Microstructure Evolution of a New Dual-Phase Steel via Multi-Pass Compression Deformation in the (α + γ) Region

Grain refinement provides an effective way to improve the strength of low‐carbon steel without loss of room temperature ductility. The microstructure evolution of Cu–P–Cr–Ni–Mo weathering steel during multi‐pass deformation was investigated via hot compression simulation. The results indicated that...

Full description

Saved in:
Bibliographic Details
Published inSteel research international Vol. 87; no. 2; pp. 157 - 164
Main Authors Zhang, Chunling, Kong, Yuting, Zhang, Mengmeng, Yang, Jinfeng, Cai, Dayong
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.02.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1611-3683
1869-344X
DOI10.1002/srin.201400526

Cover

Loading…
Abstract Grain refinement provides an effective way to improve the strength of low‐carbon steel without loss of room temperature ductility. The microstructure evolution of Cu–P–Cr–Ni–Mo weathering steel during multi‐pass deformation was investigated via hot compression simulation. The results indicated that ultrafine ferrite grains of 1.8 μm can be obtained in the (α + γ) region at multi‐pass deformation conditions. The second phase of bainite and martensite was distributed as band form on the ferrite matrix and became thinner with increasing number of passes. The microstructural analysis results showed that at the initial pass deformation, strain‐enhanced ferrite transformation is the main mechanism for structure refinement and at the later pass deformation, continuously dynamic recrystallization of ferrite is the main mechanism for ferrite grain refinement. Ferrite grain refinement is prominent at the initial pass deformation, and the average grain size reachs 1.8 μm after the fifth pass deformation. The LAGBs continuously transforms into HAGBs with increasing strain, and their misorientation increases gradually, thus causes the occurrence of grain refinement. The main refinement mechanism is the DRX of ferrite at the later pass deformation.
AbstractList Grain refinement provides an effective way to improve the strength of low‐carbon steel without loss of room temperature ductility. The microstructure evolution of Cu–P–Cr–Ni–Mo weathering steel during multi‐pass deformation was investigated via hot compression simulation. The results indicated that ultrafine ferrite grains of 1.8 μm can be obtained in the (α + γ) region at multi‐pass deformation conditions. The second phase of bainite and martensite was distributed as band form on the ferrite matrix and became thinner with increasing number of passes. The microstructural analysis results showed that at the initial pass deformation, strain‐enhanced ferrite transformation is the main mechanism for structure refinement and at the later pass deformation, continuously dynamic recrystallization of ferrite is the main mechanism for ferrite grain refinement. Ferrite grain refinement is prominent at the initial pass deformation, and the average grain size reachs 1.8 μm after the fifth pass deformation. The LAGBs continuously transforms into HAGBs with increasing strain, and their misorientation increases gradually, thus causes the occurrence of grain refinement. The main refinement mechanism is the DRX of ferrite at the later pass deformation.
Grain refinement provides an effective way to improve the strength of low-carbon steel without loss of room temperature ductility. The microstructure evolution of Cu-P-Cr-Ni-Mo weathering steel during multi-pass deformation was investigated via hot compression simulation. The results indicated that ultrafine ferrite grains of 1.8µm can be obtained in the ([alpha]+[gamma]) region at multi-pass deformation conditions. The second phase of bainite and martensite was distributed as band form on the ferrite matrix and became thinner with increasing number of passes. The microstructural analysis results showed that at the initial pass deformation, strain-enhanced ferrite transformation is the main mechanism for structure refinement and at the later pass deformation, continuously dynamic recrystallization of ferrite is the main mechanism for ferrite grain refinement.
Author Zhang, Chunling
Yang, Jinfeng
Kong, Yuting
Zhang, Mengmeng
Cai, Dayong
Author_xml – sequence: 1
  givenname: Chunling
  surname: Zhang
  fullname: Zhang, Chunling
  email: zhangchl@ysu.edu.cn
  organization: Key laboratory of Metastable Materials Science & Technology, Yanshan University, 066004, Qinhuangdao, China
– sequence: 2
  givenname: Yuting
  surname: Kong
  fullname: Kong, Yuting
  organization: Key laboratory of Metastable Materials Science & Technology, Yanshan University, 066004, Qinhuangdao, China
– sequence: 3
  givenname: Mengmeng
  surname: Zhang
  fullname: Zhang, Mengmeng
  organization: Key laboratory of Metastable Materials Science & Technology, Yanshan University, 066004, Qinhuangdao, China
– sequence: 4
  givenname: Jinfeng
  surname: Yang
  fullname: Yang, Jinfeng
  organization: Key laboratory of Metastable Materials Science & Technology, Yanshan University, 066004, Qinhuangdao, China
– sequence: 5
  givenname: Dayong
  surname: Cai
  fullname: Cai, Dayong
  organization: Key laboratory of Metastable Materials Science & Technology, Yanshan University, 066004, Qinhuangdao, China
BookMark eNqFkN9KHDEYxYMo1Fpvex3oTUuZbf5NMrksq7WCu8raUu9CZvqNxs5O1iSj9c5bH6f0PXwIn8SsW0QKpYGPBL7zO-Gcl2i99z0g9JqSESWEfYjB9SNGqCCkZHINbdJK6oILcbKe35LSgsuKv0DbMZ6TfHhVSSU20TBxTfAxhaFJQwC8e-m7ITnfY99ii6dwhXcG2xVHZzYCPk4AHb50Fk-GLrniyMaIx36-CBDjEtqB1oe5fTRwPU5ngN_e_bq_uX2f5-73OzyD07x7hTZa20XY_nNvoa-fdr-MPxcHh3v7448HRSMYlQVvBJSsFLYFYmtWf29aXVlSSaigLTUTitRMUasZK-uaS6YboeocTGslbVXzLfRm5bsI_mKAmMy5H0KfvzRUSSp5SaTKKrFSLZuIAVrTuPSYIQXrOkOJWXZslh2bp44zNvoLWwQ3t-H634BeAVeug-v_qM3xbH_6nC1WrIsJfj6xNvwwOYEqzbfpnhlrKtQkW834A0Xco0c
CitedBy_id crossref_primary_10_9773_sosei_58_748
crossref_primary_10_1016_j_msea_2018_02_084
crossref_primary_10_1002_srin_201800332
crossref_primary_10_1002_srin_201900297
crossref_primary_10_1002_srin_202200936
crossref_primary_10_1007_s11661_024_07455_z
Cites_doi 10.1016/j.scriptamat.2005.05.027
10.1002/srin.200405831
10.1016/j.actamat.2010.10.002
10.2355/isijinternational.48.1096
10.1016/j.actamat.2004.09.043
10.1016/j.msea.2010.08.062
10.1007/s11661-011-0828-3
10.1016/S0921-5093(01)01359-4
10.1016/j.euromechsol.2008.01.002
10.2355/isijinternational.52.874
10.1016/j.jmatprotec.2005.02.032
10.1016/j.ijfatigue.2007.10.011
10.1016/S1359-6454(00)00028-8
10.1016/S0924-0136(02)00272-8
10.1016/j.msea.2007.06.039
10.1016/j.matlet.2007.01.019
10.1016/S0924-0136(02)01014-2
10.1007/s10853-009-3966-x
10.1016/j.msea.2009.09.009
ContentType Journal Article
Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1002/srin.201400526
DatabaseName Istex
CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-344X
EndPage 164
ExternalDocumentID 3939395321
10_1002_srin_201400526
SRIN201400526
ark_67375_WNG_C9147M02_R
Genre article
GroupedDBID 05W
0R~
123
1OC
31~
33P
4.4
50Y
8-1
A00
AAESR
AAHHS
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
BSCLL
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
I-F
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P2P
P2W
P4E
PALCI
PQQKQ
R.K
RJQFR
ROL
RX1
SJN
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
1OB
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c4216-3c4e5254afe0ab2bdcf98a086e8ef592470b271a9225bb3629c47b8679976a8b3
IEDL.DBID DR2
ISSN 1611-3683
IngestDate Wed Aug 13 10:06:02 EDT 2025
Tue Jul 01 01:08:26 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Wed Jan 22 16:22:10 EST 2025
Wed Oct 30 10:01:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4216-3c4e5254afe0ab2bdcf98a086e8ef592470b271a9225bb3629c47b8679976a8b3
Notes ark:/67375/WNG-C9147M02-R
istex:C449B819B73D370EC3577288BED22F7A395B16B3
ArticleID:SRIN201400526
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1761635067
PQPubID 1046344
PageCount 8
ParticipantIDs proquest_journals_1761635067
crossref_citationtrail_10_1002_srin_201400526
crossref_primary_10_1002_srin_201400526
wiley_primary_10_1002_srin_201400526_SRIN201400526
istex_primary_ark_67375_WNG_C9147M02_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2016
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Steel research international
PublicationTitleAlternate steel research int
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Z. Lei, Z. Weiwei, Y. Wangyue, S. Zuqing, J. Univ. Sci. Technol. B 2004, 26, 507.
S. C. Hong, K. S. Lee, Mater. Sci. Eng. A 2002, 323, 148.
D. H. Shin, B. C. Kim, Y.-S. Kim, K.-T. Park, Acta Mater. 2000, 48, 2247.
S. V. S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai, Y. Kogo, Scripta Mater. 2005, 53, 763.
M. Calcagnotto, D. Ponge, D. Raabe, Mater. Sci. Eng. A 2010, 527, 7832.
B. Q. Han, S. Yue, J. Mater. Process. Tech. 2003, 136, 100.
M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 2011, 59, 658.
S. Dillien, M. Seefeldt, S. Allain, O. Bouaziz, P. Van Houtte, Mater. Sci. Eng. A 2010, 527, 947.
K. Nagato, S. Sugiyama, A. Yanagida, J. Yanagimoto, Mater. Sci. Eng. A 2008, 478, 376.
C. Zhang, D. Cai, B. Liao, Y. Fan, J. Mater. Sci. 2010, 45, 490.
T. Hebesberger, H. P. Stüwe, A. Vorhauer, F. Wetscher, R. Pippan, Acta Mater. 2005, 53, 393.
B. Eghbali, Mater. Lett. 2007, 61, 4006.
W. Bleck, S. Papaefthymiou, A. Frehn, Steel Res. Int. 2004, 75, 704.
J. Adamczyk, A. Grajcar, J. Mater. Process. Tech. 2005, 162-163, 267.
M. Calcagnatto, D. Ponge, D. Raabe, ISIJ Int. 2008, 48, 1096.
V. Tarigopula, O. S. Hopperstad, M. Langseth, A. H. Clausen, Eur. J. Mech. A-Solid 2008, 27, 764.
M. Calcagnatto, D. Ponge, D. Raabe, Metall. Mater. Trans. A 2012, 43, 37.
M. Okayasu, K. Sato, M. Mizuno, D. Y. Hwang, D. H. Shin, Int. J. Fatigue 2008, 30, 1358.
M. Calcagnatto, D. Ponge, D. Raabe, ISIJ Int. 2012, 52, 874.
Y. D. Huang, W. Y. Yang, Z. Q. Sun, J. Mater. Process. Tech. 2003, 134, 19.
2010; 45
2004; 75
2010; 527
2000; 48
2002; 323
2004; 26
2008; 27
2008; 48
2005; 53
2005; 162–163
2008; 478
2007; 61
2011; 59
2008; 30
2003; 136
2003; 134
2012; 43
2012; 52
Adamczyk (10.1002/srin.201400526-BIB0003|srin201400526-cit-0003) 2005; 162-163
Calcagnotto (10.1002/srin.201400526-BIB0008|srin201400526-cit-0008) 2011; 59
Dillien (10.1002/srin.201400526-BIB0020|srin201400526-cit-0020) 2010; 527
Hong (10.1002/srin.201400526-BIB0012|srin201400526-cit-0012) 2002; 323
Calcagnatto (10.1002/srin.201400526-BIB0006|srin201400526-cit-0006) 2012; 52
Narayana Murty (10.1002/srin.201400526-BIB0019|srin201400526-cit-0019) 2005; 53
Calcagnatto (10.1002/srin.201400526-BIB0018|srin201400526-cit-0018) 2008; 48
Hebesberger (10.1002/srin.201400526-BIB0010|srin201400526-cit-0010) 2005; 53
Eghbali (10.1002/srin.201400526-BIB0013|srin201400526-cit-0013) 2007; 61
Nagato (10.1002/srin.201400526-BIB0011|srin201400526-cit-0011) 2008; 478
Bleck (10.1002/srin.201400526-BIB0004|srin201400526-cit-0004) 2004; 75
Zhang (10.1002/srin.201400526-BIB0001|srin201400526-cit-0001) 2010; 45
Huang (10.1002/srin.201400526-BIB0016|srin201400526-cit-0016) 2003; 134
Calcagnotto (10.1002/srin.201400526-BIB0005|srin201400526-cit-0005) 2010; 527
Okayasu (10.1002/srin.201400526-BIB0014|srin201400526-cit-0014) 2008; 30
Calcagnatto (10.1002/srin.201400526-BIB0007|srin201400526-cit-0007) 2012; 43
Lei (10.1002/srin.201400526-BIB0017|srin201400526-cit-0017) 2004; 26
Tarigopula (10.1002/srin.201400526-BIB0002|srin201400526-cit-0002) 2008; 27
Shin (10.1002/srin.201400526-BIB0009|srin201400526-cit-0009) 2000; 48
Han (10.1002/srin.201400526-BIB0015|srin201400526-cit-0015) 2003; 136
References_xml – reference: Z. Lei, Z. Weiwei, Y. Wangyue, S. Zuqing, J. Univ. Sci. Technol. B 2004, 26, 507.
– reference: V. Tarigopula, O. S. Hopperstad, M. Langseth, A. H. Clausen, Eur. J. Mech. A-Solid 2008, 27, 764.
– reference: M. Calcagnotto, D. Ponge, D. Raabe, Mater. Sci. Eng. A 2010, 527, 7832.
– reference: S. C. Hong, K. S. Lee, Mater. Sci. Eng. A 2002, 323, 148.
– reference: S. Dillien, M. Seefeldt, S. Allain, O. Bouaziz, P. Van Houtte, Mater. Sci. Eng. A 2010, 527, 947.
– reference: M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 2011, 59, 658.
– reference: C. Zhang, D. Cai, B. Liao, Y. Fan, J. Mater. Sci. 2010, 45, 490.
– reference: D. H. Shin, B. C. Kim, Y.-S. Kim, K.-T. Park, Acta Mater. 2000, 48, 2247.
– reference: M. Calcagnatto, D. Ponge, D. Raabe, Metall. Mater. Trans. A 2012, 43, 37.
– reference: S. V. S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai, Y. Kogo, Scripta Mater. 2005, 53, 763.
– reference: W. Bleck, S. Papaefthymiou, A. Frehn, Steel Res. Int. 2004, 75, 704.
– reference: M. Calcagnatto, D. Ponge, D. Raabe, ISIJ Int. 2008, 48, 1096.
– reference: B. Eghbali, Mater. Lett. 2007, 61, 4006.
– reference: J. Adamczyk, A. Grajcar, J. Mater. Process. Tech. 2005, 162-163, 267.
– reference: K. Nagato, S. Sugiyama, A. Yanagida, J. Yanagimoto, Mater. Sci. Eng. A 2008, 478, 376.
– reference: T. Hebesberger, H. P. Stüwe, A. Vorhauer, F. Wetscher, R. Pippan, Acta Mater. 2005, 53, 393.
– reference: M. Okayasu, K. Sato, M. Mizuno, D. Y. Hwang, D. H. Shin, Int. J. Fatigue 2008, 30, 1358.
– reference: M. Calcagnatto, D. Ponge, D. Raabe, ISIJ Int. 2012, 52, 874.
– reference: Y. D. Huang, W. Y. Yang, Z. Q. Sun, J. Mater. Process. Tech. 2003, 134, 19.
– reference: B. Q. Han, S. Yue, J. Mater. Process. Tech. 2003, 136, 100.
– volume: 27
  start-page: 764
  year: 2008
  publication-title: Eur. J. Mech. A‐Solid
– volume: 48
  start-page: 2247
  year: 2000
  publication-title: Acta Mater.
– volume: 30
  start-page: 1358
  year: 2008
  publication-title: Int. J. Fatigue
– volume: 527
  start-page: 947
  year: 2010
  publication-title: Mater. Sci. Eng. A
– volume: 134
  start-page: 19
  year: 2003
  publication-title: J. Mater. Process. Tech.
– volume: 52
  start-page: 874
  year: 2012
  publication-title: ISIJ Int.
– volume: 48
  start-page: 1096
  year: 2008
  publication-title: ISIJ Int.
– volume: 323
  start-page: 148
  year: 2002
  publication-title: Mater. Sci. Eng. A
– volume: 527
  start-page: 7832
  year: 2010
  publication-title: Mater. Sci. Eng. A
– volume: 53
  start-page: 763
  year: 2005
  publication-title: Scripta Mater.
– volume: 53
  start-page: 393
  year: 2005
  publication-title: Acta Mater.
– volume: 75
  start-page: 704
  year: 2004
  publication-title: Steel Res. Int.
– volume: 43
  start-page: 37
  year: 2012
  publication-title: Metall. Mater. Trans. A
– volume: 478
  start-page: 376
  year: 2008
  publication-title: Mater. Sci. Eng. A
– volume: 162–163
  start-page: 267
  year: 2005
  publication-title: J. Mater. Process. Tech.
– volume: 61
  start-page: 4006
  year: 2007
  publication-title: Mater. Lett.
– volume: 26
  start-page: 507
  year: 2004
  publication-title: J. Univ. Sci. Technol. B
– volume: 136
  start-page: 100
  year: 2003
  publication-title: J. Mater. Process. Tech.
– volume: 45
  start-page: 490
  year: 2010
  publication-title: J. Mater. Sci.
– volume: 59
  start-page: 658
  year: 2011
  publication-title: Acta Mater.
– volume: 53
  start-page: 763
  year: 2005
  ident: 10.1002/srin.201400526-BIB0019|srin201400526-cit-0019
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2005.05.027
– volume: 75
  start-page: 704
  year: 2004
  ident: 10.1002/srin.201400526-BIB0004|srin201400526-cit-0004
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.200405831
– volume: 59
  start-page: 658
  year: 2011
  ident: 10.1002/srin.201400526-BIB0008|srin201400526-cit-0008
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.10.002
– volume: 48
  start-page: 1096
  year: 2008
  ident: 10.1002/srin.201400526-BIB0018|srin201400526-cit-0018
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.48.1096
– volume: 53
  start-page: 393
  year: 2005
  ident: 10.1002/srin.201400526-BIB0010|srin201400526-cit-0010
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.09.043
– volume: 527
  start-page: 7832
  year: 2010
  ident: 10.1002/srin.201400526-BIB0005|srin201400526-cit-0005
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.08.062
– volume: 43
  start-page: 37
  year: 2012
  ident: 10.1002/srin.201400526-BIB0007|srin201400526-cit-0007
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-011-0828-3
– volume: 323
  start-page: 148
  year: 2002
  ident: 10.1002/srin.201400526-BIB0012|srin201400526-cit-0012
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(01)01359-4
– volume: 27
  start-page: 764
  year: 2008
  ident: 10.1002/srin.201400526-BIB0002|srin201400526-cit-0002
  publication-title: Eur. J. Mech. A-Solid
  doi: 10.1016/j.euromechsol.2008.01.002
– volume: 52
  start-page: 874
  year: 2012
  ident: 10.1002/srin.201400526-BIB0006|srin201400526-cit-0006
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.52.874
– volume: 26
  start-page: 507
  year: 2004
  ident: 10.1002/srin.201400526-BIB0017|srin201400526-cit-0017
  publication-title: J. Univ. Sci. Technol. B
– volume: 162-163
  start-page: 267
  year: 2005
  ident: 10.1002/srin.201400526-BIB0003|srin201400526-cit-0003
  publication-title: J. Mater. Process. Tech.
  doi: 10.1016/j.jmatprotec.2005.02.032
– volume: 30
  start-page: 1358
  year: 2008
  ident: 10.1002/srin.201400526-BIB0014|srin201400526-cit-0014
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2007.10.011
– volume: 48
  start-page: 2247
  year: 2000
  ident: 10.1002/srin.201400526-BIB0009|srin201400526-cit-0009
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(00)00028-8
– volume: 134
  start-page: 19
  year: 2003
  ident: 10.1002/srin.201400526-BIB0016|srin201400526-cit-0016
  publication-title: J. Mater. Process. Tech.
  doi: 10.1016/S0924-0136(02)00272-8
– volume: 478
  start-page: 376
  year: 2008
  ident: 10.1002/srin.201400526-BIB0011|srin201400526-cit-0011
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2007.06.039
– volume: 61
  start-page: 4006
  year: 2007
  ident: 10.1002/srin.201400526-BIB0013|srin201400526-cit-0013
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2007.01.019
– volume: 136
  start-page: 100
  year: 2003
  ident: 10.1002/srin.201400526-BIB0015|srin201400526-cit-0015
  publication-title: J. Mater. Process. Tech.
  doi: 10.1016/S0924-0136(02)01014-2
– volume: 45
  start-page: 490
  year: 2010
  ident: 10.1002/srin.201400526-BIB0001|srin201400526-cit-0001
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-3966-x
– volume: 527
  start-page: 947
  year: 2010
  ident: 10.1002/srin.201400526-BIB0020|srin201400526-cit-0020
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2009.09.009
SSID ssj0000388674
Score 2.0681515
Snippet Grain refinement provides an effective way to improve the strength of low‐carbon steel without loss of room temperature ductility. The microstructure evolution...
Grain refinement provides an effective way to improve the strength of low-carbon steel without loss of room temperature ductility. The microstructure evolution...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 157
SubjectTerms (α + γ) region
Carbon steel
Deformation
Microstructure
microstructure evolution
multi-pass deformation
Recrystallization
ultrafine ferrite grains
Title Microstructure Evolution of a New Dual-Phase Steel via Multi-Pass Compression Deformation in the (α + γ) Region
URI https://api.istex.fr/ark:/67375/WNG-C9147M02-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsrin.201400526
https://www.proquest.com/docview/1761635067
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEO4YvMhBFDGuoOkDQYhpmOnHPI6GpyS7IYtEbp3unp64YTOQfRD0xNUbf4X4P_gR_BKqZmbHXRJjoodJ5lHz6q6u-qpT9TUhq0HqkjDKBQuMS5gE28jSRDmWgutTwqZZlmOBc7sTHZzIw1N1OlXFX_FDNBNuODJKe40D3Njh1m_S0OGgh_ylECAgZQkYYUzYQlTU5c0kC1KdRCUTMwCbkIkoERPixoBvzT5hxjE9xTa-mkGd09i1dD57C8RMPrvKOTnbHI_spvvxiNHxf_7rBXleI1P6qVKll-SJLxbJ_BRf4SvyvY3pexXl7Hjg6e5lrbj0PKeGgsGkO2PTv7--OfoG3pEej7zv08ueoWWdL54HrE7RBlXptwXd8U35JO0VFOAoXb-7vb_--RG2u18btOsxY3qJnOztftk-YPXaDcxJHkZMOOkVBJ8m94Gx3GYuTxMD8ZNPfK4g6IsDy-PQpGBPrAUvmjoZW2T_AyUxiRWvyVxxXvg3hMpcBcLYOONZLiVe9T42CoSyQAietQibdJx2NbE5rq_R1xUlM9fYpLpp0hb50MhfVJQef5RcK_WgETODM0yEi5X-2tnX22ko4zbc1W2RlYmi6NoGDHUYRwB2FcCBFuFlj__ldfq4-7nTHL39l5uWyTPYr9PKV8gcKIR_B6hpZN-XI-MBaPkSpw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbhQxELUgOUAOhFUZCOADYhFy0u2llyPKJEwgM0KTRHCzbLdbGWXUiSYzEXDKNTd-BfEf-Yh8CVW9kUFCSHDoQ3eXe7HLVa-sqmdCngWpS8IoFywwLmESbCNLE-VYCq5PCZtmWY4Fzv1B1NuX7z6pJpsQa2Eqfoh2wQ1nRmmvcYLjgvT6L9bQk8kICUwhQkDOkutkEbf1xk0MukPeLrMg2UlUcjEDtAmZiBLRUDcGfH3-EXOuaRF7-fMc7ryKXkv3s7VMbPPhVdbJ4dpsatfc1984Hf_rz26TWzU4pW8qbbpDrvniLlm6Qll4j3zpYwZfxTo7m3i6eVrrLj3KqaFgM2l3ZsaXZ98-HICDpLtT78f0dGRoWeqL1wGuUzRDVQZuQbu-raCko4ICIqUvL75fnp2_huPixys69Jg0fZ_sb23ubfRYvX0Dc5KHERNOegXxp8l9YCy3mcvTxEAI5ROfK4j74sDyODQpmBRrwZGmTsYWCQBBT0xixQOyUBwVfoVQmatAGBtnPMulxLvex0aBUBYIwbMOYc3IaVdzm-MWG2NdsTJzjV2q2y7tkBet_HHF6vFHyeelIrRiZnKIuXCx0h8Hb_VGGsq4D62GHbLaaIquzcCJDuMI8K4CRNAhvBzyv7xO7w63B-3Zw39p9JTc6O31d_TO9uD9I3ITrtdZ5qtkAZTDPwYQNbVPymnyE3oeFsE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE4tLwqlhbwAfEQcps4dh5H1O3SAruqtlT0ZtmOLVZdpdV2t4Keeu2tfwXxP_oj-ksYJ9mwi4SQ4JBDknEe9njmG2vmM8DzIDNpGLuIBsqklKNtpFkqDM3Q9YlIZ3nufIFztxdv7_P3B-Jgpoq_4odoFtz8zCjttZ_gx7nb-EUaejIaeP5SDBA8ZclNWOQxzhgPi_qsWWXxXCdxScWMyCakUZxGU-bGgG3MP2LOMy36Tv46BztnwWvpfTrLoKbfXSWdHK5PxnrdnP1G6fg_P3YXlmpoSt5WunQPbtjiPtyZISx8AN-6Pn-v4pydjCzZOq01lxw5oghaTNKeqOH1-eXuF3SPZG9s7ZCcDhQpC339dQTrxBuhKv-2IG3b1E-SQUEQj5JXV9-vzy_e4HH14zXpW58y_RD2O1ufNrdpvXkDNZyFMY0MtwKjT-VsoDTTuXFZqjCAsql1AqO-JNAsCVWGBkVrdKOZ4Yn29H-oJSrV0QosFEeFfQSEOxFESic5yx3n_q61iRIolAdRxPIW0OnASVMzm_sNNoay4mRm0nepbLq0BS8b-eOK0-OPki9KPWjE1OjQZ8IlQn7uvZObWciTLrbqt2BtqiiyNgInMkxiRLsC8UALWDnif3md3Ovv9Jqzx__S6Bnc2m135Med3odVuI2X6xTzNVhA3bBPEEGN9dNykvwER0oVeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+Evolution+of+a+New+Dual-Phase+Steel+via+Multi-Pass+Compression+Deformation+in+the+%28+%CE%B1+%E2%80%89%2B%E2%80%89+%CE%B3+%29+Region&rft.jtitle=Steel+research+international&rft.au=Zhang%2C+Chunling&rft.au=Kong%2C+Yuting&rft.au=Zhang%2C+Mengmeng&rft.au=Yang%2C+Jinfeng&rft.date=2016-02-01&rft.issn=1611-3683&rft.volume=87&rft.issue=2&rft.spage=157&rft.epage=164&rft_id=info:doi/10.1002%2Fsrin.201400526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_srin_201400526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-3683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-3683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-3683&client=summon