Drug loading into and drug release from pH- and temperature-responsive cylindrical hydrogels
Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel...
Saved in:
Published in | Biotechnology progress Vol. 27; no. 5; pp. 1442 - 1454 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.09.2011
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel‐solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature‐responsive hydrogels are compared with those by hydrogels not subject to deformation. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011 |
---|---|
AbstractList | Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel‐solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature‐responsive hydrogels are compared with those by hydrogels not subject to deformation. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011 Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel-solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature-responsive hydrogels are compared with those by hydrogels not subject to deformation.Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel-solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature-responsive hydrogels are compared with those by hydrogels not subject to deformation. Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel-solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature-responsive hydrogels are compared with those by hydrogels not subject to deformation. ? 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011 Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel-solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature-responsive hydrogels are compared with those by hydrogels not subject to deformation. |
Author | Ninawe, Pravin R. Parulekar, Satish J. |
Author_xml | – sequence: 1 givenname: Pravin R. surname: Ninawe fullname: Ninawe, Pravin R. organization: Dept. of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 – sequence: 2 givenname: Satish J. surname: Parulekar fullname: Parulekar, Satish J. email: parulekar@iit.edu organization: Dept. of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24615765$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21626721$$D View this record in MEDLINE/PubMed |
BookMark | eNp90VtvFCEUAGBiauy2mvgLzLyY-jIrlxnYebRVu8Z6ia7xxYQwzGFFGRhhxnb_vay7bWOivkCAj8M5nCN04IMHhB4SPCcY06ftOMQ5Z_QOmpGa4pJjxg7QbCFqXoqGLQ7RUUrfMMYLzOk9dEgJp1xQMkNfnsdpXbigOuvXhfVjKJTvim67G8GBSlCYGPpiWJa_T0boB4hqnCKUEdIQfLI_odAbZ30XrVau-LrpYliDS_fRXaNcggf7-Rh9evlidbYsL96dvzp7dlHqihJaQtu1jANWTNcKN1UthFJG6Fo3lcorbnBnGkZzVRUzXZMHwqu2NdioiuaTY3SyizvE8GOCNMreJg3OKQ9hSnLRiAVhTPAsn_xXEkxEI6ioWaaP9nRqe-jkEG2v4kZe_10Gj_dApVy2icprm25dxUnOvc5uvnM6hpQiGKntqEYb_BiVdflNuW2i3DZR5ibeJnlz4TrmX2i5o5fWweafTp6u3n_4w9s0wtWNV_G75IKJWn5-ey6X7ONr_Iat5Cn7BV2bukU |
CODEN | BIPRET |
CitedBy_id | crossref_primary_10_1039_D3GC04183B crossref_primary_10_1088_1361_665X_ab9f46 crossref_primary_10_3390_polym13111753 crossref_primary_10_1016_j_ijbiomac_2023_128758 crossref_primary_10_1016_j_msec_2019_110025 crossref_primary_10_1038_pj_2015_17 crossref_primary_10_3390_polym10070806 crossref_primary_10_1002_adv_21938 crossref_primary_10_1016_j_polymer_2021_124287 crossref_primary_10_1002_jbm_b_34309 |
Cites_doi | 10.1080/003239104909811164 10.1016/S0168-3659(03)00122-6 10.1016/S1359-6446(02)02255-9 10.1016/j.ejpb.2007.08.012 10.1080/00268970310001640094 10.1109/JMEMS.2002.803281 10.1021/bp0501367 10.1007/s00396-009-2027-y 10.1016/j.ijpharm.2008.03.023 10.1016/j.ces.2010.06.014 10.1517/17425247.2.6.1003 10.1016/j.biomaterials.2004.08.024 10.1016/j.ijpharm.2009.03.010 10.1016/j.ijpharm.2008.04.032 10.1177/0883911509104475 10.1016/j.ijpharm.2007.05.035 10.1002/mabi.200600027 10.1002/mabi.200800337 10.1021/bm050116t 10.1080/10717540701829267 10.1002/pat.1504 10.1163/156856207782177909 10.1016/j.ijpharm.2004.02.009 10.1016/j.ejpb.2007.12.021 10.1016/j.carbpol.2007.06.005 10.1016/j.reactfunctpolym.2009.11.007 10.1016/j.ijpharm.2006.02.005 10.1016/j.biomaterials.2005.01.031 10.1002/app.26450 10.1002/masy.200850610 10.1163/156855507782401196 10.1016/j.matchemphys.2007.07.009 10.1167/iovs.04-0091 10.1002/jbm.b.31046 10.1021/bm801316z 10.1016/j.ijpharm.2009.02.005 10.1063/1.1849153 10.1021/ma00205a036 10.1002/polb.10067 10.1021/ie800886m 10.1063/1.1680734 10.1039/b713009k |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Institute of Chemical Engineers (AIChE) 2015 INIST-CNRS Copyright © 2011 American Institute of Chemical Engineers (AIChE). |
Copyright_xml | – notice: Copyright © 2011 American Institute of Chemical Engineers (AIChE) – notice: 2015 INIST-CNRS – notice: Copyright © 2011 American Institute of Chemical Engineers (AIChE). |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/btpr.632 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-6033 |
EndPage | 1454 |
ExternalDocumentID | 21626721 24615765 10_1002_btpr_632 BTPR632 ark_67375_WNG_H3SK0M3T_B |
Genre | article Journal Article |
GroupedDBID | --- -~X .DC 05W 0R~ 1L6 1OB 1OC 1WB 23N 31~ 33P 3SF 3WU 4.4 52U 52V 53G 55A 5GY 5VS 66C 6J9 8-1 A00 A8Z AABXI AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABEFU ABHMW ABJNI ABQWH ABTAH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACJ ACMXC ACPOU ACPRK ACS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADMGS ADOZA ADXAS ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AGXLV AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BAANH BDRZF BFHJK BHBCM BLYAC BMXJE BNHUX BOGZA BRXPI BSCLL C45 CS3 DCZOG DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EDH EJD EMOBN ESTFP F5P FEDTE FUBAC G-S GODZA HF~ HGLYW HHY HVGLF HZ~ I-F IHE ITG ITH IX1 JG~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI ML0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NDZJH NNB O9- OIG OVD P2P P2W P4E PALCI QRW RIWAO RJQFR ROL RWI SAMSI SUPJJ SV3 TAE TEORI TN5 TUS W99 WBKPD WIH WIJ WIK WOHZO WSB WXSBR WYJ XV2 Y6R ZCA ZY4 ZZTAW ~02 ~KM ~S- AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4212-ebdb36e0a3c5a094577aaf7c5c94a4576f0df93260343fd943f164bbf0fa42f93 |
IEDL.DBID | DR2 |
ISSN | 8756-7938 1520-6033 |
IngestDate | Fri Jul 11 05:41:44 EDT 2025 Fri Jul 11 14:53:26 EDT 2025 Mon Jul 21 05:25:07 EDT 2025 Mon Jul 21 09:15:37 EDT 2025 Tue Jul 01 02:13:25 EDT 2025 Thu Apr 24 22:56:48 EDT 2025 Wed Jan 22 16:37:18 EST 2025 Wed Oct 30 09:52:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Drug pH Temperature Hydrogel Release |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2011 American Institute of Chemical Engineers (AIChE). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4212-ebdb36e0a3c5a094577aaf7c5c94a4576f0df93260343fd943f164bbf0fa42f93 |
Notes | ArticleID:BTPR632 ark:/67375/WNG-H3SK0M3T-B istex:7878F53289B84A11B14963D190B94227E697CBC8 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 21626721 |
PQID | 1017972753 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_897813376 proquest_miscellaneous_1017972753 pubmed_primary_21626721 pascalfrancis_primary_24615765 crossref_citationtrail_10_1002_btpr_632 crossref_primary_10_1002_btpr_632 wiley_primary_10_1002_btpr_632_BTPR632 istex_primary_ark_67375_WNG_H3SK0M3T_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September/October 2011 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: September/October 2011 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States |
PublicationTitle | Biotechnology progress |
PublicationTitleAlternate | Biotechnol Progress |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley |
References | Kulkarni RV, Sa B. Electroresponsive polyacrylamide-grafted-xanthan hydrogels for drug delivery. J Bioactive Compatible Polym. 2009; 24: 368-384. Don T-M, Huang M-L, Chiu A-C, Kuo K-H, Chiu W-Y, Chiu L-H. Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mat Chem Phys. 2008; 107: 266-273. Ninawe PR, Hatziavramidis D, Parulekar SJ. Delivery of drug macromolecules from thermally-responsive gel implants to the posterior eye. Chem Eng Sci. 2010; 65: 5170-5177. Hynd MR, Turner JN, Shainj W. Applications of hydrogels for neural cell engineering. J Biomater Sci Polym Edn. 2007; 18: 1223-1244. Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002; 7: 569-579. Wang L, Liu M, Gao C, Ma L, Cui D. A pH-, thermo-, and glucose-, triple-responsive hydrogel: Synthesis and controlled drug delivery. Reactive Funct Polym. 2010; 70: 159-167. Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008; 37: 1473-1481. Yamaue T, Doi M. The stress diffusion coupling in the swelling dynamics of cylindrical gels. J Chem Phys. 2005; 122: 1473-1481. Abraham S, Brahim S, Ishihara K, Guiseppi-Elie A. Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatability. Biomaterials 2005; 26: 4767-4778. Fang J-Y, Chen J-P, Leu Y-L, Hu J-W. Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery. Eur J Pharm Biopharm. 2008; 68: 626-636. Yamaue T, Taniguchi T, Doi M. The simulation of the swelling and deswelling dynamics of gels. Mol Phys. 2004; 102: 167-172. Jagur-Grodzinskia J. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol. 2010; 21: 27-47. Kim SW. Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems. Tokyo: Springer; 1996. Ehrick JD, Luckett MR, Khatwani S, Wei Y, Deo SK, Bachas LG, Daunert S. Glucose responsive hydrogel networks based on protein recognition. Macromol Biosci. 2009; 9: 864-868. Fanger C, Wack H, Ulbricht M. Macroporous poly(N-isopropylacrylamide) hydrogels with adjustable cut-off for the efficient and reversible immobilization of biomacromolecules. Macromol Biosci. 2006: 6, 393-402. Nam K, Watanabe J, Ishihara K. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers. Int J Pharm. 2004; 275: 259-269. Li X, Wu W, Liu W. Synthesis and properties of thermo-responsive guar gum/poly(N-isopropylacrylamide) interpenetrating polymer network hydrogels. Carb Polym. 2008; 71: 394-402. Tanaka T, Hocker LO, Benedek GB. Spectrum of light scattered from viscoelastic gel. J Chem Phys. 1973; 59: 5151-5159. Bromberg L. Intelligent hydrogels for the oral delivery of chemotherapeutics. Expert Opin Drug Deliv. 2005; 2: 1003-1013. Chan AW, Whitney RA, Neufeld RJ. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules. 2009; 10: 609-616. Martin del Valle, EM, Galan, MA, Carbonell, RG. Drug delivery technologies: the way forward in the new decade. Ind Eng Chem Res. 2009; 48: 2475-2486. Hirotsu S. Elastic anomaly near the critical point of volume phase transition in polymer gels. Macromolecules. 1990; 23: 905-907. Ramanan RMK, Chellamuthu P, Tang L, Nguyen KT. Development of a temperature-sensitive composite hydrogel for drug delivery applications. Biotechnol Prog. 2006; 22: 118-125. Gou M, Li XY, Dai M, Gong CY, Wang XH, Xie Y, Deng HX, Chen LJ, Zhao X, Qian ZY, Wei YQ. A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo-sensitive hydrogel. Int J Pharm. 2008; 359: 228-233. Bajpai SK, Saggu SPS. Controlled release of an anti-malarial drug from a pH-sensitive poly(methacrylamide-co-methacrylic acid) hydrogel system. Designed Monomers Polymers. 2007; 10: 543-554. Huang X, Lowe TL. Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules. 2005; 6: 2131-2139. Aminabhavi TM, Kulkarni RV, Kulkarni AR. Polymers in drug delivery. Polymeric transdermal drug delivery systems. Polym News. 2004; 29: 214-218. Kiil S, Dam-Johansen K. Controlled drug delivery from swellable hydroxypropylmethylcellulose matrices: model-based analysis of observed radial front movements. J Control Release 2003; 90: 1-21. Yin Y, Yang Y, Xu H. Hydrogels for colon-specific drug delivery: swelling kinetics and mechanism of degradation in vitro. J Polym Sci Part B: Polym Phys. 2001; 39: 3128-3137. Iemma F, Spizzirri UG, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N. Synthesis and release profile analysis of thermo-sensitive albumin hydrogels. Colloid Polym Sci. 2009; 287: 779-787. Dai Y-N, Li P, Zhang J-P, Wang A-Q, Wei Q. Swelling characteristics and drug delivery properties of Nifedipine-loaded pH sensitive alginate-chitosan hydrogel beads. J Biomed Mater Res Part B: Appl Biomater. 2008; 86B: 493-500. Geever LM, Cooney CC, Lyons JG, Kennedy JE, Nugent MJD, Devery S, Higginbotham CL. Characterization and controlled drug release from novel drug-loaded hydrogels. Eur J Pharm Biopharm. 2008; 69: 1147-1159. Song F, Zhang L-M, Yang C, Yan L. Genipin-crosslinked casein hydrogels for controlled drug delivery. Int J Pharm. 2009; 373: 41-47. Woldum HS, Larsen KL, Madsen F. Cyclodextrin controlled release of poorly water-soluble drugs from hydrogels. Drug Deliv. 2008; 15: 69-80. Geever L, Cooney C, Devine D, Devery S, Nugent M, Higginbotham C. Negative temperature sensitive hydrogels in controlled drug delivery. Macromol Symp. 2008; 266: 53-58. Truskey GA, Yuan F, Katz, DF. Transport phenomena in biological systems. Upper Saddle River, NJ: Pearson Prentice Hall; 2004. Coughlan DC, Corrigan OI. Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. Int J Pharm. 2006; 313: 163-174. Kim B, Shin Y. pH-sensitive swelling and release behaviors of anionic hydrogels for intelligent drug delivery system. J Appl Polym Sci. 2007; 105: 3656-3661. Salmaso S, Semenzato A, Bersani S, Matricardi P, Rossi F, Caliceti P. Cyclodextrin/PEG based hydrogels for multi-drug delivery. Int J Pharm. 2007; 345: 42-50. Mawad D, Foster JLJR, Lauto A. Drug-delivery study and estimation of polymer-solvent interaction parameter for bisacrylate ester-modified Pluronic hydrogels. Int J Pharm. 2008; 360: 231-235. De SK, Aluru NR, Johnson B, Crone WC, Beebe DJ, Moore J. Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments and simulations. J Microelectromech Syst. 2002; 11: 544-555. Koo H, Jin G-W, Kang H, Lee Y, Nam HY, Jang H-S, Park J-S. A new biodegradable crosslinked polyethylene oxide sulfide (PEDS) hydrogel for controlled drug release. Int J Pharm. 2009; 374: 58-65. Kim H, Robinson MR, Lizak MJ, Tansey G, Lutz RJ, Yuan P, Wang NS, Csaky KG. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest Opthalmol Visual Sci. 2004; 45: 2722-2731. Zhang X-Z, Lewis PJ, Chu C-C. Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel. Biomaterials 2005; 26: 3299-3309. 2007; 345 2007; 18 2009; 24 2008; 86B 2007; 105 2004; 102 2004; 29 1973; 59 2002; 7 2004; 45 2002; 11 2009; 374 2008; 37 2008; 15 2008; 107 1996 2006; 6 2004 2009; 373 2005; 26 2008; 266 2006; 313 2007; 10 2008; 71 2009; 48 2008; 360 2004; 275 2010; 21 2010; 65 2003; 90 1990; 23 2009; 10 2005; 122 2006; 22 2008; 69 2009; 287 2009; 9 2005; 6 2008; 68 2008; 359 2001; 39 2005; 2 2010; 70 Kim SW (e_1_2_6_21_2) 1996 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 Truskey GA (e_1_2_6_41_2) 2004 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_42_2 e_1_2_6_20_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 Jagur‐Grodzinskia J (e_1_2_6_5_2) 2010; 21 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_25_2 |
References_xml | – reference: Aminabhavi TM, Kulkarni RV, Kulkarni AR. Polymers in drug delivery. Polymeric transdermal drug delivery systems. Polym News. 2004; 29: 214-218. – reference: Yamaue T, Taniguchi T, Doi M. The simulation of the swelling and deswelling dynamics of gels. Mol Phys. 2004; 102: 167-172. – reference: Kulkarni RV, Sa B. Electroresponsive polyacrylamide-grafted-xanthan hydrogels for drug delivery. J Bioactive Compatible Polym. 2009; 24: 368-384. – reference: De SK, Aluru NR, Johnson B, Crone WC, Beebe DJ, Moore J. Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments and simulations. J Microelectromech Syst. 2002; 11: 544-555. – reference: Salmaso S, Semenzato A, Bersani S, Matricardi P, Rossi F, Caliceti P. Cyclodextrin/PEG based hydrogels for multi-drug delivery. Int J Pharm. 2007; 345: 42-50. – reference: Abraham S, Brahim S, Ishihara K, Guiseppi-Elie A. Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatability. Biomaterials 2005; 26: 4767-4778. – reference: Song F, Zhang L-M, Yang C, Yan L. Genipin-crosslinked casein hydrogels for controlled drug delivery. Int J Pharm. 2009; 373: 41-47. – reference: Gou M, Li XY, Dai M, Gong CY, Wang XH, Xie Y, Deng HX, Chen LJ, Zhao X, Qian ZY, Wei YQ. A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo-sensitive hydrogel. Int J Pharm. 2008; 359: 228-233. – reference: Fanger C, Wack H, Ulbricht M. Macroporous poly(N-isopropylacrylamide) hydrogels with adjustable cut-off for the efficient and reversible immobilization of biomacromolecules. Macromol Biosci. 2006: 6, 393-402. – reference: Ninawe PR, Hatziavramidis D, Parulekar SJ. Delivery of drug macromolecules from thermally-responsive gel implants to the posterior eye. Chem Eng Sci. 2010; 65: 5170-5177. – reference: Don T-M, Huang M-L, Chiu A-C, Kuo K-H, Chiu W-Y, Chiu L-H. Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mat Chem Phys. 2008; 107: 266-273. – reference: Kim SW. Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems. Tokyo: Springer; 1996. – reference: Truskey GA, Yuan F, Katz, DF. Transport phenomena in biological systems. Upper Saddle River, NJ: Pearson Prentice Hall; 2004. – reference: Dai Y-N, Li P, Zhang J-P, Wang A-Q, Wei Q. Swelling characteristics and drug delivery properties of Nifedipine-loaded pH sensitive alginate-chitosan hydrogel beads. J Biomed Mater Res Part B: Appl Biomater. 2008; 86B: 493-500. – reference: Bajpai SK, Saggu SPS. Controlled release of an anti-malarial drug from a pH-sensitive poly(methacrylamide-co-methacrylic acid) hydrogel system. Designed Monomers Polymers. 2007; 10: 543-554. – reference: Jagur-Grodzinskia J. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol. 2010; 21: 27-47. – reference: Huang X, Lowe TL. Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules. 2005; 6: 2131-2139. – reference: Chan AW, Whitney RA, Neufeld RJ. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules. 2009; 10: 609-616. – reference: Martin del Valle, EM, Galan, MA, Carbonell, RG. Drug delivery technologies: the way forward in the new decade. Ind Eng Chem Res. 2009; 48: 2475-2486. – reference: Hynd MR, Turner JN, Shainj W. Applications of hydrogels for neural cell engineering. J Biomater Sci Polym Edn. 2007; 18: 1223-1244. – reference: Yamaue T, Doi M. The stress diffusion coupling in the swelling dynamics of cylindrical gels. J Chem Phys. 2005; 122: 1473-1481. – reference: Nam K, Watanabe J, Ishihara K. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers. Int J Pharm. 2004; 275: 259-269. – reference: Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002; 7: 569-579. – reference: Koo H, Jin G-W, Kang H, Lee Y, Nam HY, Jang H-S, Park J-S. A new biodegradable crosslinked polyethylene oxide sulfide (PEDS) hydrogel for controlled drug release. Int J Pharm. 2009; 374: 58-65. – reference: Hirotsu S. Elastic anomaly near the critical point of volume phase transition in polymer gels. Macromolecules. 1990; 23: 905-907. – reference: Li X, Wu W, Liu W. Synthesis and properties of thermo-responsive guar gum/poly(N-isopropylacrylamide) interpenetrating polymer network hydrogels. Carb Polym. 2008; 71: 394-402. – reference: Kim H, Robinson MR, Lizak MJ, Tansey G, Lutz RJ, Yuan P, Wang NS, Csaky KG. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest Opthalmol Visual Sci. 2004; 45: 2722-2731. – reference: Yin Y, Yang Y, Xu H. Hydrogels for colon-specific drug delivery: swelling kinetics and mechanism of degradation in vitro. J Polym Sci Part B: Polym Phys. 2001; 39: 3128-3137. – reference: Geever LM, Cooney CC, Lyons JG, Kennedy JE, Nugent MJD, Devery S, Higginbotham CL. Characterization and controlled drug release from novel drug-loaded hydrogels. Eur J Pharm Biopharm. 2008; 69: 1147-1159. – reference: Woldum HS, Larsen KL, Madsen F. Cyclodextrin controlled release of poorly water-soluble drugs from hydrogels. Drug Deliv. 2008; 15: 69-80. – reference: Zhang X-Z, Lewis PJ, Chu C-C. Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel. Biomaterials 2005; 26: 3299-3309. – reference: Coughlan DC, Corrigan OI. Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. Int J Pharm. 2006; 313: 163-174. – reference: Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008; 37: 1473-1481. – reference: Fang J-Y, Chen J-P, Leu Y-L, Hu J-W. Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery. Eur J Pharm Biopharm. 2008; 68: 626-636. – reference: Tanaka T, Hocker LO, Benedek GB. Spectrum of light scattered from viscoelastic gel. J Chem Phys. 1973; 59: 5151-5159. – reference: Iemma F, Spizzirri UG, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N. Synthesis and release profile analysis of thermo-sensitive albumin hydrogels. Colloid Polym Sci. 2009; 287: 779-787. – reference: Ramanan RMK, Chellamuthu P, Tang L, Nguyen KT. Development of a temperature-sensitive composite hydrogel for drug delivery applications. Biotechnol Prog. 2006; 22: 118-125. – reference: Kiil S, Dam-Johansen K. Controlled drug delivery from swellable hydroxypropylmethylcellulose matrices: model-based analysis of observed radial front movements. J Control Release 2003; 90: 1-21. – reference: Mawad D, Foster JLJR, Lauto A. Drug-delivery study and estimation of polymer-solvent interaction parameter for bisacrylate ester-modified Pluronic hydrogels. Int J Pharm. 2008; 360: 231-235. – reference: Geever L, Cooney C, Devine D, Devery S, Nugent M, Higginbotham C. Negative temperature sensitive hydrogels in controlled drug delivery. Macromol Symp. 2008; 266: 53-58. – reference: Ehrick JD, Luckett MR, Khatwani S, Wei Y, Deo SK, Bachas LG, Daunert S. Glucose responsive hydrogel networks based on protein recognition. Macromol Biosci. 2009; 9: 864-868. – reference: Wang L, Liu M, Gao C, Ma L, Cui D. A pH-, thermo-, and glucose-, triple-responsive hydrogel: Synthesis and controlled drug delivery. Reactive Funct Polym. 2010; 70: 159-167. – reference: Kim B, Shin Y. pH-sensitive swelling and release behaviors of anionic hydrogels for intelligent drug delivery system. J Appl Polym Sci. 2007; 105: 3656-3661. – reference: Bromberg L. Intelligent hydrogels for the oral delivery of chemotherapeutics. Expert Opin Drug Deliv. 2005; 2: 1003-1013. – volume: 313 start-page: 163 year: 2006 end-page: 174 article-title: Drug‐polymer interactions and their effect on thermoresponsive poly(N‐isopropylacrylamide) drug delivery systems publication-title: Int J Pharm – volume: 26 start-page: 3299 year: 2005 end-page: 3309 article-title: Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel publication-title: Biomaterials – volume: 374 start-page: 58 year: 2009 end-page: 65 article-title: A new biodegradable crosslinked polyethylene oxide sulfide (PEDS) hydrogel for controlled drug release publication-title: Int J Pharm – volume: 48 start-page: 2475 year: 2009 end-page: 2486 article-title: Drug delivery technologies: the way forward in the new decade publication-title: Ind Eng Chem Res – volume: 65 start-page: 5170 year: 2010 end-page: 5177 article-title: Delivery of drug macromolecules from thermally‐responsive gel implants to the posterior eye publication-title: Chem Eng Sci – volume: 39 start-page: 3128 year: 2001 end-page: 3137 article-title: Hydrogels for colon‐specific drug delivery: swelling kinetics and mechanism of degradation in vitro publication-title: J Polym Sci Part B: Polym Phys – volume: 11 start-page: 544 year: 2002 end-page: 555 article-title: Equilibrium swelling and kinetics of pH‐responsive hydrogels: models, experiments and simulations publication-title: J Microelectromech Syst – volume: 18 start-page: 1223 year: 2007 end-page: 1244 article-title: Applications of hydrogels for neural cell engineering publication-title: J Biomater Sci Polym Edn – volume: 70 start-page: 159 year: 2010 end-page: 167 article-title: A pH‐, thermo‐, and glucose‐, triple‐responsive hydrogel: Synthesis and controlled drug delivery publication-title: Reactive Funct Polym – volume: 7 start-page: 569 year: 2002 end-page: 579 article-title: Hydrogels: from controlled release to pH‐responsive drug delivery publication-title: Drug Discov Today – volume: 6 start-page: 2131 year: 2005 end-page: 2139 article-title: Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs publication-title: Biomacromolecules – volume: 59 start-page: 5151 year: 1973 end-page: 5159 article-title: Spectrum of light scattered from viscoelastic gel publication-title: J Chem Phys – year: 1996 – volume: 21 start-page: 27 year: 2010 end-page: 47 article-title: Polymeric gels and hydrogels for biomedical and pharmaceutical applications publication-title: Polym Adv Technol – volume: 275 start-page: 259 year: 2004 end-page: 269 article-title: Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers publication-title: Int J Pharm – volume: 71 start-page: 394 year: 2008 end-page: 402 article-title: Synthesis and properties of thermo‐responsive guar gum/poly(N‐isopropylacrylamide) interpenetrating polymer network hydrogels publication-title: Carb Polym – volume: 10 start-page: 609 year: 2009 end-page: 616 article-title: Semisynthesis of a controlled stimuli‐responsive alginate hydrogel publication-title: Biomacromolecules – volume: 373 start-page: 41 year: 2009 end-page: 47 article-title: Genipin‐crosslinked casein hydrogels for controlled drug delivery publication-title: Int J Pharm – volume: 2 start-page: 1003 year: 2005 end-page: 1013 article-title: Intelligent hydrogels for the oral delivery of chemotherapeutics publication-title: Expert Opin Drug Deliv – volume: 102 start-page: 167 year: 2004 end-page: 172 article-title: The simulation of the swelling and deswelling dynamics of gels publication-title: Mol Phys – volume: 23 start-page: 905 year: 1990 end-page: 907 article-title: Elastic anomaly near the critical point of volume phase transition in polymer gels publication-title: Macromolecules – volume: 69 start-page: 1147 year: 2008 end-page: 1159 article-title: Characterization and controlled drug release from novel drug‐loaded hydrogels publication-title: Eur J Pharm Biopharm – volume: 107 start-page: 266 year: 2008 end-page: 273 article-title: Preparation of thermo‐responsive acrylic hydrogels useful for the application in transdermal drug delivery systems publication-title: Mat Chem Phys – volume: 37 start-page: 1473 year: 2008 end-page: 1481 article-title: Injectable hydrogels as unique biomedical materials publication-title: Chem Soc Rev – volume: 86B start-page: 493 year: 2008 end-page: 500 article-title: Swelling characteristics and drug delivery properties of Nifedipine‐loaded pH sensitive alginate‐chitosan hydrogel beads publication-title: J Biomed Mater Res Part B: Appl Biomater – volume: 9 start-page: 864 year: 2009 end-page: 868 article-title: Glucose responsive hydrogel networks based on protein recognition publication-title: Macromol Biosci – volume: 22 start-page: 118 year: 2006 end-page: 125 article-title: Development of a temperature‐sensitive composite hydrogel for drug delivery applications publication-title: Biotechnol Prog – volume: 29 start-page: 214 year: 2004 end-page: 218 article-title: Polymers in drug delivery. Polymeric transdermal drug delivery systems publication-title: Polym News – volume: 360 start-page: 231 year: 2008 end-page: 235 article-title: Drug‐delivery study and estimation of polymer‐solvent interaction parameter for bisacrylate ester‐modified Pluronic hydrogels publication-title: Int J Pharm – volume: 15 start-page: 69 year: 2008 end-page: 80 article-title: Cyclodextrin controlled release of poorly water‐soluble drugs from hydrogels publication-title: Drug Deliv – year: 2004 – volume: 6 start-page: 393 year: 2006 end-page: 402 article-title: Macroporous poly(N‐isopropylacrylamide) hydrogels with adjustable cut‐off for the efficient and reversible immobilization of biomacromolecules publication-title: Macromol Biosci – volume: 26 start-page: 4767 year: 2005 end-page: 4778 article-title: Molecularly engineered p(HEMA)‐based hydrogels for implant biochip biocompatability publication-title: Biomaterials – volume: 105 start-page: 3656 year: 2007 end-page: 3661 article-title: pH‐sensitive swelling and release behaviors of anionic hydrogels for intelligent drug delivery system publication-title: J Appl Polym Sci – volume: 287 start-page: 779 year: 2009 end-page: 787 article-title: Synthesis and release profile analysis of thermo‐sensitive albumin hydrogels publication-title: Colloid Polym Sci – volume: 90 start-page: 1 year: 2003 end-page: 21 article-title: Controlled drug delivery from swellable hydroxypropylmethylcellulose matrices: model‐based analysis of observed radial front movements publication-title: J Control Release – volume: 266 start-page: 53 year: 2008 end-page: 58 article-title: Negative temperature sensitive hydrogels in controlled drug delivery publication-title: Macromol Symp – volume: 122 start-page: 1473 year: 2005 end-page: 1481 article-title: The stress diffusion coupling in the swelling dynamics of cylindrical gels publication-title: J Chem Phys – volume: 24 start-page: 368 year: 2009 end-page: 384 article-title: Electroresponsive polyacrylamide‐grafted‐xanthan hydrogels for drug delivery publication-title: J Bioactive Compatible Polym – volume: 359 start-page: 228 year: 2008 end-page: 233 article-title: A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo‐sensitive hydrogel publication-title: Int J Pharm – volume: 345 start-page: 42 year: 2007 end-page: 50 article-title: Cyclodextrin/PEG based hydrogels for multi‐drug delivery publication-title: Int J Pharm – volume: 10 start-page: 543 year: 2007 end-page: 554 article-title: Controlled release of an anti‐malarial drug from a pH‐sensitive poly(methacrylamide‐co‐methacrylic acid) hydrogel system publication-title: Designed Monomers Polymers – volume: 45 start-page: 2722 year: 2004 end-page: 2731 article-title: Controlled drug release from an ocular implant: an evaluation using dynamic three‐dimensional magnetic resonance imaging publication-title: Invest Opthalmol Visual Sci – volume: 68 start-page: 626 year: 2008 end-page: 636 article-title: Temperature‐sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery publication-title: Eur J Pharm Biopharm – ident: e_1_2_6_22_2 doi: 10.1080/003239104909811164 – ident: e_1_2_6_29_2 doi: 10.1016/S0168-3659(03)00122-6 – ident: e_1_2_6_6_2 doi: 10.1016/S1359-6446(02)02255-9 – ident: e_1_2_6_33_2 doi: 10.1016/j.ejpb.2007.08.012 – ident: e_1_2_6_39_2 doi: 10.1080/00268970310001640094 – ident: e_1_2_6_42_2 doi: 10.1109/JMEMS.2002.803281 – ident: e_1_2_6_27_2 doi: 10.1021/bp0501367 – ident: e_1_2_6_13_2 doi: 10.1007/s00396-009-2027-y – ident: e_1_2_6_34_2 doi: 10.1016/j.ijpharm.2008.03.023 – ident: e_1_2_6_38_2 doi: 10.1016/j.ces.2010.06.014 – ident: e_1_2_6_30_2 doi: 10.1517/17425247.2.6.1003 – ident: e_1_2_6_19_2 doi: 10.1016/j.biomaterials.2004.08.024 – ident: e_1_2_6_35_2 doi: 10.1016/j.ijpharm.2009.03.010 – ident: e_1_2_6_36_2 doi: 10.1016/j.ijpharm.2008.04.032 – ident: e_1_2_6_23_2 doi: 10.1177/0883911509104475 – ident: e_1_2_6_15_2 doi: 10.1016/j.ijpharm.2007.05.035 – ident: e_1_2_6_43_2 doi: 10.1002/mabi.200600027 – ident: e_1_2_6_31_2 doi: 10.1002/mabi.200800337 – ident: e_1_2_6_10_2 doi: 10.1021/bm050116t – ident: e_1_2_6_17_2 doi: 10.1080/10717540701829267 – volume: 21 start-page: 27 year: 2010 ident: e_1_2_6_5_2 article-title: Polymeric gels and hydrogels for biomedical and pharmaceutical applications publication-title: Polym Adv Technol doi: 10.1002/pat.1504 – ident: e_1_2_6_9_2 doi: 10.1163/156856207782177909 – ident: e_1_2_6_3_2 doi: 10.1016/j.ijpharm.2004.02.009 – ident: e_1_2_6_18_2 doi: 10.1016/j.ejpb.2007.12.021 – ident: e_1_2_6_14_2 doi: 10.1016/j.carbpol.2007.06.005 – ident: e_1_2_6_32_2 doi: 10.1016/j.reactfunctpolym.2009.11.007 – ident: e_1_2_6_25_2 doi: 10.1016/j.ijpharm.2006.02.005 – ident: e_1_2_6_20_2 doi: 10.1016/j.biomaterials.2005.01.031 – ident: e_1_2_6_24_2 doi: 10.1002/app.26450 – ident: e_1_2_6_26_2 doi: 10.1002/masy.200850610 – ident: e_1_2_6_28_2 doi: 10.1163/156855507782401196 – ident: e_1_2_6_4_2 doi: 10.1016/j.matchemphys.2007.07.009 – ident: e_1_2_6_37_2 doi: 10.1167/iovs.04-0091 – ident: e_1_2_6_12_2 doi: 10.1002/jbm.b.31046 – ident: e_1_2_6_8_2 doi: 10.1021/bm801316z – ident: e_1_2_6_16_2 doi: 10.1016/j.ijpharm.2009.02.005 – ident: e_1_2_6_40_2 doi: 10.1063/1.1849153 – ident: e_1_2_6_44_2 doi: 10.1021/ma00205a036 – volume-title: Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems year: 1996 ident: e_1_2_6_21_2 – ident: e_1_2_6_11_2 doi: 10.1002/polb.10067 – ident: e_1_2_6_2_2 doi: 10.1021/ie800886m – volume-title: Transport phenomena in biological systems year: 2004 ident: e_1_2_6_41_2 – ident: e_1_2_6_45_2 doi: 10.1063/1.1680734 – ident: e_1_2_6_7_2 doi: 10.1039/b713009k |
SSID | ssj0008062 |
Score | 2.0418737 |
Snippet | Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1442 |
SubjectTerms | Biological and medical sciences Biotechnology Diffusion Drug delivery Drug Delivery Systems drug loading Fundamental and applied biological sciences. Psychology hydrogel deswelling hydrogel swelling Hydrogels Hydrogen-Ion Concentration Mathematical models Models, Theoretical pH effects pH-responsive hydrogels polymer network displacement Porosity Pressure Solvents Stress Temperature Temperature effects thermally responsive hydrogels |
Title | Drug loading into and drug release from pH- and temperature-responsive cylindrical hydrogels |
URI | https://api.istex.fr/ark:/67375/WNG-H3SK0M3T-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbtpr.632 https://www.ncbi.nlm.nih.gov/pubmed/21626721 https://www.proquest.com/docview/1017972753 https://www.proquest.com/docview/897813376 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hcoED_9DwUxkJwSnbbBwnm2MLlBWoFSpbUYmDsR27oFbJKptFLac-Qp-RJ2HGSXZZ1EoIRUqUZJzYzoz9OR5_A_AizbOhE3YY2pxItV1uQmW1CXmuY9x4khtanLy7l44PkveH4rDzqqS1MC0_xOKHG1mGb6_JwJWebS5JQ3UzrQcpp-aXXLUID-0vmaNGkY8limg8DVEFRz3vbBRv9glXeqLrVKmn5BmpZlg5ro1qcRnsXEWxvhvauQ1f-gK03ifHg3mjB-bnX9yO_1fCO3CrQ6dsq1Wnu3DNlvfg5h-chffh65t6fsROKu97z76XTcVUWbCCrlIAFuwVGa1ZYdPxr_MLf4_orzruZrxUd165PywzZ5jJwpOUsG9nRV0dYU_9AA523k5ej8MuTENoaDo5tLrQPLWR4kYoHC2KLFPKZUaYPFF4lrqocAQTI55wV-S4wzGa1i5yKonxzkNYK6vSrgNLhLUmjbUPQ5PGmXaIMPhQ4bNFoW0SwKv-k0nTcZhTKI0T2bIvx5LqTGKdBfB8ITlteTsukXnpv_pCQNXH5OeWCfl5750c808fol0-kdsBbKyoxSIBkfFhAQW-rdcTieZJcy6qtNV8Jn2LhxhR8ADYFTIj4h3j2NIH8KjVseULhjjgxEE6ZtVrypVlkduTj_t4fPyvgk_gRvt7nNzlnsJaU8_tM8RXjd7wlvQbb5YmQg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gAcyrsNj2IkBKdss3GcbMSJAiXQ7gqVregBydiO3aJWySrNVi0nfgK_kV_CjJPssqiVEIqUKPY4fmRsz9jjbwh5FqdJ33LT902KoNo21b40SvssVSFcLEo1Hk4ejuJsP_pwwA-WyMvuLEyDDzFbcMOe4cZr7OC4IL05Rw1V9aTqxQzG3xV06O30qb05dtQgcN5EQR6PfWDCQYc8G4SbXcqFuWgFm_UcbSPlKTSPbfxaXCZ4LsqxbiLavkm-dFVo7E-Oe9Na9fT3v9Ad_7OOt8hqK6DSVw1H3SZLprhDbvwBW3iXfH1TTQ_pSenM7-m3oi6pLHKaYyj6YIGJkeKxFTrJfv346eIQAauFb4agqjXMPTNUX0Apc4dTQo8u8qo8hMn6Htnffjt-nfmtpwZf446yb1SuWGwCyTSXoDDyJJHSJprrNJLwFtsgtygpBixiNk_hBmqaUjawMgoh5j5ZLsrCrBMacWN0HCrniSYOE2VByGB9Cd_muTKRR150_0zoFsYcvWmciAaAORTYZgLazCNPZ5STBrrjEprn7rfPCGR1jKZuCRefR-9Exj7tBEM2Flse2Vjgi1kCxOODCnLIrWMUAT0Ut11kYcrpqXCDHoiJnHmEXkEzQOgxBoO9R9YaJptn0AedE_R0KKpjlSvrIrbGH_fg-eBfCZ-Qa9l4uCt23492HpLrzWo5Ws89Ist1NTWPQdyq1YbrVr8Bo3EqXQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQKyE48H6ERzESglO22Th2NkfKsiyUrqqyFZV6MLZjF9QqWaVZRDnxE_iN_BJmnGSXRa2EUKREscfxIzP22B5_Q8gzkaV9x20_tBmCarvMhMpqE7JMx3CxJDN4OHlnIsb7ybsDftBaVeJZmAYfYrHghpLh-2sU8FnuNpegobqeVT3BoPtdT0Q0QI4e7i2howaRdyYK6rgIgQcHHfBsFG92KVeGonVs1W9oGqlOoXVc49biPL1zVY3149DoOjnsatCYnxz35rXume9_gTv-XxVvkGutekpfNvx0k1yyxS1y9Q_Qwtvk07CaH9GT0hvf0y9FXVJV5DTHUPTAAsMixUMrdDb-9eOnj0P8qxa8GYKq1iz3q6XmDAqZe5QS-vksr8ojGKrvkP3R6-mrcdj6aQgN7ieHVueaCRspZriC6SJPU6VcarjJEgVvwkW5Qz0xYglzeQY3mKRp7SKnkhhi7pK1oizsfUITbq0RsfZ-aEScagcqBusr-DbPtU0C8qL7ZdK0IOboS-NENvDLscQ2k9BmAXm6oJw1wB3n0Dz3f31BoKpjNHRLufw4eSPH7MN2tMOmcisgGytssUiAaHxQQQ65dXwiQT5x00UVtpyfSt_lgZLIWUDoBTQDBB5j0NUH5F7DY8sM-jDjhFk6FNVzyoV1kVvT3T14PvhXwifk8u5wJN-_nWw_JFeapXI0nXtE1upqbh-DrlXrDS9UvwE00SkV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug+loading+into+and+drug+release+from+pH-+and+temperature-responsive+cylindrical+hydrogels&rft.jtitle=Biotechnology+progress&rft.au=Ninawe%2C+Pravin+R&rft.au=Parulekar%2C+Satish+J&rft.date=2011-09-01&rft.issn=1520-6033&rft.eissn=1520-6033&rft.volume=27&rft.issue=5&rft.spage=1442&rft_id=info:doi/10.1002%2Fbtpr.632&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon |