR49jaFd0k2k0kWvHjmXEeUF5C3CJ5otjOjOcbe_wNwCuM_LkNOYapWkSeGEnrqVFiPUp0N-jiENK6BNmjcHIq3p8Nz1bgTXsXpuaH6DbcyDLcek0GThvSP1h5oU3f5wgAbsBNquhN9QvefvpOHuWLmmmPEhijSPoNrxDl8XSvXvdGv0DM64jVuZz9e3DedrbONPncr8qkr69-4nH839Hch7sNFmU7tfI8gBWTrcPtujrl5Trc2s0ROV4-hK_HxeRwx2ezJVNMTzHCzwsE3SXTKp3PqjkzXxw9-oI1rA_oDlkxzUuqxuXoCBhCU3eBYslmGUPMycYpm2IIvFBaV3MqIZYv2DG6vTkrcLlMZld0BoBKqh7B6f7eyXjiNVUbPC0CP_SEHkSRkYm1YWg09zl-QElpAyWVTYfYFhocqA6siMTAiiCNUvSQfCQE4UefP4bVLM_MJjAVcCMDxKhDaYRUAUInhC9pFCXKDIYD04PX7d-LdUNpTpU1LuI2tMFZjd2s9uBlJ1rUPB6_E9puVSBuTHkZ45LOBR1eYvOLrhmNkE5WVGbyimQog4xOsP4iE9AtZYmj7MFGrV5dTxBH-D5iPxyQU5I_dzH-ON5zD0_-XfQ53JmcHB7EB--OPmzBGkI-WecebcNquajMU4RVZfLMWc83WQkbnA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V8lAvPAq0CwUM4sAlq3XsjdfiVJaulldVUSr1UClyHFu7optEu4nUVv3xjJ0HlJcQt0ieKHYy4_kmM_4G4CVG_sxGDMNUzUXAR9IGapTYwBW6G3RxCGl9gex-ND3i74-Hx2vwuj0LU_NDdD_cnGX4_doZeJHaH4y80KZPGfr_a3CdR2gsDhF9_s4dRXlNtOfqF4WQtKEVcmU83a1XndEvCPMqYPUeZ3IHTtq51oUmX_tVmfT1xU80jv-5mLtwu0GiZLdWnXuwZrJNuFn3pjzfhBtvcsSN5_fh8rCYftqlZL4iiugZxvd5gZC7JFqli3m1IObMk6MvScP5gM6QFLO8dL24PBkBQWDqj0-syDwjiDjJOCUzDICXSutq4RqI5UtyiE5vQQrcLJP5hcsAoIqqB3A02fsyngZNz4ZA85BGAdcDIYxMrI0ioxll-AAlpQ2VVDYd4lhkcKE6tFzwgeVhKlL0j2zEuUOPlD2E9SzPzDYQFTIjQ0SoQ2m4VCECJwQvqRCJMoPhwPTgVfvxYt0Qmru-GqdxG9jgW439W-3Bi060qFk8fie002pA3BjyKsYNnXGXusTh590wmqDLq6jM5JWTcfVjLn_1F5nQnVGWuMoebNXa1c0EUQSliPxwQV5H_jzF-GC85y8e_bvoM7h18HYSf3y3_-ExbCDek3Xh0Q6sl8vKPEFMVSZPve18Aw9eGlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpHMA1+is+a+chloroplast+cadmium+exporter+protecting+photochemical+reactions+in+the+Cd+hyperaccumulator+Sedum+plumbizincicola&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Zhao%2C+Haixia&rft.au=Wang%2C+Liangsheng&rft.au=Zhao%2C+Fang-Jie&rft.au=Wu%2C+Longhua&rft.date=2019-04-01&rft.issn=1365-3040&rft.eissn=1365-3040&rft.volume=42&rft.issue=4&rft.spage=1112&rft_id=info:doi/10.1111%2Fpce.13456&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |