Drug loading into and drug release from pH- and temperature-responsive cylindrical hydrogels

Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology progress Vol. 27; no. 5; pp. 1442 - 1454
Main Authors Ninawe, Pravin R., Parulekar, Satish J.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.09.2011
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel‐solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature‐responsive hydrogels are compared with those by hydrogels not subject to deformation. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011
AbstractList Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel‐solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature‐responsive hydrogels are compared with those by hydrogels not subject to deformation. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011
Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel-solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature-responsive hydrogels are compared with those by hydrogels not subject to deformation.Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel-solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature-responsive hydrogels are compared with those by hydrogels not subject to deformation.
Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel-solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature-responsive hydrogels are compared with those by hydrogels not subject to deformation. ? 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011
Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel-solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature-responsive hydrogels are compared with those by hydrogels not subject to deformation.
Author Ninawe, Pravin R.
Parulekar, Satish J.
Author_xml – sequence: 1
  givenname: Pravin R.
  surname: Ninawe
  fullname: Ninawe, Pravin R.
  organization: Dept. of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616
– sequence: 2
  givenname: Satish J.
  surname: Parulekar
  fullname: Parulekar, Satish J.
  email: parulekar@iit.edu
  organization: Dept. of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24615765$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21626721$$D View this record in MEDLINE/PubMed
BookMark eNp90VtvFCEUAGBiauy2mvgLzLyY-jIrlxnYebRVu8Z6ia7xxYQwzGFFGRhhxnb_vay7bWOivkCAj8M5nCN04IMHhB4SPCcY06ftOMQ5Z_QOmpGa4pJjxg7QbCFqXoqGLQ7RUUrfMMYLzOk9dEgJp1xQMkNfnsdpXbigOuvXhfVjKJTvim67G8GBSlCYGPpiWJa_T0boB4hqnCKUEdIQfLI_odAbZ30XrVau-LrpYliDS_fRXaNcggf7-Rh9evlidbYsL96dvzp7dlHqihJaQtu1jANWTNcKN1UthFJG6Fo3lcorbnBnGkZzVRUzXZMHwqu2NdioiuaTY3SyizvE8GOCNMreJg3OKQ9hSnLRiAVhTPAsn_xXEkxEI6ioWaaP9nRqe-jkEG2v4kZe_10Gj_dApVy2icprm25dxUnOvc5uvnM6hpQiGKntqEYb_BiVdflNuW2i3DZR5ibeJnlz4TrmX2i5o5fWweafTp6u3n_4w9s0wtWNV_G75IKJWn5-ey6X7ONr_Iat5Cn7BV2bukU
CODEN BIPRET
CitedBy_id crossref_primary_10_1039_D3GC04183B
crossref_primary_10_1088_1361_665X_ab9f46
crossref_primary_10_3390_polym13111753
crossref_primary_10_1016_j_ijbiomac_2023_128758
crossref_primary_10_1016_j_msec_2019_110025
crossref_primary_10_1038_pj_2015_17
crossref_primary_10_3390_polym10070806
crossref_primary_10_1002_adv_21938
crossref_primary_10_1016_j_polymer_2021_124287
crossref_primary_10_1002_jbm_b_34309
Cites_doi 10.1080/003239104909811164
10.1016/S0168-3659(03)00122-6
10.1016/S1359-6446(02)02255-9
10.1016/j.ejpb.2007.08.012
10.1080/00268970310001640094
10.1109/JMEMS.2002.803281
10.1021/bp0501367
10.1007/s00396-009-2027-y
10.1016/j.ijpharm.2008.03.023
10.1016/j.ces.2010.06.014
10.1517/17425247.2.6.1003
10.1016/j.biomaterials.2004.08.024
10.1016/j.ijpharm.2009.03.010
10.1016/j.ijpharm.2008.04.032
10.1177/0883911509104475
10.1016/j.ijpharm.2007.05.035
10.1002/mabi.200600027
10.1002/mabi.200800337
10.1021/bm050116t
10.1080/10717540701829267
10.1002/pat.1504
10.1163/156856207782177909
10.1016/j.ijpharm.2004.02.009
10.1016/j.ejpb.2007.12.021
10.1016/j.carbpol.2007.06.005
10.1016/j.reactfunctpolym.2009.11.007
10.1016/j.ijpharm.2006.02.005
10.1016/j.biomaterials.2005.01.031
10.1002/app.26450
10.1002/masy.200850610
10.1163/156855507782401196
10.1016/j.matchemphys.2007.07.009
10.1167/iovs.04-0091
10.1002/jbm.b.31046
10.1021/bm801316z
10.1016/j.ijpharm.2009.02.005
10.1063/1.1849153
10.1021/ma00205a036
10.1002/polb.10067
10.1021/ie800886m
10.1063/1.1680734
10.1039/b713009k
ContentType Journal Article
Copyright Copyright © 2011 American Institute of Chemical Engineers (AIChE)
2015 INIST-CNRS
Copyright © 2011 American Institute of Chemical Engineers (AIChE).
Copyright_xml – notice: Copyright © 2011 American Institute of Chemical Engineers (AIChE)
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 American Institute of Chemical Engineers (AIChE).
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1002/btpr.632
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Engineering Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-6033
EndPage 1454
ExternalDocumentID 21626721
24615765
10_1002_btpr_632
BTPR632
ark_67375_WNG_H3SK0M3T_B
Genre article
Journal Article
GroupedDBID ---
-~X
.DC
05W
0R~
1L6
1OB
1OC
1WB
23N
31~
33P
3SF
3WU
4.4
52U
52V
53G
55A
5GY
5VS
66C
6J9
8-1
A00
A8Z
AABXI
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABHMW
ABJNI
ABQWH
ABTAH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACJ
ACMXC
ACPOU
ACPRK
ACS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGXLV
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BAANH
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
C45
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EDH
EJD
EMOBN
ESTFP
F5P
FEDTE
FUBAC
G-S
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IHE
ITG
ITH
IX1
JG~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
ML0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NDZJH
NNB
O9-
OIG
OVD
P2P
P2W
P4E
PALCI
QRW
RIWAO
RJQFR
ROL
RWI
SAMSI
SUPJJ
SV3
TAE
TEORI
TN5
TUS
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WSB
WXSBR
WYJ
XV2
Y6R
ZCA
ZY4
ZZTAW
~02
~KM
~S-
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4212-ebdb36e0a3c5a094577aaf7c5c94a4576f0df93260343fd943f164bbf0fa42f93
IEDL.DBID DR2
ISSN 8756-7938
1520-6033
IngestDate Fri Jul 11 05:41:44 EDT 2025
Fri Jul 11 14:53:26 EDT 2025
Mon Jul 21 05:25:07 EDT 2025
Mon Jul 21 09:15:37 EDT 2025
Tue Jul 01 02:13:25 EDT 2025
Thu Apr 24 22:56:48 EDT 2025
Wed Jan 22 16:37:18 EST 2025
Wed Oct 30 09:52:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Drug
pH
Temperature
Hydrogel
Release
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2011 American Institute of Chemical Engineers (AIChE).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4212-ebdb36e0a3c5a094577aaf7c5c94a4576f0df93260343fd943f164bbf0fa42f93
Notes ArticleID:BTPR632
ark:/67375/WNG-H3SK0M3T-B
istex:7878F53289B84A11B14963D190B94227E697CBC8
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 21626721
PQID 1017972753
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_897813376
proquest_miscellaneous_1017972753
pubmed_primary_21626721
pascalfrancis_primary_24615765
crossref_citationtrail_10_1002_btpr_632
crossref_primary_10_1002_btpr_632
wiley_primary_10_1002_btpr_632_BTPR632
istex_primary_ark_67375_WNG_H3SK0M3T_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September/October 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September/October 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Biotechnology progress
PublicationTitleAlternate Biotechnol Progress
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Kulkarni RV, Sa B. Electroresponsive polyacrylamide-grafted-xanthan hydrogels for drug delivery. J Bioactive Compatible Polym. 2009; 24: 368-384.
Don T-M, Huang M-L, Chiu A-C, Kuo K-H, Chiu W-Y, Chiu L-H. Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mat Chem Phys. 2008; 107: 266-273.
Ninawe PR, Hatziavramidis D, Parulekar SJ. Delivery of drug macromolecules from thermally-responsive gel implants to the posterior eye. Chem Eng Sci. 2010; 65: 5170-5177.
Hynd MR, Turner JN, Shainj W. Applications of hydrogels for neural cell engineering. J Biomater Sci Polym Edn. 2007; 18: 1223-1244.
Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002; 7: 569-579.
Wang L, Liu M, Gao C, Ma L, Cui D. A pH-, thermo-, and glucose-, triple-responsive hydrogel: Synthesis and controlled drug delivery. Reactive Funct Polym. 2010; 70: 159-167.
Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008; 37: 1473-1481.
Yamaue T, Doi M. The stress diffusion coupling in the swelling dynamics of cylindrical gels. J Chem Phys. 2005; 122: 1473-1481.
Abraham S, Brahim S, Ishihara K, Guiseppi-Elie A. Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatability. Biomaterials 2005; 26: 4767-4778.
Fang J-Y, Chen J-P, Leu Y-L, Hu J-W. Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery. Eur J Pharm Biopharm. 2008; 68: 626-636.
Yamaue T, Taniguchi T, Doi M. The simulation of the swelling and deswelling dynamics of gels. Mol Phys. 2004; 102: 167-172.
Jagur-Grodzinskia J. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol. 2010; 21: 27-47.
Kim SW. Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems. Tokyo: Springer; 1996.
Ehrick JD, Luckett MR, Khatwani S, Wei Y, Deo SK, Bachas LG, Daunert S. Glucose responsive hydrogel networks based on protein recognition. Macromol Biosci. 2009; 9: 864-868.
Fanger C, Wack H, Ulbricht M. Macroporous poly(N-isopropylacrylamide) hydrogels with adjustable cut-off for the efficient and reversible immobilization of biomacromolecules. Macromol Biosci. 2006: 6, 393-402.
Nam K, Watanabe J, Ishihara K. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers. Int J Pharm. 2004; 275: 259-269.
Li X, Wu W, Liu W. Synthesis and properties of thermo-responsive guar gum/poly(N-isopropylacrylamide) interpenetrating polymer network hydrogels. Carb Polym. 2008; 71: 394-402.
Tanaka T, Hocker LO, Benedek GB. Spectrum of light scattered from viscoelastic gel. J Chem Phys. 1973; 59: 5151-5159.
Bromberg L. Intelligent hydrogels for the oral delivery of chemotherapeutics. Expert Opin Drug Deliv. 2005; 2: 1003-1013.
Chan AW, Whitney RA, Neufeld RJ. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules. 2009; 10: 609-616.
Martin del Valle, EM, Galan, MA, Carbonell, RG. Drug delivery technologies: the way forward in the new decade. Ind Eng Chem Res. 2009; 48: 2475-2486.
Hirotsu S. Elastic anomaly near the critical point of volume phase transition in polymer gels. Macromolecules. 1990; 23: 905-907.
Ramanan RMK, Chellamuthu P, Tang L, Nguyen KT. Development of a temperature-sensitive composite hydrogel for drug delivery applications. Biotechnol Prog. 2006; 22: 118-125.
Gou M, Li XY, Dai M, Gong CY, Wang XH, Xie Y, Deng HX, Chen LJ, Zhao X, Qian ZY, Wei YQ. A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo-sensitive hydrogel. Int J Pharm. 2008; 359: 228-233.
Bajpai SK, Saggu SPS. Controlled release of an anti-malarial drug from a pH-sensitive poly(methacrylamide-co-methacrylic acid) hydrogel system. Designed Monomers Polymers. 2007; 10: 543-554.
Huang X, Lowe TL. Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules. 2005; 6: 2131-2139.
Aminabhavi TM, Kulkarni RV, Kulkarni AR. Polymers in drug delivery. Polymeric transdermal drug delivery systems. Polym News. 2004; 29: 214-218.
Kiil S, Dam-Johansen K. Controlled drug delivery from swellable hydroxypropylmethylcellulose matrices: model-based analysis of observed radial front movements. J Control Release 2003; 90: 1-21.
Yin Y, Yang Y, Xu H. Hydrogels for colon-specific drug delivery: swelling kinetics and mechanism of degradation in vitro. J Polym Sci Part B: Polym Phys. 2001; 39: 3128-3137.
Iemma F, Spizzirri UG, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N. Synthesis and release profile analysis of thermo-sensitive albumin hydrogels. Colloid Polym Sci. 2009; 287: 779-787.
Dai Y-N, Li P, Zhang J-P, Wang A-Q, Wei Q. Swelling characteristics and drug delivery properties of Nifedipine-loaded pH sensitive alginate-chitosan hydrogel beads. J Biomed Mater Res Part B: Appl Biomater. 2008; 86B: 493-500.
Geever LM, Cooney CC, Lyons JG, Kennedy JE, Nugent MJD, Devery S, Higginbotham CL. Characterization and controlled drug release from novel drug-loaded hydrogels. Eur J Pharm Biopharm. 2008; 69: 1147-1159.
Song F, Zhang L-M, Yang C, Yan L. Genipin-crosslinked casein hydrogels for controlled drug delivery. Int J Pharm. 2009; 373: 41-47.
Woldum HS, Larsen KL, Madsen F. Cyclodextrin controlled release of poorly water-soluble drugs from hydrogels. Drug Deliv. 2008; 15: 69-80.
Geever L, Cooney C, Devine D, Devery S, Nugent M, Higginbotham C. Negative temperature sensitive hydrogels in controlled drug delivery. Macromol Symp. 2008; 266: 53-58.
Truskey GA, Yuan F, Katz, DF. Transport phenomena in biological systems. Upper Saddle River, NJ: Pearson Prentice Hall; 2004.
Coughlan DC, Corrigan OI. Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. Int J Pharm. 2006; 313: 163-174.
Kim B, Shin Y. pH-sensitive swelling and release behaviors of anionic hydrogels for intelligent drug delivery system. J Appl Polym Sci. 2007; 105: 3656-3661.
Salmaso S, Semenzato A, Bersani S, Matricardi P, Rossi F, Caliceti P. Cyclodextrin/PEG based hydrogels for multi-drug delivery. Int J Pharm. 2007; 345: 42-50.
Mawad D, Foster JLJR, Lauto A. Drug-delivery study and estimation of polymer-solvent interaction parameter for bisacrylate ester-modified Pluronic hydrogels. Int J Pharm. 2008; 360: 231-235.
De SK, Aluru NR, Johnson B, Crone WC, Beebe DJ, Moore J. Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments and simulations. J Microelectromech Syst. 2002; 11: 544-555.
Koo H, Jin G-W, Kang H, Lee Y, Nam HY, Jang H-S, Park J-S. A new biodegradable crosslinked polyethylene oxide sulfide (PEDS) hydrogel for controlled drug release. Int J Pharm. 2009; 374: 58-65.
Kim H, Robinson MR, Lizak MJ, Tansey G, Lutz RJ, Yuan P, Wang NS, Csaky KG. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest Opthalmol Visual Sci. 2004; 45: 2722-2731.
Zhang X-Z, Lewis PJ, Chu C-C. Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel. Biomaterials 2005; 26: 3299-3309.
2007; 345
2007; 18
2009; 24
2008; 86B
2007; 105
2004; 102
2004; 29
1973; 59
2002; 7
2004; 45
2002; 11
2009; 374
2008; 37
2008; 15
2008; 107
1996
2006; 6
2004
2009; 373
2005; 26
2008; 266
2006; 313
2007; 10
2008; 71
2009; 48
2008; 360
2004; 275
2010; 21
2010; 65
2003; 90
1990; 23
2009; 10
2005; 122
2006; 22
2008; 69
2009; 287
2009; 9
2005; 6
2008; 68
2008; 359
2001; 39
2005; 2
2010; 70
Kim SW (e_1_2_6_21_2) 1996
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
Truskey GA (e_1_2_6_41_2) 2004
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_42_2
e_1_2_6_20_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
Jagur‐Grodzinskia J (e_1_2_6_5_2) 2010; 21
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_25_2
References_xml – reference: Aminabhavi TM, Kulkarni RV, Kulkarni AR. Polymers in drug delivery. Polymeric transdermal drug delivery systems. Polym News. 2004; 29: 214-218.
– reference: Yamaue T, Taniguchi T, Doi M. The simulation of the swelling and deswelling dynamics of gels. Mol Phys. 2004; 102: 167-172.
– reference: Kulkarni RV, Sa B. Electroresponsive polyacrylamide-grafted-xanthan hydrogels for drug delivery. J Bioactive Compatible Polym. 2009; 24: 368-384.
– reference: De SK, Aluru NR, Johnson B, Crone WC, Beebe DJ, Moore J. Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments and simulations. J Microelectromech Syst. 2002; 11: 544-555.
– reference: Salmaso S, Semenzato A, Bersani S, Matricardi P, Rossi F, Caliceti P. Cyclodextrin/PEG based hydrogels for multi-drug delivery. Int J Pharm. 2007; 345: 42-50.
– reference: Abraham S, Brahim S, Ishihara K, Guiseppi-Elie A. Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatability. Biomaterials 2005; 26: 4767-4778.
– reference: Song F, Zhang L-M, Yang C, Yan L. Genipin-crosslinked casein hydrogels for controlled drug delivery. Int J Pharm. 2009; 373: 41-47.
– reference: Gou M, Li XY, Dai M, Gong CY, Wang XH, Xie Y, Deng HX, Chen LJ, Zhao X, Qian ZY, Wei YQ. A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo-sensitive hydrogel. Int J Pharm. 2008; 359: 228-233.
– reference: Fanger C, Wack H, Ulbricht M. Macroporous poly(N-isopropylacrylamide) hydrogels with adjustable cut-off for the efficient and reversible immobilization of biomacromolecules. Macromol Biosci. 2006: 6, 393-402.
– reference: Ninawe PR, Hatziavramidis D, Parulekar SJ. Delivery of drug macromolecules from thermally-responsive gel implants to the posterior eye. Chem Eng Sci. 2010; 65: 5170-5177.
– reference: Don T-M, Huang M-L, Chiu A-C, Kuo K-H, Chiu W-Y, Chiu L-H. Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mat Chem Phys. 2008; 107: 266-273.
– reference: Kim SW. Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems. Tokyo: Springer; 1996.
– reference: Truskey GA, Yuan F, Katz, DF. Transport phenomena in biological systems. Upper Saddle River, NJ: Pearson Prentice Hall; 2004.
– reference: Dai Y-N, Li P, Zhang J-P, Wang A-Q, Wei Q. Swelling characteristics and drug delivery properties of Nifedipine-loaded pH sensitive alginate-chitosan hydrogel beads. J Biomed Mater Res Part B: Appl Biomater. 2008; 86B: 493-500.
– reference: Bajpai SK, Saggu SPS. Controlled release of an anti-malarial drug from a pH-sensitive poly(methacrylamide-co-methacrylic acid) hydrogel system. Designed Monomers Polymers. 2007; 10: 543-554.
– reference: Jagur-Grodzinskia J. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol. 2010; 21: 27-47.
– reference: Huang X, Lowe TL. Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules. 2005; 6: 2131-2139.
– reference: Chan AW, Whitney RA, Neufeld RJ. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules. 2009; 10: 609-616.
– reference: Martin del Valle, EM, Galan, MA, Carbonell, RG. Drug delivery technologies: the way forward in the new decade. Ind Eng Chem Res. 2009; 48: 2475-2486.
– reference: Hynd MR, Turner JN, Shainj W. Applications of hydrogels for neural cell engineering. J Biomater Sci Polym Edn. 2007; 18: 1223-1244.
– reference: Yamaue T, Doi M. The stress diffusion coupling in the swelling dynamics of cylindrical gels. J Chem Phys. 2005; 122: 1473-1481.
– reference: Nam K, Watanabe J, Ishihara K. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers. Int J Pharm. 2004; 275: 259-269.
– reference: Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002; 7: 569-579.
– reference: Koo H, Jin G-W, Kang H, Lee Y, Nam HY, Jang H-S, Park J-S. A new biodegradable crosslinked polyethylene oxide sulfide (PEDS) hydrogel for controlled drug release. Int J Pharm. 2009; 374: 58-65.
– reference: Hirotsu S. Elastic anomaly near the critical point of volume phase transition in polymer gels. Macromolecules. 1990; 23: 905-907.
– reference: Li X, Wu W, Liu W. Synthesis and properties of thermo-responsive guar gum/poly(N-isopropylacrylamide) interpenetrating polymer network hydrogels. Carb Polym. 2008; 71: 394-402.
– reference: Kim H, Robinson MR, Lizak MJ, Tansey G, Lutz RJ, Yuan P, Wang NS, Csaky KG. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest Opthalmol Visual Sci. 2004; 45: 2722-2731.
– reference: Yin Y, Yang Y, Xu H. Hydrogels for colon-specific drug delivery: swelling kinetics and mechanism of degradation in vitro. J Polym Sci Part B: Polym Phys. 2001; 39: 3128-3137.
– reference: Geever LM, Cooney CC, Lyons JG, Kennedy JE, Nugent MJD, Devery S, Higginbotham CL. Characterization and controlled drug release from novel drug-loaded hydrogels. Eur J Pharm Biopharm. 2008; 69: 1147-1159.
– reference: Woldum HS, Larsen KL, Madsen F. Cyclodextrin controlled release of poorly water-soluble drugs from hydrogels. Drug Deliv. 2008; 15: 69-80.
– reference: Zhang X-Z, Lewis PJ, Chu C-C. Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel. Biomaterials 2005; 26: 3299-3309.
– reference: Coughlan DC, Corrigan OI. Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. Int J Pharm. 2006; 313: 163-174.
– reference: Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008; 37: 1473-1481.
– reference: Fang J-Y, Chen J-P, Leu Y-L, Hu J-W. Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery. Eur J Pharm Biopharm. 2008; 68: 626-636.
– reference: Tanaka T, Hocker LO, Benedek GB. Spectrum of light scattered from viscoelastic gel. J Chem Phys. 1973; 59: 5151-5159.
– reference: Iemma F, Spizzirri UG, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N. Synthesis and release profile analysis of thermo-sensitive albumin hydrogels. Colloid Polym Sci. 2009; 287: 779-787.
– reference: Ramanan RMK, Chellamuthu P, Tang L, Nguyen KT. Development of a temperature-sensitive composite hydrogel for drug delivery applications. Biotechnol Prog. 2006; 22: 118-125.
– reference: Kiil S, Dam-Johansen K. Controlled drug delivery from swellable hydroxypropylmethylcellulose matrices: model-based analysis of observed radial front movements. J Control Release 2003; 90: 1-21.
– reference: Mawad D, Foster JLJR, Lauto A. Drug-delivery study and estimation of polymer-solvent interaction parameter for bisacrylate ester-modified Pluronic hydrogels. Int J Pharm. 2008; 360: 231-235.
– reference: Geever L, Cooney C, Devine D, Devery S, Nugent M, Higginbotham C. Negative temperature sensitive hydrogels in controlled drug delivery. Macromol Symp. 2008; 266: 53-58.
– reference: Ehrick JD, Luckett MR, Khatwani S, Wei Y, Deo SK, Bachas LG, Daunert S. Glucose responsive hydrogel networks based on protein recognition. Macromol Biosci. 2009; 9: 864-868.
– reference: Wang L, Liu M, Gao C, Ma L, Cui D. A pH-, thermo-, and glucose-, triple-responsive hydrogel: Synthesis and controlled drug delivery. Reactive Funct Polym. 2010; 70: 159-167.
– reference: Kim B, Shin Y. pH-sensitive swelling and release behaviors of anionic hydrogels for intelligent drug delivery system. J Appl Polym Sci. 2007; 105: 3656-3661.
– reference: Bromberg L. Intelligent hydrogels for the oral delivery of chemotherapeutics. Expert Opin Drug Deliv. 2005; 2: 1003-1013.
– volume: 313
  start-page: 163
  year: 2006
  end-page: 174
  article-title: Drug‐polymer interactions and their effect on thermoresponsive poly(N‐isopropylacrylamide) drug delivery systems
  publication-title: Int J Pharm
– volume: 26
  start-page: 3299
  year: 2005
  end-page: 3309
  article-title: Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel
  publication-title: Biomaterials
– volume: 374
  start-page: 58
  year: 2009
  end-page: 65
  article-title: A new biodegradable crosslinked polyethylene oxide sulfide (PEDS) hydrogel for controlled drug release
  publication-title: Int J Pharm
– volume: 48
  start-page: 2475
  year: 2009
  end-page: 2486
  article-title: Drug delivery technologies: the way forward in the new decade
  publication-title: Ind Eng Chem Res
– volume: 65
  start-page: 5170
  year: 2010
  end-page: 5177
  article-title: Delivery of drug macromolecules from thermally‐responsive gel implants to the posterior eye
  publication-title: Chem Eng Sci
– volume: 39
  start-page: 3128
  year: 2001
  end-page: 3137
  article-title: Hydrogels for colon‐specific drug delivery: swelling kinetics and mechanism of degradation in vitro
  publication-title: J Polym Sci Part B: Polym Phys
– volume: 11
  start-page: 544
  year: 2002
  end-page: 555
  article-title: Equilibrium swelling and kinetics of pH‐responsive hydrogels: models, experiments and simulations
  publication-title: J Microelectromech Syst
– volume: 18
  start-page: 1223
  year: 2007
  end-page: 1244
  article-title: Applications of hydrogels for neural cell engineering
  publication-title: J Biomater Sci Polym Edn
– volume: 70
  start-page: 159
  year: 2010
  end-page: 167
  article-title: A pH‐, thermo‐, and glucose‐, triple‐responsive hydrogel: Synthesis and controlled drug delivery
  publication-title: Reactive Funct Polym
– volume: 7
  start-page: 569
  year: 2002
  end-page: 579
  article-title: Hydrogels: from controlled release to pH‐responsive drug delivery
  publication-title: Drug Discov Today
– volume: 6
  start-page: 2131
  year: 2005
  end-page: 2139
  article-title: Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs
  publication-title: Biomacromolecules
– volume: 59
  start-page: 5151
  year: 1973
  end-page: 5159
  article-title: Spectrum of light scattered from viscoelastic gel
  publication-title: J Chem Phys
– year: 1996
– volume: 21
  start-page: 27
  year: 2010
  end-page: 47
  article-title: Polymeric gels and hydrogels for biomedical and pharmaceutical applications
  publication-title: Polym Adv Technol
– volume: 275
  start-page: 259
  year: 2004
  end-page: 269
  article-title: Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers
  publication-title: Int J Pharm
– volume: 71
  start-page: 394
  year: 2008
  end-page: 402
  article-title: Synthesis and properties of thermo‐responsive guar gum/poly(N‐isopropylacrylamide) interpenetrating polymer network hydrogels
  publication-title: Carb Polym
– volume: 10
  start-page: 609
  year: 2009
  end-page: 616
  article-title: Semisynthesis of a controlled stimuli‐responsive alginate hydrogel
  publication-title: Biomacromolecules
– volume: 373
  start-page: 41
  year: 2009
  end-page: 47
  article-title: Genipin‐crosslinked casein hydrogels for controlled drug delivery
  publication-title: Int J Pharm
– volume: 2
  start-page: 1003
  year: 2005
  end-page: 1013
  article-title: Intelligent hydrogels for the oral delivery of chemotherapeutics
  publication-title: Expert Opin Drug Deliv
– volume: 102
  start-page: 167
  year: 2004
  end-page: 172
  article-title: The simulation of the swelling and deswelling dynamics of gels
  publication-title: Mol Phys
– volume: 23
  start-page: 905
  year: 1990
  end-page: 907
  article-title: Elastic anomaly near the critical point of volume phase transition in polymer gels
  publication-title: Macromolecules
– volume: 69
  start-page: 1147
  year: 2008
  end-page: 1159
  article-title: Characterization and controlled drug release from novel drug‐loaded hydrogels
  publication-title: Eur J Pharm Biopharm
– volume: 107
  start-page: 266
  year: 2008
  end-page: 273
  article-title: Preparation of thermo‐responsive acrylic hydrogels useful for the application in transdermal drug delivery systems
  publication-title: Mat Chem Phys
– volume: 37
  start-page: 1473
  year: 2008
  end-page: 1481
  article-title: Injectable hydrogels as unique biomedical materials
  publication-title: Chem Soc Rev
– volume: 86B
  start-page: 493
  year: 2008
  end-page: 500
  article-title: Swelling characteristics and drug delivery properties of Nifedipine‐loaded pH sensitive alginate‐chitosan hydrogel beads
  publication-title: J Biomed Mater Res Part B: Appl Biomater
– volume: 9
  start-page: 864
  year: 2009
  end-page: 868
  article-title: Glucose responsive hydrogel networks based on protein recognition
  publication-title: Macromol Biosci
– volume: 22
  start-page: 118
  year: 2006
  end-page: 125
  article-title: Development of a temperature‐sensitive composite hydrogel for drug delivery applications
  publication-title: Biotechnol Prog
– volume: 29
  start-page: 214
  year: 2004
  end-page: 218
  article-title: Polymers in drug delivery. Polymeric transdermal drug delivery systems
  publication-title: Polym News
– volume: 360
  start-page: 231
  year: 2008
  end-page: 235
  article-title: Drug‐delivery study and estimation of polymer‐solvent interaction parameter for bisacrylate ester‐modified Pluronic hydrogels
  publication-title: Int J Pharm
– volume: 15
  start-page: 69
  year: 2008
  end-page: 80
  article-title: Cyclodextrin controlled release of poorly water‐soluble drugs from hydrogels
  publication-title: Drug Deliv
– year: 2004
– volume: 6
  start-page: 393
  year: 2006
  end-page: 402
  article-title: Macroporous poly(N‐isopropylacrylamide) hydrogels with adjustable cut‐off for the efficient and reversible immobilization of biomacromolecules
  publication-title: Macromol Biosci
– volume: 26
  start-page: 4767
  year: 2005
  end-page: 4778
  article-title: Molecularly engineered p(HEMA)‐based hydrogels for implant biochip biocompatability
  publication-title: Biomaterials
– volume: 105
  start-page: 3656
  year: 2007
  end-page: 3661
  article-title: pH‐sensitive swelling and release behaviors of anionic hydrogels for intelligent drug delivery system
  publication-title: J Appl Polym Sci
– volume: 287
  start-page: 779
  year: 2009
  end-page: 787
  article-title: Synthesis and release profile analysis of thermo‐sensitive albumin hydrogels
  publication-title: Colloid Polym Sci
– volume: 90
  start-page: 1
  year: 2003
  end-page: 21
  article-title: Controlled drug delivery from swellable hydroxypropylmethylcellulose matrices: model‐based analysis of observed radial front movements
  publication-title: J Control Release
– volume: 266
  start-page: 53
  year: 2008
  end-page: 58
  article-title: Negative temperature sensitive hydrogels in controlled drug delivery
  publication-title: Macromol Symp
– volume: 122
  start-page: 1473
  year: 2005
  end-page: 1481
  article-title: The stress diffusion coupling in the swelling dynamics of cylindrical gels
  publication-title: J Chem Phys
– volume: 24
  start-page: 368
  year: 2009
  end-page: 384
  article-title: Electroresponsive polyacrylamide‐grafted‐xanthan hydrogels for drug delivery
  publication-title: J Bioactive Compatible Polym
– volume: 359
  start-page: 228
  year: 2008
  end-page: 233
  article-title: A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo‐sensitive hydrogel
  publication-title: Int J Pharm
– volume: 345
  start-page: 42
  year: 2007
  end-page: 50
  article-title: Cyclodextrin/PEG based hydrogels for multi‐drug delivery
  publication-title: Int J Pharm
– volume: 10
  start-page: 543
  year: 2007
  end-page: 554
  article-title: Controlled release of an anti‐malarial drug from a pH‐sensitive poly(methacrylamide‐co‐methacrylic acid) hydrogel system
  publication-title: Designed Monomers Polymers
– volume: 45
  start-page: 2722
  year: 2004
  end-page: 2731
  article-title: Controlled drug release from an ocular implant: an evaluation using dynamic three‐dimensional magnetic resonance imaging
  publication-title: Invest Opthalmol Visual Sci
– volume: 68
  start-page: 626
  year: 2008
  end-page: 636
  article-title: Temperature‐sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery
  publication-title: Eur J Pharm Biopharm
– ident: e_1_2_6_22_2
  doi: 10.1080/003239104909811164
– ident: e_1_2_6_29_2
  doi: 10.1016/S0168-3659(03)00122-6
– ident: e_1_2_6_6_2
  doi: 10.1016/S1359-6446(02)02255-9
– ident: e_1_2_6_33_2
  doi: 10.1016/j.ejpb.2007.08.012
– ident: e_1_2_6_39_2
  doi: 10.1080/00268970310001640094
– ident: e_1_2_6_42_2
  doi: 10.1109/JMEMS.2002.803281
– ident: e_1_2_6_27_2
  doi: 10.1021/bp0501367
– ident: e_1_2_6_13_2
  doi: 10.1007/s00396-009-2027-y
– ident: e_1_2_6_34_2
  doi: 10.1016/j.ijpharm.2008.03.023
– ident: e_1_2_6_38_2
  doi: 10.1016/j.ces.2010.06.014
– ident: e_1_2_6_30_2
  doi: 10.1517/17425247.2.6.1003
– ident: e_1_2_6_19_2
  doi: 10.1016/j.biomaterials.2004.08.024
– ident: e_1_2_6_35_2
  doi: 10.1016/j.ijpharm.2009.03.010
– ident: e_1_2_6_36_2
  doi: 10.1016/j.ijpharm.2008.04.032
– ident: e_1_2_6_23_2
  doi: 10.1177/0883911509104475
– ident: e_1_2_6_15_2
  doi: 10.1016/j.ijpharm.2007.05.035
– ident: e_1_2_6_43_2
  doi: 10.1002/mabi.200600027
– ident: e_1_2_6_31_2
  doi: 10.1002/mabi.200800337
– ident: e_1_2_6_10_2
  doi: 10.1021/bm050116t
– ident: e_1_2_6_17_2
  doi: 10.1080/10717540701829267
– volume: 21
  start-page: 27
  year: 2010
  ident: e_1_2_6_5_2
  article-title: Polymeric gels and hydrogels for biomedical and pharmaceutical applications
  publication-title: Polym Adv Technol
  doi: 10.1002/pat.1504
– ident: e_1_2_6_9_2
  doi: 10.1163/156856207782177909
– ident: e_1_2_6_3_2
  doi: 10.1016/j.ijpharm.2004.02.009
– ident: e_1_2_6_18_2
  doi: 10.1016/j.ejpb.2007.12.021
– ident: e_1_2_6_14_2
  doi: 10.1016/j.carbpol.2007.06.005
– ident: e_1_2_6_32_2
  doi: 10.1016/j.reactfunctpolym.2009.11.007
– ident: e_1_2_6_25_2
  doi: 10.1016/j.ijpharm.2006.02.005
– ident: e_1_2_6_20_2
  doi: 10.1016/j.biomaterials.2005.01.031
– ident: e_1_2_6_24_2
  doi: 10.1002/app.26450
– ident: e_1_2_6_26_2
  doi: 10.1002/masy.200850610
– ident: e_1_2_6_28_2
  doi: 10.1163/156855507782401196
– ident: e_1_2_6_4_2
  doi: 10.1016/j.matchemphys.2007.07.009
– ident: e_1_2_6_37_2
  doi: 10.1167/iovs.04-0091
– ident: e_1_2_6_12_2
  doi: 10.1002/jbm.b.31046
– ident: e_1_2_6_8_2
  doi: 10.1021/bm801316z
– ident: e_1_2_6_16_2
  doi: 10.1016/j.ijpharm.2009.02.005
– ident: e_1_2_6_40_2
  doi: 10.1063/1.1849153
– ident: e_1_2_6_44_2
  doi: 10.1021/ma00205a036
– volume-title: Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems
  year: 1996
  ident: e_1_2_6_21_2
– ident: e_1_2_6_11_2
  doi: 10.1002/polb.10067
– ident: e_1_2_6_2_2
  doi: 10.1021/ie800886m
– volume-title: Transport phenomena in biological systems
  year: 2004
  ident: e_1_2_6_41_2
– ident: e_1_2_6_45_2
  doi: 10.1063/1.1680734
– ident: e_1_2_6_7_2
  doi: 10.1039/b713009k
SSID ssj0008062
Score 2.0418737
Snippet Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1442
SubjectTerms Biological and medical sciences
Biotechnology
Diffusion
Drug delivery
Drug Delivery Systems
drug loading
Fundamental and applied biological sciences. Psychology
hydrogel deswelling
hydrogel swelling
Hydrogels
Hydrogen-Ion Concentration
Mathematical models
Models, Theoretical
pH effects
pH-responsive hydrogels
polymer network displacement
Porosity
Pressure
Solvents
Stress
Temperature
Temperature effects
thermally responsive hydrogels
Title Drug loading into and drug release from pH- and temperature-responsive cylindrical hydrogels
URI https://api.istex.fr/ark:/67375/WNG-H3SK0M3T-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbtpr.632
https://www.ncbi.nlm.nih.gov/pubmed/21626721
https://www.proquest.com/docview/1017972753
https://www.proquest.com/docview/897813376
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hcoED_9DwUxkJwSnbbBwnm2MLlBWoFSpbUYmDsR27oFbJKptFLac-Qp-RJ2HGSXZZ1EoIRUqUZJzYzoz9OR5_A_AizbOhE3YY2pxItV1uQmW1CXmuY9x4khtanLy7l44PkveH4rDzqqS1MC0_xOKHG1mGb6_JwJWebS5JQ3UzrQcpp-aXXLUID-0vmaNGkY8limg8DVEFRz3vbBRv9glXeqLrVKmn5BmpZlg5ro1qcRnsXEWxvhvauQ1f-gK03ifHg3mjB-bnX9yO_1fCO3CrQ6dsq1Wnu3DNlvfg5h-chffh65t6fsROKu97z76XTcVUWbCCrlIAFuwVGa1ZYdPxr_MLf4_orzruZrxUd165PywzZ5jJwpOUsG9nRV0dYU_9AA523k5ej8MuTENoaDo5tLrQPLWR4kYoHC2KLFPKZUaYPFF4lrqocAQTI55wV-S4wzGa1i5yKonxzkNYK6vSrgNLhLUmjbUPQ5PGmXaIMPhQ4bNFoW0SwKv-k0nTcZhTKI0T2bIvx5LqTGKdBfB8ITlteTsukXnpv_pCQNXH5OeWCfl5750c808fol0-kdsBbKyoxSIBkfFhAQW-rdcTieZJcy6qtNV8Jn2LhxhR8ADYFTIj4h3j2NIH8KjVseULhjjgxEE6ZtVrypVlkduTj_t4fPyvgk_gRvt7nNzlnsJaU8_tM8RXjd7wlvQbb5YmQg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gAcyrsNj2IkBKdss3GcbMSJAiXQ7gqVregBydiO3aJWySrNVi0nfgK_kV_CjJPssqiVEIqUKPY4fmRsz9jjbwh5FqdJ33LT902KoNo21b40SvssVSFcLEo1Hk4ejuJsP_pwwA-WyMvuLEyDDzFbcMOe4cZr7OC4IL05Rw1V9aTqxQzG3xV06O30qb05dtQgcN5EQR6PfWDCQYc8G4SbXcqFuWgFm_UcbSPlKTSPbfxaXCZ4LsqxbiLavkm-dFVo7E-Oe9Na9fT3v9Ad_7OOt8hqK6DSVw1H3SZLprhDbvwBW3iXfH1TTQ_pSenM7-m3oi6pLHKaYyj6YIGJkeKxFTrJfv346eIQAauFb4agqjXMPTNUX0Apc4dTQo8u8qo8hMn6Htnffjt-nfmtpwZf446yb1SuWGwCyTSXoDDyJJHSJprrNJLwFtsgtygpBixiNk_hBmqaUjawMgoh5j5ZLsrCrBMacWN0HCrniSYOE2VByGB9Cd_muTKRR150_0zoFsYcvWmciAaAORTYZgLazCNPZ5STBrrjEprn7rfPCGR1jKZuCRefR-9Exj7tBEM2Flse2Vjgi1kCxOODCnLIrWMUAT0Ut11kYcrpqXCDHoiJnHmEXkEzQOgxBoO9R9YaJptn0AedE_R0KKpjlSvrIrbGH_fg-eBfCZ-Qa9l4uCt23492HpLrzWo5Ws89Ist1NTWPQdyq1YbrVr8Bo3EqXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQKyE48H6ERzESglO22Th2NkfKsiyUrqqyFZV6MLZjF9QqWaVZRDnxE_iN_BJmnGSXRa2EUKREscfxIzP22B5_Q8gzkaV9x20_tBmCarvMhMpqE7JMx3CxJDN4OHlnIsb7ybsDftBaVeJZmAYfYrHghpLh-2sU8FnuNpegobqeVT3BoPtdT0Q0QI4e7i2howaRdyYK6rgIgQcHHfBsFG92KVeGonVs1W9oGqlOoXVc49biPL1zVY3149DoOjnsatCYnxz35rXume9_gTv-XxVvkGutekpfNvx0k1yyxS1y9Q_Qwtvk07CaH9GT0hvf0y9FXVJV5DTHUPTAAsMixUMrdDb-9eOnj0P8qxa8GYKq1iz3q6XmDAqZe5QS-vksr8ojGKrvkP3R6-mrcdj6aQgN7ieHVueaCRspZriC6SJPU6VcarjJEgVvwkW5Qz0xYglzeQY3mKRp7SKnkhhi7pK1oizsfUITbq0RsfZ-aEScagcqBusr-DbPtU0C8qL7ZdK0IOboS-NENvDLscQ2k9BmAXm6oJw1wB3n0Dz3f31BoKpjNHRLufw4eSPH7MN2tMOmcisgGytssUiAaHxQQQ65dXwiQT5x00UVtpyfSt_lgZLIWUDoBTQDBB5j0NUH5F7DY8sM-jDjhFk6FNVzyoV1kVvT3T14PvhXwifk8u5wJN-_nWw_JFeapXI0nXtE1upqbh-DrlXrDS9UvwE00SkV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug+loading+into+and+drug+release+from+pH-+and+temperature-responsive+cylindrical+hydrogels&rft.jtitle=Biotechnology+progress&rft.au=Ninawe%2C+Pravin+R&rft.au=Parulekar%2C+Satish+J&rft.date=2011-09-01&rft.issn=1520-6033&rft.eissn=1520-6033&rft.volume=27&rft.issue=5&rft.spage=1442&rft_id=info:doi/10.1002%2Fbtpr.632&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon