The effect of root hairs on root water uptake is determined by root–soil contact and root hair shrinkage
Summary The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron‐based X‐ray computed microtomography. By me...
Saved in:
Published in | The New phytologist Vol. 240; no. 6; pp. 2484 - 2497 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive.
We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron‐based X‐ray computed microtomography. By means of image‐based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root–soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration.
Our model suggests that > 85% of the variance in root water uptake is explained by the hair‐induced increase in root–soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially.
We conclude that the effectiveness of root hairs on root water uptake is determined by the hair‐induced increase in root–soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from −1 to −0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake.
See also the Commentary on this article by Boursiac & Bauget 240: 2173–2175. |
---|---|
AbstractList | The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron-based X-ray computed microtomography. By means of image-based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root-soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair-induced increase in root-soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair-induced increase in root-soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from -1 to -0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake. The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants ( Zea mays ) in microcosms and scanned them using synchrotron‐based X‐ray computed microtomography. By means of image‐based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root–soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair‐induced increase in root–soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair‐induced increase in root–soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from −1 to −0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake. See also the Commentary on this article by Boursiac & Bauget 240 : 2173–2175 . The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron-based X-ray computed microtomography. By means of image-based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root-soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair-induced increase in root-soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair-induced increase in root-soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from -1 to -0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake.The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron-based X-ray computed microtomography. By means of image-based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root-soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair-induced increase in root-soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair-induced increase in root-soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from -1 to -0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake. The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive.We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron‐based X‐ray computed microtomography. By means of image‐based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root–soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration.Our model suggests that > 85% of the variance in root water uptake is explained by the hair‐induced increase in root–soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially.We conclude that the effectiveness of root hairs on root water uptake is determined by the hair‐induced increase in root–soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from −1 to −0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake. Summary The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron‐based X‐ray computed microtomography. By means of image‐based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root–soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair‐induced increase in root–soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair‐induced increase in root–soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from −1 to −0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake. See also the Commentary on this article by Boursiac & Bauget 240: 2173–2175. |
Author | Lovric, Goran Ahmed, Mutez Ali Javaux, Mathieu Carminati, Andrea Duddek, Patrick King, Andrew Vanderborght, Jan |
Author_xml | – sequence: 1 givenname: Patrick orcidid: 0000-0002-4145-2594 surname: Duddek fullname: Duddek, Patrick email: patrick.duddek@usys.ethz.ch organization: ETH Zürich – sequence: 2 givenname: Mutez Ali orcidid: 0000-0002-7402-1571 surname: Ahmed fullname: Ahmed, Mutez Ali organization: Technical University of Munich – sequence: 3 givenname: Mathieu orcidid: 0000-0002-6168-5467 surname: Javaux fullname: Javaux, Mathieu organization: Forschungszentrum Jülich GmbH – sequence: 4 givenname: Jan orcidid: 0000-0001-7381-3211 surname: Vanderborght fullname: Vanderborght, Jan organization: Forschungszentrum Jülich GmbH – sequence: 5 givenname: Goran orcidid: 0000-0002-0833-4043 surname: Lovric fullname: Lovric, Goran organization: Swiss Light Source, Paul Scherrer Institute – sequence: 6 givenname: Andrew orcidid: 0000-0001-8542-1354 surname: King fullname: King, Andrew organization: Synchrotron SOLEIL – sequence: 7 givenname: Andrea orcidid: 0000-0001-7415-0480 surname: Carminati fullname: Carminati, Andrea organization: ETH Zürich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37525254$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UFPHCEUB3DSaOpqe-gXaEi8tIdRYBgYjsZoNTHqwSa9TRh4dFlnYQszMXvrd_Ab9pMUXdsmJlU4kJf8-BPe20VbIQZA6AMlB7Ssw7CaH1BFOX-DZpQLVbW0lltoRghrK8HFtx20m_OCEKIawd6inVo2rGw-Q4ubOWBwDsyIo8MpxhHPtU8Zx7Cp7vQICU-rUd8C9hlbKPXSB7C4Xz-SXz_vc_QDNjGMuuToYP8F4TxPPtzq7_AObTs9ZHj_dO6hr6cnN8dn1cXVl_Pjo4vKcEZ5pYUibW0bxwAUUOeEUYQ0HITrpWJaUmWJ4m0NNVBr615YaQF6aoRpHIF6D33a5K5S_DFBHrulzwaGQQeIU-6YKu8QRgV7nbacC6koEYXuP6OLOKVQPlKUIoxJLmVRH5_U1C_Bdqvklzqtuz8NL-DzBpgUc07g_hJKuodhdmWY3eMwiz18Zo0f9ehLm5P2w0s37vwA6_9Hd5fXZ5sbvwHJqrCe |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_176027 crossref_primary_10_1111_nph_19336 crossref_primary_10_3389_ffgc_2024_1324405 crossref_primary_10_1007_s11104_024_07062_2 crossref_primary_10_1038_s41586_024_08089_2 crossref_primary_10_1093_plcell_koae055 crossref_primary_10_1093_aob_mcae193 crossref_primary_10_1093_jpe_rtae043 crossref_primary_10_1080_00036811_2024_2377765 crossref_primary_10_1002_vzj2_20333 crossref_primary_10_1007_s11104_024_06582_1 crossref_primary_10_1111_ejss_13524 crossref_primary_10_1007_s44307_024_00050_8 crossref_primary_10_1016_j_plantsci_2025_112461 |
Cites_doi | 10.1071/FP15303 10.1007/s11104-013-1946-z 10.1093/jxb/eru496 10.1006/anbo.1997.0540 10.1007/s11104-022-05306-7 10.1007/BF01075259 10.1016/j.tplants.2022.01.010 10.1046/j.1365-3040.2003.01093.x 10.1111/jac.12429 10.1038/s41598-017-14904-w 10.2136/vzj2017.03.0060 10.1007/s11104-005-0866-y 10.1029/WR012i003p00513 10.1016/j.cpc.2014.08.004 10.1097/00010694-196002000-00001 10.3389/fagro.2021.622367 10.1093/plphys/kiab271 10.1111/j.1365-2389.2005.00778.x 10.1139/b72-069 10.1007/s11104-022-05685-x 10.1007/s11104-022-05656-2 10.1063/1.1745010 10.1093/aob/mcs231 10.1038/s41598-019-52665-w 10.1007/s00572-014-0578-3 10.1111/pce.12983 10.1007/BF01972077 10.1007/s11104-010-0283-8 10.1016/B978-012387582-2/50038-1 10.1023/A:1003113131989 10.1007/s11104-008-9885-9 10.1002/jpln.202000079 10.1093/aob/mcl028 10.1093/jxb/erw115 10.1007/s11104-018-3769-4 10.1093/aob/mcaa181 10.1104/pp.18.01006 10.1038/nplants.2017.57 10.2136/vzj2007.0122 10.1017/S002185969700498X 10.2136/sssaj1996.03615995006000030031x 10.1111/j.1365-3040.2009.02059.x 10.1111/nph.14705 10.1007/s11104-016-2872-7 10.1093/jxb/ert200 10.1038/s41598-019-49528-9 10.1093/jxb/erv544 10.1071/SR9910729 10.1111/nph.14715 10.1046/j.1440-1703.2002.00509.x 10.1007/BF01075260 10.1093/plphys/kiac144 10.1093/aob/mcx221 10.1093/jxb/31.1.333 10.1111/nph.14980 10.1002/2014WR015608 10.1021/es102566j 10.1023/A:1012791706800 10.1023/A:1026180318923 10.2136/vzj2017.11.0201 10.1093/aob/mcab029 10.1111/nph.15516 10.1029/93WR02676 10.2136/vzj2007.0115 10.1073/pnas.1400966111 10.1111/nph.12294 10.2136/sssaj1980.03615995004400050002x |
ContentType | Journal Article |
Copyright | 2023 The Authors © 2023 New Phytologist Foundation 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 The Authors New Phytologist © 2023 New Phytologist Foundation. |
Copyright_xml | – notice: 2023 The Authors © 2023 New Phytologist Foundation – notice: 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 The Authors New Phytologist © 2023 New Phytologist Foundation. |
DBID | 24P AAYXX CITATION NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.19144 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 2497 |
ExternalDocumentID | 37525254 10_1111_nph_19144 NPH19144 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: 403670197 – fundername: Deutsche Forschungsgemeinschaft grantid: 403670197 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGDZ ABSQW ADXHL AEYWJ AGHNM AGUYK AGYGG CITATION NPM 7QO 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4214-a69083d5f2ee9e1ff6c90054e6fb792a719d09483e3e1dd3b6d7deeb1c6c5f0e3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:31:52 EDT 2025 Fri Jul 11 00:36:23 EDT 2025 Fri Jul 25 11:57:02 EDT 2025 Wed Feb 19 02:23:23 EST 2025 Tue Jul 01 02:28:46 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Wed Jan 22 17:16:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | hydraulic conductivity drought stress root water uptake pore-scale root-soil contact capillary barrier root hairs image-based modelling |
Language | English |
License | Attribution 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4214-a69083d5f2ee9e1ff6c90054e6fb792a719d09483e3e1dd3b6d7deeb1c6c5f0e3 |
Notes | Boursiac & Bauget 2173–2175 See also the Commentary on this article by 240 . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6168-5467 0000-0002-4145-2594 0000-0002-7402-1571 0000-0001-7381-3211 0000-0001-8542-1354 0000-0002-0833-4043 0000-0001-7415-0480 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19144 |
PMID | 37525254 |
PQID | 2890227477 |
PQPubID | 2026848 |
PageCount | 2497 |
ParticipantIDs | proquest_miscellaneous_2942102162 proquest_miscellaneous_2844679106 proquest_journals_2890227477 pubmed_primary_37525254 crossref_primary_10_1111_nph_19144 crossref_citationtrail_10_1111_nph_19144 wiley_primary_10_1111_nph_19144_NPH19144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 17 2017; 7 1983; 158 2018; 121 2017; 3 2021; 128 1980; 44 2013; 64 2008; 7 2020; 206 2014; 24 2018; 41 1998; 81 2022; 27 2014; 376 1991; 47 1980; 31 1997; 98 1960; 89 2018; 217 2018; 178 2013; 112 1972; 50 2016; 43 1996; 60 2006; 283 2009; 321 2013; 198 2014; 50 1994; 30 2010; 33 2019; 9 2006; 97 2021; 3 2016; 407 2006; 57 1997 2021; 184 2005 2021; 187 2014; 111 2003; 255 2022; 478 2019; 221 2017; 216 1998; 130 2022; 189 1991; 29 2018; 17 1976; 12 2022 2020 2018; 431 2010; 332 2015; 66 2003; 26 2011; 45 2009; 1 2014; 185 2001; 236 1931; 1 2016; 67 1922 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 RStudio Team (e_1_2_9_58_1) 2022 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 Jasak H (e_1_2_9_36_1) 2009; 1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_70_1 Richardson LF (e_1_2_9_55_1) 1922 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 112 start-page: 317 year: 2013 end-page: 330 article-title: A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? publication-title: Annals of Botany – volume: 3 start-page: 1 year: 2017 end-page: 8 article-title: Root hydrotropism is controlled via a cortex‐specific growth mechanism publication-title: Nature Plants – volume: 12 start-page: 513 year: 1976 end-page: 522 article-title: A new model for predicting the hydraulic conductivity of unsaturated porous media publication-title: Water Resources Research – volume: 9 start-page: 12979 year: 2019 article-title: Root water uptake and its pathways across the root: quantification at the cellular scale publication-title: Scientific Reports – volume: 45 start-page: 425 year: 2011 end-page: 431 article-title: Effects of root‐induced compaction on rhizosphere hydraulic properties – X‐ray microtomography imaging and numerical simulations publication-title: Environmental Science & Technology – volume: 7 start-page: 1079 year: 2008 end-page: 1088 article-title: Use of a three‐dimensional detailed modeling approach for predicting root water uptake publication-title: Vadose Zone Journal – volume: 60 start-page: 895 year: 1996 end-page: 901 article-title: Backscattered electron scanning images of soil porosity for analyzing soil compaction around roots publication-title: Soil Science Society of America Journal – volume: 255 start-page: 9 year: 2003 end-page: 17 article-title: Morphological and physiological characteristics of a root‐hairless mutant in rice ( L.) publication-title: Plant and Soil – volume: 216 start-page: 124 year: 2017 end-page: 135 article-title: High‐resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation publication-title: New Phytologist – volume: 98 start-page: 177 year: 1997 end-page: 182 article-title: Variation in root hairs of barley cultivars doubled soil phosphorus uptake publication-title: Euphytica – volume: 64 start-page: 3711 year: 2013 end-page: 3721 article-title: Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength publication-title: Journal of Experimental Botany – volume: 178 start-page: 1689 year: 2018 end-page: 1703 article-title: Going with the flow: multiscale insights into the composite nature of water transport in roots publication-title: Plant Physiology – volume: 478 start-page: 43 year: 2022 end-page: 58 article-title: Going underground: soil hydraulic properties impacting maize responsiveness to water deficit publication-title: Plant and Soil – volume: 1 start-page: 89 year: 2009 end-page: 94 article-title: O F : open source CFD in research and industry publication-title: International Journal of Naval Architecture and Ocean Engineering – volume: 217 start-page: 1654 year: 2018 end-page: 1666 article-title: Do longer root hairs improve phosphorus uptake? Testing the hypothesis with transgenic lines overexpressing endogenous RSL genes publication-title: New Phytologist – volume: 376 start-page: 95 year: 2014 end-page: 110 article-title: Quantifying coupled deformation and water flow in the rhizosphere using X‐ray microtomography and numerical simulations publication-title: Plant and Soil – volume: 97 start-page: 839 year: 2006 end-page: 855 article-title: Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere publication-title: Annals of Botany – volume: 50 start-page: 557 year: 1972 end-page: 573 article-title: Metabolism and the absorption of water by root hairs publication-title: Canadian Journal of Botany – volume: 67 start-page: 1059 year: 2016 end-page: 1070 article-title: Image‐based modelling of nutrient movement in and around the rhizosphere publication-title: Journal of Experimental Botany – volume: 24 start-page: 595 year: 2014 end-page: 602 article-title: Relative importance of an arbuscular mycorrhizal fungus ( ) and root hairs in plant drought tolerance publication-title: Mycorrhiza – volume: 128 start-page: 45 year: 2021 end-page: 57 article-title: Root hairs are the most important root trait for rhizosheath formation of barley ( ), maize ( ) and (Gifu) publication-title: Annals of Botany – volume: 130 start-page: 1 year: 1998 end-page: 7 article-title: Biophysical interactions at the root–soil interface: a review publication-title: The Journal of Agricultural Science – year: 2022 – volume: 221 start-page: 1878 year: 2019 end-page: 1889 article-title: Imaging microstructure of the barley rhizosphere: particle packing and root hair influences publication-title: New Phytologist – year: 1997 – volume: 31 start-page: 333 year: 1980 end-page: 345 article-title: The transport of water from soil to shoot in wheat seedlings publication-title: Journal of Experimental Botany – volume: 187 start-page: 858 year: 2021 end-page: 872 article-title: Soil textures rather than root hairs dominate water uptake and soil–plant hydraulics under drought publication-title: Plant Physiology – volume: 89 start-page: 63 year: 1960 end-page: 73 article-title: Dynamic aspects of water availability to plants publication-title: Soil Science – volume: 67 start-page: 3699 year: 2016 end-page: 3708 article-title: Root hair formation in rice ( L.) differs between root types and is altered in artificial growth conditions publication-title: Journal of Experimental Botany – start-page: 717 year: 2005 end-page: 731 – volume: 184 start-page: 35 year: 2021 end-page: 50 article-title: Experimental platforms for the investigation of spatiotemporal patterns in the rhizosphere – laboratory and field scale publication-title: Journal of Plant Nutrition and Soil Science – volume: 189 start-page: 1232 year: 2022 end-page: 1236 article-title: The impact of drought‐induced root and root hair shrinkage on root–soil contact publication-title: Plant Physiology – volume: 47 start-page: 355 year: 1991 end-page: 362 article-title: Mycorrhizas and root architecture publication-title: Experientia – volume: 33 start-page: 133 year: 2010 end-page: 148 article-title: The distribution and abundance of wheat roots in a dense, structured subsoil – implications for water uptake publication-title: Plant, Cell & Environment – volume: 17 year: 2018 article-title: Roots partially in contact with soil: analytical solutions and approximation in models of nutrient and water uptake publication-title: Vadose Zone Journal – volume: 158 start-page: 237 year: 1983 end-page: 248 article-title: Water transport in barley roots: measurements of root pressure and hydraulic conductivity of roots in parallel with turgor and hydraulic conductivity of root cells publication-title: Planta – volume: 43 start-page: 199 year: 2016 end-page: 206 article-title: Enhanced root growth of the brb (bald root barley) mutant in drying soil allows similar shoot physiological responses to soil water deficit as wild‐type plants publication-title: Functional Plant Biology – volume: 7 start-page: 14875 year: 2017 article-title: The emergent rhizosphere: imaging the development of the porous architecture at the root–soil interface publication-title: Scientific Reports – volume: 27 start-page: 688 year: 2022 end-page: 698 article-title: Building soil sustainability from root–soil interface traits publication-title: Trends in Plant Science – volume: 9 start-page: 16236 year: 2019 article-title: Roots compact the surrounding soil depending on the structures they encounter publication-title: Scientific Reports – volume: 1 start-page: 318 year: 1931 end-page: 333 article-title: Capillary conduction of liquids through porous mediums publication-title: Physics – volume: 407 start-page: 9 year: 2016 end-page: 38 article-title: Challenges in imaging and predictive modeling of rhizosphere processes publication-title: Plant and Soil – volume: 66 start-page: 2145 year: 2015 end-page: 2154 article-title: The divining root: moisture-driven responses of roots at the micro- and macro-scale publication-title: Journal of Experimental Botany – volume: 41 start-page: 121 year: 2018 end-page: 133 article-title: Quantification of root water uptake in soil using X‐ray computed tomography and image‐based modelling publication-title: Plant, Cell & Environment – volume: 30 start-page: 211 year: 1994 end-page: 223 article-title: Hydraulic conductivity estimation for soils with heterogeneous pore structure publication-title: Water Resources Research – volume: 7 start-page: 1027 year: 2008 end-page: 1034 article-title: Water uptake and hydraulics of the root hair rhizosphere publication-title: Vadose Zone Journal – volume: 158 start-page: 230 year: 1983 end-page: 236 article-title: Water‐relation parameters of epidermal and cortical cells in the primary root of L publication-title: Planta – volume: 81 start-page: 213 year: 1998 end-page: 223 article-title: Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—model description publication-title: Annals of Botany – volume: 128 start-page: 1 year: 2021 end-page: 16 article-title: Significance of root hairs for plant performance under contrasting field conditions and water deficit publication-title: Annals of Botany – volume: 216 start-page: 771 year: 2017 end-page: 781 article-title: Root hairs enable high transpiration rates in drying soils publication-title: New Phytologist – volume: 198 start-page: 1023 year: 2013 end-page: 1029 article-title: High resolution synchrotron imaging of wheat root hairs growing in soil and image based modelling of phosphate uptake publication-title: New Phytologist – volume: 185 start-page: 3358 year: 2014 end-page: 3371 article-title: An open source massively parallel solver for Richards equation: mechanistic modelling of water fluxes at the watershed scale publication-title: Computer Physics Communications – volume: 206 start-page: 679 year: 2020 end-page: 693 article-title: Fine root and root hair morphology of cotton under drought stress revealed with R P publication-title: Journal of Agronomy and Crop Science – volume: 332 start-page: 163 year: 2010 end-page: 176 article-title: Dynamics of soil water content in the rhizosphere publication-title: Plant and Soil – volume: 44 start-page: 892 year: 1980 end-page: 898 article-title: A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Science Society of America Journal – volume: 50 start-page: 8891 year: 2014 end-page: 8906 article-title: Dynamic aspects of soil water availability for isohydric plants: focus on root hydraulic resistances publication-title: Water Resources Research – volume: 17 year: 2018 article-title: Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation publication-title: Vadose Zone Journal – volume: 26 start-page: 1759 year: 2003 end-page: 1766 article-title: Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low‐ and high‐P soils publication-title: Plant, Cell & Environment – volume: 3 year: 2021 article-title: Modeling the impact of rhizosphere bulk density and mucilage gradients on root water uptake publication-title: Frontiers in Agronomy – volume: 17 start-page: 441 year: 2002 end-page: 450 article-title: Functional domains in soils publication-title: Ecological Research – volume: 121 start-page: 1033 year: 2018 end-page: 1053 article-title: CR B : a structural–functional modelling framework for root systems publication-title: Annals of Botany – volume: 236 start-page: 243 year: 2001 end-page: 250 article-title: Root hairs confer a competitive advantage under low phosphorus availability publication-title: Plant and Soil – year: 2020 – volume: 57 start-page: 2 year: 2006 end-page: 12 article-title: Roots, rhizosphere and soil: the route to a better understanding of soil science? publication-title: European Journal of Soil Science – year: 1922 – volume: 111 start-page: 9319 year: 2014 end-page: 9324 article-title: Plant roots use a patterning mechanism to position lateral root branches toward available water publication-title: Proceedings of the National Academy of Sciences, USA – volume: 478 start-page: 5 year: 2022 end-page: 42 article-title: Linking rhizosphere processes across scales: opinion publication-title: Plant and Soil – volume: 283 start-page: 57 year: 2006 end-page: 72 article-title: Upscaling from rhizosphere to whole root system: modelling the effects of phospholipid surfactants on water and nutrient uptake publication-title: Plant and Soil – volume: 431 start-page: 417 year: 2018 end-page: 431 article-title: Root–soil contact dynamics of in sand publication-title: Plant and Soil – volume: 478 start-page: 59 year: 2022 end-page: 84 article-title: Field scale plant water relation of maize ( ) under drought – impact of root hairs and soil texture publication-title: Plant and Soil – volume: 321 start-page: 117 year: 2009 end-page: 152 article-title: Rhizosphere: biophysics, biogeochemistry and ecological relevance publication-title: Plant and Soil – volume: 29 start-page: 729 year: 1991 article-title: Fungal hyphae and structural stability of soil publication-title: Soil Research – ident: e_1_2_9_20_1 doi: 10.1071/FP15303 – ident: e_1_2_9_4_1 doi: 10.1007/s11104-013-1946-z – ident: e_1_2_9_56_1 doi: 10.1093/jxb/eru496 – ident: e_1_2_9_21_1 doi: 10.1006/anbo.1997.0540 – ident: e_1_2_9_59_1 doi: 10.1007/s11104-022-05306-7 – ident: e_1_2_9_38_1 doi: 10.1007/BF01075259 – ident: e_1_2_9_31_1 doi: 10.1016/j.tplants.2022.01.010 – ident: e_1_2_9_26_1 doi: 10.1046/j.1365-3040.2003.01093.x – ident: e_1_2_9_70_1 doi: 10.1111/jac.12429 – ident: e_1_2_9_33_1 doi: 10.1038/s41598-017-14904-w – ident: e_1_2_9_69_1 doi: 10.2136/vzj2017.03.0060 – ident: e_1_2_9_23_1 doi: 10.1007/s11104-005-0866-y – ident: e_1_2_9_50_1 doi: 10.1029/WR012i003p00513 – ident: e_1_2_9_52_1 doi: 10.1016/j.cpc.2014.08.004 – ident: e_1_2_9_27_1 doi: 10.1097/00010694-196002000-00001 – ident: e_1_2_9_45_1 doi: 10.3389/fagro.2021.622367 – ident: e_1_2_9_10_1 doi: 10.1093/plphys/kiab271 – ident: e_1_2_9_29_1 doi: 10.1111/j.1365-2389.2005.00778.x – ident: e_1_2_9_12_1 doi: 10.1139/b72-069 – ident: e_1_2_9_39_1 doi: 10.1007/s11104-022-05685-x – ident: e_1_2_9_44_1 doi: 10.1007/s11104-022-05656-2 – ident: e_1_2_9_54_1 doi: 10.1063/1.1745010 – ident: e_1_2_9_7_1 doi: 10.1093/aob/mcs231 – ident: e_1_2_9_48_1 doi: 10.1038/s41598-019-52665-w – volume: 1 start-page: 89 year: 2009 ident: e_1_2_9_36_1 article-title: OpenFOAM: open source CFD in research and industry publication-title: International Journal of Naval Architecture and Ocean Engineering – ident: e_1_2_9_47_1 doi: 10.1007/s00572-014-0578-3 – ident: e_1_2_9_18_1 doi: 10.1111/pce.12983 – ident: e_1_2_9_34_1 doi: 10.1007/BF01972077 – ident: e_1_2_9_13_1 doi: 10.1007/s11104-010-0283-8 – ident: e_1_2_9_2_1 doi: 10.1016/B978-012387582-2/50038-1 – ident: e_1_2_9_25_1 doi: 10.1023/A:1003113131989 – ident: e_1_2_9_35_1 doi: 10.1007/s11104-008-9885-9 – volume-title: Rstudio: integrated development environment for R (v.2022.02.3) year: 2022 ident: e_1_2_9_58_1 – ident: e_1_2_9_66_1 doi: 10.1002/jpln.202000079 – ident: e_1_2_9_67_1 doi: 10.1093/aob/mcl028 – ident: e_1_2_9_51_1 doi: 10.1093/jxb/erw115 – ident: e_1_2_9_43_1 doi: 10.1007/s11104-018-3769-4 – ident: e_1_2_9_49_1 doi: 10.1093/aob/mcaa181 – ident: e_1_2_9_15_1 doi: 10.1104/pp.18.01006 – ident: e_1_2_9_19_1 doi: 10.1038/nplants.2017.57 – ident: e_1_2_9_61_1 doi: 10.2136/vzj2007.0122 – ident: e_1_2_9_71_1 doi: 10.1017/S002185969700498X – ident: e_1_2_9_8_1 doi: 10.2136/sssaj1996.03615995006000030031x – ident: e_1_2_9_68_1 doi: 10.1111/j.1365-3040.2009.02059.x – ident: e_1_2_9_42_1 doi: 10.1111/nph.14705 – ident: e_1_2_9_57_1 doi: 10.1007/s11104-016-2872-7 – ident: e_1_2_9_32_1 – volume-title: Weather prediction by numerical process year: 1922 ident: e_1_2_9_55_1 – ident: e_1_2_9_30_1 doi: 10.1093/jxb/ert200 – ident: e_1_2_9_72_1 doi: 10.1038/s41598-019-49528-9 – ident: e_1_2_9_17_1 doi: 10.1093/jxb/erv544 – ident: e_1_2_9_65_1 doi: 10.1071/SR9910729 – ident: e_1_2_9_14_1 doi: 10.1111/nph.14715 – ident: e_1_2_9_46_1 doi: 10.1046/j.1440-1703.2002.00509.x – ident: e_1_2_9_62_1 doi: 10.1007/BF01075260 – ident: e_1_2_9_22_1 doi: 10.1093/plphys/kiac144 – ident: e_1_2_9_60_1 doi: 10.1093/aob/mcx221 – ident: e_1_2_9_53_1 doi: 10.1093/jxb/31.1.333 – ident: e_1_2_9_73_1 doi: 10.1111/nph.14980 – ident: e_1_2_9_16_1 doi: 10.1002/2014WR015608 – ident: e_1_2_9_3_1 doi: 10.1021/es102566j – ident: e_1_2_9_6_1 doi: 10.1023/A:1012791706800 – ident: e_1_2_9_63_1 doi: 10.1023/A:1026180318923 – ident: e_1_2_9_11_1 doi: 10.2136/vzj2017.11.0201 – ident: e_1_2_9_9_1 doi: 10.1093/aob/mcab029 – ident: e_1_2_9_41_1 doi: 10.1111/nph.15516 – ident: e_1_2_9_24_1 doi: 10.1029/93WR02676 – ident: e_1_2_9_37_1 doi: 10.2136/vzj2007.0115 – ident: e_1_2_9_5_1 doi: 10.1073/pnas.1400966111 – ident: e_1_2_9_64_1 – ident: e_1_2_9_40_1 doi: 10.1111/nph.12294 – ident: e_1_2_9_28_1 doi: 10.2136/sssaj1980.03615995004400050002x |
SSID | ssj0009562 |
Score | 2.5284946 |
Snippet | Summary
The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their... The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been... The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2484 |
SubjectTerms | capillary barrier corn Dehydration drought stress Effectiveness hydraulic conductivity image‐based modelling Mathematical models Microtomography Parameters pore‐scale Rhizosphere Root hairs root water uptake root–soil contact shrinkage Soil Soil conditions Soil shrinkage Soil structure Soils Synchrotrons Uptake variance Water Water uptake X-radiation Zea mays |
Title | The effect of root hairs on root water uptake is determined by root–soil contact and root hair shrinkage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19144 https://www.ncbi.nlm.nih.gov/pubmed/37525254 https://www.proquest.com/docview/2890227477 https://www.proquest.com/docview/2844679106 https://www.proquest.com/docview/2942102162 |
Volume | 240 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SkEMvfaSvTdOglh5y8bKWvPKanNKSsAQaQmlgDwUjWSM2TbCXtZeSnPof-g_7SzrjV5K2KaX4YuOxGD1G8400_gTwVpGPQ1RJ4CaSApRQ68DYURIY79g_yMwYXtD_cKynp9HRbDxbg73uX5iGH6JfcGPLqOdrNnBjyxtGni_mQyYnYy5QztViQPRR3iDc1bJjYNaRnrWsQpzF03952xf9BjBv49Xa4Rw-hM-dqk2eyflwVdlhdvULi-N_1uURPGiBqNhvRs5jWMN8EzbeFQQWL5_AFxo-osn1EIUXBK8rMeetH1HkzdNXAqlLsVpU5hzFWSlcm1eDTtjLWuTHt-9lcXYhOBveUDkmd9cFiXK-pDCYZrOncHp48On9NGiPZQiySIZRYCignig39hIxwdB7nSWM_FB7GyfSxGHiKGicKFQYOqesdrFD8gmZzsZ-hOoZrOdFji9AaEOISyc2lD6iskcWXUYQxsTKq9AZPYDdroPSrOUs56MzLtIudqGWS-uWG8CbXnTREHX8SWi76-W0tdUyrbdaOTiPB_C6f01WxlsnJsdixTIUNscErfRfZBKuggy1HMDzZgT1mqh4LOkiBXbrcXC3iunxybS-2fp30ZdwXxL2arJstmG9Wq7wFWGlyu7APRmd7NSm8RMrThEz |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BRaKX0tLSLqXgoh64ZLWxs85G6oVWRQuFFUIg7aWKnHispaBktZtVBSf-A_-QX8LYeRToQ1WVS6JMrPFjPN_Yk88AHwT5OEQRebrHKUDxpfRU0ok8ZbT1DzxVyi7oHw5k_zTYH3aHc_Cx_hem5IdoFtysZbj52hq4XZC-Z-XZeNS27GTBPDyxJ3q7gOqY36PclbzmYJaBHFa8QjaPp_n0oTf6BWI-RKzO5ewuw7da2TLT5Lw9K5J2evWIx_F_a_McnlVYlO2Ug-cFzGG2AoufcsKLly_hO40gVqZ7sNwwQtgFG9ndH5Zn5dMPwqkTNhsX6hzZ2ZTpKrUGNUsuncjt9c00P7tgNiFeUTkq0z8LYtPRhCJhmtBewenul5PPfa86mcFLA-4HnqKYuid013DECH1jZBpZ8IfSJGHEVehHmuLGnkCBvtYikTrUSG4hlWnXdFCswkKWZ_gGmFQEumSU-NwEVHYnQZ0SilGhMMLXSrZgu-6hOK1oy-3pGRdxHb5Qy8Wu5Vqw1YiOS66O3wmt190cV-Y6jd1uq43Pwxa8b16TodndE5VhPrMyFDmHhK7kX2QiWwXuS96C1-UQajQRYZfTRQpsu4HwZxXjwVHf3az9u-gmLPVPDg_ig73B17fwlBMUK5Nu1mGhmMzwHUGnItlwFnIHt7YUdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB5xVFVfgB6U5apb9YGXrDZ21tmIJ1pYba8VqkDaB6TIicdaDiWr3awQPPEf-If8Esa5ylGqCuUlUSaWjxnPN_bkM8BnQT4OUQSO7nAKUFwpHRW1AkcZbf0Dj5WyC_q_-rJ36H0ftAczsF39C1PwQ9QLbtYy8vnaGvhImztGnoyGTUtO5s3CvCdbHavSu7_5HcZdySsKZunJQUkrZNN46k_vO6NHCPM-YM09TncRjqq6Fokmp81pFjXjywc0js9szBIslEiU7RSq8xpmMHkDL76khBYv3sIJ6Q8rkj1Yahjh64wN7d4PS5Pi6ZxQ6phNR5k6RXY8YbpMrEHNootc5ObqepIenzGbDq-oHJXoPwWxyXBMcTBNZ-_gsLt38LXnlOcyOLHHXc9RFFF3hG4bjhiga4yMAwv9UJrID7jy3UBT1NgRKNDVWkRS-xrJKcQybpsWimWYS9IEV4BJRZBLBpHLjUdltyLUMWEY5QsjXK1kA7aqAQrjkrTcnp1xFlbBC_VcmPdcAz7VoqOCqeNvQuvVKIelsU7CfK_VRud-Az7Wr8nM7N6JSjCdWhmKm33CVvIfMoFtAnclb8D7QoPqmgi_zemiCmzlevB0FcP-fi-_Wf1_0Q_wcn-3G_781v-xBq844bAi42Yd5rLxFDcIN2XRZm4ft41PEy8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+root+hairs+on+root+water+uptake+is+determined+by+root-soil+contact+and+root+hair+shrinkage&rft.jtitle=The+New+phytologist&rft.au=Duddek%2C+Patrick&rft.au=Ahmed%2C+Mutez+Ali&rft.au=Javaux%2C+Mathieu&rft.au=Vanderborght%2C+Jan&rft.date=2023-12-01&rft.eissn=1469-8137&rft_id=info:doi/10.1111%2Fnph.19144&rft_id=info%3Apmid%2F37525254&rft.externalDocID=37525254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |