The effect of root hairs on root water uptake is determined by root–soil contact and root hair shrinkage

Summary The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron‐based X‐ray computed microtomography. By me...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 240; no. 6; pp. 2484 - 2497
Main Authors Duddek, Patrick, Ahmed, Mutez Ali, Javaux, Mathieu, Vanderborght, Jan, Lovric, Goran, King, Andrew, Carminati, Andrea
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron‐based X‐ray computed microtomography. By means of image‐based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root–soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair‐induced increase in root–soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair‐induced increase in root–soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from −1 to −0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake. See also the Commentary on this article by Boursiac & Bauget 240: 2173–2175.
AbstractList The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron-based X-ray computed microtomography. By means of image-based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root-soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair-induced increase in root-soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair-induced increase in root-soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from -1 to -0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake.
The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants ( Zea mays ) in microcosms and scanned them using synchrotron‐based X‐ray computed microtomography. By means of image‐based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root–soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair‐induced increase in root–soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair‐induced increase in root–soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from −1 to −0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake. See also the Commentary on this article by Boursiac & Bauget 240 : 2173–2175 .
The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron-based X-ray computed microtomography. By means of image-based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root-soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair-induced increase in root-soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair-induced increase in root-soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from -1 to -0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake.The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron-based X-ray computed microtomography. By means of image-based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root-soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair-induced increase in root-soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair-induced increase in root-soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from -1 to -0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake.
The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive.We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron‐based X‐ray computed microtomography. By means of image‐based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root–soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration.Our model suggests that > 85% of the variance in root water uptake is explained by the hair‐induced increase in root–soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially.We conclude that the effectiveness of root hairs on root water uptake is determined by the hair‐induced increase in root–soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from −1 to −0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake.
Summary The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron‐based X‐ray computed microtomography. By means of image‐based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root–soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair‐induced increase in root–soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair‐induced increase in root–soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from −1 to −0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake. See also the Commentary on this article by Boursiac & Bauget 240: 2173–2175.
Author Lovric, Goran
Ahmed, Mutez Ali
Javaux, Mathieu
Carminati, Andrea
Duddek, Patrick
King, Andrew
Vanderborght, Jan
Author_xml – sequence: 1
  givenname: Patrick
  orcidid: 0000-0002-4145-2594
  surname: Duddek
  fullname: Duddek, Patrick
  email: patrick.duddek@usys.ethz.ch
  organization: ETH Zürich
– sequence: 2
  givenname: Mutez Ali
  orcidid: 0000-0002-7402-1571
  surname: Ahmed
  fullname: Ahmed, Mutez Ali
  organization: Technical University of Munich
– sequence: 3
  givenname: Mathieu
  orcidid: 0000-0002-6168-5467
  surname: Javaux
  fullname: Javaux, Mathieu
  organization: Forschungszentrum Jülich GmbH
– sequence: 4
  givenname: Jan
  orcidid: 0000-0001-7381-3211
  surname: Vanderborght
  fullname: Vanderborght, Jan
  organization: Forschungszentrum Jülich GmbH
– sequence: 5
  givenname: Goran
  orcidid: 0000-0002-0833-4043
  surname: Lovric
  fullname: Lovric, Goran
  organization: Swiss Light Source, Paul Scherrer Institute
– sequence: 6
  givenname: Andrew
  orcidid: 0000-0001-8542-1354
  surname: King
  fullname: King, Andrew
  organization: Synchrotron SOLEIL
– sequence: 7
  givenname: Andrea
  orcidid: 0000-0001-7415-0480
  surname: Carminati
  fullname: Carminati, Andrea
  organization: ETH Zürich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37525254$$D View this record in MEDLINE/PubMed
BookMark eNqF0UFPHCEUB3DSaOpqe-gXaEi8tIdRYBgYjsZoNTHqwSa9TRh4dFlnYQszMXvrd_Ab9pMUXdsmJlU4kJf8-BPe20VbIQZA6AMlB7Ssw7CaH1BFOX-DZpQLVbW0lltoRghrK8HFtx20m_OCEKIawd6inVo2rGw-Q4ubOWBwDsyIo8MpxhHPtU8Zx7Cp7vQICU-rUd8C9hlbKPXSB7C4Xz-SXz_vc_QDNjGMuuToYP8F4TxPPtzq7_AObTs9ZHj_dO6hr6cnN8dn1cXVl_Pjo4vKcEZ5pYUibW0bxwAUUOeEUYQ0HITrpWJaUmWJ4m0NNVBr615YaQF6aoRpHIF6D33a5K5S_DFBHrulzwaGQQeIU-6YKu8QRgV7nbacC6koEYXuP6OLOKVQPlKUIoxJLmVRH5_U1C_Bdqvklzqtuz8NL-DzBpgUc07g_hJKuodhdmWY3eMwiz18Zo0f9ehLm5P2w0s37vwA6_9Hd5fXZ5sbvwHJqrCe
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_176027
crossref_primary_10_1111_nph_19336
crossref_primary_10_3389_ffgc_2024_1324405
crossref_primary_10_1007_s11104_024_07062_2
crossref_primary_10_1038_s41586_024_08089_2
crossref_primary_10_1093_plcell_koae055
crossref_primary_10_1093_aob_mcae193
crossref_primary_10_1093_jpe_rtae043
crossref_primary_10_1080_00036811_2024_2377765
crossref_primary_10_1002_vzj2_20333
crossref_primary_10_1007_s11104_024_06582_1
crossref_primary_10_1111_ejss_13524
crossref_primary_10_1007_s44307_024_00050_8
crossref_primary_10_1016_j_plantsci_2025_112461
Cites_doi 10.1071/FP15303
10.1007/s11104-013-1946-z
10.1093/jxb/eru496
10.1006/anbo.1997.0540
10.1007/s11104-022-05306-7
10.1007/BF01075259
10.1016/j.tplants.2022.01.010
10.1046/j.1365-3040.2003.01093.x
10.1111/jac.12429
10.1038/s41598-017-14904-w
10.2136/vzj2017.03.0060
10.1007/s11104-005-0866-y
10.1029/WR012i003p00513
10.1016/j.cpc.2014.08.004
10.1097/00010694-196002000-00001
10.3389/fagro.2021.622367
10.1093/plphys/kiab271
10.1111/j.1365-2389.2005.00778.x
10.1139/b72-069
10.1007/s11104-022-05685-x
10.1007/s11104-022-05656-2
10.1063/1.1745010
10.1093/aob/mcs231
10.1038/s41598-019-52665-w
10.1007/s00572-014-0578-3
10.1111/pce.12983
10.1007/BF01972077
10.1007/s11104-010-0283-8
10.1016/B978-012387582-2/50038-1
10.1023/A:1003113131989
10.1007/s11104-008-9885-9
10.1002/jpln.202000079
10.1093/aob/mcl028
10.1093/jxb/erw115
10.1007/s11104-018-3769-4
10.1093/aob/mcaa181
10.1104/pp.18.01006
10.1038/nplants.2017.57
10.2136/vzj2007.0122
10.1017/S002185969700498X
10.2136/sssaj1996.03615995006000030031x
10.1111/j.1365-3040.2009.02059.x
10.1111/nph.14705
10.1007/s11104-016-2872-7
10.1093/jxb/ert200
10.1038/s41598-019-49528-9
10.1093/jxb/erv544
10.1071/SR9910729
10.1111/nph.14715
10.1046/j.1440-1703.2002.00509.x
10.1007/BF01075260
10.1093/plphys/kiac144
10.1093/aob/mcx221
10.1093/jxb/31.1.333
10.1111/nph.14980
10.1002/2014WR015608
10.1021/es102566j
10.1023/A:1012791706800
10.1023/A:1026180318923
10.2136/vzj2017.11.0201
10.1093/aob/mcab029
10.1111/nph.15516
10.1029/93WR02676
10.2136/vzj2007.0115
10.1073/pnas.1400966111
10.1111/nph.12294
10.2136/sssaj1980.03615995004400050002x
ContentType Journal Article
Copyright 2023 The Authors © 2023 New Phytologist Foundation
2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 The Authors New Phytologist © 2023 New Phytologist Foundation.
Copyright_xml – notice: 2023 The Authors © 2023 New Phytologist Foundation
– notice: 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 The Authors New Phytologist © 2023 New Phytologist Foundation.
DBID 24P
AAYXX
CITATION
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.19144
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 2497
ExternalDocumentID 37525254
10_1111_nph_19144
NPH19144
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 403670197
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 403670197
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABGDZ
ABSQW
ADXHL
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
NPM
7QO
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4214-a69083d5f2ee9e1ff6c90054e6fb792a719d09483e3e1dd3b6d7deeb1c6c5f0e3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:31:52 EDT 2025
Fri Jul 11 00:36:23 EDT 2025
Fri Jul 25 11:57:02 EDT 2025
Wed Feb 19 02:23:23 EST 2025
Tue Jul 01 02:28:46 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Wed Jan 22 17:16:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords hydraulic conductivity
drought stress
root water uptake
pore-scale
root-soil contact
capillary barrier
root hairs
image-based modelling
Language English
License Attribution
2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4214-a69083d5f2ee9e1ff6c90054e6fb792a719d09483e3e1dd3b6d7deeb1c6c5f0e3
Notes Boursiac & Bauget
2173–2175
See also the Commentary on this article by
240
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6168-5467
0000-0002-4145-2594
0000-0002-7402-1571
0000-0001-7381-3211
0000-0001-8542-1354
0000-0002-0833-4043
0000-0001-7415-0480
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19144
PMID 37525254
PQID 2890227477
PQPubID 2026848
PageCount 2497
ParticipantIDs proquest_miscellaneous_2942102162
proquest_miscellaneous_2844679106
proquest_journals_2890227477
pubmed_primary_37525254
crossref_primary_10_1111_nph_19144
crossref_citationtrail_10_1111_nph_19144
wiley_primary_10_1111_nph_19144_NPH19144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 17
2017; 7
1983; 158
2018; 121
2017; 3
2021; 128
1980; 44
2013; 64
2008; 7
2020; 206
2014; 24
2018; 41
1998; 81
2022; 27
2014; 376
1991; 47
1980; 31
1997; 98
1960; 89
2018; 217
2018; 178
2013; 112
1972; 50
2016; 43
1996; 60
2006; 283
2009; 321
2013; 198
2014; 50
1994; 30
2010; 33
2019; 9
2006; 97
2021; 3
2016; 407
2006; 57
1997
2021; 184
2005
2021; 187
2014; 111
2003; 255
2022; 478
2019; 221
2017; 216
1998; 130
2022; 189
1991; 29
2018; 17
1976; 12
2022
2020
2018; 431
2010; 332
2015; 66
2003; 26
2011; 45
2009; 1
2014; 185
2001; 236
1931; 1
2016; 67
1922
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
RStudio Team (e_1_2_9_58_1) 2022
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
Jasak H (e_1_2_9_36_1) 2009; 1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_70_1
Richardson LF (e_1_2_9_55_1) 1922
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 112
  start-page: 317
  year: 2013
  end-page: 330
  article-title: A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability?
  publication-title: Annals of Botany
– volume: 3
  start-page: 1
  year: 2017
  end-page: 8
  article-title: Root hydrotropism is controlled via a cortex‐specific growth mechanism
  publication-title: Nature Plants
– volume: 12
  start-page: 513
  year: 1976
  end-page: 522
  article-title: A new model for predicting the hydraulic conductivity of unsaturated porous media
  publication-title: Water Resources Research
– volume: 9
  start-page: 12979
  year: 2019
  article-title: Root water uptake and its pathways across the root: quantification at the cellular scale
  publication-title: Scientific Reports
– volume: 45
  start-page: 425
  year: 2011
  end-page: 431
  article-title: Effects of root‐induced compaction on rhizosphere hydraulic properties – X‐ray microtomography imaging and numerical simulations
  publication-title: Environmental Science & Technology
– volume: 7
  start-page: 1079
  year: 2008
  end-page: 1088
  article-title: Use of a three‐dimensional detailed modeling approach for predicting root water uptake
  publication-title: Vadose Zone Journal
– volume: 60
  start-page: 895
  year: 1996
  end-page: 901
  article-title: Backscattered electron scanning images of soil porosity for analyzing soil compaction around roots
  publication-title: Soil Science Society of America Journal
– volume: 255
  start-page: 9
  year: 2003
  end-page: 17
  article-title: Morphological and physiological characteristics of a root‐hairless mutant in rice ( L.)
  publication-title: Plant and Soil
– volume: 216
  start-page: 124
  year: 2017
  end-page: 135
  article-title: High‐resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation
  publication-title: New Phytologist
– volume: 98
  start-page: 177
  year: 1997
  end-page: 182
  article-title: Variation in root hairs of barley cultivars doubled soil phosphorus uptake
  publication-title: Euphytica
– volume: 64
  start-page: 3711
  year: 2013
  end-page: 3721
  article-title: Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength
  publication-title: Journal of Experimental Botany
– volume: 178
  start-page: 1689
  year: 2018
  end-page: 1703
  article-title: Going with the flow: multiscale insights into the composite nature of water transport in roots
  publication-title: Plant Physiology
– volume: 478
  start-page: 43
  year: 2022
  end-page: 58
  article-title: Going underground: soil hydraulic properties impacting maize responsiveness to water deficit
  publication-title: Plant and Soil
– volume: 1
  start-page: 89
  year: 2009
  end-page: 94
  article-title: O F : open source CFD in research and industry
  publication-title: International Journal of Naval Architecture and Ocean Engineering
– volume: 217
  start-page: 1654
  year: 2018
  end-page: 1666
  article-title: Do longer root hairs improve phosphorus uptake? Testing the hypothesis with transgenic lines overexpressing endogenous RSL genes
  publication-title: New Phytologist
– volume: 376
  start-page: 95
  year: 2014
  end-page: 110
  article-title: Quantifying coupled deformation and water flow in the rhizosphere using X‐ray microtomography and numerical simulations
  publication-title: Plant and Soil
– volume: 97
  start-page: 839
  year: 2006
  end-page: 855
  article-title: Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere
  publication-title: Annals of Botany
– volume: 50
  start-page: 557
  year: 1972
  end-page: 573
  article-title: Metabolism and the absorption of water by root hairs
  publication-title: Canadian Journal of Botany
– volume: 67
  start-page: 1059
  year: 2016
  end-page: 1070
  article-title: Image‐based modelling of nutrient movement in and around the rhizosphere
  publication-title: Journal of Experimental Botany
– volume: 24
  start-page: 595
  year: 2014
  end-page: 602
  article-title: Relative importance of an arbuscular mycorrhizal fungus ( ) and root hairs in plant drought tolerance
  publication-title: Mycorrhiza
– volume: 128
  start-page: 45
  year: 2021
  end-page: 57
  article-title: Root hairs are the most important root trait for rhizosheath formation of barley ( ), maize ( ) and (Gifu)
  publication-title: Annals of Botany
– volume: 130
  start-page: 1
  year: 1998
  end-page: 7
  article-title: Biophysical interactions at the root–soil interface: a review
  publication-title: The Journal of Agricultural Science
– year: 2022
– volume: 221
  start-page: 1878
  year: 2019
  end-page: 1889
  article-title: Imaging microstructure of the barley rhizosphere: particle packing and root hair influences
  publication-title: New Phytologist
– year: 1997
– volume: 31
  start-page: 333
  year: 1980
  end-page: 345
  article-title: The transport of water from soil to shoot in wheat seedlings
  publication-title: Journal of Experimental Botany
– volume: 187
  start-page: 858
  year: 2021
  end-page: 872
  article-title: Soil textures rather than root hairs dominate water uptake and soil–plant hydraulics under drought
  publication-title: Plant Physiology
– volume: 89
  start-page: 63
  year: 1960
  end-page: 73
  article-title: Dynamic aspects of water availability to plants
  publication-title: Soil Science
– volume: 67
  start-page: 3699
  year: 2016
  end-page: 3708
  article-title: Root hair formation in rice ( L.) differs between root types and is altered in artificial growth conditions
  publication-title: Journal of Experimental Botany
– start-page: 717
  year: 2005
  end-page: 731
– volume: 184
  start-page: 35
  year: 2021
  end-page: 50
  article-title: Experimental platforms for the investigation of spatiotemporal patterns in the rhizosphere – laboratory and field scale
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 189
  start-page: 1232
  year: 2022
  end-page: 1236
  article-title: The impact of drought‐induced root and root hair shrinkage on root–soil contact
  publication-title: Plant Physiology
– volume: 47
  start-page: 355
  year: 1991
  end-page: 362
  article-title: Mycorrhizas and root architecture
  publication-title: Experientia
– volume: 33
  start-page: 133
  year: 2010
  end-page: 148
  article-title: The distribution and abundance of wheat roots in a dense, structured subsoil – implications for water uptake
  publication-title: Plant, Cell & Environment
– volume: 17
  year: 2018
  article-title: Roots partially in contact with soil: analytical solutions and approximation in models of nutrient and water uptake
  publication-title: Vadose Zone Journal
– volume: 158
  start-page: 237
  year: 1983
  end-page: 248
  article-title: Water transport in barley roots: measurements of root pressure and hydraulic conductivity of roots in parallel with turgor and hydraulic conductivity of root cells
  publication-title: Planta
– volume: 43
  start-page: 199
  year: 2016
  end-page: 206
  article-title: Enhanced root growth of the brb (bald root barley) mutant in drying soil allows similar shoot physiological responses to soil water deficit as wild‐type plants
  publication-title: Functional Plant Biology
– volume: 7
  start-page: 14875
  year: 2017
  article-title: The emergent rhizosphere: imaging the development of the porous architecture at the root–soil interface
  publication-title: Scientific Reports
– volume: 27
  start-page: 688
  year: 2022
  end-page: 698
  article-title: Building soil sustainability from root–soil interface traits
  publication-title: Trends in Plant Science
– volume: 9
  start-page: 16236
  year: 2019
  article-title: Roots compact the surrounding soil depending on the structures they encounter
  publication-title: Scientific Reports
– volume: 1
  start-page: 318
  year: 1931
  end-page: 333
  article-title: Capillary conduction of liquids through porous mediums
  publication-title: Physics
– volume: 407
  start-page: 9
  year: 2016
  end-page: 38
  article-title: Challenges in imaging and predictive modeling of rhizosphere processes
  publication-title: Plant and Soil
– volume: 66
  start-page: 2145
  year: 2015
  end-page: 2154
  article-title: The divining root: moisture-driven responses of roots at the micro- and macro-scale
  publication-title: Journal of Experimental Botany
– volume: 41
  start-page: 121
  year: 2018
  end-page: 133
  article-title: Quantification of root water uptake in soil using X‐ray computed tomography and image‐based modelling
  publication-title: Plant, Cell & Environment
– volume: 30
  start-page: 211
  year: 1994
  end-page: 223
  article-title: Hydraulic conductivity estimation for soils with heterogeneous pore structure
  publication-title: Water Resources Research
– volume: 7
  start-page: 1027
  year: 2008
  end-page: 1034
  article-title: Water uptake and hydraulics of the root hair rhizosphere
  publication-title: Vadose Zone Journal
– volume: 158
  start-page: 230
  year: 1983
  end-page: 236
  article-title: Water‐relation parameters of epidermal and cortical cells in the primary root of L
  publication-title: Planta
– volume: 81
  start-page: 213
  year: 1998
  end-page: 223
  article-title: Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—model description
  publication-title: Annals of Botany
– volume: 128
  start-page: 1
  year: 2021
  end-page: 16
  article-title: Significance of root hairs for plant performance under contrasting field conditions and water deficit
  publication-title: Annals of Botany
– volume: 216
  start-page: 771
  year: 2017
  end-page: 781
  article-title: Root hairs enable high transpiration rates in drying soils
  publication-title: New Phytologist
– volume: 198
  start-page: 1023
  year: 2013
  end-page: 1029
  article-title: High resolution synchrotron imaging of wheat root hairs growing in soil and image based modelling of phosphate uptake
  publication-title: New Phytologist
– volume: 185
  start-page: 3358
  year: 2014
  end-page: 3371
  article-title: An open source massively parallel solver for Richards equation: mechanistic modelling of water fluxes at the watershed scale
  publication-title: Computer Physics Communications
– volume: 206
  start-page: 679
  year: 2020
  end-page: 693
  article-title: Fine root and root hair morphology of cotton under drought stress revealed with R P
  publication-title: Journal of Agronomy and Crop Science
– volume: 332
  start-page: 163
  year: 2010
  end-page: 176
  article-title: Dynamics of soil water content in the rhizosphere
  publication-title: Plant and Soil
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  article-title: A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Science Society of America Journal
– volume: 50
  start-page: 8891
  year: 2014
  end-page: 8906
  article-title: Dynamic aspects of soil water availability for isohydric plants: focus on root hydraulic resistances
  publication-title: Water Resources Research
– volume: 17
  year: 2018
  article-title: Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation
  publication-title: Vadose Zone Journal
– volume: 26
  start-page: 1759
  year: 2003
  end-page: 1766
  article-title: Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low‐ and high‐P soils
  publication-title: Plant, Cell & Environment
– volume: 3
  year: 2021
  article-title: Modeling the impact of rhizosphere bulk density and mucilage gradients on root water uptake
  publication-title: Frontiers in Agronomy
– volume: 17
  start-page: 441
  year: 2002
  end-page: 450
  article-title: Functional domains in soils
  publication-title: Ecological Research
– volume: 121
  start-page: 1033
  year: 2018
  end-page: 1053
  article-title: CR B : a structural–functional modelling framework for root systems
  publication-title: Annals of Botany
– volume: 236
  start-page: 243
  year: 2001
  end-page: 250
  article-title: Root hairs confer a competitive advantage under low phosphorus availability
  publication-title: Plant and Soil
– year: 2020
– volume: 57
  start-page: 2
  year: 2006
  end-page: 12
  article-title: Roots, rhizosphere and soil: the route to a better understanding of soil science?
  publication-title: European Journal of Soil Science
– year: 1922
– volume: 111
  start-page: 9319
  year: 2014
  end-page: 9324
  article-title: Plant roots use a patterning mechanism to position lateral root branches toward available water
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 478
  start-page: 5
  year: 2022
  end-page: 42
  article-title: Linking rhizosphere processes across scales: opinion
  publication-title: Plant and Soil
– volume: 283
  start-page: 57
  year: 2006
  end-page: 72
  article-title: Upscaling from rhizosphere to whole root system: modelling the effects of phospholipid surfactants on water and nutrient uptake
  publication-title: Plant and Soil
– volume: 431
  start-page: 417
  year: 2018
  end-page: 431
  article-title: Root–soil contact dynamics of in sand
  publication-title: Plant and Soil
– volume: 478
  start-page: 59
  year: 2022
  end-page: 84
  article-title: Field scale plant water relation of maize ( ) under drought – impact of root hairs and soil texture
  publication-title: Plant and Soil
– volume: 321
  start-page: 117
  year: 2009
  end-page: 152
  article-title: Rhizosphere: biophysics, biogeochemistry and ecological relevance
  publication-title: Plant and Soil
– volume: 29
  start-page: 729
  year: 1991
  article-title: Fungal hyphae and structural stability of soil
  publication-title: Soil Research
– ident: e_1_2_9_20_1
  doi: 10.1071/FP15303
– ident: e_1_2_9_4_1
  doi: 10.1007/s11104-013-1946-z
– ident: e_1_2_9_56_1
  doi: 10.1093/jxb/eru496
– ident: e_1_2_9_21_1
  doi: 10.1006/anbo.1997.0540
– ident: e_1_2_9_59_1
  doi: 10.1007/s11104-022-05306-7
– ident: e_1_2_9_38_1
  doi: 10.1007/BF01075259
– ident: e_1_2_9_31_1
  doi: 10.1016/j.tplants.2022.01.010
– ident: e_1_2_9_26_1
  doi: 10.1046/j.1365-3040.2003.01093.x
– ident: e_1_2_9_70_1
  doi: 10.1111/jac.12429
– ident: e_1_2_9_33_1
  doi: 10.1038/s41598-017-14904-w
– ident: e_1_2_9_69_1
  doi: 10.2136/vzj2017.03.0060
– ident: e_1_2_9_23_1
  doi: 10.1007/s11104-005-0866-y
– ident: e_1_2_9_50_1
  doi: 10.1029/WR012i003p00513
– ident: e_1_2_9_52_1
  doi: 10.1016/j.cpc.2014.08.004
– ident: e_1_2_9_27_1
  doi: 10.1097/00010694-196002000-00001
– ident: e_1_2_9_45_1
  doi: 10.3389/fagro.2021.622367
– ident: e_1_2_9_10_1
  doi: 10.1093/plphys/kiab271
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1365-2389.2005.00778.x
– ident: e_1_2_9_12_1
  doi: 10.1139/b72-069
– ident: e_1_2_9_39_1
  doi: 10.1007/s11104-022-05685-x
– ident: e_1_2_9_44_1
  doi: 10.1007/s11104-022-05656-2
– ident: e_1_2_9_54_1
  doi: 10.1063/1.1745010
– ident: e_1_2_9_7_1
  doi: 10.1093/aob/mcs231
– ident: e_1_2_9_48_1
  doi: 10.1038/s41598-019-52665-w
– volume: 1
  start-page: 89
  year: 2009
  ident: e_1_2_9_36_1
  article-title: OpenFOAM: open source CFD in research and industry
  publication-title: International Journal of Naval Architecture and Ocean Engineering
– ident: e_1_2_9_47_1
  doi: 10.1007/s00572-014-0578-3
– ident: e_1_2_9_18_1
  doi: 10.1111/pce.12983
– ident: e_1_2_9_34_1
  doi: 10.1007/BF01972077
– ident: e_1_2_9_13_1
  doi: 10.1007/s11104-010-0283-8
– ident: e_1_2_9_2_1
  doi: 10.1016/B978-012387582-2/50038-1
– ident: e_1_2_9_25_1
  doi: 10.1023/A:1003113131989
– ident: e_1_2_9_35_1
  doi: 10.1007/s11104-008-9885-9
– volume-title: Rstudio: integrated development environment for R (v.2022.02.3)
  year: 2022
  ident: e_1_2_9_58_1
– ident: e_1_2_9_66_1
  doi: 10.1002/jpln.202000079
– ident: e_1_2_9_67_1
  doi: 10.1093/aob/mcl028
– ident: e_1_2_9_51_1
  doi: 10.1093/jxb/erw115
– ident: e_1_2_9_43_1
  doi: 10.1007/s11104-018-3769-4
– ident: e_1_2_9_49_1
  doi: 10.1093/aob/mcaa181
– ident: e_1_2_9_15_1
  doi: 10.1104/pp.18.01006
– ident: e_1_2_9_19_1
  doi: 10.1038/nplants.2017.57
– ident: e_1_2_9_61_1
  doi: 10.2136/vzj2007.0122
– ident: e_1_2_9_71_1
  doi: 10.1017/S002185969700498X
– ident: e_1_2_9_8_1
  doi: 10.2136/sssaj1996.03615995006000030031x
– ident: e_1_2_9_68_1
  doi: 10.1111/j.1365-3040.2009.02059.x
– ident: e_1_2_9_42_1
  doi: 10.1111/nph.14705
– ident: e_1_2_9_57_1
  doi: 10.1007/s11104-016-2872-7
– ident: e_1_2_9_32_1
– volume-title: Weather prediction by numerical process
  year: 1922
  ident: e_1_2_9_55_1
– ident: e_1_2_9_30_1
  doi: 10.1093/jxb/ert200
– ident: e_1_2_9_72_1
  doi: 10.1038/s41598-019-49528-9
– ident: e_1_2_9_17_1
  doi: 10.1093/jxb/erv544
– ident: e_1_2_9_65_1
  doi: 10.1071/SR9910729
– ident: e_1_2_9_14_1
  doi: 10.1111/nph.14715
– ident: e_1_2_9_46_1
  doi: 10.1046/j.1440-1703.2002.00509.x
– ident: e_1_2_9_62_1
  doi: 10.1007/BF01075260
– ident: e_1_2_9_22_1
  doi: 10.1093/plphys/kiac144
– ident: e_1_2_9_60_1
  doi: 10.1093/aob/mcx221
– ident: e_1_2_9_53_1
  doi: 10.1093/jxb/31.1.333
– ident: e_1_2_9_73_1
  doi: 10.1111/nph.14980
– ident: e_1_2_9_16_1
  doi: 10.1002/2014WR015608
– ident: e_1_2_9_3_1
  doi: 10.1021/es102566j
– ident: e_1_2_9_6_1
  doi: 10.1023/A:1012791706800
– ident: e_1_2_9_63_1
  doi: 10.1023/A:1026180318923
– ident: e_1_2_9_11_1
  doi: 10.2136/vzj2017.11.0201
– ident: e_1_2_9_9_1
  doi: 10.1093/aob/mcab029
– ident: e_1_2_9_41_1
  doi: 10.1111/nph.15516
– ident: e_1_2_9_24_1
  doi: 10.1029/93WR02676
– ident: e_1_2_9_37_1
  doi: 10.2136/vzj2007.0115
– ident: e_1_2_9_5_1
  doi: 10.1073/pnas.1400966111
– ident: e_1_2_9_64_1
– ident: e_1_2_9_40_1
  doi: 10.1111/nph.12294
– ident: e_1_2_9_28_1
  doi: 10.2136/sssaj1980.03615995004400050002x
SSID ssj0009562
Score 2.5284946
Snippet Summary The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their...
The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been...
The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2484
SubjectTerms capillary barrier
corn
Dehydration
drought stress
Effectiveness
hydraulic conductivity
image‐based modelling
Mathematical models
Microtomography
Parameters
pore‐scale
Rhizosphere
Root hairs
root water uptake
root–soil contact
shrinkage
Soil
Soil conditions
Soil shrinkage
Soil structure
Soils
Synchrotrons
Uptake
variance
Water
Water uptake
X-radiation
Zea mays
Title The effect of root hairs on root water uptake is determined by root–soil contact and root hair shrinkage
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19144
https://www.ncbi.nlm.nih.gov/pubmed/37525254
https://www.proquest.com/docview/2890227477
https://www.proquest.com/docview/2844679106
https://www.proquest.com/docview/2942102162
Volume 240
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SkEMvfaSvTdOglh5y8bKWvPKanNKSsAQaQmlgDwUjWSM2TbCXtZeSnPof-g_7SzrjV5K2KaX4YuOxGD1G8400_gTwVpGPQ1RJ4CaSApRQ68DYURIY79g_yMwYXtD_cKynp9HRbDxbg73uX5iGH6JfcGPLqOdrNnBjyxtGni_mQyYnYy5QztViQPRR3iDc1bJjYNaRnrWsQpzF03952xf9BjBv49Xa4Rw-hM-dqk2eyflwVdlhdvULi-N_1uURPGiBqNhvRs5jWMN8EzbeFQQWL5_AFxo-osn1EIUXBK8rMeetH1HkzdNXAqlLsVpU5hzFWSlcm1eDTtjLWuTHt-9lcXYhOBveUDkmd9cFiXK-pDCYZrOncHp48On9NGiPZQiySIZRYCignig39hIxwdB7nSWM_FB7GyfSxGHiKGicKFQYOqesdrFD8gmZzsZ-hOoZrOdFji9AaEOISyc2lD6iskcWXUYQxsTKq9AZPYDdroPSrOUs56MzLtIudqGWS-uWG8CbXnTREHX8SWi76-W0tdUyrbdaOTiPB_C6f01WxlsnJsdixTIUNscErfRfZBKuggy1HMDzZgT1mqh4LOkiBXbrcXC3iunxybS-2fp30ZdwXxL2arJstmG9Wq7wFWGlyu7APRmd7NSm8RMrThEz
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BRaKX0tLSLqXgoh64ZLWxs85G6oVWRQuFFUIg7aWKnHispaBktZtVBSf-A_-QX8LYeRToQ1WVS6JMrPFjPN_Yk88AHwT5OEQRebrHKUDxpfRU0ok8ZbT1DzxVyi7oHw5k_zTYH3aHc_Cx_hem5IdoFtysZbj52hq4XZC-Z-XZeNS27GTBPDyxJ3q7gOqY36PclbzmYJaBHFa8QjaPp_n0oTf6BWI-RKzO5ewuw7da2TLT5Lw9K5J2evWIx_F_a_McnlVYlO2Ug-cFzGG2AoufcsKLly_hO40gVqZ7sNwwQtgFG9ndH5Zn5dMPwqkTNhsX6hzZ2ZTpKrUGNUsuncjt9c00P7tgNiFeUTkq0z8LYtPRhCJhmtBewenul5PPfa86mcFLA-4HnqKYuid013DECH1jZBpZ8IfSJGHEVehHmuLGnkCBvtYikTrUSG4hlWnXdFCswkKWZ_gGmFQEumSU-NwEVHYnQZ0SilGhMMLXSrZgu-6hOK1oy-3pGRdxHb5Qy8Wu5Vqw1YiOS66O3wmt190cV-Y6jd1uq43Pwxa8b16TodndE5VhPrMyFDmHhK7kX2QiWwXuS96C1-UQajQRYZfTRQpsu4HwZxXjwVHf3az9u-gmLPVPDg_ig73B17fwlBMUK5Nu1mGhmMzwHUGnItlwFnIHt7YUdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB5xVFVfgB6U5apb9YGXrDZ21tmIJ1pYba8VqkDaB6TIicdaDiWr3awQPPEf-If8Esa5ylGqCuUlUSaWjxnPN_bkM8BnQT4OUQSO7nAKUFwpHRW1AkcZbf0Dj5WyC_q_-rJ36H0ftAczsF39C1PwQ9QLbtYy8vnaGvhImztGnoyGTUtO5s3CvCdbHavSu7_5HcZdySsKZunJQUkrZNN46k_vO6NHCPM-YM09TncRjqq6Fokmp81pFjXjywc0js9szBIslEiU7RSq8xpmMHkDL76khBYv3sIJ6Q8rkj1Yahjh64wN7d4PS5Pi6ZxQ6phNR5k6RXY8YbpMrEHNootc5ObqepIenzGbDq-oHJXoPwWxyXBMcTBNZ-_gsLt38LXnlOcyOLHHXc9RFFF3hG4bjhiga4yMAwv9UJrID7jy3UBT1NgRKNDVWkRS-xrJKcQybpsWimWYS9IEV4BJRZBLBpHLjUdltyLUMWEY5QsjXK1kA7aqAQrjkrTcnp1xFlbBC_VcmPdcAz7VoqOCqeNvQuvVKIelsU7CfK_VRud-Az7Wr8nM7N6JSjCdWhmKm33CVvIfMoFtAnclb8D7QoPqmgi_zemiCmzlevB0FcP-fi-_Wf1_0Q_wcn-3G_781v-xBq844bAi42Yd5rLxFDcIN2XRZm4ft41PEy8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+root+hairs+on+root+water+uptake+is+determined+by+root-soil+contact+and+root+hair+shrinkage&rft.jtitle=The+New+phytologist&rft.au=Duddek%2C+Patrick&rft.au=Ahmed%2C+Mutez+Ali&rft.au=Javaux%2C+Mathieu&rft.au=Vanderborght%2C+Jan&rft.date=2023-12-01&rft.eissn=1469-8137&rft_id=info:doi/10.1111%2Fnph.19144&rft_id=info%3Apmid%2F37525254&rft.externalDocID=37525254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon