An implication of novel methodology to study pancreatic acinar mitochondria under in situ conditions

Mitochondria maintain numerous energy‐consuming processes in pancreatic acinar cells, yet characteristics of pancreatic mitochondrial oxidative phosphorylation in native conditions are poorly studied. Besides, it is not known which type of solution is most adequate to preserve functions of pancreati...

Full description

Saved in:
Bibliographic Details
Published inCell biochemistry and function Vol. 31; no. 2; pp. 115 - 121
Main Authors Manko, Bohdan O., Klevets, Myron Yu, Manko, Volodymyr V.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondria maintain numerous energy‐consuming processes in pancreatic acinar cells, yet characteristics of pancreatic mitochondrial oxidative phosphorylation in native conditions are poorly studied. Besides, it is not known which type of solution is most adequate to preserve functions of pancreatic mitochondria in situ. Here we propose a novel experimental protocol suitable for in situ analysis of pancreatic mitochondria metabolic states. Isolated rat pancreatic acini were permeabilized with low doses of digitonin. Different metabolic states of mitochondria were examined in KCl‐ and sucrose‐based solutions using Clark oxygen electrode. Respiration of digitonin‐treated, unlike of intact, acini was substantially intensified by succinate or mixture of pyruvate plus malate. Substrate‐stimulated respiration rate did not depend on solution composition. In sucrose‐based solution, oligomycin inhibited State 3 respiration at succinate oxidation by 65.4% and at pyruvate plus malate oxidation by 60.2%, whereas in KCl‐based solution, by 32.0% and 36.1%, respectively. Apparent respiratory control indices were considerably higher in sucrose‐based solution. Rotenone or thenoyltrifluoroacetone severely inhibited respiration, stimulated by pyruvate plus malate or succinate, respectively. This revealed low levels of non‐mitochondrial oxygen consumption of permeabilized acinar cells. These results suggest a stronger coupling between respiration and oxidative phosphorylation in sucrose‐based solution. Copyright © 2012 John Wiley & Sons, Ltd.
AbstractList Mitochondria maintain numerous energy-consuming processes in pancreatic acinar cells, yet characteristics of pancreatic mitochondrial oxidative phosphorylation in native conditions are poorly studied. Besides, it is not known which type of solution is most adequate to preserve functions of pancreatic mitochondria in situ. Here we propose a novel experimental protocol suitable for in situ analysis of pancreatic mitochondria metabolic states. Isolated rat pancreatic acini were permeabilized with low doses of digitonin. Different metabolic states of mitochondria were examined in KCl- and sucrose-based solutions using Clark oxygen electrode. Respiration of digitonin-treated, unlike of intact, acini was substantially intensified by succinate or mixture of pyruvate plus malate. Substrate-stimulated respiration rate did not depend on solution composition. In sucrose-based solution, oligomycin inhibited State 3 respiration at succinate oxidation by 65.4% and at pyruvate plus malate oxidation by 60.2%, whereas in KCl-based solution, by 32.0% and 36.1%, respectively. Apparent respiratory control indices were considerably higher in sucrose-based solution. Rotenone or thenoyltrifluoroacetone severely inhibited respiration, stimulated by pyruvate plus malate or succinate, respectively. This revealed low levels of non-mitochondrial oxygen consumption of permeabilized acinar cells. These results suggest a stronger coupling between respiration and oxidative phosphorylation in sucrose-based solution.
Mitochondria maintain numerous energy‐consuming processes in pancreatic acinar cells, yet characteristics of pancreatic mitochondrial oxidative phosphorylation in native conditions are poorly studied. Besides, it is not known which type of solution is most adequate to preserve functions of pancreatic mitochondria in situ. Here we propose a novel experimental protocol suitable for in situ analysis of pancreatic mitochondria metabolic states. Isolated rat pancreatic acini were permeabilized with low doses of digitonin. Different metabolic states of mitochondria were examined in KCl‐ and sucrose‐based solutions using Clark oxygen electrode. Respiration of digitonin‐treated, unlike of intact, acini was substantially intensified by succinate or mixture of pyruvate plus malate. Substrate‐stimulated respiration rate did not depend on solution composition. In sucrose‐based solution, oligomycin inhibited State 3 respiration at succinate oxidation by 65.4% and at pyruvate plus malate oxidation by 60.2%, whereas in KCl‐based solution, by 32.0% and 36.1%, respectively. Apparent respiratory control indices were considerably higher in sucrose‐based solution. Rotenone or thenoyltrifluoroacetone severely inhibited respiration, stimulated by pyruvate plus malate or succinate, respectively. This revealed low levels of non‐mitochondrial oxygen consumption of permeabilized acinar cells. These results suggest a stronger coupling between respiration and oxidative phosphorylation in sucrose‐based solution. Copyright © 2012 John Wiley & Sons, Ltd.
Mitochondria maintain numerous energy-consuming processes in pancreatic acinar cells, yet characteristics of pancreatic mitochondrial oxidative phosphorylation in native conditions are poorly studied. Besides, it is not known which type of solution is most adequate to preserve functions of pancreatic mitochondria in situ. Here we propose a novel experimental protocol suitable for in situ analysis of pancreatic mitochondria metabolic states. Isolated rat pancreatic acini were permeabilized with low doses of digitonin. Different metabolic states of mitochondria were examined in KCl- and sucrose-based solutions using Clark oxygen electrode. Respiration of digitonin-treated, unlike of intact, acini was substantially intensified by succinate or mixture of pyruvate plus malate. Substrate-stimulated respiration rate did not depend on solution composition. In sucrose-based solution, oligomycin inhibited State 3 respiration at succinate oxidation by 65.4% and at pyruvate plus malate oxidation by 60.2%, whereas in KCl-based solution, by 32.0% and 36.1%, respectively. Apparent respiratory control indices were considerably higher in sucrose-based solution. Rotenone or thenoyltrifluoroacetone severely inhibited respiration, stimulated by pyruvate plus malate or succinate, respectively. This revealed low levels of non-mitochondrial oxygen consumption of permeabilized acinar cells. These results suggest a stronger coupling between respiration and oxidative phosphorylation in sucrose-based solution. Copyright © 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
Mitochondria maintain numerous energy‐consuming processes in pancreatic acinar cells, yet characteristics of pancreatic mitochondrial oxidative phosphorylation in native conditions are poorly studied. Besides, it is not known which type of solution is most adequate to preserve functions of pancreatic mitochondria in situ . Here we propose a novel experimental protocol suitable for in situ analysis of pancreatic mitochondria metabolic states. Isolated rat pancreatic acini were permeabilized with low doses of digitonin. Different metabolic states of mitochondria were examined in KCl‐ and sucrose‐based solutions using Clark oxygen electrode. Respiration of digitonin‐treated, unlike of intact, acini was substantially intensified by succinate or mixture of pyruvate plus malate. Substrate‐stimulated respiration rate did not depend on solution composition. In sucrose‐based solution, oligomycin inhibited State 3 respiration at succinate oxidation by 65.4% and at pyruvate plus malate oxidation by 60.2%, whereas in KCl‐based solution, by 32.0% and 36.1%, respectively. Apparent respiratory control indices were considerably higher in sucrose‐based solution. Rotenone or thenoyltrifluoroacetone severely inhibited respiration, stimulated by pyruvate plus malate or succinate, respectively. This revealed low levels of non‐mitochondrial oxygen consumption of permeabilized acinar cells. These results suggest a stronger coupling between respiration and oxidative phosphorylation in sucrose‐based solution. Copyright © 2012 John Wiley & Sons, Ltd.
Author Manko, Volodymyr V.
Klevets, Myron Yu
Manko, Bohdan O.
Author_xml – sequence: 1
  givenname: Bohdan O.
  surname: Manko
  fullname: Manko, Bohdan O.
  email: mankobo@gmail.com
  organization: Department of Human and Animal Physiology, Ivan Franko National University of Lviv, Lviv, Ukraine
– sequence: 2
  givenname: Myron Yu
  surname: Klevets
  fullname: Klevets, Myron Yu
  organization: Department of Human and Animal Physiology, Ivan Franko National University of Lviv, Lviv, Ukraine
– sequence: 3
  givenname: Volodymyr V.
  surname: Manko
  fullname: Manko, Volodymyr V.
  organization: Department of Human and Animal Physiology, Ivan Franko National University of Lviv, Lviv, Ukraine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22886484$$D View this record in MEDLINE/PubMed
BookMark eNp1kMFO3DAQQC1EVRZaiS9AlnrhErA9ju0c6dKFSrS9tOrRcmwHDIm9tZO2-_fNimUPSD2NNHp6M3rH6DCm6BE6peSCEsIubdtdMCX4AVpQ0jQVUZwfogVhAirBFT9Cx6U8EkIaAeQtOmJMqe1-gdxVxGFY98GaMaSIU4dj-u17PPjxIbnUp_sNHhMu4-Q2eG2izX4mLTY2RJPxEMZkH1J0ORg8ReczDhGXME7YztuwlZZ36E1n-uLf7-YJ-rH69H15W919u_m8vLqrLGeUV7R2nQFHJSMOCLOsa2oGIKUUABScc7Jl3EDtOSEgnGkNq2vZtJy3oJiFE3T-7F3n9GvyZdRDKNb3vYk-TUVToFw1DJSa0Q-v0Mc05Th_pykXNRMNn0_uhTanUrLv9DqHweSNpkRvy-u5vN6Wn9GznXBqB-_24EvqGaiegT-h95v_ivTy42on3PGhjP7vnjf5SQsJstY_v95oQb4QuL6VegX_AKc3nHA
CitedBy_id crossref_primary_10_15407_ubj95_05_051
crossref_primary_10_15407_fz59_05_061
crossref_primary_10_1111_apha_12119
crossref_primary_10_15407_ubj91_03_034
crossref_primary_10_15407_ubj85_04_048
crossref_primary_10_1097_MPA_0000000000001864
crossref_primary_10_30970_sbi_1703_735
crossref_primary_10_1002_elsc_201400175
Cites_doi 10.1016/0005-2736(71)90123-4
10.1016/0005-2736(83)90001-9
10.1152/ajpendo.1978.235.5.E517
10.1073/pnas.77.6.3430
10.1042/CBI20110017
10.1016/S1567-7249(01)00025-3
10.1053/j.gastro.2010.01.037
10.1016/j.bbamem.2010.01.005
10.1016/S0021-9258(19)57191-5
10.1042/BJ20110162
10.1093/oxfordjournals.jbchem.a134941
10.1016/0006-291X(84)90216-X
10.1136/gut.2007.147207
10.1097/00024382-199503000-00005
10.2337/diabetes.50.2.361
10.1074/jbc.M412694200
10.1113/jphysiol.1981.sp013995
10.1042/bj1920951
10.1038/nprot.2008.61
10.1161/01.CIR.0000058462.23347.93
10.1007/s004240050167
10.1016/j.febslet.2010.01.035
10.2527/2001.7951329x
10.1085/jgp.106.6.1225
10.1016/S0021-9258(19)85914-8
10.1023/A:1006988625831
10.1177/153537020122600606
10.1042/bj1880207
10.1152/physrev.00004.2005
10.1016/0304-4165(91)90168-G
10.1074/jbc.M107794200
10.1042/bj1070807
10.1073/pnas.0904818106
10.4319/lo.1966.11.2.0264
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TM
7U7
8FD
C1K
FR3
P64
RC3
7X8
DOI 10.1002/cbf.2864
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1099-0844
EndPage 121
ExternalDocumentID 3147488281
10_1002_cbf_2864
22886484
CBF2864
ark_67375_WNG_60M03DH7_F
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NDZJH
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TM
7U7
8FD
C1K
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c4214-15dfa3d1720d302c2f9523377763313ddd7b24a35e40036daba25579b44b382c3
IEDL.DBID DR2
ISSN 0263-6484
IngestDate Sat Aug 17 00:24:18 EDT 2024
Thu Oct 10 15:37:42 EDT 2024
Fri Aug 23 01:49:20 EDT 2024
Sat Sep 28 07:51:52 EDT 2024
Sat Aug 24 01:11:01 EDT 2024
Wed Oct 30 09:49:12 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright © 2012 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4214-15dfa3d1720d302c2f9523377763313ddd7b24a35e40036daba25579b44b382c3
Notes istex:7E41F1AB5FE19C61117966363D21421B2BC12C25
ArticleID:CBF2864
ark:/67375/WNG-60M03DH7-F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cbf.2864
PMID 22886484
PQID 1465269431
PQPubID 2029981
PageCount 7
ParticipantIDs proquest_miscellaneous_1314892388
proquest_journals_1465269431
crossref_primary_10_1002_cbf_2864
pubmed_primary_22886484
wiley_primary_10_1002_cbf_2864_CBF2864
istex_primary_ark_67375_WNG_60M03DH7_F
PublicationCentury 2000
PublicationDate 2013-03
March 2013
2013-Mar
2013-03-00
20130301
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationTitle Cell biochemistry and function
PublicationTitleAlternate Cell Biochem Funct
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Villalobo A, Lehninger AL. Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+. J Biol Chem 1980; 255: 2457-2464.
Streb H, Schulz I. Regulation of cytosolic free Ca2+ concentration in acinar cells of rat pancreas. Am J Physiol 1983; 245: G347-G357.
Williams JA, Korc M, Dormer RL. Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini. Am J Physiol 1978; 235: 517-524.
Voronina SG, Barrow SL, Simpson AW, et al. Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells. Gastroenterology 2010; 138: 1976-1987.
Krause E, Gobel A, Schulz I. Cell side-specific sensitivities of intracellular Ca2+ stores for inositol 1,4,5-trisphosphate, cyclic ADP-ribose, and nicotinic acid adenine dinucleotide phosphate in permeabilized pancreatic acinar cells from mouse. J Biol Chem 2002; 277: 11696-11702.
Sasaki S, Nakagaki I, Kondo H, Hori S. Changes in element concentrations induced by agonist in pig pancreatic acinar cells. Pflugers Arch 1996; 432: 538-545.
Soboll S, Akerboom TP, Schwenke WD, Haase R, Sies H. Mitochondrial and cytosolic ATP/ADP ratios in isolated hepatocytes. A comparison of the digitonin method and the non-aqueous fractionation procedure. Biochem J 1980; 192: 951-954.
Kondrashova MN, Fedotcheva NI, Saakyan IR, et al. Preservation of native properties of mitochondria in rat liver homogenate. Mitochondrion 2001; 1: 249-267.
Brocks DG, Siess EA, Wieland OH. Validity of the digitonin method for metabolite compartmentation in isolated hepatocytes. Biochem J 1980; 188: 207-212.
Colbeau A, Nachbaur J, Vignais PM. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta 1971; 249: 462-492.
Saks VA, Belikova YO, Kuznetsov AV. In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta 1991; 1074: 302-311.
Babsky A, Doliba NIC, Doliba NAT, Savchenko A, Wehrli S, Osbakken M. Na+ effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts. Exp Biol Med 2001; 226: 543-551.
Nishikawa M, Nojima S, Akiyama T, Sankawa U, Inoue K. Interaction of digitonin and its analogs with membrane cholesterol. J Biochem 1984; 96: 1231-1239.
[ Shostakovska IV, Doliba MM. Cholinergic regulation of energy exchange in mitochondria of secretory organs. Visnyk of Lviv university 1989; 19: 3-19] - in Russian.
Akar JG, Everett TH, Ho R, et al. Intracellular chloride accumulation and subcellular elemental distribution during atrial fibrillation. Circulation 2003; 107: 1810-1815.
Wilson JS, Korsten MA, Lieber CS. The isolation and properties of mitochondria from rat pancreas. Biochem Biophys Res Commun 1984; 121: 545-551.
Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 2006; 86: 369-408.
Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J 2011; 435: 297-312.
Carpenter JH. New measurements of oxygen solubility in pure and natural water. Limnol Oceanogr 1966; 11: 264-277.
Lucas M, Galvan A, Solano P, Goberna R. Compartmentation of calcium in digitonin-disrupted guinea pig pancreatic acinar cells. Biochim Biophys Acta 1983; 731: 129-136.
Schulz HU, Pross M, Meyer F, Matthias R, Halangk W. Acinar cell respiration in experimental acute pancreatitis. Shock 1995; 3: 184-188.
Tomaskova Z, Ondrias K. Mitochondrial chloride channels--What are they for? FEBS Lett 2010; 584: 2085-2092.
Preissler M, Williams JA. Pancreatic acinar cell function: measurement of intracellular ions and pH and their relation to secretion. J Physiol 1981; 321: 437-448.
Schild L, Matthias R, Stanarius A, Wolf G, Augustin W, Halangk W. Induction of permeability transition in pancreatic mitochondria by cerulein in rats. Mol Cell Biochem 1999; 195: 191-197.
Howell JA, Matthews AD, Swanson KC, Harmon DL, Matthews JC. Molecular identification of high-affinity glutamate transporters in sheep and cattle forestomach, intestine, liver, kidney, and pancreas. J Anim Sci 2001; 79: 1329-1336.
Horbay RO, Manko BO, Manko VV, Lootsik MD, Stoika RS. Respiration characteristics of mitochondria in parental and giant transformed cells of the murine Nemeth-Kellner lymphoma. Cell Biol Int 2012; 36: 71-77.
Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 1955; 217: 409-427.
Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 2008; 3: 965-976.
Dolman NJ, Gerasimenko JV, Gerasimenko OV, Voronina SG, Petersen OH, Tepikin AV. Stable Golgi-mitochondria complexes and formation of Golgi Ca(2+) gradients in pancreatic acinar cells. J Biol Chem 2005; 280: 15794-15799.
Zhao H, Muallem S. Na+, K+, and Cl- transport in resting pancreatic acinar cells. J Gen Physiol 1995; 106: 1225-1242.
Zhao C, Wilson MC, Schuit F, Halestrap AP, Rutter GA. Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas. Diabetes 2001; 50: 361-366.
Corcelli A, Saponetti MS, Zaccagnino P, et al. Mitochondria isolated in nearly isotonic KCl buffer: focus on cardiolipin and organelle morphology. Biochim Biophys Acta 2010; 1798: 681-687.
Fiskum G, Craig SW, Decker GL, Lehninger AL. The cytoskeleton of digitonin-treated rat hepatocytes. Proc Natl Acad Sci USA 1980; 77: 3430-3434.
Odinokova IV, Sung KF, Mareninova OA, et al. Mechanisms regulating cytochrome c release in pancreatic mitochondria. Gut 2009; 58: 431-442.
Gerasimenko JV, Lur G, Sherwood MW, et al. Pancreatic protease activation by alcohol metabolite depends on Ca2+ release via acid store IP3 receptors. Proc Natl Acad Sci USA 2009; 106: 10758-10763.
Hems R, Stubbs M, Krebs HA. Restricted permeability of rat liver for glutamate and succinate. Biochem J 1968; 107: 807-815.
2011; 435
1983; 731
2001; 50
1968; 107
1984; 121
1991; 1074
1981; 321
1955; 217
2002; 277
1971; 249
2010; 584
1980; 192
2008; 3
1978; 235
2012; 36
1995; 3
1966; 11
1980; 255
2010; 1798
2001; 226
2009; 58
2005; 280
1984; 96
1983; 245
2006; 86
2003; 107
2010; 138
1980; 77
1995; 106
1999; 195
2001; 1
1996; 432
2001; 79
1989; 19
1980; 188
2009; 106
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_2_1
e_1_2_7_15_1
Streb H (e_1_2_7_16_1) 1983; 245
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
Shostakovska IV (e_1_2_7_8_1) 1989; 19
Villalobo A (e_1_2_7_10_1) 1980; 255
References_xml – volume: 255
  start-page: 2457
  year: 1980
  end-page: 2464
  article-title: Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca
  publication-title: J Biol Chem
– volume: 1798
  start-page: 681
  year: 2010
  end-page: 687
  article-title: Mitochondria isolated in nearly isotonic KCl buffer: focus on cardiolipin and organelle morphology
  publication-title: Biochim Biophys Acta
– volume: 11
  start-page: 264
  year: 1966
  end-page: 277
  article-title: New measurements of oxygen solubility in pure and natural water
  publication-title: Limnol Oceanogr
– volume: 19
  start-page: 3
  year: 1989
  end-page: 19
  article-title: Cholinergic regulation of energy exchange in mitochondria of secretory organs
  publication-title: Visnyk of Lviv university
– volume: 50
  start-page: 361
  year: 2001
  end-page: 366
  article-title: Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas
  publication-title: Diabetes
– volume: 195
  start-page: 191
  year: 1999
  end-page: 197
  article-title: Induction of permeability transition in pancreatic mitochondria by cerulein in rats
  publication-title: Mol Cell Biochem
– volume: 3
  start-page: 965
  year: 2008
  end-page: 976
  article-title: Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells
  publication-title: Nat Protoc
– volume: 245
  start-page: G347
  year: 1983
  end-page: G357
  article-title: Regulation of cytosolic free Ca concentration in acinar cells of rat pancreas
  publication-title: Am J Physiol
– volume: 86
  start-page: 369
  year: 2006
  end-page: 408
  article-title: Microdomains of intracellular Ca : molecular determinants and functional consequences
  publication-title: Physiol Rev
– volume: 321
  start-page: 437
  year: 1981
  end-page: 448
  article-title: Pancreatic acinar cell function: measurement of intracellular ions and pH and their relation to secretion
  publication-title: J Physiol
– volume: 77
  start-page: 3430
  year: 1980
  end-page: 3434
  article-title: The cytoskeleton of digitonin‐treated rat hepatocytes
  publication-title: Proc Natl Acad Sci USA
– volume: 107
  start-page: 1810
  year: 2003
  end-page: 1815
  article-title: Intracellular chloride accumulation and subcellular elemental distribution during atrial fibrillation
  publication-title: Circulation
– volume: 435
  start-page: 297
  year: 2011
  end-page: 312
  article-title: Assessing mitochondrial dysfunction in cells
  publication-title: Biochem J
– volume: 235
  start-page: 517
  year: 1978
  end-page: 524
  article-title: Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini
  publication-title: Am J Physiol
– volume: 96
  start-page: 1231
  year: 1984
  end-page: 1239
  article-title: Interaction of digitonin and its analogs with membrane cholesterol
  publication-title: J Biochem
– volume: 188
  start-page: 207
  year: 1980
  end-page: 212
  article-title: Validity of the digitonin method for metabolite compartmentation in isolated hepatocytes
  publication-title: Biochem J
– volume: 280
  start-page: 15794
  year: 2005
  end-page: 15799
  article-title: Stable Golgi‐mitochondria complexes and formation of Golgi Ca( ) gradients in pancreatic acinar cells
  publication-title: J Biol Chem
– volume: 584
  start-page: 2085
  year: 2010
  end-page: 2092
  article-title: Mitochondrial chloride channels‐‐What are they for?
  publication-title: FEBS Lett
– volume: 58
  start-page: 431
  year: 2009
  end-page: 442
  article-title: Mechanisms regulating cytochrome c release in pancreatic mitochondria
  publication-title: Gut
– volume: 277
  start-page: 11696
  year: 2002
  end-page: 11702
  article-title: Cell side‐specific sensitivities of intracellular Ca stores for inositol 1,4,5‐trisphosphate, cyclic ADP‐ribose, and nicotinic acid adenine dinucleotide phosphate in permeabilized pancreatic acinar cells from mouse
  publication-title: J Biol Chem
– volume: 1074
  start-page: 302
  year: 1991
  end-page: 311
  article-title: In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP
  publication-title: Biochim Biophys Acta
– volume: 192
  start-page: 951
  year: 1980
  end-page: 954
  article-title: Mitochondrial and cytosolic ATP/ADP ratios in isolated hepatocytes. A comparison of the digitonin method and the non‐aqueous fractionation procedure
  publication-title: Biochem J
– volume: 731
  start-page: 129
  year: 1983
  end-page: 136
  article-title: Compartmentation of calcium in digitonin‐disrupted guinea pig pancreatic acinar cells
  publication-title: Biochim Biophys Acta
– volume: 226
  start-page: 543
  year: 2001
  end-page: 551
  article-title: Na effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts
  publication-title: Exp Biol Med
– volume: 249
  start-page: 462
  year: 1971
  end-page: 492
  article-title: Enzymic characterization and lipid composition of rat liver subcellular membranes
  publication-title: Biochim Biophys Acta
– volume: 79
  start-page: 1329
  year: 2001
  end-page: 1336
  article-title: Molecular identification of high‐affinity glutamate transporters in sheep and cattle forestomach, intestine, liver, kidney, and pancreas
  publication-title: J Anim Sci
– volume: 106
  start-page: 10758
  year: 2009
  end-page: 10763
  article-title: Pancreatic protease activation by alcohol metabolite depends on Ca release via acid store IP receptors
  publication-title: Proc Natl Acad Sci USA
– volume: 107
  start-page: 807
  year: 1968
  end-page: 815
  article-title: Restricted permeability of rat liver for glutamate and succinate
  publication-title: Biochem J
– volume: 36
  start-page: 71
  year: 2012
  end-page: 77
  article-title: Respiration characteristics of mitochondria in parental and giant transformed cells of the murine Nemeth‐Kellner lymphoma
  publication-title: Cell Biol Int
– volume: 217
  start-page: 409
  year: 1955
  end-page: 427
  article-title: Respiratory enzymes in oxidative phosphorylation. III. The steady state
  publication-title: J Biol Chem
– volume: 138
  start-page: 1976
  year: 2010
  end-page: 1987
  article-title: Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells
  publication-title: Gastroenterology
– volume: 1
  start-page: 249
  year: 2001
  end-page: 267
  article-title: Preservation of native properties of mitochondria in rat liver homogenate
  publication-title: Mitochondrion
– volume: 432
  start-page: 538
  year: 1996
  end-page: 545
  article-title: Changes in element concentrations induced by agonist in pig pancreatic acinar cells
  publication-title: Pflugers Arch
– volume: 3
  start-page: 184
  year: 1995
  end-page: 188
  article-title: Acinar cell respiration in experimental acute pancreatitis
  publication-title: Shock
– volume: 121
  start-page: 545
  year: 1984
  end-page: 551
  article-title: The isolation and properties of mitochondria from rat pancreas
  publication-title: Biochem Biophys Res Commun
– volume: 106
  start-page: 1225
  year: 1995
  end-page: 1242
  article-title: Na , K , and Cl transport in resting pancreatic acinar cells
  publication-title: J Gen Physiol
– ident: e_1_2_7_31_1
  doi: 10.1016/0005-2736(71)90123-4
– ident: e_1_2_7_15_1
  doi: 10.1016/0005-2736(83)90001-9
– ident: e_1_2_7_22_1
  doi: 10.1152/ajpendo.1978.235.5.E517
– ident: e_1_2_7_32_1
  doi: 10.1073/pnas.77.6.3430
– ident: e_1_2_7_26_1
  doi: 10.1042/CBI20110017
– ident: e_1_2_7_34_1
  doi: 10.1016/S1567-7249(01)00025-3
– ident: e_1_2_7_3_1
  doi: 10.1053/j.gastro.2010.01.037
– ident: e_1_2_7_33_1
  doi: 10.1016/j.bbamem.2010.01.005
– ident: e_1_2_7_4_1
  doi: 10.1016/S0021-9258(19)57191-5
– ident: e_1_2_7_5_1
  doi: 10.1042/BJ20110162
– ident: e_1_2_7_30_1
  doi: 10.1093/oxfordjournals.jbchem.a134941
– ident: e_1_2_7_6_1
  doi: 10.1016/0006-291X(84)90216-X
– ident: e_1_2_7_9_1
  doi: 10.1136/gut.2007.147207
– ident: e_1_2_7_2_1
  doi: 10.1097/00024382-199503000-00005
– ident: e_1_2_7_28_1
  doi: 10.2337/diabetes.50.2.361
– volume: 19
  start-page: 3
  year: 1989
  ident: e_1_2_7_8_1
  article-title: Cholinergic regulation of energy exchange in mitochondria of secretory organs
  publication-title: Visnyk of Lviv university
  contributor:
    fullname: Shostakovska IV
– ident: e_1_2_7_13_1
  doi: 10.1074/jbc.M412694200
– ident: e_1_2_7_21_1
  doi: 10.1113/jphysiol.1981.sp013995
– ident: e_1_2_7_25_1
  doi: 10.1042/bj1920951
– ident: e_1_2_7_12_1
  doi: 10.1038/nprot.2008.61
– ident: e_1_2_7_37_1
  doi: 10.1161/01.CIR.0000058462.23347.93
– ident: e_1_2_7_19_1
  doi: 10.1007/s004240050167
– ident: e_1_2_7_36_1
  doi: 10.1016/j.febslet.2010.01.035
– ident: e_1_2_7_27_1
  doi: 10.2527/2001.7951329x
– ident: e_1_2_7_20_1
  doi: 10.1085/jgp.106.6.1225
– volume: 255
  start-page: 2457
  year: 1980
  ident: e_1_2_7_10_1
  article-title: Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)85914-8
  contributor:
    fullname: Villalobo A
– ident: e_1_2_7_7_1
  doi: 10.1023/A:1006988625831
– volume: 245
  start-page: G347
  year: 1983
  ident: e_1_2_7_16_1
  article-title: Regulation of cytosolic free Ca2+ concentration in acinar cells of rat pancreas
  publication-title: Am J Physiol
  contributor:
    fullname: Streb H
– ident: e_1_2_7_35_1
  doi: 10.1177/153537020122600606
– ident: e_1_2_7_24_1
  doi: 10.1042/bj1880207
– ident: e_1_2_7_14_1
  doi: 10.1152/physrev.00004.2005
– ident: e_1_2_7_11_1
  doi: 10.1016/0304-4165(91)90168-G
– ident: e_1_2_7_17_1
  doi: 10.1074/jbc.M107794200
– ident: e_1_2_7_29_1
  doi: 10.1042/bj1070807
– ident: e_1_2_7_18_1
  doi: 10.1073/pnas.0904818106
– ident: e_1_2_7_23_1
  doi: 10.4319/lo.1966.11.2.0264
SSID ssj0009630
Score 2.0563562
Snippet Mitochondria maintain numerous energy‐consuming processes in pancreatic acinar cells, yet characteristics of pancreatic mitochondrial oxidative phosphorylation...
Mitochondria maintain numerous energy-consuming processes in pancreatic acinar cells, yet characteristics of pancreatic mitochondrial oxidative phosphorylation...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 115
SubjectTerms Acinar Cells - cytology
Acinar Cells - metabolism
Animals
Biochemistry - methods
Cell Membrane Permeability
Cell Respiration
KCl-based solution
Kinetics
Male
mitochondria
Mitochondria - metabolism
Oxygen Consumption
Pancreas - cytology
Pancreas - metabolism
pancreatic acinar cells
Rats
respiratory states in situ
sucrose-based solution
Title An implication of novel methodology to study pancreatic acinar mitochondria under in situ conditions
URI https://api.istex.fr/ark:/67375/WNG-60M03DH7-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.2864
https://www.ncbi.nlm.nih.gov/pubmed/22886484
https://www.proquest.com/docview/1465269431
https://search.proquest.com/docview/1314892388
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_kRPTFj_Nr9ZQI4lv32iRtco_nnusi3D2Ihwc-hKRJYTltZbcr6l_vTNLucqIgPvWhCUlnJpPfpJPfALy0OfcElDNdhJBJ72XmFB3DuSAwHAmqiUX7Ts-qxbl8d1FeDFmVdBcm8UNsD9xoZUR_TQvcuvXhjjS0ds2U64qoQAuhKJvr5P2OOQrtajheEVkltRx5Z3N-OHa8shNdJ6F-_xPMvIpa47YzvwOfxgmnbJPL6aZ30_rnb1yO__dFd-H2gEbZcTKfe3AttPtwI9Wn_LEPN2djObj74I9bttyln7OuYW33LXxmqQZ17MH6jkW-WoY-JsHRmtmarvyyL-g60NW2Hi2e0c21FVu2bL3sNwxDcp8yxx7A-fzNh9kiG0o0ZLXkhcyK0jdWeERBuRc5r3lzhJGtUArdliiE9145Lq0ogyTmG2-dxRhGHTkpndC8Fg9hr-3a8BiYkA3PQ-URsAX03kGjuRQVzyvutC2bYgIvRnWZr4mJwyTOZW5QcoYkN4FXUY_bBnZ1SZlrqjQfz96aKj_NxclCmfkEDkZFm2HRrikKonrrCKlwrO1rFDP9Q7Ft6DbYRmD8iKBY6wk8SgayHYxzrcnWcBZRzX-dppm9ntPzyb82fAq3eCzDQblvB7DXrzbhGYKh3j2PZv8LJ1UDIA
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8am9C48DEYdAwwEuKWLrGdxNNOo6MUWHtAm9gBybJjR6q2JahL0eCv33tx02oIJMQph9iy4_fh33Oefw_gjYm5I6AcqcT7SDonI5vTMZz1AsMRn5dt0b7xJBudyk9n6dkaHHR3YQI_xPLAjSyj9ddk4HQgvbdiDS1s2ecqk3dgA61dUPmCoy8r7ijUrMUBi4gyqWTHPBvzva7nrb1og5b1-k9A8zZubTee4QP41k055Juc9-eN7Re_fmNz_M9vegj3F4CUHQYNegRrvtqCu6FE5c8t2Bx0FeEegzus2HSVgc7qklX1D3_BQhnqtgdratZS1jJ0MwGRFswUdOuXXaL3QG9bOVR6RpfXZmxasatpM2cYlbuQPPYETofvTwajaFGlISokT2SUpK40wiEQip2IecHLfQxuRZ6j5xKJcM7llksjUi-J_MYZazCMyfetlFYoXohtWK_qyj8DJmTJY585xGweReoVakyS8TjjVpm0THrwupOX_h7IOHSgXeYaV07TyvXgbSvIZQMzO6fktTzVXycfdBaPY3E0yvWwB7udpPXCbq8oEKKS64iqcKzla1xm-o1iKl_PsY3AEBJxsVI9eBo0ZDkY50qRsuEsWjn_dZp68G5Iz51_bfgKNkcn42N9_HHy-Tnc421VDkqF24X1Zjb3LxAbNfZlawM3T10HOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BKx4XHuW1UMBIiFu2ju0k7rHsEpZHVwhRUakHy44daVVIqm0WAb-esZ3sqggkxCmH2LIzMx5_44y_AXiuKbMeKCcydS4R1orEFP4YzjiO4Ygr6lC073Cez47E2-PsuM-q9HdhIj_E-sDNr4zgr_0CP7P13oY0tDL1mMlcXIZtkXPq07mmHzfUUWhY_fkKT3IhxUA8S9ne0PPCVrTtpfr9TzjzImwN-055E06GGcd0k9PxqjPj6udvZI7_90m34EYPR8lBtJ_bcMk1O3AlFqj8sQPXJkM9uDtgDxqy2OSfk7YmTfvNfSGxCHXoQbqWBMJagk4m4tGK6Mrf-SVf0Xegr20smjzxV9eWZNGQ80W3IhiT25g6dheOylefJrOkr9GQVIKlIkkzW2tuEQZRyymrWL2PoS0vCvRbPOXW2sIwoXnmhKe-sdpoDGKKfSOE4ZJV_B5sNW3jHgDhombU5RYRm0P37STaS5ozmjMjdVanI3g2qEudRSoOFUmXmULJKS-5EbwIelw30MtTn7pWZOrz_LXK6SHl01mhyhHsDopW_ao992GQL7iOmArHWr9GMfufKLpx7QrbcAwgERVLOYL70UDWgzEmpbc1nEVQ81-nqSYvS_98-K8Nn8LVD9NSvX8zf_cIrrNQksPnwe3CVrdcuccIjDrzJKyAXzTABek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+implication+of+novel+methodology+to+study+pancreatic+acinar+mitochondria+under+in+situ+conditions&rft.jtitle=Cell+biochemistry+and+function&rft.au=Manko%2C+Bohdan+O&rft.au=Klevets%2C+Myron+Yu&rft.au=Manko%2C+Volodymyr+V&rft.date=2013-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0263-6484&rft.eissn=1099-0844&rft.volume=31&rft.issue=2&rft.spage=115&rft_id=info:doi/10.1002%2Fcbf.2864&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3147488281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6484&client=summon