Microstructure Evolution of a New Dual-Phase Steel via Multi-Pass Compression Deformation in the (α + γ) Region
Grain refinement provides an effective way to improve the strength of low‐carbon steel without loss of room temperature ductility. The microstructure evolution of Cu–P–Cr–Ni–Mo weathering steel during multi‐pass deformation was investigated via hot compression simulation. The results indicated that...
Saved in:
Published in | Steel research international Vol. 87; no. 2; pp. 157 - 164 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.02.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1611-3683 1869-344X |
DOI | 10.1002/srin.201400526 |
Cover
Loading…
Abstract | Grain refinement provides an effective way to improve the strength of low‐carbon steel without loss of room temperature ductility. The microstructure evolution of Cu–P–Cr–Ni–Mo weathering steel during multi‐pass deformation was investigated via hot compression simulation. The results indicated that ultrafine ferrite grains of 1.8 μm can be obtained in the (α + γ) region at multi‐pass deformation conditions. The second phase of bainite and martensite was distributed as band form on the ferrite matrix and became thinner with increasing number of passes. The microstructural analysis results showed that at the initial pass deformation, strain‐enhanced ferrite transformation is the main mechanism for structure refinement and at the later pass deformation, continuously dynamic recrystallization of ferrite is the main mechanism for ferrite grain refinement.
Ferrite grain refinement is prominent at the initial pass deformation, and the average grain size reachs 1.8 μm after the fifth pass deformation. The LAGBs continuously transforms into HAGBs with increasing strain, and their misorientation increases gradually, thus causes the occurrence of grain refinement. The main refinement mechanism is the DRX of ferrite at the later pass deformation. |
---|---|
AbstractList | Grain refinement provides an effective way to improve the strength of low‐carbon steel without loss of room temperature ductility. The microstructure evolution of Cu–P–Cr–Ni–Mo weathering steel during multi‐pass deformation was investigated via hot compression simulation. The results indicated that ultrafine ferrite grains of 1.8 μm can be obtained in the (α + γ) region at multi‐pass deformation conditions. The second phase of bainite and martensite was distributed as band form on the ferrite matrix and became thinner with increasing number of passes. The microstructural analysis results showed that at the initial pass deformation, strain‐enhanced ferrite transformation is the main mechanism for structure refinement and at the later pass deformation, continuously dynamic recrystallization of ferrite is the main mechanism for ferrite grain refinement.
Ferrite grain refinement is prominent at the initial pass deformation, and the average grain size reachs 1.8 μm after the fifth pass deformation. The LAGBs continuously transforms into HAGBs with increasing strain, and their misorientation increases gradually, thus causes the occurrence of grain refinement. The main refinement mechanism is the DRX of ferrite at the later pass deformation. Grain refinement provides an effective way to improve the strength of low-carbon steel without loss of room temperature ductility. The microstructure evolution of Cu-P-Cr-Ni-Mo weathering steel during multi-pass deformation was investigated via hot compression simulation. The results indicated that ultrafine ferrite grains of 1.8µm can be obtained in the ([alpha]+[gamma]) region at multi-pass deformation conditions. The second phase of bainite and martensite was distributed as band form on the ferrite matrix and became thinner with increasing number of passes. The microstructural analysis results showed that at the initial pass deformation, strain-enhanced ferrite transformation is the main mechanism for structure refinement and at the later pass deformation, continuously dynamic recrystallization of ferrite is the main mechanism for ferrite grain refinement. |
Author | Zhang, Chunling Yang, Jinfeng Kong, Yuting Zhang, Mengmeng Cai, Dayong |
Author_xml | – sequence: 1 givenname: Chunling surname: Zhang fullname: Zhang, Chunling email: zhangchl@ysu.edu.cn organization: Key laboratory of Metastable Materials Science & Technology, Yanshan University, 066004, Qinhuangdao, China – sequence: 2 givenname: Yuting surname: Kong fullname: Kong, Yuting organization: Key laboratory of Metastable Materials Science & Technology, Yanshan University, 066004, Qinhuangdao, China – sequence: 3 givenname: Mengmeng surname: Zhang fullname: Zhang, Mengmeng organization: Key laboratory of Metastable Materials Science & Technology, Yanshan University, 066004, Qinhuangdao, China – sequence: 4 givenname: Jinfeng surname: Yang fullname: Yang, Jinfeng organization: Key laboratory of Metastable Materials Science & Technology, Yanshan University, 066004, Qinhuangdao, China – sequence: 5 givenname: Dayong surname: Cai fullname: Cai, Dayong organization: Key laboratory of Metastable Materials Science & Technology, Yanshan University, 066004, Qinhuangdao, China |
BookMark | eNqFkN9KHDEYxYMo1Fpvex3oTUuZbf5NMrksq7WCu8raUu9CZvqNxs5O1iSj9c5bH6f0PXwIn8SsW0QKpYGPBL7zO-Gcl2i99z0g9JqSESWEfYjB9SNGqCCkZHINbdJK6oILcbKe35LSgsuKv0DbMZ6TfHhVSSU20TBxTfAxhaFJQwC8e-m7ITnfY99ii6dwhXcG2xVHZzYCPk4AHb50Fk-GLrniyMaIx36-CBDjEtqB1oe5fTRwPU5ngN_e_bq_uX2f5-73OzyD07x7hTZa20XY_nNvoa-fdr-MPxcHh3v7448HRSMYlQVvBJSsFLYFYmtWf29aXVlSSaigLTUTitRMUasZK-uaS6YboeocTGslbVXzLfRm5bsI_mKAmMy5H0KfvzRUSSp5SaTKKrFSLZuIAVrTuPSYIQXrOkOJWXZslh2bp44zNvoLWwQ3t-H634BeAVeug-v_qM3xbH_6nC1WrIsJfj6xNvwwOYEqzbfpnhlrKtQkW834A0Xco0c |
CitedBy_id | crossref_primary_10_9773_sosei_58_748 crossref_primary_10_1016_j_msea_2018_02_084 crossref_primary_10_1002_srin_201800332 crossref_primary_10_1002_srin_201900297 crossref_primary_10_1002_srin_202200936 crossref_primary_10_1007_s11661_024_07455_z |
Cites_doi | 10.1016/j.scriptamat.2005.05.027 10.1002/srin.200405831 10.1016/j.actamat.2010.10.002 10.2355/isijinternational.48.1096 10.1016/j.actamat.2004.09.043 10.1016/j.msea.2010.08.062 10.1007/s11661-011-0828-3 10.1016/S0921-5093(01)01359-4 10.1016/j.euromechsol.2008.01.002 10.2355/isijinternational.52.874 10.1016/j.jmatprotec.2005.02.032 10.1016/j.ijfatigue.2007.10.011 10.1016/S1359-6454(00)00028-8 10.1016/S0924-0136(02)00272-8 10.1016/j.msea.2007.06.039 10.1016/j.matlet.2007.01.019 10.1016/S0924-0136(02)01014-2 10.1007/s10853-009-3966-x 10.1016/j.msea.2009.09.009 |
ContentType | Journal Article |
Copyright | 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1002/srin.201400526 |
DatabaseName | Istex CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-344X |
EndPage | 164 |
ExternalDocumentID | 3939395321 10_1002_srin_201400526 SRIN201400526 ark_67375_WNG_C9147M02_R |
Genre | article |
GroupedDBID | 05W 0R~ 123 1OC 31~ 33P 4.4 50Y 8-1 A00 AAESR AAHHS AANLZ AASGY AAXRX AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BMNLL BMXJE BRXPI BSCLL DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX FEDTE G-S GODZA HGLYW HVGLF HZ~ I-F LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- P2P P2W P4E PALCI PQQKQ R.K RJQFR ROL RX1 SJN SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 1OB 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c4216-3c4e5254afe0ab2bdcf98a086e8ef592470b271a9225bb3629c47b8679976a8b3 |
IEDL.DBID | DR2 |
ISSN | 1611-3683 |
IngestDate | Wed Aug 13 10:06:02 EDT 2025 Tue Jul 01 01:08:26 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Wed Jan 22 16:22:10 EST 2025 Wed Oct 30 10:01:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4216-3c4e5254afe0ab2bdcf98a086e8ef592470b271a9225bb3629c47b8679976a8b3 |
Notes | ark:/67375/WNG-C9147M02-R istex:C449B819B73D370EC3577288BED22F7A395B16B3 ArticleID:SRIN201400526 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1761635067 |
PQPubID | 1046344 |
PageCount | 8 |
ParticipantIDs | proquest_journals_1761635067 crossref_citationtrail_10_1002_srin_201400526 crossref_primary_10_1002_srin_201400526 wiley_primary_10_1002_srin_201400526_SRIN201400526 istex_primary_ark_67375_WNG_C9147M02_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2016 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: February 2016 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Steel research international |
PublicationTitleAlternate | steel research int |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Z. Lei, Z. Weiwei, Y. Wangyue, S. Zuqing, J. Univ. Sci. Technol. B 2004, 26, 507. S. C. Hong, K. S. Lee, Mater. Sci. Eng. A 2002, 323, 148. D. H. Shin, B. C. Kim, Y.-S. Kim, K.-T. Park, Acta Mater. 2000, 48, 2247. S. V. S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai, Y. Kogo, Scripta Mater. 2005, 53, 763. M. Calcagnotto, D. Ponge, D. Raabe, Mater. Sci. Eng. A 2010, 527, 7832. B. Q. Han, S. Yue, J. Mater. Process. Tech. 2003, 136, 100. M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 2011, 59, 658. S. Dillien, M. Seefeldt, S. Allain, O. Bouaziz, P. Van Houtte, Mater. Sci. Eng. A 2010, 527, 947. K. Nagato, S. Sugiyama, A. Yanagida, J. Yanagimoto, Mater. Sci. Eng. A 2008, 478, 376. C. Zhang, D. Cai, B. Liao, Y. Fan, J. Mater. Sci. 2010, 45, 490. T. Hebesberger, H. P. Stüwe, A. Vorhauer, F. Wetscher, R. Pippan, Acta Mater. 2005, 53, 393. B. Eghbali, Mater. Lett. 2007, 61, 4006. W. Bleck, S. Papaefthymiou, A. Frehn, Steel Res. Int. 2004, 75, 704. J. Adamczyk, A. Grajcar, J. Mater. Process. Tech. 2005, 162-163, 267. M. Calcagnatto, D. Ponge, D. Raabe, ISIJ Int. 2008, 48, 1096. V. Tarigopula, O. S. Hopperstad, M. Langseth, A. H. Clausen, Eur. J. Mech. A-Solid 2008, 27, 764. M. Calcagnatto, D. Ponge, D. Raabe, Metall. Mater. Trans. A 2012, 43, 37. M. Okayasu, K. Sato, M. Mizuno, D. Y. Hwang, D. H. Shin, Int. J. Fatigue 2008, 30, 1358. M. Calcagnatto, D. Ponge, D. Raabe, ISIJ Int. 2012, 52, 874. Y. D. Huang, W. Y. Yang, Z. Q. Sun, J. Mater. Process. Tech. 2003, 134, 19. 2010; 45 2004; 75 2010; 527 2000; 48 2002; 323 2004; 26 2008; 27 2008; 48 2005; 53 2005; 162–163 2008; 478 2007; 61 2011; 59 2008; 30 2003; 136 2003; 134 2012; 43 2012; 52 Adamczyk (10.1002/srin.201400526-BIB0003|srin201400526-cit-0003) 2005; 162-163 Calcagnotto (10.1002/srin.201400526-BIB0008|srin201400526-cit-0008) 2011; 59 Dillien (10.1002/srin.201400526-BIB0020|srin201400526-cit-0020) 2010; 527 Hong (10.1002/srin.201400526-BIB0012|srin201400526-cit-0012) 2002; 323 Calcagnatto (10.1002/srin.201400526-BIB0006|srin201400526-cit-0006) 2012; 52 Narayana Murty (10.1002/srin.201400526-BIB0019|srin201400526-cit-0019) 2005; 53 Calcagnatto (10.1002/srin.201400526-BIB0018|srin201400526-cit-0018) 2008; 48 Hebesberger (10.1002/srin.201400526-BIB0010|srin201400526-cit-0010) 2005; 53 Eghbali (10.1002/srin.201400526-BIB0013|srin201400526-cit-0013) 2007; 61 Nagato (10.1002/srin.201400526-BIB0011|srin201400526-cit-0011) 2008; 478 Bleck (10.1002/srin.201400526-BIB0004|srin201400526-cit-0004) 2004; 75 Zhang (10.1002/srin.201400526-BIB0001|srin201400526-cit-0001) 2010; 45 Huang (10.1002/srin.201400526-BIB0016|srin201400526-cit-0016) 2003; 134 Calcagnotto (10.1002/srin.201400526-BIB0005|srin201400526-cit-0005) 2010; 527 Okayasu (10.1002/srin.201400526-BIB0014|srin201400526-cit-0014) 2008; 30 Calcagnatto (10.1002/srin.201400526-BIB0007|srin201400526-cit-0007) 2012; 43 Lei (10.1002/srin.201400526-BIB0017|srin201400526-cit-0017) 2004; 26 Tarigopula (10.1002/srin.201400526-BIB0002|srin201400526-cit-0002) 2008; 27 Shin (10.1002/srin.201400526-BIB0009|srin201400526-cit-0009) 2000; 48 Han (10.1002/srin.201400526-BIB0015|srin201400526-cit-0015) 2003; 136 |
References_xml | – reference: Z. Lei, Z. Weiwei, Y. Wangyue, S. Zuqing, J. Univ. Sci. Technol. B 2004, 26, 507. – reference: V. Tarigopula, O. S. Hopperstad, M. Langseth, A. H. Clausen, Eur. J. Mech. A-Solid 2008, 27, 764. – reference: M. Calcagnotto, D. Ponge, D. Raabe, Mater. Sci. Eng. A 2010, 527, 7832. – reference: S. C. Hong, K. S. Lee, Mater. Sci. Eng. A 2002, 323, 148. – reference: S. Dillien, M. Seefeldt, S. Allain, O. Bouaziz, P. Van Houtte, Mater. Sci. Eng. A 2010, 527, 947. – reference: M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 2011, 59, 658. – reference: C. Zhang, D. Cai, B. Liao, Y. Fan, J. Mater. Sci. 2010, 45, 490. – reference: D. H. Shin, B. C. Kim, Y.-S. Kim, K.-T. Park, Acta Mater. 2000, 48, 2247. – reference: M. Calcagnatto, D. Ponge, D. Raabe, Metall. Mater. Trans. A 2012, 43, 37. – reference: S. V. S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai, Y. Kogo, Scripta Mater. 2005, 53, 763. – reference: W. Bleck, S. Papaefthymiou, A. Frehn, Steel Res. Int. 2004, 75, 704. – reference: M. Calcagnatto, D. Ponge, D. Raabe, ISIJ Int. 2008, 48, 1096. – reference: B. Eghbali, Mater. Lett. 2007, 61, 4006. – reference: J. Adamczyk, A. Grajcar, J. Mater. Process. Tech. 2005, 162-163, 267. – reference: K. Nagato, S. Sugiyama, A. Yanagida, J. Yanagimoto, Mater. Sci. Eng. A 2008, 478, 376. – reference: T. Hebesberger, H. P. Stüwe, A. Vorhauer, F. Wetscher, R. Pippan, Acta Mater. 2005, 53, 393. – reference: M. Okayasu, K. Sato, M. Mizuno, D. Y. Hwang, D. H. Shin, Int. J. Fatigue 2008, 30, 1358. – reference: M. Calcagnatto, D. Ponge, D. Raabe, ISIJ Int. 2012, 52, 874. – reference: Y. D. Huang, W. Y. Yang, Z. Q. Sun, J. Mater. Process. Tech. 2003, 134, 19. – reference: B. Q. Han, S. Yue, J. Mater. Process. Tech. 2003, 136, 100. – volume: 27 start-page: 764 year: 2008 publication-title: Eur. J. Mech. A‐Solid – volume: 48 start-page: 2247 year: 2000 publication-title: Acta Mater. – volume: 30 start-page: 1358 year: 2008 publication-title: Int. J. Fatigue – volume: 527 start-page: 947 year: 2010 publication-title: Mater. Sci. Eng. A – volume: 134 start-page: 19 year: 2003 publication-title: J. Mater. Process. Tech. – volume: 52 start-page: 874 year: 2012 publication-title: ISIJ Int. – volume: 48 start-page: 1096 year: 2008 publication-title: ISIJ Int. – volume: 323 start-page: 148 year: 2002 publication-title: Mater. Sci. Eng. A – volume: 527 start-page: 7832 year: 2010 publication-title: Mater. Sci. Eng. A – volume: 53 start-page: 763 year: 2005 publication-title: Scripta Mater. – volume: 53 start-page: 393 year: 2005 publication-title: Acta Mater. – volume: 75 start-page: 704 year: 2004 publication-title: Steel Res. Int. – volume: 43 start-page: 37 year: 2012 publication-title: Metall. Mater. Trans. A – volume: 478 start-page: 376 year: 2008 publication-title: Mater. Sci. Eng. A – volume: 162–163 start-page: 267 year: 2005 publication-title: J. Mater. Process. Tech. – volume: 61 start-page: 4006 year: 2007 publication-title: Mater. Lett. – volume: 26 start-page: 507 year: 2004 publication-title: J. Univ. Sci. Technol. B – volume: 136 start-page: 100 year: 2003 publication-title: J. Mater. Process. Tech. – volume: 45 start-page: 490 year: 2010 publication-title: J. Mater. Sci. – volume: 59 start-page: 658 year: 2011 publication-title: Acta Mater. – volume: 53 start-page: 763 year: 2005 ident: 10.1002/srin.201400526-BIB0019|srin201400526-cit-0019 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2005.05.027 – volume: 75 start-page: 704 year: 2004 ident: 10.1002/srin.201400526-BIB0004|srin201400526-cit-0004 publication-title: Steel Res. Int. doi: 10.1002/srin.200405831 – volume: 59 start-page: 658 year: 2011 ident: 10.1002/srin.201400526-BIB0008|srin201400526-cit-0008 publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.10.002 – volume: 48 start-page: 1096 year: 2008 ident: 10.1002/srin.201400526-BIB0018|srin201400526-cit-0018 publication-title: ISIJ Int. doi: 10.2355/isijinternational.48.1096 – volume: 53 start-page: 393 year: 2005 ident: 10.1002/srin.201400526-BIB0010|srin201400526-cit-0010 publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.09.043 – volume: 527 start-page: 7832 year: 2010 ident: 10.1002/srin.201400526-BIB0005|srin201400526-cit-0005 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.08.062 – volume: 43 start-page: 37 year: 2012 ident: 10.1002/srin.201400526-BIB0007|srin201400526-cit-0007 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-011-0828-3 – volume: 323 start-page: 148 year: 2002 ident: 10.1002/srin.201400526-BIB0012|srin201400526-cit-0012 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(01)01359-4 – volume: 27 start-page: 764 year: 2008 ident: 10.1002/srin.201400526-BIB0002|srin201400526-cit-0002 publication-title: Eur. J. Mech. A-Solid doi: 10.1016/j.euromechsol.2008.01.002 – volume: 52 start-page: 874 year: 2012 ident: 10.1002/srin.201400526-BIB0006|srin201400526-cit-0006 publication-title: ISIJ Int. doi: 10.2355/isijinternational.52.874 – volume: 26 start-page: 507 year: 2004 ident: 10.1002/srin.201400526-BIB0017|srin201400526-cit-0017 publication-title: J. Univ. Sci. Technol. B – volume: 162-163 start-page: 267 year: 2005 ident: 10.1002/srin.201400526-BIB0003|srin201400526-cit-0003 publication-title: J. Mater. Process. Tech. doi: 10.1016/j.jmatprotec.2005.02.032 – volume: 30 start-page: 1358 year: 2008 ident: 10.1002/srin.201400526-BIB0014|srin201400526-cit-0014 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2007.10.011 – volume: 48 start-page: 2247 year: 2000 ident: 10.1002/srin.201400526-BIB0009|srin201400526-cit-0009 publication-title: Acta Mater. doi: 10.1016/S1359-6454(00)00028-8 – volume: 134 start-page: 19 year: 2003 ident: 10.1002/srin.201400526-BIB0016|srin201400526-cit-0016 publication-title: J. Mater. Process. Tech. doi: 10.1016/S0924-0136(02)00272-8 – volume: 478 start-page: 376 year: 2008 ident: 10.1002/srin.201400526-BIB0011|srin201400526-cit-0011 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2007.06.039 – volume: 61 start-page: 4006 year: 2007 ident: 10.1002/srin.201400526-BIB0013|srin201400526-cit-0013 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2007.01.019 – volume: 136 start-page: 100 year: 2003 ident: 10.1002/srin.201400526-BIB0015|srin201400526-cit-0015 publication-title: J. Mater. Process. Tech. doi: 10.1016/S0924-0136(02)01014-2 – volume: 45 start-page: 490 year: 2010 ident: 10.1002/srin.201400526-BIB0001|srin201400526-cit-0001 publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-3966-x – volume: 527 start-page: 947 year: 2010 ident: 10.1002/srin.201400526-BIB0020|srin201400526-cit-0020 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2009.09.009 |
SSID | ssj0000388674 |
Score | 2.0681515 |
Snippet | Grain refinement provides an effective way to improve the strength of low‐carbon steel without loss of room temperature ductility. The microstructure evolution... Grain refinement provides an effective way to improve the strength of low-carbon steel without loss of room temperature ductility. The microstructure evolution... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 157 |
SubjectTerms | (α + γ) region Carbon steel Deformation Microstructure microstructure evolution multi-pass deformation Recrystallization ultrafine ferrite grains |
Title | Microstructure Evolution of a New Dual-Phase Steel via Multi-Pass Compression Deformation in the (α + γ) Region |
URI | https://api.istex.fr/ark:/67375/WNG-C9147M02-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsrin.201400526 https://www.proquest.com/docview/1761635067 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEO4YvMhBFDGuoOkDQYhpmOnHPI6GpyS7IYtEbp3unp64YTOQfRD0xNUbf4X4P_gR_BKqZmbHXRJjoodJ5lHz6q6u-qpT9TUhq0HqkjDKBQuMS5gE28jSRDmWgutTwqZZlmOBc7sTHZzIw1N1OlXFX_FDNBNuODJKe40D3Njh1m_S0OGgh_ylECAgZQkYYUzYQlTU5c0kC1KdRCUTMwCbkIkoERPixoBvzT5hxjE9xTa-mkGd09i1dD57C8RMPrvKOTnbHI_spvvxiNHxf_7rBXleI1P6qVKll-SJLxbJ_BRf4SvyvY3pexXl7Hjg6e5lrbj0PKeGgsGkO2PTv7--OfoG3pEej7zv08ueoWWdL54HrE7RBlXptwXd8U35JO0VFOAoXb-7vb_--RG2u18btOsxY3qJnOztftk-YPXaDcxJHkZMOOkVBJ8m94Gx3GYuTxMD8ZNPfK4g6IsDy-PQpGBPrAUvmjoZW2T_AyUxiRWvyVxxXvg3hMpcBcLYOONZLiVe9T42CoSyQAietQibdJx2NbE5rq_R1xUlM9fYpLpp0hb50MhfVJQef5RcK_WgETODM0yEi5X-2tnX22ko4zbc1W2RlYmi6NoGDHUYRwB2FcCBFuFlj__ldfq4-7nTHL39l5uWyTPYr9PKV8gcKIR_B6hpZN-XI-MBaPkSpw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbhQxELUgOUAOhFUZCOADYhFy0u2llyPKJEwgM0KTRHCzbLdbGWXUiSYzEXDKNTd-BfEf-Yh8CVW9kUFCSHDoQ3eXe7HLVa-sqmdCngWpS8IoFywwLmESbCNLE-VYCq5PCZtmWY4Fzv1B1NuX7z6pJpsQa2Eqfoh2wQ1nRmmvcYLjgvT6L9bQk8kICUwhQkDOkutkEbf1xk0MukPeLrMg2UlUcjEDtAmZiBLRUDcGfH3-EXOuaRF7-fMc7ryKXkv3s7VMbPPhVdbJ4dpsatfc1984Hf_rz26TWzU4pW8qbbpDrvniLlm6Qll4j3zpYwZfxTo7m3i6eVrrLj3KqaFgM2l3ZsaXZ98-HICDpLtT78f0dGRoWeqL1wGuUzRDVQZuQbu-raCko4ICIqUvL75fnp2_huPixys69Jg0fZ_sb23ubfRYvX0Dc5KHERNOegXxp8l9YCy3mcvTxEAI5ROfK4j74sDyODQpmBRrwZGmTsYWCQBBT0xixQOyUBwVfoVQmatAGBtnPMulxLvex0aBUBYIwbMOYc3IaVdzm-MWG2NdsTJzjV2q2y7tkBet_HHF6vFHyeelIrRiZnKIuXCx0h8Hb_VGGsq4D62GHbLaaIquzcCJDuMI8K4CRNAhvBzyv7xO7w63B-3Zw39p9JTc6O31d_TO9uD9I3ITrtdZ5qtkAZTDPwYQNbVPymnyE3oeFsE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE4tLwqlhbwAfEQcps4dh5H1O3SAruqtlT0ZtmOLVZdpdV2t4Keeu2tfwXxP_oj-ksYJ9mwi4SQ4JBDknEe9njmG2vmM8DzIDNpGLuIBsqklKNtpFkqDM3Q9YlIZ3nufIFztxdv7_P3B-Jgpoq_4odoFtz8zCjttZ_gx7nb-EUaejIaeP5SDBA8ZclNWOQxzhgPi_qsWWXxXCdxScWMyCakUZxGU-bGgG3MP2LOMy36Tv46BztnwWvpfTrLoKbfXSWdHK5PxnrdnP1G6fg_P3YXlmpoSt5WunQPbtjiPtyZISx8AN-6Pn-v4pydjCzZOq01lxw5oghaTNKeqOH1-eXuF3SPZG9s7ZCcDhQpC339dQTrxBuhKv-2IG3b1E-SQUEQj5JXV9-vzy_e4HH14zXpW58y_RD2O1ufNrdpvXkDNZyFMY0MtwKjT-VsoDTTuXFZqjCAsql1AqO-JNAsCVWGBkVrdKOZ4Yn29H-oJSrV0QosFEeFfQSEOxFESic5yx3n_q61iRIolAdRxPIW0OnASVMzm_sNNoay4mRm0nepbLq0BS8b-eOK0-OPki9KPWjE1OjQZ8IlQn7uvZObWciTLrbqt2BtqiiyNgInMkxiRLsC8UALWDnif3md3Ovv9Jqzx__S6Bnc2m135Med3odVuI2X6xTzNVhA3bBPEEGN9dNykvwER0oVeQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+Evolution+of+a+New+Dual-Phase+Steel+via+Multi-Pass+Compression+Deformation+in+the+%28+%CE%B1+%E2%80%89%2B%E2%80%89+%CE%B3+%29+Region&rft.jtitle=Steel+research+international&rft.au=Zhang%2C+Chunling&rft.au=Kong%2C+Yuting&rft.au=Zhang%2C+Mengmeng&rft.au=Yang%2C+Jinfeng&rft.date=2016-02-01&rft.issn=1611-3683&rft.volume=87&rft.issue=2&rft.spage=157&rft.epage=164&rft_id=info:doi/10.1002%2Fsrin.201400526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_srin_201400526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-3683&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-3683&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-3683&client=summon |